B Informatics

TSN Scheduling with
Re-Configuration for Dynamic
Industrial Networks

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science
in

Computer Engineering
by

Sebastian Seitner
Registration Number 01429061

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Projektass. Dipl.-Ing. (FH) Dieter Etz, MBA
Projektass. Dipl.-Ing. Dr.techn. Thomas Friwirth, Bsc

Vienna, 10" September, 2023

Sebastian Seitner Wolfgang Kastner

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

Erklarung zur Verfassung der
Arbeit

Sebastian Seitner

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. September 2023

Sebastian Seitner

iii

Acknowledgements

First and foremost, I want to express my sincerest gratitude to my wife Lisa. She always
supported me during my studies by either giving me the time I needed or by helping to
motivate me. There have been times were I was not available much, because finishing
your studies and working a full time job consumes a lot of time, so this warrants another
huge ‘Thank You' I am also grateful that she took the time to proofread this thesis
multiple times. She also provided great writing and structural suggestions to improve
this work even further. Secondly, I want to thank my advisors Dieter Etz and Thomas
Frithwirth for guiding me through the whole process and for providing valuable feedback.
I also want to thank them for providing me with the time that was necessary to complete
this thesis without pressure, and for keeping up with my irregular schedules.

Kurzfassung

Durch immer weiter steigende Flexibilitdtsanforderungen in modernen industriellen Netz-
werken entstehen laufend neue Herausforderungen fiir die zugrundeliegenden Technologien,
deren Entwicklung und Verwaltung. Das gilt auch fiir den Fall des [EEE| Time Sensitive
Networking (TSN) Standards und dessen Implementierungen. Durch den Umstand, dass
die Berechnung von giiltigen [TSN| Schedules ein NP-vollstédndiges Problem darstellt,
ist es notig, Strategien zu erarbeiten, welche zu lange Laufzeiten nach Anderungen der
Netzwerktopologie vermeiden. Andernfalls kénnte es sein, dass ein Netzwerk mehrere
Stunden nicht korrekt nutzbar ist.

In dieser Arbeit fokussieren wir uns darauf, einen bereits publizierten heuristischen Ansatz
zur Berechnung von TSN Schedules, zu erweitern. Ziel ist die rasche Anpassung der
bisherigen Konfiguration nach Topologieveranderungen. Wir stellen eine Proof-of-Concept
Implementierung vor und présentieren einige Evaluierungen, um die Anwendbarkeit
zu zeigen. Flr die Auswertung wurde ein Netzwerkgraph herangezogen, welcher ein
kleines bis mittleres Netzwerk darstellen soll. Innerhalb dieses Netzwerks wurde eine
unterschiedliche Anzahl an Nachrichten definiert, welche durch dieses gesendet werden
sollen. Die Evaluierungsergebnisse zeigen, dass gewisse Parameter, beispielsweise die Zeit
mit der sich eine Nachricht wiederholt, einen signifikanten Einfluss auf die Laufzeit des
Algorithmus haben kénnen. Wir schlagen deshalb vor, diese Umsténde bereits in der
Designphase zu bertiicksichtigen, um bessere Laufzeiten erreichen zu kénnen.

vii

Abstract

The ever increasing flexibility requirements of modern industrial networks create new and
complex challenges for the underlying technologies, their development and management.
This is also the case for the IEEE Time Sensitive Networking (T'SN) standard and its
implementations. As the task of finding valid 'TSN|schedules is an NP-complete problem,
it is necessary to come up with strategies to avoid prohibitively long computation times
when changes in the network happen because this could render a network useless for
multiple hours.

In this work, we focus on enhancing an existing and published heuristic approach to
enable recalculations in response to topology changes on existing network schedules. The
goal is to decrease the time it takes to reach a valid TSN/ network schedule. We provide
a proof-of-concept implementation and run some evaluations to judge the suitability of
this approach. The evaluations are based on a network graph which resembles a small
to medium sized network. Across this network, we synthesized a varying number of
messages to be sent across the nodes. The evaluation results show that some parameters,
e.g. the selection of periods within which messages are repeated, which are chosen during
the design phase of the network, can have significant impacts on the computation times
of the algorithm. Therefore, we suggest that those facts should be considered during the
design phase as good as possible to achieve faster schedule computations.

ix

Contents

Acknowledgements v
Abstract ix
Contents xi
1 Introduction 1
2 State of the Art 5
2.1 Introduction to Time Sensitive Networking (TSN) and TSN Schedules 5
2.2 Related Scientific Workl L. 10
3 Design and Implementation 13
3.1 Basic Concepts e 13
3.2 Limitations e e 14
3.3 Improvements over the Original Algorithm/. 14
3.4 Implementation Details 15
4 Evaluation 21
4.1 Procedurel 21
4.2 Resultsl. e 23
5 Conclusion and Future Work 27
List of Figures 29
List of Tables 31
Bibliography 33

X1

CHAPTER

Introduction

In the past, a lot of different communication protocols for the industrial environment
have emerged. One of the earliest communications with a ‘point-to-point’ connection is
RS232 which was standardized in 1960 and still sees some usage today. The first PLC, the
‘Modicon 048’ emerged in 1968 and about 11 years later, in 1979, Modbus was registered
as a communication standard by Modicon. Also in the late 70’s [Ethernet| was born
which gained popularity over time, especially in Local Area Network (LAN)| environments
in the Information Technology (IT) area. During the 1980s, fieldbus systems gained
traction and a lot of different approaches emerged in a relatively short amount of time,
and the standardization efforts led to the so-called Fieldbus War [FS02]. An example
of a fieldbus system which was part of this is PROFIBUS. Since about 20 years the
usage of so-called industrial Ethernet| is getting a lot of attention and many modern
communication approaches use [Ethernet| as their basis. A few examples include Profinet
(2002), EtherCAT (2005) and Time Sensitive Networking (TSN).

In general, these protocols enable machines to communicate effectively and reliably to,
for example, link control systems to their corresponding sensors and actuators or let
machines exchange data between each other. They operate in the so-called Operational
Technology (OT) realm. The purpose of |OT|is to use hardware and software to measure
and control industrial equipment and how it interacts with the physical world. In short,
they are the technologies which keep an industrial plant running or enable it to operate
in the first place. This also encompasses the fact that the communication has to be
predictable and very reliable even in hostile environments where lots of interferences
can happen. Many industrial communication protocols have the major disadvantage
that they are usually different from vendor to vendor and are, therefore, incompatible
to each other. This leads to so-called vendor lock-in, where a customer is bound to
buy equipment from a single manufacturer even if the device does not have the best

1

1.

INTRODUCTION

price-performance ratio for the specific use case. Therefore, it causes slower innovation,
lower flexibility and hierarchical systems. Those hierarchies are formed by the need of
placing gateways, which translate protocols, between different parts of the network.

TSNl is an open suite of standards which solves this issue by being compatible between
different manufacturers. Therefore, TSN allows more flexibility in selecting devices and
also in the overall network architecture because no gateway devices are necessary to
translate between different protocols. Additionally, the standards are not developed by
a single company. In fact, there are multiple companies driving the development. The
basis for TSN is the already existing Ethernet| standard, more specifically IEEE802.1Q.
Ethernet|is a good base because it is widely used, cost effective, fast, scalable and well
understood ([Gmb21]). TSN is not the only industrial communication protocol building
on top of standard [Ethernet—EtherCAT and PROFINET are just two other examples
([Com20]). One essential property that standard Ethernet protocols cannot provide is
guarantees regarding the transmission times and latencies. Therefore, the communication
is non-deterministic, which is not a problem for normal IT| usage, but for industrial
communication such guarantees are necessary to enable real-time data traffic.

Real-time in this context means that messages must arrive at their destination within
certain time limits. This is, for example, crucial in control systems to guarantee proper
operation. For a simple example, one can imagine a conveyor belt that has to stop when
a product reaches a light barrier. If the time it takes to transmit the message from
the light barrier to the conveyor belt motor controller is not guaranteed, then also the
position, at which the product stops, is undefined. Therefore, it matters whether the
message takes 10 milliseconds or 1 second to reach its destination. Real-time does not
necessarily imply that a data transmission has to be fast, but it has to be within certain
guaranteed bounds. In some cases, those time limits may make the difference between
smooth operation and catastrophic failure.

Traditionally, the communication networks within machines and on the factory floor in
general are more or less decoupled from the existing [I'T) networks. This hinders the ability
to automatically gather data from machines. Having easy access to machine-internal
data from the I'T network would open up a lot of new possibilities. Processes could be
analyzed and automatically improved, or preventive maintenance could be applied to
reduce downtimes.

In the emerging 4th Industrial Revolution, one of the core concepts is the convergence of
the |(OT), and the I'T| networks. This obviously presents various challenges ranging from
security down to the necessary real-time requirements in the |OT| realm. TSN enables
the [T and the |(OT| networks to share the same physical network because both can use
standard Ethernet. On such converged networks, the traffic of both networks needs to be
able to coexist. TSN has mechanisms to prioritize real-time traffic and send low priority
traffic only if it does not disturb real-time communications. Because both networks
share the same cables, the wiring effort, the cost and the maintenance burden is reduced.
Although this deployment scenario comes with a lot of complexities, it will open up a lot
of new possibilities in the future, which will be worth the effort.

Generally, the flexibility requirements in the industry are also increasing drastically, for
example due to smaller lot sizes and more variety in production. This also leads to more
frequent changes within the applied networks in terms of transmitted messages and also in
the connections themselves. This means that the underlying technology, like TSN, needs
to be able to adapt to changes and be easily reconfigurable in a short amount of time,
while still upholding the strict guarantees for real-time traffic. This work is concerned
with those increasing requirements of fast reconfigurability in industrial automation. The
focus of this work will be on the (re-) calculation of schedules (when which messages are
allowed to be transmitted) which conform to the given network topology and all timing
requirements. The possibility to generate such schedules within seconds is a major part
in the ability to reconfigure a machine, a network or a whole plant.

In the remainder of this work, we will first give a basic overview of TSN and the [TSN
scheduling problem with which we are concerned in Chapter 2. In this chapter, we then
move on to provide a brief overview of different existing approaches to this challenge.
Beginning in Chapter 3, we will start to describe an algorithm to achieve the calculation
of such [T'SN schedules. Furthermore, we will describe some mechanisms we implemented
to be able to compute new schedules after changes in the underlying network occur. To
conclude this work, we will show a few evaluations we did on our implementation in
Chapter 4 and provide an outlook for future possibilities of the algorithm in Chapter |5.

CHAPTER

State of the Art

In this chapter, we will introduce the concept of [TSN| scheduling. Additionally, we will
briefly mention a few existing approaches, which tackle this challenge.

The problem of finding a schedule in a [TSN| network is a current challenge for the
widespread adoption of TSN This issue is amplified by the circumstance that the require-
ments on industrial networks are becoming increasingly flexible and that the topology
cannot be assumed to be static over the lifetime of the setup. This makes the development
of fast and flexible algorithms necessary.

The focus of this work is on enabling fast, online (re-) calculations of the schedule if
anything in the network changes. This also means that, we are not necessarily interested
in finding the optimal solution, but rather to find a feasible solution within a short
timesframe.

2.1 Introduction to Time Sensitive Networking (TSN) and
TSN Schedules

TSNl is an approach to utilize existing [Ethernet| capabilities for real-time applications
with strict timing requirements. The IEEE Time Sensitive Networking Task group is a
successor to the previous Audio-Video Bridging (AVB) task group and continues their
work under a new name. This change resulted from an expansion of the focus areas of
the group. Traditional Ethernet networks are inherently non-deterministic, which means
they cannot provide any guarantees about latencies and transmission times. The [TSN
standard suite is an extension to the existing IEEE 802.1 standards, which are concerned
with [Ethernet| networking and all its components.

As a basis for guaranteeing any timing requirements, a [TSN| network needs a reliable
way of synchronizing clocks within the network. Such an approch is defined in the

5

2.

STATE OF THE ART

IEEE802.1ASrev standard. With this time synchronization method, a global notion
of time can be established within the network where all clocks differ at most dus from
each other at any point in time, which gives us a bounded precision for the clock
synchronization. For industrial networks, it is desirable to have a value of § of less than
1ps. An in depth analysis of the synchronization quality in large industrial networks can
be found in [GSDP17].

As mentioned, a major goal of TSN is bridging the gap between the OT and IT world.
For this reason, it has to support traffic with varying timing requirements—so-called
mixed-criticality traffic. There are three broad traffic categories, which we want to
distinguish:

o Time-Triggered (TT) with time-aware shaping: Hard real-time

Traffic for which it might be catastrophic to miss time deadlines

o Audio/Video (AVB) with credit-based shaping: Soft real-time

Traffic for which an occasional miss of a deadline does not result in a failure

o Best Effort (BE)

Traffic for which no guarantees in regard to timing exist.

In TSN| a [flow is a periodic message, which is sent from A to B, is repeated after its
associated period and has to arrive within a certain time (deadline). A flow might consist
of multiple frames. If a sender wants to transmit a message of 4500 bytes, this results
in three Ethernet| packets containing the frames, with a size of 1542 bytes each. The
maximum size of the data payload, the Maximum Transmission Unit (MTU), for Ethernet
is 1500 bytes. The extra 42 bytes stem from the size of the preamble (7 bytes), the start
frame delimiter (1 byte), the Ethernet| header including 802.1Q VLAN tag (18 bytes),
the |Cyclic Redundancy Check (CRC) (4 bytes) and a necessary interpacket gap between
two packets (12 bytes). Flows always repeat with a defined period, which therefore
determines an upper bound for the usable |[deadlines.

One important concept in many 'TSN| scheduling algorithms is the so-called hyperperiod.
Fach flow| has a defined period in which it is repeatedly sent across the network. The
hyperperiod| describes the overall period in which a certain schedule repeats itself.
Therefore, the hyperperiod is defined as the Least Common Multiple (LCM) of all
individual periods. This concept can be applied to the whole network or only to
individual parts such as queues and links. In this narrower case the hyperperiod| is the
LCM of all flows| that pass through the specific queue or link.

2.1. Introduction to Time Sensitive Networking (TSN) and TSN Schedules

In terms of [I'SN| a switch can be viewed as follows and this explanation is aided by
Figure [2.1. The port at which a frame| arrives at the device is called ingress port. From
there the frame goes through the switching fabric where it is decided at which egress
port it will leave the switch towards its destination. Each egress port has eight queues
associated with it. Every transferred frame is placed into one of those queues based on
the three bit wide Priority Code Point (PCP) field in the Ethernet frame header, defined
in 802.1Q. All queues have a so-called gate at their output which can control when fframes
will be sent from a specific queue. The mechanism by which the gate openinges are
defined is galled the |Gate Control List (GCL). If multiple gates are open at the same
time then the frames in queues with a lower index take precedence and are sent first.

Time
Aware
Queues Gates

r o 1l
Q2
Q3 Egress

Qs

Queue Selection

Ingress
GCL
t0 t1 tn
Ingress : a1 ol Egress
@|lo|1|.]o

Q| o 0 0

ouged Buiyopms

Figure 2.1: Simplified overview of a TSN device

TSN| povides two different mechanisms for traffic shaping. One of them is a credit-based
shaper (CBS), which can be used e.g. for audio/video streams to achieve low latencies
and high link utilization but limit bursts (see [[ET13| page 54ff). This traffic class is not
suitable for applications with hard real-time requirements. The other one is a time-aware
shaper, which is suitable for hard real-time traffic.

In this work, we will only concentrate on the Time-Triggered (TT)| traffic category. The
other two categories have no influence on the transmission of [I'T traffic because they
will not be allowed to be in flight during time windows that are exclusively reserved for
TT flows. In TSN|schedules, we can make sure that no other traffic interferes with high
priority messages in multiple ways. The simplest, although not the most bandwidth-
efficient way, is to include so-called guard bands before the start of critical transmissions.
These guard bands have the size of the largest [frame which could interfere. Inside the

2.

STATE OF THE ART

Cycle n e Cycle n+1

I« >

| |

| : | :

:4 1 > 2 >:< 1 > 2

MLAN priorities 7,6,5,4,2,1,0 G VLAN prio 3

WLAN priorities 7,6,5,4,2,1,0

E = Guard band

|-}
N — -y _ _ ¥ _
y

|
time t | |
| :
|
|
|
|
|
|
|

Figure 2.2: TSN scheduling example with guard bands. Source: [Com17Db]

guard band no new transmissions are allowed to start. This way, it can be guaranteed
that neither the egress port, nor the link is occupied by lower priority traffic once the
T'T| traffic is scheduled to be sent. An example of this can be seen in Figure 2.2

The other, more complex, solution is [frame| preemption, which is defined in TEEE
802.1Qbu/802.3br. In this case, a frame, which would interfere with a higher priority
transmission, is split, the transmission is stopped, the high priority [frame is sent and,
after the transfer is finished, the lower priority frame is continued and then reassembled
at the receiver, once it has fully arrived. Figure [2.3 shows a representation of this method.
The remaining guard band has the purpose to not allow transmissions to start if the
preemption overhead would outweigh the gains. This approach is more efficient in using
the available bandwidth, but comes with a lot of implementation complexity and is not
widely adopted in scheduling algorithms yet, especially the case where the preemption is
used on T'T! frames.

Cycle n e Cycle n+1

Frame transmission interruption

MANpriority3 | G VLAN priorities 7,6,5,4,2,1,

Frame is interrupted, guard
band can be minimized

Frame is continued an re-assembled
in the next switch

Figure 2.3: TSN scheduling example with fframe preemption. Source: [Com17a]

2.1. Introduction to Time Sensitive Networking (TSN) and TSN Schedules

@ EEENNNN

Scheduled
Arrival
Time

EEENNNN

Arrival
Time

(b)

Figure 2.4: Possible non-determinism in queues

Furthermore, the queues of an egress port can be seen as critical sections in the trans-
mission path and care must be taken if multiple flows use the same queue in one device.
Due to the imperfect clock synchronization, it might happen that two frames, which
are scheduled to arrive at about the same time, behave non-deterministically and could
swap their order either way. An example of this can be seen in Figure 2.4. It illustrates
a scenario in which the scheduled arrival times of frames from different flows are the
same. This leads to the problem that the order on the egress link is not deterministic
because the frames can arrive at any time within :t% of their scheduled arrival time. To
avoid this situation, frames of different flows in the same queue have to be temporally
spaced out by at least the distance of §. Additionally, different traffic types should not
be mixed in the same queues to guarantee that they do not interfere with each other.
As the number of priorities is limited, it is advisable to only use the minimum number
of queues required for T'T| traffic and to leave more queues free for lower priority traffic
(AVB or BE) and, therefore, increase its Quality of Service (QoS).

Based on the availability of synchronized clocks, it is possible to prioritize Time-Triggered
traffic with the application of a Time Aware Shaper (TAS). The functionality of the TAS
is defined in TEEE| 802.1Qbv. This mechanism determines which [frames are allowed to be
sent across network segments at certain times. In [T'SN) this prioritization is established
by the definition of [GCLs. These lists are defined for each queue in all egress ports of the

2.

STATE OF THE ART

10

devices and specify the times at which |[frames| are allowed to be transmitted from which
queues. If two different queues are open at the same time, then [frames of the queue
with the lower index have priority. If the openings of the queues are concerted correctly
and are mutually exclusive, it is possible to guarantee deterministic behavior, for hard
real-time requirements. For reference, one can look at Figure 2.1 where a simplified
overview of a 'TSN|switch is given. Computing all those individual (GCLs based on the
information about the flows and the topology of the network (including performance
information about the existing links) is the scheduling problem we want to solve.

2.2 Related Scientific Work

There exists a multitude of different approaches to the [I'SN| scheduling problem. They
range from Tabu-Search algorithms over genetic algorithms to approaches which try to
solve the problem to optimality with tools like Integer Linear Programming (ILP) or
Satisfyability Modulo Theory (SMT) solvers. Many of the current publications make
the assumption that the network is static and that the routes in the system do not
change over time or they require a full rescheduling without taking advantage of previous
computations (e.g., [SSN19], [RP17], [DN16], [RZCP20]). In situations where the network
can indeed be considered static, long running algorithms are feasible as the schedule can
be computed offline before the deployment. There are various approaches which solve
the scheduling problem to optimality, but as this is an NP-complete problem (a proof
can be found in [RP17]) it does not scale well to large industrial networks and might
run for hours, or even days, to find a solution. Therefore, it is necessary to choose an
approach that balances execution time with solution quality for the given context.

2.2.1 ILP Solver Based

In [DNI6], the authors map the TSN scheduling problem to the well-known No-Wait
Job-Shop Scheduling problem ([MP02], [MMR99]) and formulate it in terms of ILP. Their
evaluation showed that the ILP| computation can take an unreasonable amount of time
of up to three days for a relatively small problem instance with 50 flows. Although it
should be noted that the solver found feasible but not yet optimal solutions within a
shorter time window and then improved the solution as the time progressed. The authors
of [RP17] also formulate one of their presented solutions in terms of ILP and compare it
to their heuristic approach, on which this work is based.

2.2.2 SMT Solver Based

The work of Li et al. [LLJ"20] proposes the use of the existing Z3 SMT solver [Res| to
solve the scheduling problem by presenting the solver the according constraints they
define in their paper. In contrast to most publications, they do not adopt the concept of
using a hyperperiod| for all flows, but rather use a base period, first introduced by Nayak
in [NDR16], which is essentially the greatest common divisor of all flow periods. This

2.2. Related Scientific Work

alleviates the problem of very large hyperperiods/ and makes the SMT| solver approach
more tractable. Because, in the case of a large hyperperiod, flows with a small period
have to be placed into the schedule more often, which increases the overall runtime.

2.2.3 Heuristic Approaches

The long runtimes of the aforementioned strategies show that it is necessary to develop
different solutions which require less computational time and still yield reasonably good
schedules. This is especially true for networks that cannot be assumed to remain static.
A heuristic algorithm is designed to trade off optimality and completeness for speed.
This means that a heuristic approach can be significantly faster but it might result in a
non-optimal solution or might not find a feasible schedule, even if one exists. Typically,
the heuristic function guides the algorithm through the search space to explore only
solutions that seem good for the heuristic. This limits the number of solutions the
algorithm needs to consider and, therefore, speeds up the overall process.

2.2.4 Other Approaches

In addition to their work on an ILP approach, the authors of [DN16] also developed
a Tabu-Search-based algorithm to compute the schedules. For their evaluation of the
Tabu-Search approach, they restricted the maximum runtime of the [ILP] solver to 300
minutes. Then they compared the solutions and concluded that their proposed Tabu
Search algorithm was faster and fared better on average in terms of the solution quality.

11

CHAPTER

Design and Implementation

In the following sections, we want to select a suitable algorithm for rapid TSN scheduling
and give an insight into how the chosen algorithm works and how it was implemented.
Furthermore, we will mention a few of its limitations and describe some data structures,
which were used to solve the problem. The source code for this implementation can be
found in the GitLab repository [Sei23].

3.1 Basic Concepts

This work takes the heuristic strategy, developed by Raagaard et al. ([RP17]), as a basis
and adds some improvements on top of it. Those additions are mentioned as possible
future work in the original publication.

Any algorithm for [TSNs schedule calculation takes in the topological definition of a
network including all connections (for their attributes see Table |3.1) with their corre-
sponding bandwidth and propagation delays on those links. The second part of the input
are all the flows with the necessary metadata, as described in Table 3.2, that should be
scheduled. The overall system structure is represented in Figure 3.1.

Topology

Gate Control Lists

Scheduler ——>» (GCLs)

N/

Flows

Figure 3.1: Basic system structure

13

3.

DESIGN AND IMPLEMENTATION

14

The main functionality of the implementation is the calculation of a feasible schedule in
a given network with a heuristic strategy that schedules the flows one-by-one to limit the
overall solution space. This approach is selected because it is possible to quickly find a
solution in many cases. Obviously, this comes at the cost of forsaking optimality and
eventually missing feasible solutions in some cases.

The original strategy proposes to sort the flows according to certain criteria. The idea is
to try to schedule the most difficult flows first and add the easier ones later on. How
the flows are ordered and what ‘difficult to schedule’ means will be explained later on.
After the initial ordering, the flows are scheduled one-by-one and the algorithms priority
is to use as little queues as possible. As a secondary measure, it strives to minimize
the end-to-end latency. Therefore, the algorithm tries to schedule the flow into the first
queue in all cases. If this is not successful the next queue is tried until it is successful
or no more queues are available. In the latter case, the algorithm exits and does not
produce a full schedule. The details of how a single flow is scheduled will be explained in
the remainder of this chapter.

3.2 Limitations

As a greedy scheduling approach is chosen and the algorithm schedules one flow! after the
other, it might not find an optimal solution or no solution at all even if one exists. This
balances speed with a reasonably high success rate of 90% according to [RP17].

We mainly focus on the options defined in IEEE 802.1Qbv, and assume specific topologies
without redundant links, as defined in ITEEE| 802.1CB, for our use-cases. Another
limitation is that the approach does not consider the preemption capabilities of TSN|
which are defined in IEEE| 802.1Qbu. This would increase success chances in cases with
high link utilization where the already scheduled [frames leave lots of small gaps in the
schedule that are too small to fit full [frames. With preemption capabilities, those gaps
might also be used.

Furthermore, the algorithm only takes the shortest weighted paths between source and
destination of each [flow] into consideration. Although, it would be fairly straightforward
to add the possibility to consider multiple routes of a [frame| before aborting with no
result. This, however, would not consider alternative routes for already scheduled [frames.

3.3 Improvements over the Original Algorithm

We added some improvements on top of the original description of the algorithm. Namely,
this is advanced bookkeeping of the scheduled flows. We keep track of the time-slots
the [frames of flows are assigned to. Additionally, there are mechanisms to efficiently
remove flows| from the schedule. If the underlying topology changes, the affected fflows
can be quickly removed from the existing schedule and the algorithm is run again with
the now unscheduled [flows| and it tries to fit them into the schedule again. This also

3.4. Implementation Details

forms a basis for the envisioned delta evaluation of the proposed |Greedy Randomized
Adaptive Search Procedure (GRASP)| metaheuristic approach for schedule optimization
from [RP17]. This addition could be used to speed up the neighborhood computations
in GRASP| and derive better solutions in a shorter amount of time. To enable this, we
use a custom implementation of a doubly linked list for storing the time-slots and an
index, which keeps track of the association of a flow to all slots it occupies. Both of these
structures are described in Section [3.4.2.

3.4 Implementation Details

As the implementation is based on the work of Raagard et al. ([RP17]), we only give a
rough overview of the original algorithm and refer the interested reader to the original
work which describes the approach in more detail.

3.4.1 Network and Flow Model

The topology of the network, including its metadata, is modeled as a directed graph
G(L,N). L is the set of all links connecting nodes of set A/ with each other. Each link has
the attributes listed in Table 3.1} associated with it. For details about the |UtilizationList
structure, please refer to Section 3.4.2. Due to the fact that TSN| uses the 3-bit wide
PCP)| header field for selecting the queue for a [framel, the number of available queues

has an upper bound of 8. The attributes which are associated with a [flow are shown in
Table 3.2l

seR Transmission rate
deR Propagation delay
sp €N Source/Egress port number
q List of |UtilizationLists representing egress queues at the source node
u UtilizationList| of the link itself

Table 3.1: Link attributes

TeN Period in us
DeN Deadline in us
seN Source Node

deN Destination Node

size € N Total size in bytes
Table 3.2: Flow attributes

15

3.

DESIGN AND IMPLEMENTATION

16

3.4.2 Utilization List and Utilization Index

To be able to recalculate a schedule when the topology or the [flows change, the algorithm
has to keep track of the assignments of flows| to time-slots in queues and links at all
hops of the route from source to destination. This enables the removal of flows| from the
schedule without a full recalculation. If a new flow]is added, the algorithm can try to
schedule it on top of the current solution. If a link is removed from the topology, the
system knows which [flows are affected by the change and can remove those from the
solution and try to schedule them again without touching any other flows.

To enable this functionality, we implement a special form of a doubly linked list which
we call [UtilizationList. Instances of this list are used to represent every queue and each
link in the system. They store the information whether a certain time-slot is free or not.
If a [frame| is assigned to a slot, a reference to the corresponding flow|is also stored. On
top of this, the algorithm builds an index which creates a mapping from a [flow| to all
slots that it uses.

Utilization List

The [UtilizationList| is a doubly linked list which represents the utilization of a queue or a
link. A node/entry in the list is called slot from here on. A slot represents a slice of time,
defined by a start and end time, which can be either free or occupied by one specific
frame. The start and end times are non overlapping and there are no gaps between slots,
so the list represents one continuous timeline. The list, as a whole, also has a certain
period after which all entries reoccur. This value is equivalent to the hyperperiod of all
flows that occupy a slot in the list. The implementation keeps track of all individual
periods and their count to be able to reduce the hyperperiod| if a period is not present
anymore because all frames| that occured with this period| were removed. If this is the
case, then the length of the list will be reduced accordingly.

In addition to pointing only to its neighbours, each free slot also has a pointer to the
next and previous free slot. This enables faster iterations when searching for free slots.
Occupied slots do not possess those pointers because we do not iterate over occupied slots
often and, therefore, the increased computational overhead for keeping the references up
to date is not beneficial. Furthermore, the utilized slots also store a reference to the flow
of which the hosted [frame is a part of. This connection is used for some calculations to
attain the period of the [frame| in a particular slot. An example representation of such a
list can be seen in Figure 3.2l The top left and top right corners show the respective start
and end time of the slot in us. The center indicates whether a slot is free or occupied. In
case of an occupation, the reference to the [flow| and the particular frame are shown. The
lower corners indicate the links to the previous and next free slots. If there is no arrow
pointing to this field then this indicates that this link is not populated in the slot. One
can see that only free slots have values for those pointers.

3.4. Implementation Details

0 Flow 2 13 13 31 31 Flow 2 44 44 150
Free Free

prev_free|Frame 2|next_free prev_free next_free [« prev_free Frame 3 [next_free p- prev_free next_free

Figure 3.2: Example representation of a |UtilizationList

Utilization Index

To keep track of all the associations of flows| to the respective slot instances in all the
UtilizationLists, we use a dictionary which is keyed by the flow instance and contains a
stack of tuples of slot instances and UtilizationList| references. With this information,
each slot can be be easily obtained to be freed in the corresponding list.

3.4.3 Calculating Shortest Paths between Nodes

The first step in finding a schedule is to determine the route each flow|should take through
the network. This is done by finding the shortest weighted path through the topology via
Dijkstras algorithm [Dij59]. The weight of each link is based on its bandwidth and the
propagation delay. If there is more than one path, only the shortest path is considered.

This step can be viewed as a preprocessing step for the rest of the algorithm, because
the assigned path is never changed and only a single path per flow is evaluated. We
might miss out on some potential solutions but this simplification reduces the overall
complexity of the scheduling.

3.4.4 Ordering Flows

After all distances are calculated, the [flows| are ordered depending on their ‘difficulty’ to
be scheduled. The sorting criteria are as follows:

1. Deadline

Shorter deadlines come first.

2. [Period

Shorter [periods come first.

3. Length of the route

Longer routes come first.

17

3.

DESIGN AND IMPLEMENTATION

18

The reasoning behind this order is that flows| with a short |deadline are more restricted
and harder to schedule successfully. If two [frames possess the same |deadline, the one with
the shorter period comes first because it is repeated more often within the hyperperiod
and is therefore harder to fit into the schedule. |[Flows with a longer period have more
options for insertion within the hyperperiod. As a last tiebreaker, the length of the route
is considered because it is assumed that [flows with a longer route are harder to place as
they have to fit into the schedule at more places.

3.4.5 Scheduling Flows

Based on this order, every [flow] is scheduled one-by-one until all flows| are inserted into
the schedule or the program fails to schedule a |[flow within its constraints. In this context,
scheduling a flow means that the algorithm searches for an offset ¢ [us| for each [frame| of
the flow on each hop along its route. This offset determines when the frame should be
sent to the next hop. This value is the same for all repetitions of the flow (in one egress
port) within the overall hyperperiod. This restriction is in place to further reduce the
size of the overall search space and limit the jitter of the flow. As a consequence, the
algorithm must find values for ¢ that result in no violations in any repetition. This is
one of the reasons why flows| with a shorter period| are scheduled earlier than others. A
value of ¢ = 25us means that the corresponding frame e.g. f12 (denoting the second
frame of flow| 1) is sent at the following times assuming a period (f1.7) of 150us:

O, 1.7+, 2% f1. T+ ¢, 3% 1. T+ &, ... = 2bus, 175us, 325us,475us, . . .

To determine the sending offset of a frame, it is necessary to check if the [frame| fits into
all [UtilizationLists along its path in all repetitions of the [flows|period. To calculate this,
we can ‘fold’ the [UtilizationList| A into a new instance B with the [flows|period which has
occupations according to all the slots of the original list. To achieve this, we iterate over
the slots in A and calculate start and end times in B based on the overall |period of B.

s € A.slots
start = s.start mod B.period

end = s.end mod B.period

If end is less than start, then the slot wraps around the end of B. In this case, we occupy
one slot from start to B.period and the another one from 0 to end. Otherwise, we utilize
one slot from start to end. If all lists along the path are folded together the resulting list
contains all the information about the flows path. Based on this folded list the algorithm
can search for a free slot in which the current frame fits. An illustration of this process
can be seen in Figure 3.3

3.4. Implementation Details

0 50 100 150 200 250 300

A\ N

0 25 50 75 100

m Period 100 Duration 25

Period 150 Duration 25

Figure 3.3: Example of folding a |UtilizationList

If a flow can not be placed at a certain hop and other queues are available, the algorithm
tries to place the flow] into another queue. There is an option to have individual queue
assignments on each hop or to force the flow to be assigned to the same queue on all
nodes in the route. This can be used if the available system is not able to support
different queue assignments on a hop to hop basis. In such a case, the queue assignment
is changed on all nodes along the way and the flow must be put in the same queue on
each hop.

3.4.6 Removing Flows and Reacting to Network Changes

If the underlying topology changes, a recalculation of the schedule can be triggered. The
two graphs, representing the old and the new network structure, are compared and all
links, that are affected by the change, are determined. With that information, we can
determine all flows| that need to be removed from the existing schedule. For these [flows
we can look up the occupied slots in the utilization index (see Section 3.4.2) and free
them and mark the |How| as unscheduled. Now, the schedule contains only the flows
which do not travel across any of the removed links. Then the algorithm handles the
scheduling of the affected flows| in exactly the same way it would treat a full reschedule,
but with only the removed flows. In the case that no valid schedule can be found, the
implementation resorts to a full reschedule, which has an increased chance of success,
although a longer runtime.

19

CHAPTER

Evaluation

In this chapter, we will describe the evaluation procedure that was used to test and
benchmark the implementation. The effort was focused on generating a realistic industrial
scenario and evaluate the influence of different parameters on the overall execution time
of the algorithm.

4.1 Procedure

The evaluation has two main parts: the graph generation and the flow| selection. Those
will be detailed in the following sections.

4.1.1 Graph Generation

The first step in the evaluation was to generate a realistic network graph, which will be
the same for the rest of the test procedure. But it should be noted that the test procedure
allows for arbitrary graphs as input, which enables the evaluation of different scenarios.
The graph generation is based on the ‘networkx’ [HSSO§| python library to create a
random graph with multiple interconnected components with 50 nodes in total. In this
graph, all the edges are set to have a bandwidth of 1Gbps and a negligible propagation
delay. Then a minimum spanning tree is calculated to transform it into a valid network
topology with no redundant routes. The resulting graph can be seen in Figure 4.1l

21

4. EVALUATION

Figure 4.1: Evaluation network graph

4.1.2 Flow Selection

Flows are only sent between end systems. Therefore, the first step is to determine all
end systems and group them by their membership to certain network components. This
grouping is achieved by detecting all bridges of the graph. Bridges are edges for which
it holds that, if they are removed, the graph will break up into multiple connected
components. In Figure 4.1, end systems are shown as green nodes and the bridges are
shown as red arrows.

For the synthesis of the [flows, a few parameters are defined to tweak this generation.
These parameters are listed in Table 4.1.

The next step in the selection is to determine the source and destination nodes for the
flowl. The source component is chosen randomly, but the chances for picking a specific
component are proportional to its size (Larger components are more likely to be selected).
After that, the destination component is chosen according to lcc (if the flow will leave the
source component, the other component is again chosen according to its size). Within
those two components, the source and destination nodes are picked at random. The flow
size is a Gaussian sample taken from the interval [sl, su]. The period| of a [flow is also

22

4.2. Results

Number of [lows n The total number of flows in the network

Leave Component Chance lcc A percentage that describes the chance
that a flow is sent across one or more
bridges into another component

Size Lower Bound sl The lower bound of the flow size in bytes
Size Upper Bound su The upper bound of the flow| size in bytes
Period Lower Bound pl The lower bound of the flow |period|in us
Period Upper Bound pu The upper bound of the flow |period|in us
Allowed |Periods ap A set of [period values which are allowed to be chosen
Number of Distinct [Periods| ndp The size of the set ap

Table 4.1: Parameters for flow selection

a Gaussian sample from the interval [pl, pu|, but then mapped to the nearest value in
the ap set. This value is used for both the [period and the deadline of the [flow| for this
evaluation.

4.1.3 Selecting Allowed Periods

To determine the set of allowed periods| ap, we opt for a simple greedy approach which
picks values from the given range [pl, pu] in such a way that it keeps the LCM|low. The
algorithm takes the range of periods/ and the desired number of distinct values ndp as
parameters. It first selects the lower and upper bound of the range. Then, it checks all
remaining possible values and groups them into sets according to the resulting LCM] if
they were added to the current selection. If the current LCM) of the set will not increase
by the addition, the value is added to the result set immediately. After that, the largest
groups are selected. From this pool, the group with the lowest resulting [LCM]| is chosen
and its values added to ap. This procedure is repeated until ap reaches the desired size.
We did not perform any rigorous analysis regarding the optimality of this procedure, but
empirically it showed significant improvements over naive selections like uniformly sized
bins. This approach is not fast, but it can be precomputed, so the speed is not critical.

4.2 Results

To gather a representative dataset, the procedure previously described in Section 4.1| was
used with the range of inputs, shown in Table 4.2. All combinations of the inputs were
computed for the final dataset. We applied our algorithm to all those configurations 10
times and measured the corresponding execution times.

23

4. EVALUATION

Number of flows n 10, 50, 100, 200, 300, 400
Leave Component Chance lcc 25%, 50%, 75%
Size Range [sl,su] [100,500]
Period Range [pl,pu] in ms [100,200], [100,400], [10,310]
Number of distinct periods 10, 20, 30

Table 4.2: Flow selection parameter values used for the evaluation

In Figure 4.2, one can see the impact of the lcc, the size of ap, the period| bandwidth
(pu — pl) and the number of scheduled flows on the median execution time of each
configuration. This figure clearly shows that the more distinct |periods one chooses, the
longer it takes to schedule all [flows. The cause of this is that the resulting hyperperiods
get larger and larger the more distinct |periods| are chosen. This problem is exacerbated
if the overall range (the period bandwidth), from which we can choose values for ap,
gets smaller. Additionally, the desired size of ap also plays a role in this. One takeaway
here is that for narrower period| bandwidths the size of ap should also be decreased to
keep the resulting hyperperiods small.

Period Bounds: 100-200ms and 100-400ms

nr_of_distinct_periods = 10 nr_of_distinct_periods = 20 nr_of_distinct_periods = 30

=

B [=)] o] o

o o o o
1 1 1 1
1 1 1 1
1 1 1 1

Median Execution Time (s)
N
o
L

o
I
©
L
I
L

T T T T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400 O 100 200 300 400
Nr of Flows Nr of Flows Nr of Flows

period_bandwidth

100
— 300
leave_component_chance
—e— 0.25
-#- 0.5

Figure 4.2: Median execution time comparison

24

4.2. Results

Another thing that is apparent is that the more flows travel across bridges, the harder it
gets to find a schedule. This is caused by a higher utilization of those bridging links which
makes it harder to find valid offsets for all frames and it also increases the hyperperiod
on those links because more distinct [flows| will travel across the same connection.

This effect is also evident in Figure 4.3l There, one can also observe that this is less
critical if the same number of individual periods|is chosen from a broader range of possible
periods. This way, the overall hyperperiod| will be lower. Another fact to note here is
that the number of periods we choose also plays an important role. We can see again
that this is amplified if we only choose the periods| from a smaller range because this
drives up the hyperperiod.

In conclusion, the composition of individual periods and their distribution plays an
important role in the efficiency of the algorithm. This is probably true for all approaches
that are based on the concept of considering the hyperperiod| of all flows.

Nr of Flows: 300 | Period Bounds: 100-200ms and 100-400ms

period_bandwidth = 100 period_bandwidth = 300

) +
% 1 nr_of_distinct_periods
N 10
B 20
1 . 30

=)
=}
L

Execution Time (5)

-

20 % ==]
- ;—..‘._
0l == —— | ——————
T T T T T T
0.25 0.5 0.75 0.25 0.5 0.75
Leave Component Chance Leave Component Chance

Figure 4.3: Influence of leave component chance (lcc) and number of distinct periods
(ndp) on execution time

25

CHAPTER

Conclusion and Future Work

In this paper, we implemented the existing approach to compute TSN|Schedules presented
by Raagaard et al. ([RP17]). Furthermore, we added additional bookkeeping to the
algorithm to enable faster recalculations after topology changes. In the future, a direct
comparison between the two implementations might prove useful to see the runtime
impact of the bookkeeping efforts. If this implementation fares worse, this gap might be
reduced by reimplementing critical parts in C or Rust to speed up the computations like
it was done in the original publication. A prime candidate would be the function which
is responsible for the ‘folding’ of a [UtilizationList| into a shorter interval to determine
possible sending offsets.

From our evaluation, we can see that it is beneficial to be mindful of the impact of
certain parameters during the initial design of the network and the messages being sent
across it. If possible, one should take care to design those properties to make it as
easy as possible for the algorithm to successfully find schedules quickly. As this is an
NP-complete problem, the potential savings are big. Our suggestions are to select the
periods of flows that will travel across the same links in such a way that the resulting
hyperperiod on those links stays as small as possible.

Further evaluation needs to be performed on the quality of the solutions after changes
to the topology. Another useful and interesting test would be to check for situations
where the implementation hits its limits in terms of successfully recalculating schedules.
In our tests, we saw that it is very successful when a node just moves within a network
component, but the success chances are reduced if a node moves to a different network
segment, because this increases the load on the bridges. Thus, it gets harder to schedule
flows across those bridges in general. In this regard, some tests to check how the
recalculated schedule compares to a full reschedule might be insightful. On a similar
note, we would like to compare the different proposed post-processing strategies like
ASAP (As-soon-as-possible) or ALAP (As-late-as-possible) and their variations from the

27

d.

CONCLUSION AND FUTURE WORK

28

original paper in terms of the chances for successful recalculations. In those tests, we
would like to see if it makes any difference how the individual frames are placed into the
respective feasible regions.

Another future addition would be to take the proposed (GRASP| metaheuristic approach
from the original authors and improve it with the available bookkeeping to reduce the
runtime of the calculations with their proposed delta evaluation steps. This could then
be used to improve the schedules after they have been deployed. An approach like this
could eventually also ‘heal’ the schedules that are computed after changes to the network
to be more optimal and have higher chances of success in case of further changes. This
approach could be similiar to the one described by Pozo in [PP19] for [Time-Triggered
Ethernet. There, they apply a fast patch operation to keep the network running and
afterwards refine the schedule again in a way that the messages are placed such that the
success chances for future patch actions are increased. We suspect that this would result
in schedules which have a better chance of being able to be adapted to new situations
when new changes happen. This combination could then have favorable properties for
flexible networks. On the one hand, we have fast recalculations to react to changes, on
the other hand, we can improve this imperfect solution over time and bring it closer to
an optimal solution with minimal impact and downtimes of the network.

As a practical improvement we foresee the restructuring of the code into a proper library
with a clearly defined Application Programming Interface (API) as a valuable step.
This will enable easier integration of the algorithm into a larger system which would be
concerned with the general management of a 'TSN| network.

2.1
2.2
2.3
2.4

3.1
3.2
3.3

4.1
4.2
4.3

Simplified overview of a [I'SN| device, .

List of Figures

TSN scheduling example with guard bands
TSN| scheduling example with [frame preemption

Possible non-determinism in queues| .

Basic system structure

Example representation of a UtilizationList,

Example of folding a [UtilizationList| .

Evaluation network graph|
Median execution time comparison| . .
Parameter influence on execution time

© 00 0

13

19

22
24
25

29

3.1
3.2

4.1
4.2

List of Tables

Link attributesl
Flow attributes

Parameters for flowl selectionl

Flow selection parameter values used for the evaluation

15
15

23
24

31

[Com17al]

[Com17b]

[Com20]

[Dij59)]

[DN16]

[FS02]

[Gmb21]

[GSDP17]

Bibliography

Ulgorash (Wikimedia Commons). TSN IEEE 802.1gqbv example with
frame preemption. |https://commons.wikimedia.org/wiki/File:
TSN_frame_pre—emption.svg, Apr 2017. Accessed on 2022-07-09.

Ulgorash (Wikimedia Commons). TSN IEEE 802.1gbv example with
guard band. https://commons.wikimedia.org/wiki/File:TSN_
IEEE_802.10bv_Example_with_guard_band.svg, Apr 2017. Accessed
on 2022-07-09.

Encoder Products Company. Industrial Ethernet commu-
nication protocols. https://www.encoder.com/hubfs/
white-papers/WP-2019_TIndustrial-Ethernet-Protocols/
wp201l9-industrial-ethernet-communication-protocols.pdf,

Oct 2020. Accessed on 2022-01-30.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269-271, 1959.

Frank Diirr and Naresh Ganesh Nayak. No-wait packet scheduling for ieee time-
sensitive networks (tsn). In Proceedings of the 24th International Conference
on Real-Time Networks and Systems, RTNS ’16, page 203-212, New York,
NY, USA, 2016. Association for Computing Machinery.

Max Felser and Thilo Sauter. The fieldbus war: History or short break between
battles? pages 73 — 80, 02 2002.

NetTimeLogic GmbH. TSN Basics. https://www.nettimelogic.com/
resources/TSN%$20Basics.pdf, Dec 2021. Accessed on 2022-07-03.

Marina Gutiérrez, Wilfried Steiner, Radu Dobrin, and Sasikumar Punnekkat.
Synchronization quality of IEEE 802.1AS in large-scale industrial automation
networks. In 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 273-282, 2017.

33

https://commons.wikimedia.org/wiki/File:TSN_frame_pre-emption.svg
https://commons.wikimedia.org/wiki/File:TSN_frame_pre-emption.svg
https://commons.wikimedia.org/wiki/File:TSN_IEEE_802.1Qbv_Example_with_guard_band.svg
https://commons.wikimedia.org/wiki/File:TSN_IEEE_802.1Qbv_Example_with_guard_band.svg
https://www.encoder.com/hubfs/white-papers/WP-2019_Industrial-Ethernet-Protocols/wp2019-industrial-ethernet-communication-protocols.pdf
https://www.encoder.com/hubfs/white-papers/WP-2019_Industrial-Ethernet-Protocols/wp2019-industrial-ethernet-communication-protocols.pdf
https://www.encoder.com/hubfs/white-papers/WP-2019_Industrial-Ethernet-Protocols/wp2019-industrial-ethernet-communication-protocols.pdf
https://www.nettimelogic.com/resources/TSN%20Basics.pdf
https://www.nettimelogic.com/resources/TSN%20Basics.pdf

[HSS08]

[IET13]

[LLJ+20]

[MMRO9]

IMP02]

[NDR16]

[PP19)

[Res]

[RP17]

[RZCP20]

[Sei23]

34

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using networkx. In Gagl Varoquaux, Travis
Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python in Science
Conference, pages 11 — 15, Pasadena, CA USA, 2008.

IETF. TSN Tutorial. https://www.ieee802.0rg/802_tutorials/
2013-03/8021-IETF-tutorial-final.pdf, Mar 2013. Accessed on
2022-07-03.

Qing Li, Dong Li, Xi Jin, Qizhao Wang, and Peng Zeng. A simple and efficient
time-sensitive networking traffic scheduling method for industrial scenarios.
FElectronics, 9(12), 2020.

R. Macchiaroli, S. Mole, and S. Riemma. Modelling and optimization of in-
dustrial manufacturing processes subject to no-wait constraints. International
Journal of Production Research, 37(11):2585-2607, 1999.

Alessandro Mascis and Dario Pacciarelli. Job-shop scheduling with blocking
and no-wait constraints. European Journal of Operational Research, 143(3):498—
517, December 2002.

Naresh Ganesh Nayak, Frank Diirr, and Kurt Rothermel. Time-sensitive
software-defined network (TSSDN) for real-time applications. Proceedings of
the 24th International Conference on Real-Time Networks and Systems, 2016.

Francisco Manuel Pozo Pérez. Methods for Efficient and Adaptive Scheduling of
Next-Generation Time-Triggered Networks. PhD thesis, Méalardalen University,
2019.

Microsoft Research. Z3 prover. https://github.com/zZ3Prover/z3l
Accessed on 2022-04-03.

Michael Lander Raagaard and Paul Pop. Optimization algorithms for
the scheduling of IEEE 802.1 time-sensitive networking (TSN). Tech-
nical report, DTU Compute Technical University of Denmark, Lyngby,
2017. http://www2.compute.dtu.dk/~paupo/publications/
Raagaard2017aa-Optimization%$20algorithms%20for%20th-.
pdf.

Niklas Reusch, Luxi Zhao, Silviu S. Craciunas, and Paul Pop. Window-based
schedule synthesis for industrial IEEE 802.1Qbv TSN networks. In 2020 16th
IEEE International Conference on Factory Communication Systems (WFCS),
pages 1-4, 2020.

Sebastian Seitner. |https://gitlab.auto.tuwien.ac.at/safety/
networkschedulingl 2023. Source code for this work.

https://www.ieee802.org/802_tutorials/2013-03/8021-IETF-tutorial-final.pdf
https://www.ieee802.org/802_tutorials/2013-03/8021-IETF-tutorial-final.pdf
https://github.com/Z3Prover/z3
http://www2.compute.dtu.dk/~paupo/publications/Raagaard2017aa-Optimization%20algorithms%20for%20th-.pdf
http://www2.compute.dtu.dk/~paupo/publications/Raagaard2017aa-Optimization%20algorithms%20for%20th-.pdf
http://www2.compute.dtu.dk/~paupo/publications/Raagaard2017aa-Optimization%20algorithms%20for%20th-.pdf
https://gitlab.auto.tuwien.ac.at/safety/networkscheduling
https://gitlab.auto.tuwien.ac.at/safety/networkscheduling

[SSN19] Aellison Cassimiro T. dos Santos, Ben Schneider, and Vivek Nigam.
TSNSCHED: Automated schedule generation for time sensitive network-
ing. In 2019 Formal Methods in Computer Aided Design (FMCAD), pages
69-77, 2019.

35

	Acknowledgements
	Abstract
	Contents
	Introduction
	State of the Art
	Introduction to Time Sensitive Networking (TSN) and TSN Schedules
	Related Scientific Work

	Design and Implementation
	Basic Concepts
	Limitations
	Improvements over the Original Algorithm
	Implementation Details

	Evaluation
	Procedure
	Results

	Conclusion and Future Work
	List of Figures
	List of Tables
	Bibliography

