B Informatics

NETCONF for TSN End Stations

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science
in

Computer Engineering
by

Nora Hartner
Registration Number 01327206

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Dipl.-Ing.(FH) Dieter Etz, MBA
Projektass. Dipl.-Ing. Dr.techn. Thomas Frihwirth, BSc

Vienna, March 6, 2024

Nora Hartner Wolfgang Kastner

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

Erklarung zur Verfassung der
Arbeit

Nora Hartner

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. Marz 2024

Nora Hartner

iii

Acknowledgements

A huge thank you to Thomas Frithwirth and Dieter Etz for their continuous support
throughout writing this thesis. Thank you for all of your time and the amazing guidance.
I would also like to thank Johanna Hartner for proofreading the whole thing. You are so
much better than my spellchecker. And one last thank you goes to Aaron Duxler, for
being a great rubber duck.

Abstract

The requirements for flexibility in industrial networks are higher today than ever before.
This leads to a shift in how the technologies already in existence need to come together.
While the network management protocol NETCONF has been around for a while, the
idea of using it in combination with Time-Sensitive Networking (T'SN) has brought new
attention to it. And although various network devices often support NETCONF, end
devices rarely do. This thesis explores an idea on how to bridge this gap between the
NETCONF network and an end device. In order to do so, a daemon is implemented,
observing the configuration data of a NETCONF server and passing any incoming changes
along to an end device. It is shown that the concept has potential, however, future work
is needed to ensure that the high safety requirements of industrial automation systems
are met.

vii

Contents

Abstract vii
Contents ix
1 Introduction 1
1.1 Motivation 2
1.2 Structure of the Work 3
2 State of the Art 5
2.1 NETCONF - Network Configuration Protocol 5
2.2 TSN - Time-Sensitive Networking 12
3 Design and Limitations 15
3.1 Tools and Libraries 15
3.2 End Station Configuration 16
3.3 Design 17
3.4 Limitations 18
4 Implementation 19
4.1 Setting up the Netopeer2 Server 19
4.2 The Daemon e 20
5 Evaluation 23
5.1 Test Results 23
5.2 Execution Timeo 25
6 Conclusion 29
List of Figures 31
List of Tables 33
Acronyms 35
Bibliography 37

ix

CHAPTER

Introduction

Industrial automation has seen multiple revolutions within the past 300 years. The
first industrial revolution introduced steam- and water power and made the switch from
manual labor to machines possible [XDK"18]. The second industrial revolution was
marked by the widespread availability of electrical power and introduced production
lines. Finally, during the third industrial revolution we switched from analogue electronic
technologies to digital electronics. Today we are right in the middle of the so-called
fourth industrial revolution, which focuses on interconnectivity between machines, devices,
sensors and humans. In order to achieve this interconnectivity, open standards that allow
for the interoperability of machines from different vendors are needed. Being able to
dynamically configure all machines and devices involved in production is now becoming
a necessity to ensure smooth, efficient and safe operations, even with frequent changes
within the industrial environment.

Industry 4.0 generates new requirements for industrial automation systems. The inte-
gration of mobile devices and a more flexible reconfiguration of participating devices
during continuous operation becomes a necessity [SPFA19]. Industrial networks are more
dynamic and have higher flexibility requirements. One approach to solve these new
demands is Time-Sensitive Networking (TSN). TSN extends current IEEE 802 standards
like 802.11 wireless local area network or 802.3 wired Ethernet with the capabilities to
provide real-time functionality. For industrial automation, a more specific standard has
been created. TSN for industrial automation, as defined in IEC/IEEE 60802, bundles
some of the TSN standards. By defining a standardized network infrastructure, TSN
for industrial automation bridges the gap between operational technologies (OT) and
information technology (IT).

TSN acts as an Industry 4.0 enabler by defining ways of communication between all
participants, whether they work with time-sensitive information or are satisfied with
best-effort networking. However, before communication can happen at all, another issue
needs to be addressed. With Industry 4.0, the new challenge of adding and removing

1

1.

INTRODUCTION

participants during continuous operations arises. To provide this flexibility that was not
required in earlier systems, some form of network management to configure new devices in
order to properly fit into the existing setup is required. While the network management
protocol NETCONTF exists since 2006, the idea of using it in combination with TSN has
brought new attention to it in the past few years [EBBS11]. Various network participants
like switches with NETCONF support have been available for a while now, but with the
newly developed need to reconfigure even end stations during continuous operations, it
becomes more attractive to use NETCONF for those as well. In combination with the
data modeling language Yet Another Next Generation (YANG), the NETCONF protocol
can be used to configure a wide range of devices within a network [Bj610]. Vendors
are able to create YANG models for their devices, creating a well-defined interface to
configure those devices using NETCONF.

1.1 Motivation

While modern switches mostly support NETCONF, the majority of end stations such as
industrial robots or machines do not. In order to establish communication and receive
configuration from a NETCONF client, a device needs a NETCONF server. Switches do
have this server already built-in, making configuration easy. End stations on the other
hand do not possess these built-in servers. To be able to still make them configurable by
the client, a stand-alone server can be added on the end station, that enables configuration
of its Network Interface Card (NIC) via the NETCONF client. Figure 1.1 illustrates
the communication between a client and various network participants. A Network
Management System (NMS) with a NETCONF client is connected to a TSN switch. The
switch itself can be configured via NETCONF. Additionally, it acts as a bridge to the
other network participants, in this example a robot and two machines. Those are the
end stations that typically can not be configure directly via NETCONF, but need an
extra NETCONF server.

NMS
NETCONF
Client
TSN Switch TSN Switch
NETCONF NETCONF
Server Server
ROBOT MACHINE 1 MACHINE 2
NETCONF NETCONF NETCONF
Server Server Server

Figure 1.1: TSN Device Configuration with NETCONF

1.2. Structure of the Work

This thesis focuses on the first steps of making industrial systems more flexible, the
dynamic discovery and subsequent configuration of devices. This is done by creating a
server that is able to detect when devices become available. Newly found devices will
be sent a configuration that enables them to participate and cooperate with the already
established network of devices, machines and humans.

1.2 Structure of the Work

The structure of this thesis is as follows:

¢ Chapter 2 - State of the Art: This chapter serves as an introduction for the
reader to the technologies used in the further thesis.

e Chapter 3 - Design and Limitations: This chapter gives an overview on
available tools and describes design choices and which limitations were set.

e Chapter 4 - Implementation: This chapter describes the individual components
of the implementations, gives further insights into their workings, and explains how
to put all components together into a working solution.

e« Chapter 5 - Evaluation: This chapter documents the results of testing the
implementation against different scenarios.

e Chapter 6 - Conclusion: This final chapter gives a final overview of the project
and discusses what could be further improved in future versions.

CHAPTER

State of the Art

2.1 NETCONF - Network Configuration Protocol

The NETCONTF protocol was developed by the Internet Engineering Taskforce (IETF) as a
network management protocol to install, manipulate and delete network devices [EBBS11].
Configuration data and protocol messages are formatted using Extensible Markup Lan-
guage (XML). The operations are realized as remote procedure calls (RPCs). A strength
of NETCONTF lies in its ability to mimic the native functionality of the devices implement-
ing it, thus reducing the time and cost needed to implement new features. NETCONF
uses sessions between clients and servers. The basic communication schema between
server and client is depicted in Figure 2.1. At the start of the session, client and server
exchange a <hello> element, containing a list of their capabilities. Once the connection
is established, the client is able to send various operations reading and manipulating data,
to which the server reacts by sending a <rpc—-reply>. The exchange is terminated with
a <close-session> by the client, followed by an <ok> from the server.

Client _ Server
NMS (Device, e.g., Switch,
() Router, NIC)
: hello > . Start Session,
| <€ hello 1 Capability Exchange

i —<rpc>, (<get>, <edit-config>, <lock>} > ! parform Operations

<——<rpc-reply>

<close-session>——» ! Close Session

| <€ ok

Figure 2.1: Basic NETCONF Communication

2.

STATE OF THE ART

Clients are part of the NMS, servers are network devices. Servers need to support
at least one NETCONEF session, but often support more. NETCONF supports so-
called capabilities, that allow for the basic NETCONF functionalities to be extended.
Capabilities define, for example, additional operations. Clients are to discover which
capabilities are used by a server and are able to use them subsequently.

2.1.1 Protocol Layers

NETCONTF is separated into four layers, as can be seen in Figure 2.2 [EBBS11]|. The
content layer includes configuration data and notification data. A common language
used to model this layer is YANG (see Section 2.1.3) The operations layer defines a
set of XML-encoded operations shown in Table 2.1, that is used to manage and retrieve
device configurations. The messages layer provides a mechanism to encode remote
procedure calls, and finally the secure transport layer provides the requirements to

send secure messages between server and client devices. Further specific requirements for
each layer can be found in [EBBS11].

Layer Example
Content Configuration Data Notification Data
<edit-config>
Operations <lock>
<close-session>
Messages <rpc>, <rpc-reply> <notification>
Secure Transport SSH, TLS, ...

Figure 2.2: NETCONF Protocol Layers, Adapted from [EBBS11]

<get> retrieves configuration and device state information
<get-config> retrieves only the configuration from the datastore
<edit-config> loads the given config to a given datastore

<copy-config> | copies the config from one datastore to another

<delete-config> | deletes a configuration datastore

<lock> locks an entire datastore

<unlock> releases the lock from the <lock> operation

<close-session> | gracefully terminates the NETCONF session
<kill-session> forcefully terminates the NETCONF session

Table 2.1: NETCONF Operations

2.1. NETCONF - Network Configuration Protocol

2.1.2 Datastores

Datastores are where the configuration specified by the YANG data models are stored.
In datastores the configuration can be implemented using flash memories, databases, files
or combinations of those [BSST18]. Datastores are used to bind network management
data models to network management protocols. There are two architectural frameworks.
An original simple model (Figure 2.3) and an updated version (Figure 2.4), in which
problems with the simple model were addressed. The original model consists of a
candidate, a startup and a running configuration store. The extended version adds
an intended configuration datastore and replaces the operational state of the simple
version with an operational state datastore. The original model is currently used by
NETCONF [EBBS11]. Different implementations may not require all datastores included
in either model and may omit one or more of them, based on their needs. The only
datastore that is always required, is the running configuration datastore. The following
sections give an overview of the different datastores available.

Candidate Startup
Configuration Configuration
Datastore Datastore

N—

Candidate Startup Copy Data—y] Running <
Configuration Configuration Configuration
Datastore Datastore &store

Copy Data—>] Running <
Configuration
Datastore

Intended
Configuration
Datastore

Operational
State

Figure 2.3: Datastores, Simple Version,
Adapted from [BSS*18] Operational

State

Datastore

Figure 2.4: Datastores, Extended Version,
Adapted from [BSST18]

Running Configuration Datastore

The running datastore is where the current operational configuration is stored. It is
required that the configuration in running is valid at all times. The running datastore
may not be omitted. If the startup datastore is not in use, the running datastore is
typically implemented using non-volatile storage, allowing it to persist across reboots.

2.

STATE OF THE ART

Candidate Configuration Datastore

The candidate datastore is where configuration may be manipulated before copying it to
the running datastore. Candidate does not have to exist in every configuration. Usually,
it is implemented using volatile storage, meaning it is not saved across reboots, but set
to a copy of running at the time of startup.

Startup Configuration Datastore

The startup datastore holds the configuration that is loaded by a device during booting.
With NETCONTF, the only way to change the configuration stored in the startup datastore
is to copy the running datastore to startup. Other protocols, like RESTCONF, do not set
this limitation. During the boot process, the configuration saved in startup will be copied
to startup. Due to its nature, the startup datastore is usually stored in non-volatile
storage. Like candidate, the startup datastore does not need to be included in every
implementation.

Intended Configuration Datastore

The intended datastore is a read-only configuration datastore that holds the configuration
of running after all transformations, like template extensions or removal of inactive
configuration, are applied. Whenever configuration is written to the running datastore,
intended must be updated and validated immediately after. Like running, the intended
datastore must always consist of valid configuration. The contents of the intended
datastore do not have to persist across reboots, as it can be taken from running after a
reboot.

Operational State Datastore

The operational state datastore contains the whole system state. Additionally to the
configuration data specified in the intended datastore, it also includes all the ,config
false“ nodes. It is a read-only datastore. The original model does not implement the
operational state as a datastore, containing ,,config false“ nodes.

2.1. NETCONF - Network Configuration Protocol

2.1.3 YANG

Yet Another Next Generation (YANG) is a data modeling language developed and
maintained by the NETMOD working group of the Internet Engineering Task Force
(IETF). While originally developed to be used to model data for NETCONF, it has also
been used with other protocols like RESTCONF or the Constrained Application Protocol
(CoAP) [Bjo16]. Using YANG, it is possible to further specify the layers 1 and 2 of
NETCONEF. YANG defines its data in modules. Each module consists of a header and
a number of thematically related nodes. The header provides the YANG version used,
a description, includes of other modules and revisions. Data is modeled as a tree with
unique nodes that contain either values or sub-nodes. There are mainly four different
types of nodes: leaf nodes, leaf-list nodes, container nodes and list nodes [Bjo10]. A brief
explanation of each of those nodes can be found alongside the following Listings.

Leaf Nodes

Leaf nodes contain a singular value and no further child nodes. Listing 2.1 depicts an
exemplary YANG model of a leaf node defining a IP address for a device using the string
type. Listing 2.2 the corresponding NETCONF entry with an IP address.

leaf address {
type string;
description "IP address for this device";

Listing 2.1: Leaf Node YANG

<address >192.168.0.1</address>
Listing 2.2: Leaf Node NETCONF

Leaf-List Nodes

Leaf-list nodes are a sequence of leaf nodes, containing a specific value type. The elements
in a leaf-list node have to be unique. Listing 2.3 depicts an exemplary YANG model
of a leaf-list node, defining the user leaf-list as a string type. Listing 2.4 shows the
corresponding NETCONF entry, in which multiple users exist, all defined by using the
user tag.

leaf—list wuser {
type string;
description "user accounts';

Listing 2.3: Leaf List Node YANG

2. STATE OF THE ART

<user>Alice </user>
<user >Bob</user>
<user>James</user>

Listing 2.4: Leaf List Node NETCONF

Container Nodes

Container nodes group related nodes together in one sub-tree. They contain only child
nodes and no values. Listing 2.5 depicts an exemplary YANG model of a container node,
in which a container containing a leaf-list is nested into another container. Listing 2.6
depicts the corresponding NETCONF entry.

container system {
container virtual—interfaces {
leaf—list vlan {
type int;
description "vlan tag";

Listing 2.5: Container Node YANG

<system>
<virtual—interfaces>
<vlan>7</vlan>

<vlan>42</vlan>
</virtual—interfaces>
</system>

Listing 2.6: Container Node NETCONF

List Nodes

List nodes specify list entries. They contain a unique key and sub-nodes of any type, but
no values. Listing 2.7 depicts an exemplary YANG model of a list node. An interface is
uniquely defined by the name leaf and additionally holds information about the interfaces
address and subnet-mask. Listing 2.8 depicts the corresponding NETCONF entry in
which such an interface is defined.

10

2.1. NETCONF - Network Configuration Protocol

list interface {
key "name';
leaf name {
type string;
description "Interface name"
¥
leaf address {
type string;
description "Interface IP address"
¥
leaf subnet—mask{
type string;
description "Interface subnet mask"

Listing 2.7: List Node YANG

<interface>
<name>GigabitEthernet 0/0/1</name>
<address >192.168.1.1</address>
<subnet—mask >255.255.255.0 < /subnet—mask>
</interface >

Listing 2.8: List Node NETCONF

YANG already provides a number of built-in types, but it is also possible to define
additional types that can restrict input to more specific rules. YANG can differentiate
between configuration and state data. Configuration data include values that can be read
and written (e.g., the configured IP-address for a device), while state data is read-only
data (e.g., which ports of a switch are currently up). For each node, a config parameter
can be set, defining whether it contains configuration data (,config true®“) or state data
(,config false“). This goes hand in hand with NETCONEF’s differentiation of <get> and
<get-config> operations. Using <get-config> will only return nodes with the config
parameter set to true, while <get> will return all nodes. YANG is also able to define
remote procedure calls and notifications. Together with the configuration and state
data, this allows for all traffic between NETCONF servers and clients to be described by
YANG.

11

2.

STATE OF THE ART

12

2.2 TSN - Time-Sensitive Networking

For a long time, industries like automobile control, audio and video production or
industrial control all used special-purpose systems for their data traffic. At that point
Ethernet was neither reliable nor cheap enough to be used in those industries. With
the huge demand that Ethernet is in nowadays, Ethernet would be significantly cheaper,
which encourages the switch to it [Finl8]. Ethernet, as it is, is not real-time capable, due
to its nondeterministic behavior. To improve the reliability of Ethernet, the IEEE 802.1
Working Group has released a set of standards called TSN. These standards aim to
provide the features that Ethernet is currently missing, so that it can be used for
time-sensitive networks. Those requirements are, among others, time synchronization,
guaranteed packet transport or bounded latency. The following sections will discuss these
requirements in more detail.

2.2.1 Time Synchronization

An important requirement of real-time applications is time synchronization. Devices
within a network need to have the same understanding of time, with fixed precision.
The length of this precision depends on the area of use, but typical duration ranges
from 10ns to 1us [Finl8]. A fixed precision is necessary to ensure that packages will
be delivered in time. Typically, the Precision Time Protocol defined in IEEE 1588 is
used to synchronize the clocks of all network devices, but other algorithms may be used
as well if desired. Building on IEEE 1588, additional specifications to further regulate
the time-synchronization requirements needed for time-sensitive applications have been
defined in IEEE 802.1AS-2020 [91220)].

2.2.2 Scheduling and Traffic Shaping

To be able to give guarantees that important packages will arrive at their destination in
time, scheduling and traffic shaping is necessary. One standard describing such measures
is IEEE 802.1Qbv. A simple visualization of the explanation below can be found in
Figure 2.5 to aid with understanding.

Guard
Band

Priority Section Best Effort Section %:i':l Priority Section

A

Periodic Window

Figure 2.5: Simple Visualization of Sections with Guard-Band IEEE 802.1Qbv

2.2. TSN - Time-Sensitive Networking

First, access to the communication channel gets divided into multiple time slots. Certain
traffic is assigned to each time slot. This separates the traffic into priority sections, reserved
for time-sensitive data and best-effort sections, reserved for non-critical data [Mes18].
The purpose of this separation is to ensure that time-critical packets have a guaranteed
sending slot where they can’t be overwritten by less important packets. Next, there are
guard-bands added before the sections of time-sensitive data. If a transmission would
start at the very end of a non-time-sensitive section, and if the transmission takes longer
than the remainder of that best-effort section, that packet will continue sending during
the time-sensitive section, taking time away from more important packets. Adding a
guard-band ensures that all packets are finished by the time the section changes, and
that no new packets are started when there is not enough time left to finish. To ensure
that no packet that started in the best-effort section is still not fully transmitted by the
time the priority section starts, the duration of the guard-band needs to be the length
of the longest possible packet. This method of course has the drawback of a lot of idle
time during the guard-band. To prevent this inefficiency, TSN defines Preemption in the
standards IEEE 802.1QBU and IEEE 802.3BR. Preemption allows for the transmission
of packets to be suspended and to be picked up at a later time. More precisely, a longer
packet that is transmitted at the end of the best-effort section can be interrupted and
finished once the next best-effort section comes around, allowing some priority packets to
be sent in between. A visualization of this can be found in Figure 2.6. Using preemption
allows for the guard-band to be significantly smaller, resulting in a more efficient schedule
due to less idle time.

Part 1 Part 2

Gerg] Priority Section Best Effort Section (CERE Priority Section Best Effort Section
Band Band

A

h 4

Periodic Window

Figure 2.6: Visualization of Preemption

2.2.3 TSN for Industrial Automation

Some of the TSN standards, like IEEE 802.1AS-rev—Timing and Synchronization for
Time-Sensitive Applications and IEEE 802.1Q-2018—Bridges and Bridged Networks and
more form the basis for TSN for industrial automation, defined in IEC/IEEE 60802.
TSN for industrial automation further restricts TSN and creates a guideline for devel-

opers, vendors and users of time-sensitive applications within industrial automation
networks [LBS19].

13

CHAPTER

Design and Limitations

This thesis asks the question of how to configure end stations in a network using
NETCONTF, despite the device not understanding the NETCONF protocol. The following
chapter starts by taking a look at the various tools and libraries available for NETCONF.
It then gives a short overview on how to configure a NIC on Linux systems and finally
describes the design of the implementation and explains which limitations were set for
this work.

3.1 Tools and Libraries

While there is a wide variety of tools for NETCONF, a lot of them are outdated. The
following tables (Table 3.1-3.3) list some of the tools and libraries available. Two compre-
hensive, although slightly outdated lists of tools can be found on Netconf Central [Neta]
and the IETF Community Wiki [IET].

Software Version | Last updated | Interface Availability
ConfD 8.0.8 2023 command line | free basic version
NETCONFc - 2023 GUI commercial
MG-SOFT NETCONF Browser | 11 2023 GUI commercial
enSuite 3 2013 GUI open source
netopeer2-cli - 2023 command line | open source
YENCA - 2014 GUI open source

Table 3.1: NETCONF Server and Client Tools

15

3.

DESIGN AND LIMITATIONS

16

Software Version | Last updated | Availability
netopeer2 2.1.71 2023 open source
libyang 2.1.111 2023 open source
libnetconf2 2.1.37 2023 open source
Sysrepo 2.2.105 2023 open source
netconf4j 0.0.9 2015 open source
netconf4android | 1.0 2012 open source

Table 3.2: NETCONF Libraries

Software Version | Last updated | Interface | Availability
pyang 2.5.3 2023 cmd line open source
yangbuilder 1.3.0 2017 cmd line open source
yang-explorer | - 2020 GUI open source
yangsuite 1.17.15 2023 GUI open source

Table 3.3: YANG Tools

In this thesis, the netopeer2 library ([Netb]) was used. Netopeer2 builds on the
libyang ([libb]), sysrepo ([Sysc]) and libnetconf2 ([liba]) libraries. The sysrepo library
provides datastore functionality according to RFC 8342 [BSS'18]. Libyang provides
functions to parse YANG models. The libnetconf2 library consists of functions that help
in building NETCONF servers and clients. Finally, netopeer2 makes use of the other
three libraries and provides a ready-to-use NETCONF server and a basic client to go
alongside the server.

3.2 End Station Configuration

For this thesis, a TSN NIC was chosen as the end station to be configured via NETCONF.
The NIC configuration was done by using the Linux traffic control system (tc). tc offers
various modes to define the queuing of packets, so-called queuing disciplines (qdiscs).
One of those is the TAPRIO (Time Aware Priority Shaper) qdisc, allowing for traffic
shaping according to IEEE 802.1Qbv. Listing 3.1 shows an example configuration in
which the NIC with the name enp4s0 is configured with a taprio qdisc. num_tc sets
the number of traffic classes to 4. The map parameter maps Linux network priorities to
the different traffic classes. Those traffic classes are also mapped to hardware queues
with the queues parameter. base—-time defines the start time of the schedule in
nanoseconds. flags 0x2 enables the full-offload feature in which the gate control
list is handled by the NIC. Finally the sched-entry s <gatemask> <interval>
parameters set which which traffic classes are active in which interval. In this example
the traffic class 0 is open for 20ms, followed by traffic classes 1 and 2 for 10ms. A more
detailed description of the individual parameters can be found at man tc-taprio.

3.3. Design

tc gqdisc add dev enp4s0 parent root handle 100 taprio \
num_tc 4 \
map 0 1 1 1222222222222\
queues 1@0 1@l 1@2 1@3 \
base—time 5000 \
flags 0x2 \
sched—entry S 01 20000000 \
sched—entry S 06 10000000

Listing 3.1: Example Configuration

3.3 Design

This work takes the existing netopeer2 project as a basis and adds a daemon that reads
data from sysrepo and configures a device. Figure 3.1 illustrates how the different
components work together. The upper half of the diagram is covered by netopeer2. A
server and client are started in order to communicate with each other. The resulting data
are written to the datastores provided by sysrepo. Sysrepo offers multiple ways to access
the data stored in its datastores. One can choose between directly calling the sysrepo

function, or taking the indirect approach by either developing a plugin or a daemon [sysd].

Sysrepo provides a small daemon called sysrepo-plugind that groups all plugins loaded to
sysrepo into a single process. For this thesis, the approach of developing a daemon was
chosen, simplifying the writing and testing of code, since fewer steps had to be executed
in order to test changes. Plugins are favored if multiple daemons are needed, this was
not the case in this implementation though. The daemon is a stand-alone program that
subscribes to changes made in sysrepo, creates TSN configurations based on those values
and sends that configuration to the TSN-capable device.

End Station
netopeer2
NETQONF [€—NETCONF (YANG)t—>| NETCONF [€——IPC———» Sysrepo
Client Server
subscriptions
NIC [€«——configuration data: Daemon

Figure 3.1: Interactions Between Components

17

3.

DESIGN AND LIMITATIONS

18

3.4 Limitations

In this thesis, the following limitations were set and are open to improvement for future
works.

The YANG files used in this implementation (as described in Section 4.1) build up
a specific hierarchy to be used. This leads to the parameters used to create a TSN
schedule to be child nodes of the bridge interface. As this thesis concerns itself
with the configuration of an end station, a bridge would not be necessary. A rather
unusual configuration file is used to comply with the provided structure, where a
bridge with a single interface is wrapped around the actual configuration.

In this thesis the NETCONF server subscribes to changes in the running datastore.
A configuration based on those parameters is then sent to the Ethernet card.
Reading the actual configuration from the card and writing it back to the operational
datastore is not implemented. In an industrial setting, it might be desirable not
just to write but also to read the actual configuration of a device, in order to keep
a better overview on the current state of devices.

While there are ways to replace a running schedule on a network interface card
with a new one by using different parameters and handles for the t¢ command
that is configuring the card, a simpler approach is used in this thesis. Instead of
modifying the reconfiguration command based on the current configuration, the
active schedule is simply deleted prior to sending a new configuration. Without
any configuration, the card just accepts all traffic until the new schedule starts.

Error handling is kept to a minimum. The YANG files implementing IEEE 802.1Qbv
already provide a first check of the parameters, but it is still possible to create an
invalid configuration. Once a configuration change is detected, the daemon will try
to reconfigure the card. Whether the sent parameters are actually valid for the
card or even if the card is reachable at the moment of configuration will not be sent
back to the NETCONF client. The daemon, however, will provide an appropriate
error message. Together with the former limitation of not filling the operational
datastore, this results in the user not knowing the result of a reconfiguration without
looking a the output of the daemon.

CHAPTER

Implementation

For the actual implementation of the project described in the design chapter, two
components were needed. A NETCONPF client and server and a daemon for sysrepo.
This chapter starts by describing how to correctly set up the netopeer2 server in order to
use TSN configuration. This is followed by detailed description of the daemon developed
for this thesis.

4.1 Setting up the Netopeer2 Server

The netopeer2 project was set up on a local machine according to its compilation and
installation guide, found at [Netb]. After that, the following YANG modules were loaded

in sysrepo using the sysrepoctl command in order to enable server and client to use TSN
configuration parameters.

¢ iana-if-type@2023-01-26

o ieee802-dot1g-bridge@2023-10-26

o ieee802-dot1g-sched-bridge@2023-10-26

o ieee802-dot1g-sched@2023-10-22 with the scheduled-traffic feature enabled
o ieee802-dot1g-types@2023-10-26

o ieee802-types@2023-10-22

o ietf-interfaces@2018-02-20

19

4.

IMPLEMENTATION

20

4.2 The Daemon

With netopeer2 providing a NETCONF client, server and the needed datastores via
sysrepo, all that is missing is the daemon detecting changes in the configuration and
passing them along to the NIC. Sysrepo offers a variety of functions to connect to a
datastore and extract the needed information. The following sections give an overview of
the implementation of the daemon with a focus on which functions were used to satisfy
the requirements needed for this task. The full code for the application can be found at
GitHub at [cod]. A resource worth mentioning is the sysrepo documentation located at

[sysa].

4.2.1 General Structure of a Sysrepo Daemon

There are two initial steps to run a sysrepo daemon. Firstly, a connection to the desired
datastore is needed, secondly, a subscription to the modules that one is interested in
needs to be established. After those are in place, changes in the datastore alert the
program and can be acquired using the appropriate functions. What is done with that
data afterwards depends on the requirements of the daemon. Writing a plugin instead
of a daemon is a very similar progress, but instead of connecting to the datastores, a
callback function called sr_plugin_init_cb () needs to be implemented in which the
subscriptions to the modules are established. Sysrepo provides an example plugin, which
can be found at [sysb], that explains the basic functionalities.

4.2.2 Interfacing with the Datastore

A connection to the desired datastore can be established using the two functions shown
in Listing 4.1. sr_connect will create the connection to sysrepo and, in a second
step, sr_session_start connects to the specified datastore. This daemon is only
interested in configuration changes made in the running datastore, though there are
functions provided by sysrepo, if switching datastores is necessary.

int sr_connect(
const sr__conn_ options_t opts,
sr_conn_ _ctx_txx conn

)

int sr_session_start(
sr__conn__ctx_ tx conn,
const sr__datastore_t datastore,
sr__session__ctx_ tx*x session

Listing 4.1: Connecting to the datastore

4.2. The Daemon

The next step in acquiring data is to set a subscription on the modules of interest.
Listing 4.2 shows the function to do this. One of the notable parameters is the callback
parameter, defining which function to call if changes occur. A second parameter worth
mentioning is the opts parameter. In this daemon it is set to not only call the callback
function at datastore changes but also once at startup of the daemon.

int sr_module_ change_ subscribe(
sr__session__ctx_ tx session ,
const charx module name,
const charx xpath,
sr__module__change_cb callback ,
voidx* private_data ,
uint32_t priority ,
sr__subscr_ options_t opts,
sr__subscription_ ctx_ txx subscription

Listing 4.2: Setting up a Subscription

With those settings in place, the specified callback function will be called every time
there is a change of configuration in the observed values. There are multiple ways to
acquire those changes, like iterating through all changes or reading and parsing whole
trees of data. In this daemon, for the sake of simplicity, the approach to extract the
data was to just query for each value that was needed to generate a valid tc command,
whether the value actually changed or not. Listing 4.3 shows the function used to get
the individual values.

int sr_get_item(
sr__session_ ctx_ tx session ,
const charx path,
uint32_t timeout ms,
sr_val txx value

Listing 4.3: Getting Data

4.2.3 Filtering for Data Using XPath

Most functions shown above include a parameter called either a path or xpath. XPath is
an expression language designed to query for specific elements within XML documents.
Adding this path allows to extract exactly the configuration data one is interested in.
The YANG modules used for TSN create a somewhat deep XML tree, leading to a rather
long xpath string for all modules. Listing 4.4 shows the line used in the daemon to
retrieve the values to be used as sched-entries in the tc command.

21

4.

IMPLEMENTATION

22

sr_get_items (
session ,
"/ietf—interfaces:interfaces/interface/ieee802—dotlq—
bridge: bridge—port/ieee802—dotlq—sched—bridge: gate—
parameter—table /admin—control—list /gate—control—entry
"
0, 0, &val, &val_ cnt

);

Listing 4.4: Acquireing the Values for TCs sched-entry

4.2.4 Interfacing with the NIC

For this project the Intel Ethernet-Controller 1225 was chosen to act as the TSN NIC to be
configured using NETCONF. It supports various TSN features, including IEEE 802.1Qbu,
802.3br, 802.1Qbv, 802.1AS-REV, 802.1p/Q, and 802.1Qav. The device can be configured
using the tc command as already explained in Section 3.2. The daemon combines the
parameters that are fixed by the specifications of the card, like the number of available
traffic classes and the parameters that are extracted from the datastore as explained
above and crafts a fitting tc command that is then sent to the card. Listing 4.5 shows
the code directly interfacing with the card. This is done by using the system command
that executes the char® given to it as a shell command. Firstly system is called
with the deletion command as the parameter. Included in that command is the string
> /dev/null 2>&1 which redirects any resulting output to /dev/null, since it is
not of interest. Deleting an old configuration fails for example, when there simply is none
to delete. As mentioned in the Section 3.4, this could be improved in future versions.
Secondly, system is called again, this time with the command for the new configuration,
which was crafted earlier in the code through string manipulation. This time the return
value is checked in an if-else statement, as it signals whether the configuration worked or
not.

//delete old config
system ("tc qdisc delete dev enp4s0 parent root > /dev/null
2>&1") ;

//send new config
if (system (cmd)==0){
printf (" Configuration successfull\n");

} else{
printf("Error writing to card\n");
}

Listing 4.5: Sending the Command to the NIC

CHAPTER

Evaluation

The daemon was tested in a few different scenarios. For the test setup, a NETCONF
client was started on one device, the NETCONF server on different device. The daemon
was then started on the same device as the server. After connecting the client to the server
using the ssh setting, different configurations where sent to the server. After recognizing
a change in the server’s running sysrepo, the daemon copied the new configuration to the
NIC. The success of that could be observed using the tc show command to monitor
the settings of the NIC. Additionally, Wireshark was used to observe the actual cycle
of the NIC. The following sections show the results of a few different valid and invalid
configurations.

5.1 Test Results

Four different scenarios, both with valid and invalid configurations, were tested. The
following sections document the different responses of the NETCONF server, the daemon
and the NIC.

5.1.1 Valid Configuration

For the first scenario a valid configuration was sent to the NETCONF server and properly
copied by the daemon to the NIC. The configuration cycles between opening the channel
for packets belonging to traffic class 0 for 20ms and opening for all other traffic classes
for 10ms. To test this scenario, traffic classified as belonging to traffic class 0 was sent to
the NIC and measured using Wireshark. Figure 5.1 displays the behavior of the NIC.

23

5. EVALUATION

Wk L I
*\‘ H||| : H.\

A AR A '\'

Packets/1 ms

Time fs)

Figure 5.1: Wireshark - Channel Cycling Between Being Open for 20ms, then Closed for

10ms

5.1.2 Violating YANG Restrictions

For the second scenario an invalid configuration was used. The implemented YANG
models set limitations for most values, providing a guideline on how values have to be
formatted, how big or small they can get in relation to other values, etc. In this scenario
a cycle-time bigger than the highest supported cycle-time was chosen. Writing the invalid
configuration to the candidate datastore works since candidate does note require valid
configuration. Once it is copied over to the running datastore however, the configuration
fails the validity check by the server, where sysrepo validates it and replies with an error
message. This prompts the NETCONF client to reply with the error message shown in
Figure 5.2. In this case no configuration is saved in the server’s sysrepo and, therefore,
the daemon does not have to copy anything to the NIC.

> edit-config --target candidate --config=config.xml --defop replace
oK
> copy-config --target running --source candidate
ERROR
type: application
tag: operation-failed
severity: error
message: admin-cycle-time must not be greater than supported-cycle-max (Data

location "/ietf-interfaces:interfaces/interface[name='enp4s@']/ieee802-dotlq-bridge:br
idge-port/ieee8f2-dotlqg-sched-bridge:gate-parameter-table/admin-cycle-time".)

type: application

tag: operation-failed
severity: error

message: User callback failed.

Figure 5.2: YANG Error Message when Sending an Invalid Configuration to the NET-
CONF Server

24

5.2. Execution Time

5.1.3 Card Failure

The third scenario presents the problem that arises when a configuration that is valid
according to the corresponding YANG module is sent to the server, but is still failing to
be written to the card. This occurs when either the card is simply not available at the

time of writing, or when the configuration exceeds the physical limitations of the card.

Form client side, no error is visible, since the server accepts the configuration without
any problems (depicted in Figure 5.3). Only when the daemon tries to copy the new
configuration to the card, the problem occurs.

edit-config --target candidate --config=config.xml --defop replace

copy-config --target running --source candidate

Figure 5.3: The Client does not Detect an Error when the NIC is Offline
Figure 5.4 shows the error message displayed by the daemon in the case of the NIC not
being available at the time of reconfiguration. Future work could improve this scenario

by adding a way inform the client of the failure.

Cannot find device "enp4s@”

Error writing to card

Figure 5.4: Error Message from the Daemon when NIC is Offline

5.1.4 Testing the Card Boundaries

In this last scenario, a valid configuration was sent to server and correctly applied to
the NIC. While the NIC will accept any valid configuration, a configuration close to
the NIC’s limits might lead to errors. In this test case, a configuration was sent to
the card alternating between opening the channel for packets traffic class 0 for 20ms
and all other traffic classes for 50ms. After successfully applying this configuration,
traffic associated with traffic class 0 was sent to the NIC. The traffic was captured using
Wireshark. Figure 5.5 shows that while the NIC accepts the configuration, it can not
quite handle it. This can be observed in the windows where traffic class 0 is closed, as
there are still regular spikes where a single packet gets through. This behavior could not
be observed in intervals shorter than 15ms.

5.2 Execution Time

Next, the execution times of different commands and components were evaluated. To
measure the execution time of the individual commands between the NETCONF server
and client, Wireshark was used. The time measured is the time that elapsed between
the first packet sent to the server after entering a command and the last packet received

25

5. EVALUATION

Il
I

o T | R T
. N N | |
‘ | | | | |”| | I ”
‘| M. R B R IM |
75| |

I I | R
|
T L .M" INInNmImnm

Packets/1 ms

0 0.2 .6
Time (s)

Figure 5.5: Wireshark - Channel Cycling Between Being Open for 20ms, then Closed for
50ms

in this burst of communication. These measurements are meant to provide a vague
understanding of how long different actions take, but are to be taken with a grain of salt,
since actual timings might vary from setup to setup, depending on type of connections
or configuration choices made in setting up server and client. Figure 5.6 displays the
durations measured.

NETCONF NETCONF
Client Server
<connect>—— > Ppoemneeeoy
300ms
< ok

<get-config>——>

11 30ms g '
| «——<rpc-reply> o =
' o c
i h 2.
I <edit-configs———— > | 3!
: 11 200ms 2.
| €«———<mpereply>—— 1} o
' v (O}
: " o,
i " ®
. <copy-config>——> || 0,
: PY-eonti9 50ms X!
| €« —=<rpe-reply>— 1| '
<disconect>——— > '
i 1 400ms i
1 <€ ok T

Figure 5.6: Average Duration of NETCONF Operations

26

5.2. Execution Time

As a second measurement, the time of the daemon between recognizing a change in
sysrepo and finishing the reconfiguration of the NIC was taken, which is roughly 2ms. This
time represents only how long it takes for the NIC to be aware of the new configuration.
The actual time at which the NIC starts executing the new configuration depends on the
base-time set in the configuration file.

27

CHAPTER

Conclusion

This thesis presented the idea of using a NETCONF server observed by a sysrepo daemon
to bridge the gap between a network using NETCONF and a TSN NIC not capable to
do that. A first draft of a daemon was presented and tested against various scenarios.
The implementation shows that the concept of creating a daemon to act as the bridge
between a server and an end station could be a viable way of integrating those end
stations into any network. As discussed in Section 3.4 - Limitations, there are a few
open topics left though, that need addressing first. The daemon presented keeps error
handling to a minimum. Some of these errors are hardware-specific, but depending on
the end station used, this could be added in the implementation with an acceptable
amount of effort. A limitation that is presenting a larger workload is implementing a
way to read data from the TSN NIC. Without the knowledge of what the actual status
of configuration in the TSN NIC is, critical errors might go unnoticed, which is certainly
not an acceptable event in an industrial setting. The questions arises, if simply reading
the active configuration and writing it back to the operational datastore so that it could
be accessed using the <get-config> command of a NETCONF client would be enough, or
if the client needs more notifications which could be realized by creating a custom YANG
module, augmenting those used in this prototype, to add more functionality based on
the end station in use. But that question will be left as future work at this point in this
thesis.

29

1.1

2.1
2.2
2.3
24
2.5
2.6

3.1

5.1
5.2
5.3
5.4
9.5

5.6

List of Figures

TSN Device Configuration with NETCONF

Basic NETCONF Communication
NETCONF Protocol Layers
Datastores, Simple Version
Datastores, Extended Version
Simple Visualization of Sections with Guard-Band IEEE 802.1Qbv
Visualization of Preemption L.

Interactions Between Components

Wireshark - Channel Cycling Between Being Open for 20ms, then Closed for
10ms
YANG Error Message when Sending an Invalid Configuration to the NET-
CONF Server e
The Client does not Detect an Error when the NIC is Offline
Error Message from the Daemon when NIC is Offline
Wireshark - Channel Cycling Between Being Open for 20ms, then Closed for
D0mMS . . . oL
Average Duration of NETCONF Operations

N ~J O Ot

12
13

17

24
24
25
25

26
26

31

List of Tables

NETCONF Operations it i it 6
NETCONF Server and Client Tools 15
NETCONTEF Libraries« o o o i e s h e e e 16
YANG Tools s 16

33

Acronyms

IETF Internet Engineering Taskforce. 5

IT information technology. 1

NETCONF Network Configuration Protocol. vii, 2, 5-11, 15, 16, 18-20, 22-26, 29, 31,
33

NIC Network Interface Card. 2, 15, 16, 20, 22-25, 27, 29, 31

NMS Network Management System. 2, 6

OT operational technologies. 1

qdiscs queuing disciplines. 16

RPC remote procedure call. 5

TSN Time-Sensitive Networking. vii, 1, 2, 12, 13, 17-19, 21, 22, 29, 31
XML Extensible Markup Language. 5, 6, 21

YANG Yet Another Next Generation. 2, 6, 7, 9-11, 16, 18, 19, 21, 24, 25, 29, 31, 33

35

[91220]

[Bj510]

[Bj516]

[BSST18]

[cod]

[EBBS11]

[Fin18|

[IET]

[LBS19]

[liba]

[libb]

Bibliography

Teee standard for local and metropolitan area networks—timing and synchro-
nization for time-sensitive applications. IEEE Std 802.1AS5-2020 (Revision of
IEEE Std 802.1A5-2011), pages 1-421, 2020.

Martin Bjorklund. YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF). RFC 6020, October 2010.

Martin Bjérklund. The YANG 1.1 Data Modeling Language. RFC 7950,
August 2016.

Martin Bjoérklund, Jiirgen Schénwélder, Philip A. Shafer, Kent Watsen, and
Robert Wilton. Network Management Datastore Architecture (NMDA). RFC
8342, March 2018.

Code github repoistory. https://github.com/hartnern/
netconfdtsn. Accessed: 05-02-2024.

Rob Enns, Martin Bjorklund, Andy Bierman, and Jiirgen Schénwélder. Net-
work Configuration Protocol (NETCONF). RFC 6241, June 2011.

Norman Finn. Introduction to time-sensitive networking. IEEE Communica-
tions Standards Magazine, 2(2):22-28, 2018.

Tetf community wiki. https://wiki.ietf.org/group/netconf. Ac-
cessed: 06-10-2023.

Lucia Lo Bello and Wilfried Steiner. A perspective on ieee time-sensitive
networking for industrial communication and automation systems. Proceedings
of the IEEFE, 107(6):1094-1120, 2019.

libnetconf2 github repoistory. https://github.com/CESNET/
libnetconf2. Accessed: 16-01-2024.

libyang github repoistory. https://github.com/CESNET/libyang. Ac-
cessed: 16-01-2024.

37

https://github.com/hartnern/netconf4tsn
https://github.com/hartnern/netconf4tsn
https://wiki.ietf.org/group/netconf
https://github.com/CESNET/libnetconf2
https://github.com/CESNET/libnetconf2
https://github.com/CESNET/libyang

[Mes18|

[Netal

[Netb]

[SPFA19)]

sysa)

[sysb]

[Sysc]

[sysd]

[XDK+18]

38

John L. Messenger. Time-sensitive networking: An introduction. IEEE
Communications Standards Magazine, 2(2):29-33, 2018.

Netconf central. https://www.netconfcentral.org/tools—1list.
Accessed: 06-10-2023.

Netopeer2 github repoistory. https://github.
com/CESNET/netopeer2?tab=readme-ov-file#
compilation—-and-installation. Accessed: 16-01-2024.

Luis Silva, Paulo Pedreiras, Pedro Fonseca, and Luis Almeida. On the
adequacy of sdn and tsn for industry 4.0. In 2019 IEEE 22nd International
Symposium on Real-Time Distributed Computing (ISORC), pages 43-51, 2019.

Sysrepo documentation. https://netopeer.liberouter.org/doc/
sysrepo/master/html/modules.html. Accessed: 05-02-2024.

Sysrepo documentation. https://netopeer.liberouter.org/doc/
sysrepo/libyangl/html/example.html. Accessed: 05-02-2024.

Sysrepo github repoistory. https://github.com/sysrepo/sysrepo.
Accessed: 16-01-2024.

Sysrepo plugin vs daemon. https://netopeer.liberouter.org/doc/
sysrepo/master/html/index.html#about. Accessed: 15-02-2024.

Min Xu, Jeanne M David, Suk Hi Kim, et al. The fourth industrial revolution:

Opportunities and challenges. International journal of financial research,
9(2):90-95, 2018.

https://www.netconfcentral.org/tools-list
https://github.com/CESNET/netopeer2?tab=readme-ov-file#compilation-and-installation
https://github.com/CESNET/netopeer2?tab=readme-ov-file#compilation-and-installation
https://github.com/CESNET/netopeer2?tab=readme-ov-file#compilation-and-installation
https://netopeer.liberouter.org/doc/sysrepo/master/html/modules.html
https://netopeer.liberouter.org/doc/sysrepo/master/html/modules.html
https://netopeer.liberouter.org/doc/sysrepo/libyang1/html/example.html
https://netopeer.liberouter.org/doc/sysrepo/libyang1/html/example.html
https://github.com/sysrepo/sysrepo
https://netopeer.liberouter.org/doc/sysrepo/master/html/index.html#about
https://netopeer.liberouter.org/doc/sysrepo/master/html/index.html#about

	Abstract
	Contents
	Introduction
	Motivation
	Structure of the Work

	State of the Art
	NETCONF - Network Configuration Protocol
	TSN - Time-Sensitive Networking

	Design and Limitations
	Tools and Libraries
	End Station Configuration
	Design
	Limitations

	Implementation
	Setting up the Netopeer2 Server
	The Daemon

	Evaluation
	Test Results
	Execution Time

	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

