
Institut für Automation

Abt. für Automatisierungssysteme

Technische

Universität

Wien

Projektbericht Nr. 183/1-138
June 2005

Symbolic Evaluation of Imperative

Programming Languages

Bernd Burgstaller

Salvador Dali, ”Die Beständigkeit der Erinnerung”

DISSERTATION

Symbolic Evaluation of Imperative

Programming Languages

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften

unter der Leitung von

Ao.Univ.Prof. Dr. Johann Blieberger

Inst.-Nr. E183/1

Institut für Rechnergestützte Automation,

Arbeitsgruppe Automatisierungssysteme

eingereicht an der Technischen Universität Wien

Fakultät für Informatik

von

Dipl.-Ing. Bernd Burgstaller

Matr.-Nr. 8925663

Mitterberg 11

8665 Langenwang

Wien, im Februar 2005

In Erinnerung an meine Mutter Renate Burgstaller

Für meinen Vater Raimund Burgstaller

Zusammenfassung

Symbolische Analyse ist eine statische Programmanalysemethode, die Daten-
und Kontrollflussinformation an wohldefinierten Programmpunkten beschreibt.
Information dieser Art ist von großer Bedeutung für Test und Verifikation von
Programmen, sowie für Laufzeitabschätzungen und Programmparallelisierung.
Weiters ist symbolische Analyse für optimierende Compiler sowie für Codege-
neratoren von Bedeutung.

Gegenstand dieser Dissertation ist ein neuer Ansatz in der symbolischen
Analyse, der auf Pfadausdrücken beruht. Pfadausdrücke werden bei diesem
Ansatz dazu verwendet, die Kontrollflusseigenschaften eines Programms zu er-
fassen. Einen wesentlichen Teil der Arbeit stellt jene algebraische Struktur dar,
in der die symbolische Analyse stattfindet. Wir beschreiben Syntax und Seman-
tik einer einfachen Turing-äquivalenten Fluss-Sprache, die uns als Basis für die
Definition dieser Struktur dient. In ihrem Mittelpunkt steht der Superkontext,
mit dessen Hilfe wir die möglichen Variablenbindungen an einem wohldefinierten
Programmpunkt beschreiben.

Um den Seiteneffekt eines Eingabeprogramms zu beschreiben, bilden wir
seine einzelnen Programmanweisungen auf Funktionen ab, die ihrerseits einen
Superkontext auf einen Superkontext abbilden. Pfadausdrücke werden sodann
im Kontext dieser Funktionen interpretiert, womit wir eine funktionale Beschrei-
bung des Eingabeprogramms erhalten. Ein Korrektheitsbeweis sichert die Rich-
tigkeit dieser funktionalen Beschreibung im Hinblick auf die konkrete Semantik
der Fluss-Sprache ab.

Die beschriebene Methode der symbolischen Analyse ist weniger komplex als
existierende Methoden, da sie im Wesentlichen aus der Anwendung der funk-
tionalen Programmbeschreibung auf einen Superkontext besteht. Das Ergeb-
nis dieser Funktionsanwendung ist wiederum ein Superkontext, der die Vari-
ablenbindungen nach Ausführung des jeweiligen Eingabeprogramms beschreibt.
Die beschriebene Methode kann weiters Lösungen für beliebige Programmpunkte
reduzibler sowie irreduzibler Kontrollflussgraphen berechnen und ist damit mäch-
tiger als existierende Methoden.

Abstract

Symbolic analysis is a static program analysis technique that captures data and
control flow information at well-defined program points. This information is
useful in the areas of program verification, program testing, worst case execution
time analysis, and parallelization. Optimizing compilers and code generators
can also benefit from the type of information provided by symbolic analysis.

In this thesis we take a novel approach to symbolic analysis that is based
on path expressions. Path expressions allow us to capture the control flow
information that is inherent in a program. By reinterpreting path expressions
we obtain a mapping from the path expression algebra into the symbolic analysis
domain. A major topic of this thesis is therefore the symbolic analysis domain
itself. We describe syntax and semantics of a simple yet Turing-equivalent flow
language which serves as the basis for the definition of this domain. At the
heart of it is the supercontext, an algebraic structure capable of describing all
possible variable bindings valid at a well-defined program point.

To describe the computational effects of the input program, we map single
statements to functions from supercontexts to supercontexts. The reinterpre-
tation of path expressions takes place in the context of these functions, thus
obtaining a functional description of the input program. We develop a proof
that establishes the correctness of these functional descriptions with respect to
the concrete semantics of the flow language.

Our method is less complex than existing methods in the sense that it re-
duces to the application of the functional description to a given supercontext,
yielding a supercontext describing the variable bindings valid after execution
of the corresponding input program. It is more general than existing meth-
ods because it can derive solutions for arbitrary graph nodes of reducible and
irreducible flow graphs.

Acknowledgments

Vielmehr bestand das Unersetzliche, und beim E. P. besonders,

in einer dem Begriff der Freundschaft eher sogar entgegengesetzten Kompromisslosigkeit,

in einer unerbittlich dem Gegenstand (und nicht der Person) zugewandten Insistenz,

die sich von Maßstab und Forderung nichts abhandeln ließ, komme wer da wolle.

— Friedrich Torberg, “Kaffeehaus war überall”, Briefwechsel mit Käuzen und Originalen.

I sincerely thank my advisor, Prof. Johann Blieberger, for his continuous
guidance and support. It will forever remain a mystery to me, how one can
immediately sense a problem in the work of somebody else, sometimes even at a
distance. I greatly admire his deep understanding of mathematics and computer
science, and his lightning-like flashes of ingenuity.

I am deeply indebted to Prof. Bernhard Scholz, who co-advised me during
my work on this thesis. The discussions with him always give me deeper insights,
and his broad and in-depth views on computer science are intriguing.

I thank Prof. Bernhard Gramlich for his advice and for his valuable com-
ments and suggestions when grading this thesis. His lectures on term rewrite
systems were inspiring and helped me to gain a new perspective on symbolic
analysis.

I appreciate the help of Prof. Schildt, who, during my time as assistant
professor at the department, granted me the time to start work on this thesis.

I thank Heinz Deinhart for solving all my system administration issues in a
perfect way, and for his forgiveness towards a user that constantly demanded
more resources for his experiments.

This work would not have been possible without the support of my family.

Contents

1 Introduction 1
1.1 Symbolic Analysis . 1
1.2 Path Expressions and the Symbolic Analysis Domain 4
1.3 Contributions . 6
1.4 Organization of the Dissertation 7

2 Background and Notation 9
2.1 Sets and Functions . 9

2.1.1 References . 11
2.2 Syntax and Semantics of Programming Languages 11

2.2.1 Syntax . 11
2.2.2 Denotational Semantics 14
2.2.3 References . 16

2.3 Control Flow Graphs . 17
2.3.1 References . 18

3 Standard Semantics of Program Execution 19
3.1 The Language Flow . 19
3.2 Syntax and Semantics of Side-Effects 21
3.3 Syntax and Semantics of Branch-Predicates 24
3.4 A Flow Example Program . 26
3.5 Turing-Equivalence of the Language Flow 30

3.5.1 Turing Machine Notation 30
3.5.2 Turing Machine Transition Diagrams 32
3.5.3 Mapping Transition Diagrams to Flow Graphs 32

4 Semantics of Symbolic Program Execution 37
4.1 The Domain of Symbolic Expressions 38

4.1.1 The Integer-Valued Symbolic Expression Domain 39
4.1.2 The Symbolic Predicate Domain 46

4.2 Single-Edge Symbolic Execution 49
4.2.1 Program States and Contexts 49
4.2.2 Symbolic Side-Effects and Branch Predicates 49
4.2.3 The Symbolic Single-Edge Solution 53

4.3 Single-Path Symbolic Execution 54
4.3.1 The Single-Path Solution 55

4.4 Multi-Path Symbolic Execution 55
4.4.1 Supercontexts . 56

xii Contents

4.4.2 The Meet Over All Paths Solution 57
4.4.3 A Correctness Proof for Symbolic Execution 57

5 Symbolic Evaluation 73
5.1 Program Paths and Regular Expression Algebras 73
5.2 Interpretation of Path Expressions 74
5.3 The Meet Over All Paths Solution Revised 77
5.4 Loops, Induction Variables, and Systems of Recurrences 77
5.5 Symbolic Evaluation on the Form Level 81

5.5.1 Closure Contexts . 81
5.5.2 Edge-Splitting . 90
5.5.3 Term Representations and Normal Forms 92
5.5.4 Validity . 92
5.5.5 Satisfiability . 93

6 Experimental Results 95
6.1 Preliminaries . 95
6.2 Path Expression Generation . 97
6.3 Program Path Metrics . 99

6.3.1 Loops as Black-Boxes . 100
6.3.2 Loop-Aware Path Metrics 102

6.4 Loncp-Minimal Path-Expressions 106
6.4.1 Unambiguity of Path Expressions 109
6.4.2 Reducible CFGs and Loncp-Minimality 114
6.4.3 Irreducible CFGs and Loncp-Minimality 115

6.5 Experiment and Evaluation . 116
6.5.1 Basic Setup . 116
6.5.2 Validation . 116
6.5.3 Data Evaluation . 118

7 Related Work 129
7.1 Early Entrepreneurs . 129
7.2 Abstract Interpretation . 130
7.3 Symbolic Domains . 131
7.4 Symbolic Evaluation . 132
7.5 Induction Variable Substitution 135

8 Conclusion and Future Work 137
8.1 Induction Variables and Recurrences 137
8.2 Parallel Execution Within Flow 138
8.3 Flow Extensions and Implementation 138

List of Symbols

Sets and Functions

N natural numbers 9

Z integers 9

B truth values 9

V set of program variables 11

V set of initial value variables 40

L set of loop index variables 82

IV set of induction variables 79

Z[x] multivariate polynomials in Z 40

Q(Z[x]) quotient field of multivariate polynomials 41

f : R → S function definition 9

f (n) function of arity n 42

f [y 7→ v] updated function definition 10

Dom(f) function domain 9

◦ function composition 10

fk iterated function composition 53

ι identity function 53

graph(f) graph of a function 10

Grammars and Graphs

(VN , VT , P, S) context-free grammar 11

TreeG set of derivation trees 12

L(G) language defined by grammar G 12

[[]] emphatic brackets 16

〈N, E〉 simple graph 17

〈N, E, ne, nx〉 control flow graph 17

〈S, E, se, sx〉 Flow control flow graph 19

N node set of a graph 17

E edge set of a graph 17

ne entry node 17

nx exit node 17

h(e) edge head 17

t(e) edge tail 17

in(n) set of incoming edges 17

xiv Contents

out(n) set of outgoing edges 17

succ(x) set of successor nodes 17

pred(x) set of predecessor nodes 17

π graph path 17

Standard Semantics

env ∈ Environment environments 19

s ∈ S states 19

pred branch predicate 20

σ side-effect (but cf. also p. 58) 20

δ transition function 20

δ∗ iterated transition function 21

e : pred ⇒ assign association of predicate and side-effect with e 26

(Q, Σ, Γ, δTM, q0, B, F) Turing machine 30

δTM Turing machine transition function 30

e : s1 ⇒ s2; D Turing machine transition diagram edge 32

envTM emulation environment 32

c emulation counter 32

T emulation tape 32

Symbolic Semantics

Scon[[P]] standard semantic program denotation 37

Ssym[[P]] symbolic semantic program denotation 37

e(v1, . . . , vn) symbolic expression 39

e(v) symbolic expression, short form 39

initial value operator 40

Rnd rounding operation 41

SymExpr symbolic expression domain 41

SymPred symbolic predicate domain 46

divs symbolic division operator 42

rems symbolic remainder operator 43

s ∈ S program states 49

c ∈ C program contexts 49

[s, p] program context, verbose notation 49

c closure context 84

[s, p, rss] closure context, verbose notation 84

p path condition 49

pc pathcondition extraction 49

st state extraction 49

preds symbolic branch predicate (cf. also p. 58) 53

predc standard semantic branch predicate 58

σs symbolic side-effect (cf. also p. 58) 53

σc standard semantic side-effect 57

σ substitution (but cf. also p. 20) 58

σenv initial variable substitution from env 59

Contents xv

σsk
substitution to state sk 69

Dom(σ) domain of a substitution 58

Ms : E → F symbolic edge transition function 53

Mc : E → Fc standard semantic edge transition function 59

Mc(π) standard sem. extension to program paths 59

Ms(π) symbolic sem. extension to program paths 60

fe result of edge transition function 54

Mfw forward path transition function 54

Mbw backward path transition function 54

fπ result of path transition function 54

sc ∈ SC supercontexts 56[
∞⋃

k=0

[sk, pk]

]
supercontext, verbose notation 57

mop MOP sol. symbolic execution, cf. also p. 77 57

env extended environment 58

[env, b] extended environment, verbose notation 58

Environment × B set of extended environments 58

sym transfer function into symbolic domain 59

con transfer function into concrete domain 59

Path Expressions and Symbolic Evaluation

Λ empty string in a regular expression 73

∅ empty set in a regular expression 73

+ regular expression union operator 73

· regular expression concatenation operator 73
∗ regular expression concatenation closure 73

Rk
i,j regular expression name 96

L regular expression language 73

P path expression 74

(v, w) path expression of type (v, w) 74

Fsc supercontext function class 74

wrap wrapping operator 74

φ path expression mapping 75

θ path expression mapping, to closure contexts 84

Msc edge transition function, incl. wrap 75
�

concatenation operator 84

mop MOP-sol. symbolic evaluation, cf. also p. 57 77
�

closure operator 84

c closure context 84

[s, p, rss] closure context, verbose notation 84

cin a closure context 84

cout another closure context 84

σs,e expression substitution 84

rs(l) system of recurrences 83

rss recurrence system set 83

R(n) df-equation for path expression generation 98

List of Figures

1.1 Simple Statement Sequence . 2
1.2 Example Loop . 3
1.3 Sequence of Symbolic Values for Variable u 3
1.4 Example Program with Control Flow Graph 5

2.1 Derivation Tree . 12
2.2 Derivation Trees for id ∗ id + id 13
2.3 CFG Representations . 18

3.1 Flow States . 20
3.2 Example Program . 27
3.3 Flow Example Execution . 28
3.4 Transition Function δTM . 31
3.5 Transition Diagram for Example 3.1 32
3.6 Case (1) of Table 3.3 . 35
3.7 Case (8) of Table 3.3 . 35
3.8 The Flow Graph Entry Node of the Translation 35
3.9 The Flow Graph Exit Node of the Translation 36

4.1 Example of Polynomial Integer Arithmetic 45
4.2 Symbolic Execution Along Path π = 〈e1, e2, e3, e4, e5〉 55
4.3 Structural Examples of Control Flow Graph Portions 56
4.4 Commutation of Single-Edge Concrete and Symbolic Execution . 60
4.5 Commutation of Single-Path Concrete and Symbolic Execution . 68
4.6 Application of Substitution σsk

to Expression fm(fn(vs, vt), 10) . 71

5.1 Example Loop . 78
5.2 Implicit and Explicit Loop Index Variable 82
5.3 Edge-Splitting in Case of Integer Divison 91

6.1 CFG with Infinite Number of Program Paths 98
6.2 CFG with Infinite Number of Program Paths 100
6.3 Elaborate Example: Kite-Shaped CFG 102
6.4 Example: Common Subexpression e∗2 in Expressions R1 and R2 . 102
6.5 Slicing Procedure . 104
6.6 Metric Algorithm . 105
6.7 Decomposition of string t = t′it

′
j = t

′′

i t
′′

j 106

6.8 Decomposition of string t = t′it
′
j = t

′′

i t
′′

j 108
6.9 Graphical Illustration of Rule E1 for the Substitution “y → y”. . 112

xviii List of Figures

6.10 Graphical Illustration Rule E2b for the Substitution “y → z”. . . 113
6.11 Potentially Loncp-Minimal Irreducible CFG. 115
6.12 Number of Procedures Per Benchmark 119
6.13 Edge/Node Ratio . 121
6.14 Regression . 122
6.15 Quantile Plot for SPEC95 Programs 123
6.16 Box Plot for SPEC95 Programs 124
6.17 Loncp Metric: Number of Unaffected vs. Improved Procedures . 126
6.18 Relative Improvement of Loncp over Ncp Metric 126
6.19 Comparison of Relative and Absolute Improvement 127

7.1 Example Program and Control Flow Graph 132
7.2 Difference Table for Variable j 136

List of Tables

3.1 Denotational Definition of Side-Effects 22
3.2 Denotational Definition of Branch-Predicates 25
3.3 Enumeration of δTM Transitions from State qu to State qv 34

4.1 Resulting Symbolic Expressions for Univariate Polynomials . . . 44
4.2 Algebraic Properties of the Symbolic Predicate Domain 48
4.3 Symbolic Domain: Denotational Definition of Side-Effects 50
4.4 Symbolic Domain: Denotational Definition of Branch Predicates 52
4.5 Comparison: Concrete vs. Symbolic Side-Effects 62
4.6 Comparison: Concrete vs. Symbolic Branch-Predicates 65

6.1 SPEC CINT95 Benchmarks . 118
6.2 SPEC CFP95 Benchmarks . 118
6.3 SPEC95 Procedures with Irreducible Flow Graphs 119
6.3 SPEC95 Procedures with Irreducible Flow Graphs 120

Chapter 1

Introduction

The only mental tool by means of which a very finite

piece of reasoning can cover a myriad of cases is called “abstraction”.

— Edsger W. Dijkstra, in “The Humble Programmer”, 1972 Turing Award Lecture

This dissertation is about static program analysis using a novel approach to
symbolic evaluation based on path expressions. Path expressions allow us to
capture the control flow information inherent in a program. By reinterpreting
the operators of the path expression algebra we obtain a mapping from path
expressions into the symbolic analysis domain. The symbolic analysis domain
is also an algebra that we will explore in the course of the thesis. The main
constituent of this domain is the supercontext, which captures (i.e., abstracts
from) all possible variable bindings at a given program point. Our method is
simpler and more general (e.g., can derive a solution for arbitrary graph nodes
of reducible and irreducible flow graphs) than existing methods.

We begin the dissertation by introducing the concept of symbolic analysis in
Section 1.1. In Section 1.2 we briefly introduce path expressions and the main
ingredients of our symbolic analysis domain. A more thorough presentation
of these topics follows in Chapters 4 and 5. In Section 1.3 we highlight the
contributions of the dissertation. In Section 1.4 we finally present the overall
organization of the dissertation.

1.1 Symbolic Analysis

Symbolic analysis of programs is a static program analysis technique that cap-
tures data and control flow information at well defined program points. This
information is useful in the areas of program verification, program testing, worst
case execution time analysis, and parallelization. Optimizing compilers and code
generators can also benefit from the type of information provided by symbolic
analysis.

As an introductory example, consider the simple statement sequence of Fig-
ure 1.1, written in an arbitrary imperative programming language. In line 1 two
scalar variables u and v are declared. The read statement in line 2 assigns both
variables a new value. Within the statement sequence from line 3 to line 5 we
change values of the variables u and v by a sequence of assignment statements.

2 1.1 Symbolic Analysis

1 integer::u,v;
2 read (u,v);
3 u := u + v;
4 v := u - v;
5 u := u - v;

Figure 1.1: Simple Statement Sequence

Although the input values for variables u and v are not available at compile
time, we want to determine the effect of the computation, that is, the values
of u and v at the end of line 5.

With symbolic analysis we proceed as follows: instead of computing with
numbers for variables u and v, we assign them symbolic values . Let us assume
that the read statement in line 2 yields the symbolic value u for variable u,
and v for variable v. Hence our symbolic computation after the read statement
assumes the following variable bindings.

u = u

v = v
(1.1)

Resuming our computation at the assignment statement in line 3, we assign
variable u the values of u plus v. Variable v is not affected by this assignment.
The new variable binding after line 3 is as follows

u = u + v

v = v
(1.2)

Continuing our symbolic computation for the remaining assignments, we get the
variable bindings depicted in Equation (1.3) at the end of line 5.

u = (u + v) − (u + v − v)

v = u + v − v
(1.3)

Given the fact that the above symbolic expressions are built from variables u
and v, which represent scalar values, we can apply the operations and identities
valid in the ring of multivariate polynomials to achieve a simplification, arriving
at the following variable bindings.

u = v

v = u
(1.4)

The above simplification is obvious in a purely mathematical sense, due to the
equivalence of expressions. However, for a computer implementation (e.g., with
the help of a computer algebra system) the notion of expression equivalence is a
concept that explicitly has to be taken care of. For this reason we will maintain a
strict distinction between “abstract” mathematical objects and their projections
on a “real” computer throughout this thesis.

Comparing Equations (1.1) and Equation (1.4) it becomes evident that the
effect of the computation depicted in Figure 1.1 is to swap the values of variable u
and v. Due to the symbolic nature of the analysis this property is independent

Introduction 3

of possible concrete input values for u and v. By applying symbolic analysis,
namely forward substitution and simplification techniques we have revealed the
program semantics of the example. As already indicated in the introduction,
this information is valuable in many areas, e.g., for program optimization. For
instance, a code generator could decide from the variable bindings of Equa-
tion (1.4), that an overflow check for the expression u − v in lines 4 and 5 is
redundant and can be omitted. As we have pointed out in [BB03], these facts
cannot be derived by current state-of-the-art compiler technology.

1 integer::u;
2 read (u);
3 while u < 100 loop
4 u := 3∗u + 1;
5 end loop;

Figure 1.2: Example Loop

A more elaborate example program containing a loop is depicted in Fig-
ure 1.2. A loop may imply an infinite number of iterations, and in general we
do not know the number of iterations at compile time. Figure 1.3 lists the first

Iteration Symbolic Value of u

0 u

1 3 ·u + 1

2 9 ·u + 4

3 27 ·u + 13
...

...

Figure 1.3: Sequence of Symbolic Values for Variable u

few values that variable u will assume during subsequent iterations of the loop.
Therein iteration 0 denotes the value of u before entering the loop. This value
is of course due to the read statement in line 2. Iteration 1 denotes the value
of variable u after the first iteration of the loop, iteration 2 the value after the
second iteration, and so on, ad infinitum. Hence, if we are interested in the
symbolic value of variable u after the assignment in line 4, we have to consider
infinitely many variable bindings∗.

A necessary step in order to handle infinitely many variable bindings is to
find a finite representation for the infinite sequence of symbolic values partially
listed in Figure 1.3. For this purpose we employ recurrences [Ros95], which
consist of a boundary condition and a recurrence relation. By that means the
sequence from Figure 1.3 can be written as

u(0) = u (1.5)

u(i + 1) = 3 ·u(i) + 1. (1.6)

The literature contains a wealth of methods that can be applied to obtain
closed forms for recurrence relations. A closed form is a formula the value of

∗On a contemporary hardware platform the number of possible variable bindings will of
course reduce to ≈ 232.

4 1.2 Path Expressions and the Symbolic Analysis Domain

which depends on the iteration number (i in the above case), and not on variable
values of previous iterations. In this way a closed form is a representation that is
as compact as “ordinary” symbolic expressions, which is not true for the recur-
rence relation itself. Nevertheless, deriving closed forms for recurrence relations
is undecidable in the general case, and our analysis method must therefore pro-
vide a means of approximation in order to derive a less precise (yet computable)
result in such a case. The goal in that respect is of course to stay as precise as
possible, which is supported by the fact that approximations can be introduced
on a per variable basis.

The following equation depicts the closed form for the recurrence relation of
Equation (1.6).

u(i) = 3i · u +
(3i − 1)

2
, for i ≥ 0 (1.7)

It describes the value of the expression 3∗u+1 in line 4 of Figure 1.2 after i ≥ 0
iterations of the loop body. In this way we have obtained a finite representation
for the infinitely many variable bindings possible for variable u after the end of
line 4.

Coming back to the notion of range checks, if we want to determine whether
the expression 3∗u+1 is within a predetermined range [l, u], the righthand-side
of Equation (1.7) holds the key to deciding this question.

Since computers employ integer arithmetic operations, the solutions of a
symbolic equation are in effect the solutions of a Diophantine equation. Dio-
phantine equations are also undecidable in the general case, which gives us
another potential cause of approximation.

It should however by noted that undecidability of a problem cannot be at-
tributed to symbolic analysis per se, for any other analysis method attempting
a problem of a given complexity will experience the same inadequacy.

A problem that might be attributed to symbolic analysis is the combinatorial
explosion resulting from complicated control flow (e.g., a huge number of if
statements, exits from loops, or undisciplined use of goto statements). In order
to gain empirical data on the problem size of actual programs we have conducted
a comprehensive survey that yielded reassuring results (cf. Section 1.3).

In concluding it should be stated that symbolic analysis is a static program
analysis method of impressive power and flexibility, that can be applied to a
variety of problems. By its nature, symbolic analysis is however also an ex-
pensive method and should be applied with great care. It would certainly be
inappropriate to apply it to problems that can already be solved by conventional
techniques. However, there exist many applications, e.g., in the area of safety
related systems, where conventional techniques fail, and where the potential
gain due to sophisticated program analysis is already justified.

1.2 Path Expressions and the Symbolic Analysis
Domain

Existing work on symbolic evaluation captures the control flow information of
a program from its control flow graph (CFG). A CFG is a directed labeled
graph where the nodes correspond to the basic blocks of a program, and edges
represent transfer of control between them. As an example, consider Figure 1.4,

Introduction 5

which depicts a program and its associated control flow graph. To emphasize
the correspondence of program statements and flow graph nodes, we have added
the CFG node names as a comment to the respective statements.

Our approach takes a different route. At the heart of our work on symbolic
analysis are program paths . In brief, we denote by a program path a sequence of

1 integer::u,i,j;
2 read (u,i,j); -- node n1

3 if u < 10 then -- node n1

4 repeat
5 if i < j then -- node n2

6 i := i + 1; -- node n3

7 else
8 i := i + 3; -- node n4

9 end if ;
10 until i > 100; -- node n5

11 end if ;

ne

n1

n2

n3 n4

n5

nx

e1

e4 e5

e2

e3

e6 e7

e9

e8

Figure 1.4: Example Program with Control Flow Graph

adjacent CFG edges, which we connect by the “·” operator (a formal treatment
is given in Chapter 5). As an example, we list a few program paths from node ne

to node n3 for the CFG in Figure 1.4.

e1 · e3 · e4

e1 · e3 · e4 · e6 · e8 · e4

e1 · e3 · e5 · e7 · e8 · e4

e1 · e3 · e5 · e7 · e8 · e4 · e6 · e8 · e4
...

...

We quickly run out of steam with an enumeration, given the fact that there
exists an infinite number of program paths from node ne to node n3.

What we need is a finite representation for this infinite number of program
paths. Robert E. Tarjan has shown in [Tar81] how path problems on directed
graphs can be solved via path expressions . A path expression of type (v, w) is
a regular expression the language of which consists of the set of program paths
from node nv to node nw. Given the concept of path expressions, our work
consists of the following two steps.

(1) Associate program constructs with CFG edges, as they are the “building
blocks” of path expressions.

(2) Provide a mapping from path expressions into the symbolic domain.

A prerequisite to step (2) is of course the provision of an appropriate symbolic
analysis domain which can capture the possibly infinite set of different vari-
able bindings at a given program point. Moreover, for each variable binding

6 1.3 Contributions

it must encode the condition, under which this variable binding is valid. Fi-
nally, all operations in the symbolic domain must have the same properties as
their counterparts in the concrete domain (e.g., symbolic integer division has
to “mimic” the division on integers). The main ingredients of our symbolic
analysis domain are

• an algebra for integer-valued symbolic expressions,

• an algebra for symbolic predicates,

• a structure called supercontext to capture the variable bindings at a given
program point.

Comparing our approach based on path expressions with CFG-based meth-
ods, it must be said that under certain idealized conditions (i.e. in the presence
of a data-flow framework with insertion- and loopbreaking rules, driven by an
elimination algorithm [Bli02]) a CFG-based approach is equivalent to our ap-
proach. However, for all other cases our approach is more general (e.g., it is
equally well-suited for irreducible CFGs). Furthermore, path expressions pro-
vide a convenient abstraction from the intricacies of complex CFGs, and they
constitute an algebra, a fact that grants a smooth interaction with the algebras
of the symbolic analysis domain.

1.3 Contributions

In this section we outline the major contributions of this dissertation.

Contribution 1 We define syntax and semantics of a Turing-equivalent flow
language that models the standard semantics of program execution. This lan-
guage serves us as a vehicle to develop the symbolic analysis methodology. Due
to its Turing-equivalence we can map arbitrary programming language con-
structs to this flow language, which provides the possibility of further extensions,
without having to change the core of our methodology for symbolic analysis.

Contribution 2 We define a symbolic domain that parallels the concrete do-
main of integer arithmetic used by our flow language. This symbolic domain
provides notions for symbolic expressions, predicates, and structures to capture
and manipulate the set of variable bindings valid at a given program point.

Contribution 3 We model symbolic execution along program paths and prove
its correctness with respect to the concrete semantics of our flow language.

Contribution 4 We define a mapping from path expressions into the symbolic
domain and prove its correctness with respect to the already established cor-
rectness of symbolic execution along program paths. This mapping constitutes
a mechanism to automatically derive the set of all possible variable bindings
at a given program point, and it automatically derives all involved recurrence
relations.

Contribution 5 We set up a data-flow problem that computes path expressions
from arbitrary (i.e., reducible and irreducible) control flow graphs.

Introduction 7

Contribution 6 We define metrics on path expressions in order to asses the
required analysis effort. We prove the minimality of the generated path expres-
sions (cf. Contribution (5)) with respect to a given metric.

Contribution 7 We conduct an extensive study to gain empirical data re-
garding the actual metric figures that can be expected for symbolic analysis of
contemporary real-world applications.

Contribution 8 We maintain a strict distinction between “abstract” mathe-
matical concepts and their projections on a “real” computer. While the theory
of symbolic analysis is purely mathematical, we also outline the issues arising
in the context of an actual implementation.

1.4 Organization of the Dissertation

In Chapter 2 we present background material and notations that are needed for
the work described in this thesis. In Chapter 3 we define syntax and semantics
of a Turing-equivalent flow language that models the standard semantics of
program execution. This language serves us as a vehicle to develop the symbolic
analysis methodology. In Chapter 4 we develop the symbolic analysis domain
and the notion of symbolic execution along whole program paths. Chapter 5
is denoted to symbolic evaluation of programs. It introduces path expressions
and the mapping from path expressions into the symbolic analysis domain,
and treats loops, induction variables, and recurrence relations. Furthermore it
outlines issues arising in the context of an actual implementation. Chapter 6
contains our path expression generation method, metrics on path expressions,
and the results of our study conducted on contemporary real-world applications.
In Chapter 7 we discuss related work, in Chapter 8 we draw our conclusions and
outline future work.

Chapter 2

Background and Notation

Be patient, for the world is broad and wide.

— Edwin A. Abbott, Flatland: A Romance of Many Dimensions (1884)

The purpose of this section is threefold: first of all, it shall define the terms
and notational conventions of methodologies that this work is based upon. This
goal can hardly be achieved without introducing the concepts itself (goal two).
Due to practical reasons such an introduction can neither be in-depth nor self-
contained. The third goal of this section is therefore to point the interested
reader towards the literature — in an attempt to make the introduction in-
depth, and, by transitive closure, self-contained.

2.1 Sets and Functions

The following sets are often used throughout this work:

1. Natural Numbers in the sense of the axiomatization due to Peano (cf.
e.g., [Jac74]): N = {0, 1, 2, . . .}.

2. Integers (cf. [Jac74]): Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

3. Truth values (Booleans): B = {true, false}.

Another set that we will often use is the set of program variables (V), which we
will define subsequent to the introduction of functions.

For two sets R and S, f is a function from R to S, written f : R → S, if,
to each element of R, f associates exactly one member of S. The expression
R → S is called the arity or functionality of f . R is the domain of f , denoted
by Dom(f), and S is the codomain of f . Calculating a result y by presenting
an argument a to f is called application and is denoted by y = f(a).

A function f is said to be one-to-one, or injective, iff f(x) = f(y) implies
that x = y for all x and y in the domain of f . A function f from A to B is
called onto, or surjective, iff for every element b ∈ B there is an element a ∈ A
with f(a) = b.

A partial function f from A to B is an assignment to each element a in a
subset of A, called the domain of definition of f , of a unique element b in B.
We say that f is undefined for elements in A that are not in the domain of

10 2.1 Sets and Functions

definition of f . When the domain of definition of f equals A, we say that f is
a total function.

It is often necessary to define new updated functions from existing ones.
f [y 7→ v] denotes a new function f ′ derived from f by updating f with a new
value v at y:

f ′(x) = f [y 7→ v](x) =

{
v, if x = y

f(x), otherwise.

Functions can be combined using the composition operation. For f : R → S
and g : S → T , g ◦ f is the function with domain R and codomain T such that
∀x ∈ R : g ◦ f(x) = g(f(x)).

Functions can have arbitrarily complex domains and codomains. For exam-
ple, if R×S is the domain of a function f , then f is said to take two arguments.
Likewise, if R × S is the codomain, then f is said to return a pair of values.
We may use the notation R2 denoting the cartesian product R × R, and its
generalization Rn, denoting R×· · · ×R (n times). Function domains can serve
as domain or codomain of functions. The function f : N → (N → N) takes a
natural number and associates a function from the function domain of functions
with arity N → N to it. Since → associates to the right, the above example can
also be written as f : N → N → N. This is based on the following equality:

A → (B → C) = A → B → C.

Functions can be described via a set if we collect pairs (x, f(x)) in a set. For
function f : R → S, the set

graph(f) = {(x, f(x) | x ∈ R}

is called the graph of the function.

Example 2.1 add : N × N → N

graph(add) = {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 2), ((2, 0), 2), · · · }

Although the graph representation of a function provides insight into its
structure, it is inconvenient to use in practice. Example (2.2) denotes function
“add” of Example (2.1) as an equation. The equational notation comprises name
and arity of the function, together with an equational specification of “add”.

Example 2.2 add : N × N → N

add(m, n) = m + n

The value of a function given in equational form is determined by evaluation
based on substitution and simplification. An equation f(x) = α, for f : A → B,
represents a function. In order to use the equational definition to map a specific
ao ∈ A to f(a0) ∈ B, a0 has to be substituted for all occurrences of x in α.
This substitution is denoted by [x 7→ a0]α. This expression evaluates then to
its underlying value through simplification.

As an example we use the equational definition of Example (2.2) to evaluate
“add(2, 8)”: Substitution of 2 for m and 8 for n in the expression on the right-
hand side of the equation of “add” gives [m 7→ 2][n 7→ 8]m + n = 2 + 8.
Simplification of the expression 2 + 8 uses knowledge of the primitive operation
+ to obtain 2 + 8 = 10.

Background and Notation 11

Definition 2.1 We denote the finite set of program variables by V. Given the n-
bounded finite index-set IS = {x | x ≤ n} ⊂ N and a total function Idx : IS → V

that is one-to-one and onto, we write vi, with i ∈ IS, to denote element Idx(i)
of V. If the meaning is clear from the context, we also use unique named
constants that are functions of arity → V. These are denoted by lowercase
letters, e.g., i, j, k.

2.1.1 References

Sets and Functions If not otherwise stated, the definitions that have been
used in this section are due to [Sch86] and [Ros95].

2.2 Syntax and Semantics of Programming Lan-

guages

There are two main aspects of a computer language — its syntax and its seman-
tics. The syntax defines the correct form for legal programs and the semantics
determines what they compute. While the syntax of a language is always for-
mally specified in a variant of BNF, the more important part of defining its
semantics is mostly left to natural language, which is ambiguous and leaves
many questions open. Hence, methods were developed to describe the seman-
tics of computer languages. Denotational semantics is such a methodology for
giving precise meaning to a computer language.

2.2.1 Syntax

As mentioned above, the syntax of a computer language is concerned only with
the structure of programs. The syntax treats a language as a set of strings
over an alphabet of symbols. The syntax is usually given by a grammar that
gives productions for generating strings of symbols using auxiliary nonterminal
symbols.

Formally, a context-free grammar (or grammar , for short) is a quadruple
(VN , VT , P, S). Therein VN and VT denote finite sets of nonterminal and termi-
nal symbols, VN ∩ VT = ∅. P is a finite set of productions. Each production is
of the form A : : =α1α2 . . . αn, where A is a nonterminal, and

αi
1≤i≤n

∈ (VN ∪ VT).

Subscripts for terminals and nonterminals on the righthand-side of productions
may be used in order to distinguish between symbols of the same kind (e.g.
A : : =α11

α12
). S is a distinct nonterminal of the set VN known as the start

symbol.

Example 2.3 Consider the definition of arithmetic expressions with operators
+ and ∗ and operands represented by the symbol id. The corresponding context-
free grammar is denoted by ({E}, {+, ∗, (,), id}, P, E), where

E : : = E + E

E : : = E ∗ E

E : : = (E)

E : : = id

12 2.2 Syntax and Semantics of Programming Languages

E

E

(E

E

id

+ E

id

)

∗ E

id

Figure 2.1: Derivation Tree

are the productions of P .

The fact that a grammar contains A : : = α1, A : : = α2,. . . , A : : =αk as pro-
ductions for a nonterminal A can be abbreviated by

A : : = α1 | α2 | · · · | αk.

The nodes of a derivation tree are labeled with nonterminals or terminals of
a given grammar. If a given node n in the tree is labeled with A and its successor
nodes n1, n2, · · · , nk are labeled with X1, X2, · · · , Xk, then A : : = X1X2 · · ·Xk

is a production in this grammar. Formally, if G = (VN , VT , P, S) is a context-
free grammar, then a tree is a derivation tree for G iff the following requirements
hold:

(1) Every node is labeled with a symbol of VN ∪ VT .

(2) The root-node is labeled with S.

(3) If a non-leaf node is labeled with A, then A ∈ VN .

(4) If a given node n is labeled with A and its successor nodes n1, n2, · · · , nk

are labeled from left to right with X1, X2, · · · , Xk, then A : : = X1X2 · · ·Xk

is a production in P .

(5) If a leaf-node is labeled with A, then A ∈ VT .

The set of all derivation trees according to G is denoted by TreeG. Figure 2.1
contains the derivation tree of the arithmetic expression (id + id) ∗ id for the
grammar of Example (2.3). Starting with the root-node labeled with the start-
symbol E, the derivation tree denotes the sequence of productions necessary to
derive (id + id) ∗ id from E.

The word w that is expressed by the labels of the leave nodes of a derivation
tree t when read from left to right is called the front of a tree. The language
L(G) that is defined by a grammar G can then be described as the set of words

{w ∈ V ∗
T | ∃t ∈ TreeG : front(t) = w}.

Informally, this set contains those words w that have the following two proper-
ties:

Background and Notation 13

E

E

id

* E

E

id

+ E

id

E

E

E

id

∗ E

id

+ E

id

Figure 2.2: Derivation Trees for id ∗ id + id

(1) w consist of a sequence of terminal symbols of the set VT ,

(2) a derivation tree t with front w for grammar G exists.

Often there exists more than one derivation tree for a given word. In this case the
underlying grammar is said to be ambiguous. Consider Figure 2.2 which contains
two derivation trees for the same word, but with different meanings: the tree to
the left of Figure 2.2 suggests an evaluation order equivalent to the parenthesized
expression id ∗ (id + id), whereas its counterpart denotes an evaluation order
that is equivalent to (id ∗ id) + id. The choice is important, because compilers
as well as semantic definitions (cf. Section 2.2.2) assign meanings based on the
structure of derivation trees.

Ambiguous grammar definitions can often be rewritten into an unambiguous
form if additional nonterminals and productions are introduced. However, the
price paid is that the revised definitions are more complex and that the corre-
sponding derivation trees contain additional, artificial levels of structure with
semantically irrelevant details.

We can avoid those modified, complex grammars if we shift our view and
regard language as a set of derivation trees instead of strings (words) over a
set of symbols (terminals). Contrary to strings which may stand for several
derivation trees in an ambiguous grammar, the structure of a derivation tree
itself is unambiguous.

With this change of view, strings are regarded only as abbreviations for
derivation trees. As we have seen in Figure 2.2, there exist abbreviations that are
ambiguous in terms of the grammar of Example (2.3). This grammar is therefore
not capable of assigning a unique derivation tree to a string, but it is sufficient
for specifying the structure of derivation trees for arithmetic expressions.

Due to this fact it is common practice to use two related grammars: one
complex but unambiguous grammar to determine the derivation tree that a
string abbreviates, and one simpler grammar to analyze the tree’s structure and
determine its semantics. The complex grammar represents the so-called concrete
syntax of a language, while the latter represents so-called abstract syntax . There
exists a formal relationship between abstract and concrete syntax: the tree
generated for a string in terms of the grammar for concrete syntax identifies a
derivation tree for the string in terms of the grammar for abstract syntax.

Abstract syntax can be regarded as an abstraction from concrete syntax
where syntactic details such disambiguation are sacrificed for simplicity and en-
hanced readability. Concrete syntax mainly addresses parsing problems. These

14 2.2 Syntax and Semantics of Programming Languages

problems are due to the string-format of programmer-delivered input programs,
but they are of no concern for static program analysis. It will be shown in
Section 2.2.2 that program semantics are derived from derivation trees. In this
way we are only concerned with abstract syntax in the remainder of this work.

2.2.2 Denotational Semantics

Denotational Semantics defines the semantics of a programming language on
the basis of its abstract syntax. It uses functions in order to associate semantic
values (called denotations) to syntactically valid structures. A simple example
of such a function maps an arithmetic expression to its value:

val : Expression → Integer.

In this way val(2+(5∗3)) = 17 and val((2+4)∗2) = 12. A function of this kind
is called semantic function or valuation function, and its domain is a syntactic
domain that we consider as a set of derivation trees with a structure specified
through the productions of a grammar. The codomain of a semantic function
is a semantic domain. In case of function “val” the syntactic domain consists
of the set of derivation trees of syntactically valid arithmetic expressions, and
the semantic domain is the domain of integer numbers specified in Section 2.1.
The exact interpretation of the example val(2 + (5 ∗ 3)) = 17 is therefore that
the derivation tree abbreviated by the string 2 + (5 ∗ 3) is associated with the
semantic value 17.

We are now ready to enumerate the ingredients of the denotational defini-
tion of a language together with the associated notational conventions that we
will use henceforth. As an example we develop denotational definitions for the
language of numerals and digits in parallel.

Formally a denotational definition of a language consists of three parts: the
abstract syntax definition of the language (syntactic domain), the semantic al-
gebras (semantic domains), and the valuation functions.

Syntactic Domains

A denotational definition considers the syntactic domain as a set of derivation
trees. The structure of these trees is defined through the productions p ∈ P
of a grammar G = (VN , VT , P, S). The nonterminal symbols vN ∈ VN of G
identify corresponding sets of derivation trees where a nonterminal symbol itself
corresponds to a variable denoting an element of such a set. The first part of
a syntactic domain definition lists the nonterminal symbols together with the
sets of derivation trees to which they are related.

D : Digit (2.1)

N : Numeral. (2.2)

This definition is to be read as follows: The nonterminal symbol D is regarded
as a variable that may denote any element of the set Digit of derivation trees,
while the nonterminal N denotes any element of the set Numeral of derivation
trees. The second part of a syntactic domain definition contains the productions
p ∈ P themselves.

Background and Notation 15

N : : = N D | D

D : : = ’0’ | ’1’ | . . . | ’9’

Semantic Domains

Semantic Domains are based on semantic algebras (cf. Section 2.1). A definition
of a semantic domain lists the domain and the operations of the underlying
semantic algebra. The following is an example of a simple semantic domain
called “Integer”.

Domain z : Integer = Z

+ : Integer× Integer → Integer

− : Integer× Integer → Integer

∗ : Integer× Integer → Integer

/ : Integer× Integer \ {0} → Integer

The first line of this example defines that Z is the underlying domain of the
semantic domain “Integer” and that the symbol z is to be used as a variable for
elements of this semantic domain. The operations comprise the usual arithmetic
operators on Z. Since their properties are well-known, it suffices to list only
name and arity of these functions.

Valuation Functions

A valuation function maps the abstract syntax structures of a language to mean-
ings drawn from semantic domains. The domain of a valuation function is the
set of derivation trees of a language. Valuation functions are defined struc-
turally. They determine the meaning of a derivation tree by determining the
meanings of its subtrees and combining them into a meaning for the entire tree.

We introduce a distinct valuation function for each syntactic domain. It is
a notational convention to name the valuation function after the nonterminal
symbol of the corresponding syntactic domain. To distinguish between the two,
the latter is printed in bold. The valuation function for the syntactic domain
Digit (cf. Equation (2.1)) is therefore written as

D : Digit → Integer.

The derivation trees for the language digit, defined by the production

D : : = ’0’ | ’1’ | . . . | ’9’,

can be enumerated as follows.

D

’0’

D

’1’

D

’2’

· · ·

· · ·

D

’9’

The valuation function D assigns a meaning to each of these derivation trees.

D
(D

’0’

)
= 0, D

(D

’1’

)
= 1, . . . ,D

(D

’9’

)
= 9

16 2.2 Syntax and Semantics of Programming Languages

Clearly this two-dimensional notation is inadequate for complex derivation trees.
The following onedimensional abbreviation uses only the right-hand side of pro-
ductions and introduces emphatic brackets [[]] to enclose the syntactic arguments
of valuation functions.

D[[’0’]] = 0,D[[’1’]] = 1, . . . ,D[[’9’]] = 9

Note that although emphatic brackets enclose only the right-hand side of a
production A : : =α1α2 . . . αn, the actual argument to the valuation function is
the derivation tree

A

α1 α2 αn

with root node A and successors α1, α2, . . . , αn.

To complete our example, we note that

N : Numeral → Integer

denotes the arity of the valuation function for the syntactic domain Numeral
(cf. Equation (2.2)). It is defined by two productions

N : : = N D

| D

which lead to the following two equations describing the valuation function N.

N[[ND]] = 10 ∗N[[N]] + N[[D]] (2.3)

N[[D]] = D[[D]] (2.4)

2.2.3 References

Programming Language Syntax Languages and context-free grammars are
treated in [HU79]. A comparison of concrete and abstract syntax is given
in [Wat91], [Mos90], and [Sch86].

Programming Language Semantics Both [Lou93] and [Feh89] present and
compare different approaches of specifying programming language seman-
tics.

Denotational Semantics A tutorial on this subject can be found in [Ten76].
[Lou93], [Sch86], and [All86] present thorough introductions to the subject
and its application to programming languages. Further in-depth sources
of information include [Wat91], [Feh89], and [Mos90, GS90]. The de-
notational semantic notations adopted throughout this work are based
on [Lou93] and [Sch86].

Background and Notation 17

2.3 Control Flow Graphs

A simple graph G = 〈N, E〉 consists of N , a nonempty set of nodes, and E, a
set of unordered pairs of distinct elements of N . A directed graph G = 〈N, E〉
consists of a set of nodes N and a set of edges E that are ordered pairs of elements
of N . Each edge e of a directed graph has a head h(e) ∈ N and a tail t(e) ∈ N .
Thus the edge e leads from h(e) to t(e). The set of incoming edges for a given
node n ∈ N is defined as in(n) = {e ∈ E : t(e) = n}. Likewise we can define
the set of outgoing edges for a node n ∈ N as out(n) = {e ∈ E : h(e) = n}.

Definition 2.2 A path π = 〈e1, e2, . . . , ek〉 is a sequence of edges such that
t(er) = h(er+1) for 1 ≤ r ≤ k − 1. Containment of an edge e in a path π,
denoted as e ∈ π, is defined as

e ∈ π = 〈e1, e2, . . . , ek〉 ⇔ ∃r :
1≤r≤k

e = er.

The length |π | of a path π denotes the number of edges contained in π. We
can also define containment of a node n in a path π:

n ∈ π = 〈e1, e2, . . . , ek〉 ⇔ ∃r :
1≤r≤k

n = h(r) ∨ n = t(r).

A directed graph is strongly connected if there is a path from a to b and from
b to a whenever a and b are nodes in the graph. A directed graph is weakly
connected if if there is a path between any two nodes in the underlying simple
graph.

Definition 2.3 A control flow graph (CFG) is a directed labeled graph G =
〈N, E, ne, nx〉 with node set N and edge set E ⊆ N × N . Entry (ne) and Exit
(nx) are distinguished nodes used to denote the start and terminal node. The
start node ne has no incoming edges (in(ne) = ∅), whereas the terminal node nx

has no outgoing edges (out(nx) = ∅). Furthermore we require that every node n
is contained in a path from ne to nx. The set of all successors of a node n ∈ N is
denoted by succ(x), while the set of all predecessors of n is denoted by pred(x).

An intuitive way of mapping a program to a CFG is to interpret its nodes as
basic blocks bi containing the program statements, whereas its edges represent
transfer of control between basic blocks. Each edge ei of the CFG is assigned
a condition ci = cond(ei) which must evaluate to true¶ for the program’s con-
trol flow to follow this edge. An early example of this approach can be found
in [Kil73]. A mapping that does not target CFG nodes can be achieved if basic
blocks are also mapped to CFG edges. Among others, this approach is taken
in [AC76] and [Ram96]. CFGs can be transformed from the first to the lat-
ter representation by shifting basic blocks from graph nodes onto graph edges.
As shown in the example depicted in Figure 2.3(a), the result of this transfor-
mation is different depending on whether basic blocks are shifted from their
respective nodes onto incoming edges (Figure 2.3(b)), or onto outgoing edges
(Figure 2.3(c)).

¶We have not defined the notion of evaluation yet, but for the ongoing discussion it suffices
to relate it to the concept of expression evaluation found e.g. with compiler construction.

18 2.3 Control Flow Graphs

b1

nx

ne

b2

c2

c3

c4

c1

(a)

c3, b1

c2, b2

c1, b1

c4

(b)

b2, c3

b1, c2

c1

b1, c4

(c)

Figure 2.3: CFG Representations

The main difference between these two representations is that with the first
each edge is assigned an ordered tuple {condition , basic block}, whereas the
latter assigns an ordered tuple {basic block , condition}. If we consider a forward
data-flow problem where information is propagated through the CFG along and
in the direction of the CFG edges, the latter representation would require to
evaluate a basic block before the respective condition. Should the condition
evaluate to false we are in the unfortunate position of having to reverse or “roll-
back” the effects of the preceding evaluation of the basic block. Thus forward
data-flow problems are better served by the first representation. As backward
data-flow problems propagate data-flow information in the reverse direction of
the CFG edges, they are better-suited to the second representation.

2.3.1 References

Control Flow Graphs Material on control flow graphs can be found, among
others, in [ASU86, CT04, BJ66].

Chapter 3

Standard Semantics of
Program Execution

We define a flow language that models the standard semantic behavior of pro-
gram execution similar to the approach chosen in [CR81]. Furthermore we show
in Section 3.5 that our flow language can simulate a Turing machine and vice
versa.

3.1 The Language Flow

Panta rhei.

(Everything flows).

— HERAKLIT, Greek philosopher, 540–480 BC

Informally an environment can be envisioned as a set of variable/value pairs
{v1 = n1, . . . , vk = nk} where vi is a program variable and ni ∈ Z holds the
value of vi for 1 ≤ i ≤ k. We require that for each variable vi ∈ V there exists
exactly one pair vi = ni in a given environment. Due to this property such a
set can also be interpreted as the graph of a function

env : V → Z.

This function takes a variable identifier v as argument and associates the value
of v to it. We will make extensive use of this kind of functions which makes it
more convenient to reserve the term environment for the function instead of the
graph of the function. The set of possible environments can then be represented
by a class of functions

Environment ⊆ {env : V → Z}. (3.1)

Often we restrict our interest to a subset of V. In those cases the environments
are partial functions.

States s ∈ S are connected by directed edges e ∈ E. The corresponding
directed graph G = 〈S, E, se, sx〉 has a distinguished start node se and a distin-
guished terminal node sx. The start node se has no incoming edges (in(se) = ∅)

20 3.1 The Language Flow

whereas the terminal node sx has no outgoing edges (out(sx) = ∅). Further-
more we require that every state s is contained in a path from se to sx. We can
envision the semantics of standard program execution as a forward data-flow
problem as follows.

Associated with each edge e ∈ E is a branch predicate

pred : E →
(
Environment → B

)
. (3.2)

This predicate evaluates within a given environment env ∈ Environment and
determines how the flow of control progresses through the flow-graph G (the
exact treatment of this evaluation process is deferred until Section 3.3). Con-
trol progresses from state h(e) to state t(e) iff pred

(
e
)
(env) = true, which

means that the predicate associated with edge e evaluates to true within envi-
ronment env. Figure 3.1 presents the general case of a state s with outgoing
edges out(s) = {Edge1, . . . , en} leading to successor states s1, . . . , sn. In or-

ene1

e2

s

s2 sns1

Figure 3.1: Flow States

der to determine the control flow successor of state s for environment env, the
predicates pred

(
e1

)
(env), . . . , pred

(
en

)
(env) are evaluated. We can distinguish

three cases with respect to the number of edges that have assigned a predicate
evaluating to true.

(1) The predicate of a single edge e ∈ out(s) evaluates to true. In this case
the state t(e) is the successor state for state s.

(2) There exists a subset of edges {e1, . . . , ek} ⊆ out(s), k > 1, for which
the assigned predicate evaluates to true. In this case we have states
t(e1), . . . , t(ek) qualifying as possible successor states. This results in in-
determinism or parallelism, depending on the number of successor states
we accept.

(3) Zero predicates evaluate to true. In this case the computation stops due
to the lack of a successor state. State s is called a halting state.

We require that for any given state s 6= sx and environment env the branch
predicate of exactly one outgoing edge evaluates to true:

∃ei ∈ out(s) : pred(ei)(env) ∧ ∀
j 6=i

ej : ¬pred(ej)(env). (3.3)

Also associated with each edge e is a side-effect σ representing the effect of
a computational step on a given environment env ∈ Environment:

σ : E → (Environment → Environment). (3.4)

The transition function δ has the set S × Environment as its domain and
codomain:

δ : (S, Environment) → (S, Environment).

Standard Semantics of Program Execution 21

Execution of a transition (s, env) → (s′, env′) via an edge e is defined as

(s, env) →(s′, env′) :

∃e ∈ out(s) : t(e) = s′ ∧ pred(e)(env)

⇒ env′ = σ(e)(env),

(3.5)

where ⇒ denotes implication.
The iterated transition function δ∗ : (S, Environment) → (S, Environment)

is defined as

δ∗(sx, env) = (sx, env)

δ∗(s, env) = δ∗(δ(s, env)).
(3.6)

For any graph G = 〈S, E, se, sx〉 the environment envx of the terminal state sx

represents the result of program execution along the sequence of transitions
(se, enve)

∗
→ (sx, envx). Depending on the structure of G and the initial envi-

ronment enve such a transition sequence may not exist. Deciding on its existence
is in general equivalent to the halting problem.

3.2 Syntax and Semantics of Side-Effects

Until now the side-effects of a computation have only been described to the ex-
tend that they are represented by a class of functions that map environments to
environments (cf. Equation (3.4)). We are now going to specify the denotational
definition of side-effects of the language Flow based on the grammar

G =
(
{assign, ident, expr, binop, num, dig}, {+,−, ∗, div, rem, (,), }, P, assign

)
.

Table 3.1 (I) defines the syntactic domain of G. It contains the productions
p ∈ P that define the structure of derivation trees for assignment-statements,
e.g., a := b ∗ (c + d). The production for the nonterminal “ident” has been
omitted for brevity, it identifies the set of derivation trees that correspond to
elements of the set V of possible variable identifiers.

The nonterminal “num” denotes elements of Z, the set of integers. This set,
together with the arithmetic operations of integer addition (”+”) and multi-
plication (”·”) forms an integral domain (Z; +, ·). Although divisibility plays
a central role for computations, division is not possible in an integral domain
in general, e.g., 5

2 = 2.5 6∈ Z. However, due to the division property stated
in [GCL92, p. 30], the integers Z form a Euclidean domain. This means that
for all elements a, b ∈ Z with b 6= 0, there exist elements q, r ∈ Z such that

a = b · q + r. (3.7)

In this equation variable q denotes the quotient and variable r denotes the
remainder of the operation a

b
. We write q = a div b to denote integer division,

and r = a rem b to denote the remainder operation. It should be noted that
quotient q and remainder r are not unique in Z in general, if r 6= 0. For
example, if a = −8 and b = 3, then we have

−8 = 3 ·(−2) − 2 = 3 ·(−3) + 1,

22 3.2 Syntax and Semantics of Side-Effects

(I) Syntactic Domain

assign : Assignment num : Numeral

expr : Expression dig : Digit

ident : Identifier binop : Binary Operator

assign : : = ident := expr

expr : : = expr binop expr

| − expr

| ident

| num

| (expr)

binop : : = + | − | ∗ | div | rem

num : : = num dig | dig

dig : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

(II) Semantic Domain

Integers Program Variables

Domain z : Integer = Z Domain v : V

+,−, · : Integer× Integer → Integer

div, rem : Integer× Integer \ {0} → Integer

Environments

Domain env : Environment ⊆ {f : V → Z}

(III) Valuation Functions

assign : Assignment → Environment → Environment

assign[[ident:=expr]](env1) =

λenv2.env2

[
ident[[ident]] 7→ expr[[expr]](env2)

]
(env1)

expr : Expression → Environment → Integer

expr[[expr1 binop expr2]](env) =

expr[[expr1]](env) binop[[binop]] expr[[expr2]](env)

expr[[−expr]](env) = −expr[[expr]](env)

expr[[ident]](env) = env
(
ident[[ident]]

)

expr[[num]](env) = num[[num]]

expr[[(expr)]](env) = expr[[expr]](env)

num : Numeral → Integer

num[[num dig]] = 10 ·num[[num]] + dig[[dig]]

num[[dig]] = dig[[dig]]

dig : Digit → Integer

dig[[0]] = 0, dig[[1]] = 1, . . . ,dig[[9]] = 9

ident : Identifier → V (omitted)

binop : Binary Operator → {+,−, ·, div, rem} (omitted)

Table 3.1: Denotational Definition of Side-Effects

Standard Semantics of Program Execution 23

so that both pairs q = −2, r = −2 and q = −3, r = 1 satisfy Equation (3.7). We
can adopt one of the following rounding modes to make quotient and remainder
unique in Z.

• Round towards ∞:

a div b = da/be. (3.8)

• Round towards −∞:

a div b = ba/bc. (3.9)

• Round towards zero (truncate):

a div b =

{
ba/bc, if a/b ≥ 0

da/be, if a/b < 0.
(3.10)

For the remainder of this work we will always assume the round towards zero
rounding mode∗ for the integer division and remainder operations.

Variable identifiers, natural numbers and environments make up the seman-
tic domain of side-effects of the language Flow. Each of these subdomains is
listed in Part (II) of Table 3.1. We introduce the domain-name “Integer” for
the Euclidean domain Z. The class of functions named Environment consists
of function that map values to variable identifiers and has been introduced in
Equation (3.1).

Table 3.1 (III) finally describes the valuation functions for each syntactic
subdomain of Part (I). According to Section 2.2.2 those valuation functions
map derivation trees to meanings drawn from semantic domains. Valuation
functions are defined structurally in a sense that they determine the meaning
of a derivation tree by determining the meanings of its subtrees and combining
them into a meaning for the entire tree. This structural decomposition lends
itself nicely to a bottom-up description of the respective valuation functions.

binop: This valuation function maps the terminals “+”, “−”, “∗”, “div” and
“rem” to the corresponding arithmetic operations of integer addition, sub-
traction, multiplication, division, and remainder over Integer× Integer →
Integer. Algorithms for these operations have been omitted for space
considerations, the interested reader is referred to [BBS02, pp. 95–102]
and [Knu97, pp. 265–273]. The terminal “−” may also serve as an unary
operator defined on Integer → Integer denoting change of sign.

ident: The valuation function for identifiers maps a derivation tree represent-
ing a variable identifier to the corresponding identifier v ∈ V. Since we
have left out the exact syntactic specification for identifiers, we restrict
ourselves to the arity of ident in Table 3.1.

dig,num: Together, these valuation functions calculate the value of a given
integer numeral. They correspond to the valuation functions D and N
introduced in Section 2.2.2.

∗In fact this is the rounding mode adopted by many contemporary programming languages
such as Ada, C, and also Java.

24 3.3 Syntax and Semantics of Branch-Predicates

expr: These valuation functions take an expression as argument and return
a function that maps an environment to an integer number. The syn-
tactic structure of the expression derivation tree is specified between the
emphatic brackets ([[. . .]]) on the left-hand side of the given equations,
whereas the functions f : Environment → Integer represent the right-
hand sides.

expr[[num]](env) = num[[num]]: For a derivation tree [[num]] the argu-
ment env describing the environment is not needed. This follows from
the arity of the valuation function num. This argument is therefore
discarded on the right-hand side of this equation.

expr[[ident]]
(
env) = env(ident[[ident]]

)
: For a derivation tree of struc-

ture [[ident]] denoting an identifier we determine the corresponding
identifier v ∈ V that is then evaluated within the environment-
argument env.

expr[[expr1 binop expr2]](env): For a tree [[expr1 binop expr2]] we re-
cursively determine the values of the sub-expressions [[expr1]] and
[[expr2]], which are then combined using the arithmetic operation that
is returned from binop[[binop]].

assign: This valuation function takes a derivation tree [[ident:=expr]] corre-
sponding to an assignment statement as argument. From this it returns
a function that maps an environment env1 supplied as an argument to
an environment env2. Environment env2 is generated from env1 by up-
dating env1 with a new value expr[[expr]] at ident[[ident]]. Note in this
context that environments are functions!

We conclude by noting that the valuation function assign returns a function
of arity f : Environment → Environment. This matches the requirements
for side-effects stated in Equation (3.4) and repeated at the beginning of this
section. In this way the denotational definition of Table 3.1 is a valid definition
for side-effects of the language Flow.

3.3 Syntax and Semantics of Branch-Predicates

Until now we have only required that a branch predicate is a function that
maps an environment to a boolean value. This requirement has been stipulated
in Equation (3.2). In accordance with the definition of side-effects in Section 3.2
we will now describe the nature of Flow branch predicates by means of a deno-
tational definition based on the grammar

G =
(
{pred, rel-op, expr}, {and, or, not, <,≤, =,≥, >, 6=, }, Ppred, pred

)
.

From the set of G’s nonterminals we see that this definition depends on the
definition of side-effects due to the occurrence of the nonterminal “expr”. Hence
a branch predicate may contain expressions, a fact that is also manifested in the
syntactic domain of branch predicates given in Table 3.2 (I). From this table
it follows that derivation trees of expressions are connected by binary function
symbols “<”, “≤”, “=”, “≥”, “>”, and “6=”. The resulting constructs as well

Standard Semantics of Program Execution 25

as the literals “true” and “false” serve as arguments for the binary function
symbols “or” and “and” as well as the unary function symbol “not”.

(I) Syntactic Domain

pred : Predicate

rel-op : Relational Operator

pred : : = true

| false

| pred and pred

| pred or pred

| not pred

| expr rel-op expr

| (pred)

rel-op : : = < | ≤ | = | ≥ | > | <>

(II) Semantic Domain

Boolean Values

Domain b : Boolean = B

<,≤, =,≥, >, 6= : Integer × Integer → Boolean

∧,∨ : Boolean× Boolean → Boolean

¬ : Boolean → Boolean

(III) Valuation Functions

pred : Predicate → Environment → Boolean

pred[[true]](env) = true

pred[[false]](env) = false

pred[[pred1 and pred2]](env) = pred[[pred1]](env) ∧ pred[[pred2]](env)

pred[[pred1 or pred2]](env) = pred[[pred1]](env) ∨ pred[[pred2]](env)

pred[[not pred]](env) = ¬pred[[pred]](env)

pred[[expr1 rel-op expr2]](env) = expr[[expr1]](env)

rel-op[[rel-op]] expr[[expr2]](env)

rel-op : Relational Operator → {<,≤, =,≥, >, 6=} (omitted)

Table 3.2: Denotational Definition of Branch-Predicates

In addition to the semantic domain for side-effects we need the semantic
algebra of boolean values of Table 3.2 (II) for the denotational definition of
branch predicates. This algebra, henceforth named “Boolean”, has the truth
values B = {true, false} as its carrier set.

The operations <, ≤, =, ≥, >, and 6= are of arity Integer×Integer → Boolean
and denote the usual relational connectives based on the order “<” and “≤”
on Z. In principle these connectives can also be seen as an extension of the
domain of integers, but in order to avoid the forward reference to the semantic
domain of boolean values we have placed them here.

The operations “∧”, “∨”, and “¬” denote conjunction, disjunction, and
negation. We complete the denotational definition of branch predicates with a
description of the valuation functions listed in Table 3.2 (III).

26 3.4 A Flow Example Program

rel-op: This valuation function maps the binary function symbols “<”, “≤”,
“=”, “≥”, “>”, and “<>” to the corresponding relational operations in
the semantic subdomain Boolean.

pred: The valuation function pred takes a derivation tree of the set “Predicate”
as input and returns a function of arity Environment → Boolean.

pred[[true]](env), pred[[false]](env): Therein literals “true” and “false”
are mapped to the corresponding truth values.

pred[[pred1 and pred2]](env): For a subtree [[pred1 and pred2]] we deter-
mine the values of the subtrees [[pred1]] and [[pred2]] which are then
combined by conjunction.

pred[[pred1 or pred2]](env): Again we determine the values of the sub-
trees [[pred1]] and [[pred2]] which are then combined by disjunction.

pred[[not pred]](env): First we determine the value of the subtree [[pred]]
which is then negated.

pred[[expr1 rel-op expr2]](env): We determine the values of the sub-
trees [[expr1]] and [[expr2]] by means of the valuation function expr
of Table 3.1. These results are then combined using the relational
operator returned from rel-op[[rel-op]].

In summing up we note that the valuation function pred returns a function of
arity f : Environment → Boolean which is consistent with the requirements for
branch predicates stated in Equation (3.2). Therefore the denotational defini-
tion of Table 3.2 is a valid definition for branch predicates of the language Flow.

3.4 A Flow Example Program

We have spent the three preceding sections defining a flow language with side-
effects and branch predicates that allows us to model the standard semantic
behavior of programs. In order to formulate the first Flow example program we
need a notation to associate branch predicates and side-effects with CFG edges.

edge : : = e : pred ⇒ assign (3.11)

Equation (3.11) specifies such a notation where e[[e]] denotes a CFG edge e ∈ E,
and pred[[pred]] and assign[[assign]] specify the branch predicate and side-effect
associated with e. If a CFG edge has assigned the identity function ι, this
notation degrades to

edge : : = e : pred. (3.12)

Figure 3.2 (a) contains our first Flow example program. For comparison and
to facilitate reading, Figure 3.2 (b) contains this example in terms of the imper-
ative programming language Ada (cf. [Ada95]). The purpose of this program
is to swap the values of two variables in place. The comments in lines (3–6)
of the Ada-version denote the corresponding components of the Flow program,
e.g., pred(e2) denotes the branch predicate of edge e2, and σ(e2) denotes the
side-effect of this edge.

It is instructive to consider the execution of this simple example for concrete
values of “u” and “v”. The CFG in Figure 3.2 (a) contains two program paths

Standard Semantics of Program Execution 27

se

s1

s2

s3

s4

sx

e1 : true

e2 : u <> v ⇒ u := u+v

e6 : u = v

e3 : true ⇒ v := u-v

e4 : true ⇒ u := u-v

e5 : true

(a) Flow

1 procedure Swap (u, v : in out integer) is
2 begin
3 if u /= v then -- pred(e2)
4 u := u+v; -- σ(e2)
5 v := u-v; -- σ(e3)
6 u := u-v; -- σ(e4)
7 end if ;
8 end Swap;

(b) Ada

Figure 3.2: Example Program

from state se to sx, namely π1 = 〈e1, e2, e3, e4, e5〉 and π2 = 〈e1, e6〉. Path π1

is the one chosen if the values of variables “u” and “v” are unequal and where
the swapping takes place. Figure 3.3 shows the Flow program of Figure 3.2 (a)
together with the graphs of the functions describing the environments envi valid
at states si during an execution that has as an initial environment enve with

graph(enve) = {(u, 2), (v, 4)}.

The semantic effect of program execution along path π1 with initial environ-
ment enve can be calculated by the iterated transition function of Equation (3.6).

For the first iteration, we have δ∗(se, enve) = δ∗(δ(se, enve)). It is Equa-
tion (3.5) that tells us how to compute δ(se, enve): state se has edge e1 as its
sole outgoing edge. The associated branch predicate of edge e1 evaluates to true,

pred(e1)(enve) = pred[[true]](enve) = true,

which implies that env1 = σ(e1)(enve) = ι(enve) = enve. This result is in
accordance with the graph of the environment env1 depicted in Figure 3.3.

For the next iteration of the iterated transition function we have to deter-
mine δ(s1, env1)). From the outgoing edges e2 and e6 of state s1 we evaluate

28 3.4 A Flow Example Program

se graph(enve) = {(u, 2), (v, 4)}

s1 graph(env1) = {(u, 2), (v, 4)}

s2 graph(env2) = {(u, 6), (v, 4)}

s3 graph(env3) = {(u, 6), (v, 2)}

s4 graph(env4) = {(u, 4), (v, 2)}

sx graph(envx) = {(u, 4), (v, 2)}

e1 : true

e2 : u <> v ⇒ u := u+v

e6 : u = ve3 : true ⇒ v := u-v

e4 : true ⇒ u := u-v

e5 : true

Figure 3.3: Flow Example Execution

the associated branch predicates

pred(e2)(env1) = pred[[u<>v]](env1) = . . . = 2 6= 4 = true (3.13)

and

pred(e6)(env1) = pred[[u=v]](env1) = . . . = 2 = 4 = false. (3.14)

These results are in line with Equation (3.3) that requires that the branch
predicate of exactly one outgoing edge evaluates to true. Due to Equation (3.13)
control flow progresses from state s1 via edge e2 to state s2. Environment env2 is
then the result of applying the result of the valuation function for the side-effect
of edge e2 to the argument env1.

env2 = σ(e2)(env1) =

= assign[[u := u + v]](env1) =

= λenvn.envn

[
ident[[u]] 7→ expr[[u +v]](envn)

]
(env1) =

= λenvn.envn

[
u 7→ expr[[u]](envn) binop[[+]] expr[[v]](envn)

]
(env1) =

= λenvn.envn

[
u 7→ envn(ident[[u]]) + envn(ident[[v]])

]
(env1) =

= λenvn.envn

[
u 7→ envn(u) + envn(v)

]
(env1) =

= λenvn.envn

[
u 7→ 2 + 4

]
=

= λenvn.envn

[
u 7→ 6

]
(3.15)

The three final lines of the above evaluation show that environment env2 is
derived from env1 by updating environment env1 with the new value 6 at “u”.
This is exactly the semantic effect of the assignment statement of edge e2. The
resulting graph for environment env2 is again given in Figure 3.3.

Standard Semantics of Program Execution 29

env3 = σ(e3)(env2) =

= assign[[v := u− v]](env2) =

= λenvn.envn

[
ident[[v]] 7→ expr[[u−v]](envn)

]
(env2) =

= λenvn.envn

[
v 7→ expr[[u]](envn) binop[[−]] expr[[v]](envn)

]
(env2) =

= λenvn.envn

[
v 7→ envn(ident[[u]]) − envn(ident[[v]])

]
(env2) =

= λenvn.envn

[
v 7→ envn(u) − envn(v)

]
(env2) =

= λenvn.envn

[
v 7→ 6 − 4

]
=

= λenvn.envn

[
v 7→ 2

]
(3.16)

env4 = σ(e4)(env3) =

= assign[[u := u− v]](env3) =

= λenvn.envn

[
ident[[u]] 7→ expr[[u−v]](envn)

]
(env3) =

= λenvn.envn

[
u 7→ expr[[u]](envn) binop[[−]] expr[[v]](envn)

]
(env3) =

= λenvn.envn

[
u 7→ envn(ident[[u]]) − envn(ident[[v]])

]
(env3) =

= λenvn.envn

[
u 7→ envn(u) − envn(v)

]
(env3) =

= λenvn.envn

[
u 7→ 6 − 2

]
=

= λenvn.envn

[
u 7→ 4

]
(3.17)

It follows from the structure of the CFG of Figure 3.3 that control flow continues
from state s2 via edges e3, e4, and e5. As a consequence, the branch predicates
of those edges evaluate to true. Otherwise the computation would come to a
halt at one of the states s2, s3, or s4, which would contradict Equation (3.3).

For this reason we may restrict ourselves to the calculation of the corre-
sponding environments for the remaining iterations of the iterated transition
function δ∗. Evaluation (3.16) shows that environment env3 is derived from env2

by updating environment env2 with the new value 2 at “v”. This is the semantic
effect of the assignment statement of edge e3. Likewise Evaluation (3.17) shows
the derivation of environment env4 from env3. Finally, edge e5 has the identity
function ι as side-effect. Hence environment envx does not differ from env4.

A comparison of the graphs of environments enve and envx of Figure 3.3
shows that for environment envx the values of “u” and “v” have been swapped.
This was the intention for our first Flow example program. It is left as an exercise
to the interested reader to verify that the Ada program of Figure 3.2 (b) has
the same semantic behavior when passed the parameters u = 2 and v = 4.

In concluding this section we note that the side-effects computed by the
iterated transition function δ∗ along program path π1 = 〈e1, e2, e3, e4, e5〉 cor-
respond to the function composition

σ(e5) ◦ σ(e4) ◦ σ(e3) ◦ σ(e2) ◦ σ(e1)(enve).

30 3.5 Turing-Equivalence of the Language Flow

3.5 Turing-Equivalence of the Language Flow

Wherever you go, you go with the flow. . .

(In praise of the river.)

— From the movie “The Wind in the Willows”, based on a novel by Kenneth Grahame.

In this section we finally show that the computational model of the language
Flow is equivalent to the computational model of a Turing machine. This will
be achieved in three steps.

We start with the definition of a Turing machine that essentially corresponds
to the “basic model” of a Turing machine from [HU79]. In the second step we
show how such a Turing machine can be represented by a so-called transition di-
agram. Finally we map transition diagrams to Flow control flow graphs, thereby
showing that the computational capability of Flow programs is no less than that
of a Turing machine. Conversely, the reduction from Flow programs to Turing
machines is immediate.

3.5.1 Turing Machine Notation

The basic model of a Turing machine has finite control, an input tape that is
divided into cells, and a tape head that scans one cell of the tape at a time. The
tape has a rightmost cell but is infinite to the left . Each cell of the tape may
hold exactly one of a finite number of tape symbols. Initially, the n rightmost
cells, for some finite n ≥ 0, hold the input, which is a string of symbols chosen
from a subset of the tape symbols called the input symbols. The remaining
infinity of cells each hold the blank, which is a special tape symbol that is not
an input symbol. Initially the tape head is at the rightmost cell that holds
the input. A Turing machine accomplishes three tasks in one move, depending
on the symbol scanned by the tape head and the state of the finite control: it
changes state, prints a symbol on the tape cell scanned, and moves its head
left (L) or right (R) one cell.

Formally a Turing machine is denoted by

M = (Q, Σ, Γ, δTM, q0, B, F)

where

• Q is the finite set of states,

• Γ is the finite set of allowable tape symbols,

• B ∈ Γ is the blank,

• Σ ⊆ Γ \ {B} is the set of input symbols,

• δTM is a function from Q× Γ to Q× Γ× {L, R} and determines the next
move (although δTM may be undefined for some arguments),

• q0 ∈ Q is the start state, and

• F ⊆ Q is the set of final states.

Standard Semantics of Program Execution 31

For our purpose we restrict Γ to the set {1,B}. This does not affect the capabili-
ties of the formalism since we can apply unary encoding to the input. However,
in order to keep the examples used in this discussion simple and illustrative, we
allow the blank symbol to separate strings of input symbols.

Symbol
State B 1

q0 (q0, B, L) (q1, 1, L)

q1 (q2, 1, L) (q1, 1, L)

q2 (q3, B, R) (q2, 1, L)

q3 (q4, B, R) (q3, B, L)

q4 — —

Figure 3.4: Transition Function δTM

Example 3.1 We consider a Turing machine which adds two numbers given as
input in the form of two strings of “1”s, separated by a blank†. The algorithm
works by replacing the separating blank by “1”, and the leftmost “1” by a blank.
Figure 3.4 depicts the transition function δTM for this example. Therein q0

denotes the start state, and q4 the final state. Below we depict a finite part
of the input tape during several phases of a sample computation. In addition
we show the position of the tape head (↓), the current state qi ∈ Q, and the
corresponding value of the transition function δTM.

↓

· · · B B 1 1 1 1 B 1 1 1 q0, (q1, 1, L)

↓

· · · B B 1 1 1 1 B 1 1 1 q1, (q1, 1, L)

↓

· · · B B 1 1 1 1 B 1 1 1 q1, (q2, 1, L)

↓

· · · B B 1 1 1 1 1 1 1 1 q2, (q2, 1, L)

↓

· · · B B 1 1 1 1 1 1 1 1 q2, (q3, B, R)

↓

· · · B B 1 1 1 1 1 1 1 1 q3, (q3, B, L)

↓

· · · B B B 1 1 1 1 1 1 1 q3, (q4, B, R)

↓

· · · B B B 1 1 1 1 1 1 1 q4

†This example is taken from [Lei03].

32 3.5 Turing-Equivalence of the Language Flow

3.5.2 Turing Machine Transition Diagrams

We can represent the transitions of a Turing machine as defined in the previous
section as a transition diagram (cf. also [HMU01, Section 8.2.4]). The nodes
of the transition diagram correspond to the states of the Turing machine, and
for simplicity we use the same names. Nodes are connected by directed edges e
that are labeled

e : s1 ⇒ s2; D, (3.18)

where s1, s2 ∈ Γ are tape symbols, and D ∈ {L, R} denotes a direction. Nodes qu

and qv are connected by an edge e, iff

δTM(qu, s1) = (qv , s2, D). (3.19)

Figure 3.5 below depicts the transition diagram for Example 3.1.

q0

q1

q2

q3

q4

e2 : 1 ⇒ 1; L

e4 : B ⇒ 1; R

e6 : B ⇒ B; R

e8 : B ⇒ B; R

e1 : B ⇒ B; L

e3 : 1 ⇒ 1; L

e5 : 1 ⇒ 1; L

e7 : 1 ⇒ B; L

Figure 3.5: Transition Diagram for Example 3.1

3.5.3 Mapping Transition Diagrams to Flow Graphs

It remains to show how a transition diagram can be mapped to a Flow control
flow graph. The position of the tape head and the tape itself constitute the
state of the computation of a Turing machine, which we can encode with an
environment envTM ∈ Environment of two variables, namely c and T . We let
variable c (the counter) represent the position of the tape head, and T ∈ Z

represents the tape itself. Given the binary representation of T ∈ Z, we define
that a blank (B) is represented by 0, and that the input symbol 1 is represented
by the digit 1. In this way the ith cell (i ≥ 0) of the input tape corresponds to
bit i of T .

The alert reader will have noticed that there is a discrepancy between the
number T ∈ Z, which is per definition finite, and the infiniteness of the input
tape. We will resolve this problem shortly; For the time being we assume that T
magically grows and shrinks with the size of the problem at hand.

In the beginning, the n rightmost cells of the tape, for some finite n ≥ 0,
hold the input. Our first task is to transfer this initial configuration to the

Standard Semantics of Program Execution 33

environment envTM. Since n is finite, we can build a predicate B(i) which
is true iff the ith rightmost cell of the tape contains the symbol 1. We request
the following conditions for our initial environment envTM to hold.

(T rem 2i+1) ≥ 2i ⇔ B(i) (3.20)

c = 0 (3.21)

Equation (3.20) states that a bit in the binary representation of T is set iff the
corresponding cell of the tape contains the symbol 1. In Equation (3.21) we
define the initial position of the counter c to be on the rightmost cell of the
tape.

The left side of Equation (3.20) provides us a means to test for bit i of T ,
which we can also use to set and clear bits. That is, given a T ′ where bit i is
not set, we can set it by adding 2i to T ′. Conversely, given a T ′ where bit i
is set, we can clear it by subtracting 2i from T ′. In our emulation of a Turing
machine these operations correspond to a test for the symbol at the position i
of the tape head, and to the printing of a symbol on the scanned tape cell. An
increment of the counter c by one corresponds to a move of the tape head to
the left, whereas decrementing c by one corresponds to a move of the tape head
to the right.

The initial configuration of the tape of Example 3.1 together with the posi-
tions of the respective tape cells are shown below.

↓

· · · 0 0 1 1 1 1 0 1 1 1

· · · 9 8 7 6 5 4 3 2 1 0

With this example the initial input is restricted to cells 0–7, and the value
of (T)10 is 247. From this example it becomes clear that all but finitely many
cells of our tape-representation are virtual in the sense that they are not con-
tained in T . To be specific, we drop infinitely many trailing blank cells. It must
however be noted that T in conjunction with Equation (3.20) yields the correct
result for the general case i ≥ 0.

Suppose now that in the course of a computation the tape counter is ad-
vanced past position ω denoting the leftmost position “physically” represented
by T (ω = 7 in the above example). Advancing the tape head from position ω
to position ω + 1 is just an act of incrementing the counter c, which does not
affect T . Testing for the content of the cell at position ω + 1 does not affect T
either, despite the fact that it will yield the correct result (a blank). Assume
now that our emulation of a Turing machine is smart and writes to its tape
only in case when the new symbol computed by the transition function δTM

differs from the scanned symbol. In “writing” blanks a computation can then
advance the tape head k steps to the left without affecting T . But as soon as
the computation requires to write a 1 to tape cell ω + k, the addition of 2ω+k

to T extends T to and including position ω + k.
The opposite case is also possible: suppose again that position ω denotes the

leftmost position “physically” represented by T . This means that the cell at po-
sition ω is the leftmost cell containing a non-blank symbol. Suppose furthermore
that the next non-blank cell from position ω to the right is at position j < ω. If
the cell at position ω is rewritten with a blank, the subtraction of 2ω shrinks T

34 3.5 Turing-Equivalence of the Language Flow

to and including position j. The only exception to this rule is the case where
we rewrite the last non-blank symbol of the tape by a blank, in which case T
becomes zero.

Drawing from the countable set Z of integers we have managed to represent
the infinite tape of a Turing machine within the finite representation of envTM.
In doing so we have shown that the size of T indeed grows and shrinks with the
problem size, which resolves the discrepancy raised in the introduction of this
section.

It remains now to show how the transition function δTM can be emulated
by a Flow graph with a Flow standard semantic iterated transition function
that, when applied to the initial environment envTM, computes the same result
as δTM. As already announced we use the intermediate step via the transition
diagrams of Section 3.5.2 to establish this mapping.

Strictly speaking, we can regard a transition diagram as a Flow control flow
graph, if we can overcome the following obstacles.

(1) The edges of a transition diagram need to be mapped to Flow graph edges.

(2) The entry node ne of a Flow graph is a distinct node without incoming
edges, i.e. in(ne) = ∅. This is not required for the start state of a Turing
machine (cf. e.g., Figure 3.5).

(3) The exit node nx of a Flow graph is a distinct node without outgoing
edges, i.e. out(nx) = ∅. In contrast, a Turing machine has a set F ⊆ Q of
final states.

In order to solve the first topic in the above list, we examine the different
types of edges that may arise due to the transition function δTM. Table 3.3

(1) (qu, 1) → (qv , 1, L) (5) (qu, 1) → (qv, B, L)

(2) (qu, 1) → (qv , 1, R) (6) (qu, 1) → (qv, B, R)

(3) (qu, B) → (qv , B, L) (7) (qu, B) → (qv, 1, L)

(4) (qu, B) → (qv , B, R) (8) (qu, B) → (qv, 1, R)

Table 3.3: Enumeration of δTM Transitions from State qu to State qv

enumerates the different transitions possible from state qu to state qv . Each
table-entry corresponds to an application of δTM in the sense of Equation (3.19).

Each of these transitions can occur as an edge of a transition diagram, and
we will be occupied in the following to find a Flow resemblance for them. We
can partition the entries from Table 3.3 in two sets with similar properties.
Entries (1)–(4) constitute transitions where the scanned symbol is written back
to the tape. As mentioned above, our Flow Turing machine emulation does not
execute a write operation on T in such a case, which reduces these cases to a
mere move of the tape head. Entries (5)–(8) constitute transitions where the
scanned symbol differs from the symbol written back to the tape. Hence the
entries of this group involve a write operation on T as well as a move of the
tape head.

For one member of each of these groups we will show the Flow graph portion
corresponding to the respective transition diagram edge. The remaining cases
are solved by analogy.

Standard Semantics of Program Execution 35

qu

qv

ei : 1 ⇒ 1; L ⇒

qu

qv

ei : (T rem2c+1) ≥ 2c

⇒ c := c + 1

Figure 3.6: Case (1) of Table 3.3

Consider Figure 3.6 which treats Entry (1) of Table 3.3. This entry re-
sembles the case where the tape head scans 1, writes back 1 to the tape, and
moves the tape head left. The Flow graph portion to the right of Figure 3.6
does the right thing: if the tape head scans a 1 (expressed by the branch pred-
icate (T rem 2c+1) ≥ 2c, the tape head is moved left by incrementing the tape
counter c by one.

qu

qv

ei : B ⇒ 1; R ⇒

qu

qv

ei : (T rem 2c+1) < 2c

⇒ T := T + 2c

e′i : true ⇒ c := c − 1

Figure 3.7: Case (8) of Table 3.3

Now consider Figure 3.7 which treats Entry (8) of Table 3.3. This entry
resembles the case where the tape head scans a blank, writes back 1 to the tape,
and moves the tape head right. We need two edges ei and e′i to support both
the update of T and c. The Flow graph portion to the right of Figure 3.7 acts
according to Entry (8) of Table 3.3: if the tape head scans a blank (expressed by
the branch predicate (T rem2c+1) < 2c, we write back the symbol 1 (expressed
by the side-effect of edge ei). Thereafter the side-effect of edge e′i advances the
tape head to the right.

ne

q0

ei : true

Figure 3.8: The Flow Graph Entry Node of the Translation

Coming back to the above list of items to be overcome, we can resolve the
second one by introducing the Flow graph portion depicted in Figure 3.8. It
does nothing more than jump unconditionally to the start state q0, without any

36 3.5 Turing-Equivalence of the Language Flow

other side-effect.

qi

nx

ei : <cond>

Figure 3.9: The Flow Graph Exit Node of the Translation

Finally, the third item in the above list is a mere technicality which is rooted
in the fact that the transition function δTM is a partial function in the sense
that it need not provide values for all input symbols in any state. Hence a
Turing machine may abandon its computation in any state, including the start
state q0. For the ongoing discussion we shall call a state in which a Turing
machine may abandon its computation a halting state (as already indicated, the
set of halting states need not coincide with the set F of final states). Since we
have required a distinct exit node nx for Flow graphs, we have to provide nx

itself and insert an edge of the type depicted in Figure 3.9 from any Flow graph
node that corresponds to a halting state of the Turing machine to node nx.
Determining the halting states of a Turing machine is equivalent to spotting the
values (q, x) ∈ Q×Γ in the domain of the transition function δTM, for which δTM

is not defined (cf. also Figure 3.4). The condition <cond> in Figure 3.9 is due
to the fact that a state may be a halting state only for a subset of the possibly
scanned symbols from Γ.

A final note is due to nonterminating computations on Turing machines.
Since the set Q of states of a Turing machine M is finite, a nonterminating
computation implies a cycle in the transition diagram of M which in turn implies
a cycle in the corresponding Flow graph. Moreover, as the computation does
not terminate, this cycle is iterated over and over. A computation of this kind
on a Cele in a Flow control flow graph is commonly referred to as an endless
loop. Often the properties of the cycle alone already imply a nonterminating
computation (that means, nonterminating for every possible input), in which
case the cycle itself is also termed an endless loop.

Summing up, we have shown how a Turing machine M given in the form of
a transition diagram as introduced in Section 3.5.2 can be mapped to a Flow

graph by replacing distinct transition diagram portions by the respective Flow

graph counterparts. Adding entry and exit nodes concludes the case. The result
of the iterated transition function δ∗ of the resulting Flow program, applied to
the initial environment envTM, coincides with the computation of the Turing
machine M . This leads us to the following theorem.

Theorem 1. The computational capability of the Flow language is equivalent
to the computational capability of a Turing machine.

Proof. The reduction from Turing machines to Flow graphs follows immedi-
ately from structural induction on Turing machines with k states, using the
mapping of Turing machines to Flow graphs established in this section. The re-
duction from Flow graphs to Turing machines is immediate, e.g., by translating
Flow graphs to a representation in an imperative programming language.

Chapter 4

Semantics of Symbolic
Program Execution

The purpose of abstracting is not to be vague,

but to create a new semantic level in which one can be absolutely precise.

— Edsger W. Dijkstra, in “The Humble Programmer”, 1972 Turing Award Lecture

In this chapter we develop a semantic model for symbolic program execution.
The main difference to the standard semantics presented in the previous chapter
is that in this model the value of a variable v is described by a symbolic expres-
sion instead of a concrete value z ∈ Z. The relation between standard semantics
and semantics of symbolic program execution is depicted in Diagram (4.1).

In Ins

Out Outs

sym

Ssym[[P]]Scon[[P]]

con

(4.1)

Therein the standard semantics of a program P is derived by the valuation
function Scon that takes a program P as argument and returns a standard-
semantic functional description of the so-called side-effect of P . The side-
effect Scon[[P]] is a function that maps a concrete input to a concrete output,
written as Scon[[P]](In) = Out, where In, Out ∈ Environment. We have defined
the standard semantics of Flow programs in Chapter 3, and the computation
of Scon[[P]](In) is equivalent to an application of the iterated transition func-
tion δ∗ to the start state se and environment In, denoted by δ∗(se, In).

Likewise we derive the semantics of symbolic program execution from pro-
gram P , denoted by Ssym[[P]]. It is the purpose of function Ssym to transform P
into a representation that is based on symbolic values instead of concrete ones.
The side-effect Ssym[[P]] of this representation is therefore a function that maps
a symbolic input Ins to the corresponding symbolic output Outs. Symbolic
input and output belong to the class EnvironmentS of symbolic environments

38 4.1 The Domain of Symbolic Expressions

that replaces the concrete environments env : V → Z which are not able to bind
identifiers to symbolic expressions.

Ins, Outs ∈ EnvironmentS (4.2)

We will develop the properties of symbolic environments in the course of this
chapter. Diagram (4.1) contains two additional functions, sym and con, that we
need in order to relate input and output of the functional descriptions Scon[[P]]
and Ssym[[P]]. Function sym transfers a concrete environment to the symbolic
domain, whereas function con instantiates a symbolic environment with a con-
crete one.

We can now proclaim the commutation of concrete and symbolic execution
depicted in Diagram (4.1). If a program P is conventionally executed with the
standard semantics Scon[[P]] over a given input In, the result of the symbolically
executed program Ssym[[P]] over input Ins = sym(In) and instantiated by In is
the same.

Scon[[P]](In) = con
(
In, Ssym[[P]]

(
sym(In)

))
(4.3)

We will prove this commutation property of concrete and symbolic execution in
Section 4.4.

As a prerequisite we need to develop the methodology required to com-
pute Ssym[[P]]. At the heart of our analysis is the control flow graph together
with the standard-semantic model of the language Flow (cf. Section 3.2). As a
consequence we are investigating a forward data-flow problem, and the mapping
of a program P to a control flow graph is that of Figure 2.3(b) on page 18.

We derive side-effects from program-paths along the edges of control flow
graphs. We start in Section 4.2 with the side-effect along a single CFG edge e.
In Section 4.3 we extend this result to whole program paths. Section 4.4 ad-
dresses the combined side-effects along several program paths and the proof of
Condition (4.3).

To begin with, the following section defines the symbolic expression domain
that serves as a counterpart to the arithmetic and relational expressions of the
Flow standard semantics.

4.1 The Domain of Symbolic Expressions

Symbolic expressions are central to the concept of symbolic program execution,
because we will use them to describe the values of program variables and com-
putations. The introduction of this chapter already hints into this direction in
stating that symbolic environments envs are needed in order to bind symbolic
expressions to program variables.

In this section we develop the semantic domain SymDom of symbolic ex-
pressions and symbolic predicates of the Flow language. As with the preceding
definitions of semantic domains, this initial view will be purely mathematical
in the sense that we do not consider any issues of computer representation of
mathematical objects here. In Chapter 5 we will have to exchange this abstract
view with a more concrete one that takes into account representational issues
as well.

Since not all issues are related to the same level of detail, we will in fact use
a hierarchy of abstractions, with the before-mentioned initial view at the top.

Semantics of Symbolic Program Execution 39

This hierarchical view is due to Geddes et al. [GCL92, Chapter 3] and comprises
the following levels of abstraction.

1. The object level is the abstract level where the elements of a domain are
considered to be primitive objects. Our semantic domains are located at
this level.

2. The form level is the level of abstraction in which the representation of an
object in terms of “basic symbols” is treated. At this level it is recognized
that a given object may have different valid form-level representations in
terms of the chosen symbols. In this way we distinguish on this level
between the following different representations of a given bivariate poly-
nomial p(x, y):

p(x, y) = 12x2y − 4xy + 9x − 3 (4.4)

p(x, y) = (3x − 1)(4xy + 3). (4.5)

3. The data structure level is concerned with the representation of an object
inside a computer.

As already pointed out, we will focus in this section on the object level. In
Chapter 5 we will address issues relevant to the form level. We will leave out
the data structure level altogether due to its commonalities with the area of
computer algebra systems. An in-depth coverage of data structure level issues
that can be utilized for our domain of symbolic expressions and predicates is
given by Davenport et al. in [DST93].

4.1.1 The Integer-Valued Symbolic Expression Domain

It is worth noting that the arithmetic capabilities in the standard semantic model
of our Flow language are based on the integer number system, constituting an
integer arithmetic. This is exemplified by the definition of the standard semantic
domain in Table 3.1, where variable identifiers and arithmetic operators range
over the integers. Transferring this property to the symbolic domain, we have
to require that symbolic expressions corresponding to the standard semantic
arithmetic model of the Flow language have to be integer-valued.

Definition 4.1 An expression e in the variables v1, . . . , vn, henceforth denoted
by e(v1, . . . , vn), is integer-valued in the sets Sv1

, . . . , Svn
, iff

∀
1≤i≤n

vi ∈ Svi
: e(v1, . . . , vn) ∈ Z.

Using this definition we may omit the explicit mention of the sets Svi
if they are

clear from context. For brevity we might also write e(v), where v = (v1, . . . , vn).

Example 4.1 The expression e(x) = x(x+1)
2 is integer-valued in the set Sx = Z,

since for every integer x ∈ Sx, either x − 1 or x is even; hence 2 |(x(x + 1)).

Furthermore, we need a means to distinguish between a variable and its ini-
tial value to avoid the circularity of describing the value of a variable in terms of
the variable itself. As an example, consider the initial concrete environment enve

with
graph(enve) = {(u, 2), (v, 4)}

40 4.1 The Domain of Symbolic Expressions

of our Flow example program presented in Section 3.4. One possibility to define
an initial symbolic environment envs would be to consider variables initially as
undefined , denoted by the value “⊥” that is distinct from all other values of the
domain of integers:

graph(envs) = {(u,⊥), (v,⊥)}.

This approach is however too unspecific to be of any practical use; Consider the
statement u := u+v that adds the values of variables u and v deteriorating to

u := u+v = ⊥ + ⊥ = ⊥.

In losing the information that variable u amounts to the sum of the values
of variables u and v, we fall back to the unpleasant state of knowing nothing
regarding the value of u (except that it is undefined).

From this example it becomes clear that we have to be able to distinguish
between the initial values of different program variables. Talking about values
it seems sensible to represent an initial value of a program variable v as a named
constant related to v. It should however be noted that in the general case we
have no prior knowledge on the initial value of v (e.g., if v is a formal parameter
of a procedure). In this way the initial value can be any value in the domain
of v and it is therefore more appropriate to have the initial value itself provided
by a variable. Given the set V of program variables, we can define a set V that
is isomorphic to V and contains the variables providing the initial values for the
variables in V. The initial value operator

: V → V

maps a variable v ∈ V to the corresponding variable in V that provides the
initial value of v. As a shorthand notation we write v for the application of the
initial value operator to variable v.

We can utilize multivariate polynomials over the integers Z as the underlying
algebraic structure for symbolic expressions. Let us consider the general case
of a multivariate polynomial in ν ≥ 1 indeterminates. For any commutative
ring R, the notation R[x1, . . . , xν], or R[x] where x = (x1, . . . , xν), denotes the
set of all expressions of the form

a(x) =
∑

e∈Nν

aex
e

with ae ∈ R, where only a finite number of coefficients ae are nonzero. Due to
(Z; +, ·) constituting not only a ring but also an Euclidean domain, we can use
this Euclidean domain to define the set of multivariate polynomials Z[x] over
the integers Z in the indeterminates x. To relate these polynomials to Flow

programs, we require that the indeterminates x = (x1, . . . , xν) are program
variables expressed through their initial value variables, that is,

xi
1≤i≤ν

∈ V. (4.6)

With the operations of addition and multiplication on multivariate polynomials,
Z[x] constitutes a unique factorization domain [GCL92, Theorem 2.7].

Clearly all polynomials p(x) from the unique factorization domain Z[x] are
integer-valued expressions in the sets Zx = (Zx1

, . . . , Zxν
).

Semantics of Symbolic Program Execution 41

To support division in an integral domain, it has to be extended to a field.
For a polynomial domain D[x] over a unique factorization domain D, the quo-
tient field Q(D[x]) is called the field of rational functions over D in the inde-
terminates x. Elements of Q(D[x]) are (equivalence classes of) quotients of the
form

a(x) / b(x), where a(x), b(x) ∈ Q(D[x]) with b(x) 6= 0.

The operations of addition and multiplication in D[x] can be extended to the
quotient field Q(D[x]) as follows. If a(x)/b(x) and c(x)/d(x) in Q(D[x]), then

(
a(x)/b(x)

)
+
(
c(x)/d(x)

)
=
(
a(x)d(x) + b(x)c(x)

)
/ b(x)d(x) (4.7)

(
a(x)/b(x)

)
·
(
c(x)/d(x)

)
= a(x)c(x) / b(x)d(x). (4.8)

As a result, we can extend the unique factorization domain Z[x] to a quotient
field Q(Z[x]). Unfortunately the resulting rational functions are not integer-
valued expressions in the sets Zx in the general case. This means that the
division operator / of the quotient field Q(Z[x]) is not suitable to take the role
of the Flow integer division operator div.

Example 4.2 The rational function x/y is not an integer-valued expression in
the sets Sx = Z, Sy = Z. Neglecting this fact could lead to the cancellation
of the variable y in the expression y ·(x/y) = y ·(x/y) = x, which is incorrect
within the arithmetic of integers, e.g., 4 ·(3/4) = 4 · 0 = 0 6= 3.

By means of a rounding operation we can “wrap” the rational function x/y
from the above example to obtain an integer-valued expression. For this purpose
we introduce the following rounding operation in anticipation of the semantic
domain SymExpr of symbolic expressions whose introduction will follow there-
after.

Definition 4.2 Let the rounding operation Rnd of arity

Rnd : SymExpr → SymExpr

implement the desired rounding mode, selected from Equations (3.8), (3.9),
or (3.10) on page 23. It yields an integer-valued result and is therefore idempo-
tent, i.e.

Rnd
(
Rnd(e)

)
= Rnd(e).

If we select rounding towards zero, the rounding mode applied with the Flow

integer arithmetic, then we must be able to determine whether the argument of
the rounding operation is less than zero. This decision, which cannot be made
based on the symbolic expression alone, will further occupy us in Section 5.5.2.
In the meantime we have to carry on keeping such expressions unevaluated and
treat them like single independent variables, e.g.,

Rnd(x/y) + Rnd(x/y) = 2 ·Rnd(x/y).

Given the rounding operation Rnd, the unique factorization domain Z[x],
and the quotient field Q(Z[x]), we can now define the semantic domain SymExpr
of symbolic expressions. Let

f (n) ∈ {+(2),−(2),−(1), ·(2)}

42 4.1 The Domain of Symbolic Expressions

denote functions f (n) corresponding to the Flow arithmetic operations of ad-
dition, subtraction, change of sign, and multiplication, where (n) denotes the
respective arity. Contrary to their standard semantic counterparts, these func-
tions operate on values of the domain SymExpr, e.g.,

+(2) : SymExpr × SymExpr → SymExpr.

The same holds, as already mentioned, for the rounding operation Rnd.

Definition 4.3 The set of symbolic expressions of the domain SymExpr is
inductively defined as

(i) Z[x] ⊂ SymExpr (i.e. every polynomial in Z[x] is a symbolic expression),

(ii) for all f (n) and all e1, . . . , en ∈ SymExpr, we have f (n)(e1, . . . , en) ∈
SymExpr (i.e., application of functions f (n) to symbolic expressions yields
symbolic expressions),

(iii) for all e1, e2 ∈ SymExpr, we have e1/e2 ∈ SymExpr, iff e1/e2 is an integer-
valued symbolic expression,

(iv) for all e1, e2 ∈ SymExpr, we have Rnd(e1/e2) ∈ SymExpr, and conse-
quently, de1/e2e ∈ SymExpr, and be1/e2c ∈ SymExpr.

The functions f (n) constitute the corresponding operations on multivariate
polynomials and rational functions, with the only extension that they do accept
arguments “wrapped” by the rounding operator Rnd or by the floor and ceiling
functions.

From Equations (4.7) and (4.8) it follows that the result of a sum or product
of two rational functions that are integer-valued in Z is again integer-valued
in Z. As can be seen from the following example, this need not hold for the
division of integer-valued rational functions:

Example 4.3

e(n) =
n ·(n − 1)

2
/

n ·(n + 1)

2
=

n − 1

n + 1
, e(2) =

1

3
6∈ Z.

We have already pointed out that the properties of the division operator /
of the quotient field Q(Z[x]) do not permit it as the counterpart of the integer
division operator div of the Flow standard semantics. For this reason we will
investigate properties of symbolic integer division and remainder operations in
the following section.

The Symbolic Integer Division and Remainder Operations

In utilizing the division operator / of the quotient field Q(Z[x]), we can model
the integer division of two symbolic expressions e1(x) and e2(x), e2(x) 6= 0, as

e1(x) divs e2(x) = Rnd
(
e1(x) / e2(x)

)
, (4.9)

where the symbolic division operator divs denotes the counterpart of the integer
division operator div of the Flow standard semantics. Likewise, for e2(x) 6= 0,
we get

e1(x) rems e2(x) = e1(x) − e2(x) ·
(
e1(x) divs e2(x)

)
(4.10)

Semantics of Symbolic Program Execution 43

for the symbolic remainder operator rems. Since the rounding operation Rnd
involves floor and ceiling functions, the expressions resulting from the symbolic
division and remainder operations are rather inflexible (we can move integer
terms in and out of floor and ceiling functions, but little more (cf. [GKP94]).
We are therefore happy if we can do without them, which makes the following
special cases of symbolic integer division especially appealing simplifications.

Case 1: e1(x) = a(x) and e2(x) = b(x) 6= 0 are univariate integer-valued
polynomials in the same indeterminate in the polynomial domain Q(x) over
the field Q of rational numbers. Since Q is a field, it follows from [GCL92,
Theorem 2.5 (v)] that Q(x) is a Euclidean domain.

On the analogy of integer division (cf. Equation (3.7) on p. 21), this domain
facilitates the division of a(x) by b(x) to obtain a quotient polynomial q(x) and
a remainder polynomial r(x) satisfying

a(x) = q(x) · b(x) + r(x), deg(r(x)) < deg(b(x)), (4.11)

where deg(. . .) denotes the degree of a polynomial. Contrary to the integer divi-
sion, the quotient and remainder polynomials satisfying the above relation are
unique. They can be determined by polynomial long division, using e.g. Algo-
rithm D of [Knu97, Section 4.6].

We are interested in the quotient polynomial q(x) to simplify the symbolic
division and remainder operations of Equation (4.9) and (4.10). In order to
avoid solutions in x ∈ Z, where the remainder r(x) gets arbitrarily large, we
restrict our interest (and hence the applicability of the intended simplification)
to values of the indeterminate x satisfying the side-condition

∣∣∣∣
r(x)

b(x)

∣∣∣∣ ≤
1

2
. (4.12)

Lemma 1. Given the side-condition stated in Equation (4.12), we have

∣∣Rnd

(
a(x)

b(x)

)
− RndN

(
q(x)

)∣∣ ≤ 1,

with RndN denoting the round to nearest integer rounding function.

Proof. From Equation (4.11) we get

a(x)

b(x)
= q(x) +

r(x)

b(x)
.

Due to the side-condition stated in Equation (4.12), the result of dividing
polynomial a(x) by b(x) in the quotient field Q(Q[x]) is contained in the in-
terval [q(x) − 0.5, q(x) + 0.5]. This interval includes two integer numbers u1

and u2, if q(x) is located exactly between u1 and u2, and one integer number u
in all the other cases. Treating the latter case first, we have u = RndN

(
q(x)

)
.

Then a(x)
b(x) ∈ [q(x) − 0.5, q(x) + 0.5] implies that Rnd

(
a(x)
b(x)

)
∈ {u− 1, u, u + 1},

which satisfies Lemma 1.
In the case where the interval [q(x)−0.5, q(x)+0.5] contains two integers u1

and u2, we have [q(x) − 0.5, q(x) + 0.5] = [u1, u2]. (u1 and u2 constitute
the boarders of the interval.) Hence RndN

(
q(x)

)
∈ {u1, u2}, and due to the

side-condition, Rnd
(

a(x)
b(x)

)
∈ {u1, u2}.

44 4.1 The Domain of Symbolic Expressions

The basic meaning of Lemma 1 is that, given the side-condition of Equa-
tion (4.12), the integer-valued result of a(x) divs b(x) is an expression among the
set

{RndN
(
q(x)

)
− 1, RndN

(
q(x)

)
, RndN

(
q(x)

)
+ 1}.

Let q′(x) = RndN(q(x)) and r′(x) = a(x) −
(
b(x) · q′(x)

)
. Note that if q(x) is

integer-valued, then q′(x) = q(x). The expressions resulting from the symbolic
integer division and remainder operations are then determined from Table 4.1.
Cases (1) and (2) compute the same expression for the symbolic quotient (and

expressions condition

case a(x) divs b(x) a(x) rems b(x) a(x) b(x) r′(x)

1 q′(x) − 1 r′(x) + b(x) > 0 > 0 < 0

2 q′(x) − 1 r′(x) + b(x) < 0 < 0 > 0

3 q′(x) + 1 r′(x) − b(x) < 0 > 0 > 0

4 q′(x) + 1 r′(x) − b(x) > 0 < 0 < 0

5 q′(x) r′(x) else

Table 4.1: Resulting Symbolic Expressions for Univariate Polynomials

also for the remainder), so we can combine these cases using the conjunction
of both conditions. The same holds for cases (3) and (4). The solutions stated
in Equation (4.9) and (4.10) account for the additional case of an invalid side-
condition. This leaves us with a total of four cases for the symbolic integer
division and remainder operations of univariate polynomials in the same inde-
terminate.

Example 4.4 Consider the univariate polynomials a(x) = 3x5 + x2 + x + 5
and b(x) = 5x2 − 3x + 1. Performing polynomial long division results in the
quotient polynomial

q(x) =
3x3

5
+

9x2

25
+

12x

125
+

116

625

and the remainder polynomial

r(x) =
913x

625
+

3009

625
.

An illustration of this example is given in Figure 4.1. The side-condition is
valid for x ∈ (−∞,−1] ∪ [3,∞), as can be seen from the graphs of the side-
condition boundaries q(x) − 0.5 and q(x) + 0.5 in Figure 4.1 (a).

It is instructive to evaluate the involved polynomials in order to see how
quotient and remainder correspond to the symbolic quotient and remainder
expressions evaluated for a given value. Polynomial evaluation at x = −1
gives a(−1) = 2 and b(−1) = 9, hence we have 2 div 9 = 0 and 2 rem9 = 2
for quotient and remainder computed from the integer arithmetic of the Flow

concrete semantics (cf. also Figure 4.1 (b)).
Furthermore, q′(−1) = RndN(−0.1504) = 0, and r′(−1) = 2. From the

values of a(−1), b(−1), and r′(−1) it follows that Case (5) of Table 4.1 is

Semantics of Symbolic Program Execution 45

-2.0 -1.0 0 1.0 2.0

-2.0

-1.0

0

1.0

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0 q (x)
Rnd (a (x) / b (x))
side-condition boundary
a(x) / b(x)

(a) [− 2.6, 2.6]

-2.0 -1.0

-2.0

-1.0

0

1.0

0

1.0

2.0

q (x)
Rnd (a (x) / b (x))
side-condition boundary
a(x) / b(x)

(b) [− 2.0,−0.5]

Figure 4.1: Example of Polynomial Integer Arithmetic

46 4.1 The Domain of Symbolic Expressions

applicable. Hence q′(−1) and r′(−1) represent the result of the evaluation of
the symbolic quotient and remainder expressions, and this result corresponds to
the values computed from the integer arithmetic of the Flow concrete semantics.

Case 2: e1(x) = a(x) and e2(x) = b(x) 6= 0 are multivariate integer-valued
polynomials in the polynomial domain Q(x) over the field Q of rational numbers,
and a(x) is a multiple of b(x), i.e. a(x) = q(x) · b(x). Since Q is a field, it follows
from [GCL92, Theorem 2.7 (v)] that Q(x) is a unique factorization domain but
not an Euclidean domain if the number of indeterminates is greater than one.

In this unique factorization domain we can factor the polynomials a(x)
and b(x) in a unique way into irreducible polynomials and thus determine
whether polynomial a(x) is a multiple of b(x). If this is the case, then the
result of dividing a(x) by b(x) is q(x), and the remainder is zero.

It should be noted that the quotient polynomial q(x) need not be integer-
valued; In this case we have to apply the rounding function Rnd to obtain an
integer-valued result.

If a(x) is not a multiple of b(x), then the result of polynomial long division
depends on which indeterminate of the polynomials is considered the main vari-
able (as noted by Haghighat in [Hag95, Section 3.4]). In this case we have to
fall back to the solutions of Equation (4.9) and (4.10).

A final issue on the simplification of elements of the quotient field Q(Z[x])
is pointed out in [BL82, p. 19] and [DST93, pp. 89]. It concerns the difference
of elements of Q(Z[x]) and the functions of arity Z × · · · × Z → Z which they
represent. For example, the expressions (x−1)/(x+1) and (x2−2x+1)/(x2−1)
represent the same element of Q(Z[x]), but the functions f(x) = (x−1)/(x+1)
and g(x) = (x2 − 2x + 1)/(x2 − 1) are different, since the first is defined at
the value x = 1 (where it takes the value 0), whereas g(x) is not defined as it
becomes 0/0. If such singularities were not preserved during symbolic analysis,
we would actually change the semantics of the input program. With the above
example functions we must not simplify g(x) to f(x) without taking care of the
value of g(x) at x = 1. In Section 5.5.2 we will see how this is achieved by our
symbolic analysis method.

4.1.2 The Symbolic Predicate Domain

Let f ∈ {<,≤, =,≥, >} denote functions corresponding to the relational connec-
tives of the Flow language. They are extensions of their standard semantic coun-
terparts which operate on values of the symbolic expression domain SymExpr,
and return values of the symbolic predicate domain SymPred, e.g.,

≤: SymExpr× SymExpr → SymPred.

Moreover, let l(n) ∈ {∧(2),∨(2),¬(1)} denote the logical connectives of conjunc-
tion, disjunction and negation. They are extensions of their standard semantic
counterparts that operate on values of the symbolic predicate domain SymPred,
e.g.,

∧ : SymPred × SymPred → SymPred.

Definition 4.4 The set of symbolic predicates of the domain SymPred is in-
ductively defined as

Semantics of Symbolic Program Execution 47

(i) B ⊂ SymPred (i.e., the boolean values true and false constitute symbolic
predicates),

(ii) for all f and all e1, e2 ∈ SymExpr, we have f(e1, e2) ∈ SymPred (i.e., ap-
plication of relational connectives to symbolic expressions yields symbolic
predicates),

(iii) for all l and all e1, . . . en ∈ SymPred, we have l(e1, . . . , en) ∈ SymPred (i.e.,
application of logical connectives to symbolic predicates yields symbolic
predicates).

We are interested in the algebraic properties of the domain of symbolic
predicates, esp. if we want to transform a symbolic predicate into a simpler,
yet equivalent, symbolic predicate. If we can show that the symbolic predicate
domain is a Boolean algebra, then all results established about Boolean algebras
in general also apply to the symbolic predicate domain. Using a definition from
Rosen (cf. [Ros95, p. 614]) that is based on operation properties we show that
the symbolic predicate domain is indeed a Boolean algebra.

Definition 4.5 A boolean algebra is as a set B together with two binary
operations ∧ and ∨ , elements true and false, and a unary operation ¬ such
that the following properties hold for all x, y, and z in B.

x ∧ true = x

x ∨ false = x

}
Identity laws

x ∧ ¬x = false

x ∨ ¬ x = true

}
Domination laws

(x ∧ y) ∧ z = x ∧ (y ∧ z)

(x ∨ y) ∨ z = x ∨ (y ∨ z)

}
Associative laws

x ∧ y = x ∧ y

x ∨ y = x ∨ y

}
Commutative laws

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

}
Distributive laws

We can view the symbolic predicate domain SymPred as an algebra and con-
sider the subalgebra BSymPred that is generated by the set B = {true, false} ∗.
The carrier set of this subalgebra corresponds to the set of symbolic predicates
obtained by Rules (i) and (iii) of Definition 4.4. Let this set denote set B of
Definition 4.5, and let the logical connectives l(n) denote the required opera-
tions ∧ , ∨ , and ¬. The fact that BSymPred is a boolean algebra is then readily
verified by truth tables for the laws listed with Definition 4.5.

It is worth mentioning that truth tables abstract from the actual argument
structure and are only concerned with the two possible values of true and false

∗Regarding the notions of “subalgebra” and “algebra generation” we refer the reader to
Definition 3.2.2 of [BN98].

48 4.1 The Domain of Symbolic Expressions

that these arguments may assume. Moreover, the symbolic predicates obtained
from Rule (ii) of Definition 4.4 also assume a value of true or false which makes
truth tables applicable to the whole set of symbolic predicates obtained from
Definition 4.4. (In fact the truth tables used for the subalgebra BSymPred also
apply to the symbolic predicate domain.) Hence we finally arrive at the fact
that the domain of symbolic predicates constitutes a Boolean algebra.

(1) Identity
p ∧ true = p

p ∨ false = p

(2) Domination
p ∧ ¬ p = false

p ∨ ¬ p = true

(3) Associativity
(p ∧ q) ∧ r = p ∧ (q ∧ r)

(p ∨ q) ∨ r = p ∨ (q ∨ r)

(4) Commutativity
p ∧ q = q ∧ p

p ∨ q = q ∨ p

(5) Distributivity
p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

(6) Idempotency
p ∧ p = p

p ∨ p = p

(7) Annihilation
p ∧ false = false

p ∨ true = true

(8) Double Complement ¬¬ p = p

(9) DeMorgan’s
¬(p ∧ q) = (¬ p) ∨ (¬ q)

¬(p ∨ q) = (¬ p) ∧ (¬ q)

(10) Absorption
p ∧ (p ∨ q) = p

p ∨ (p ∧ q) = p

Table 4.2: Algebraic Properties of the Symbolic Predicate Domain

Table 4.2 lists several identities from Boolean algebra that we are now able
to use in order to simplify symbolic predicates (they hold for all p, q, and r
in SymPred). Concerning simplifications we are always interested in those lead-
ing to a result in the subalgebra BSymPred, as this is the most precise result that
we can achieve.

There are simplifications that require knowledge on the values of variables
contained in symbolic predicates. As an example, consider the symbolic pred-
icate a < 5. Without prior knowledge on the actual value of a, we cannot
determine whether this predicate yields true or false. Hence it is in this case
not possible to achieve the above-mentioned simplification and we have to leave
such a predicate as is.

The process of simplification of symbolic predicates, treated rigidly at the
form level, will occupy us in Section 5.5. In the meantime we stay on the
abstract level and are therefore free to perform such simplifications ad-lib.

Semantics of Symbolic Program Execution 49

4.2 Single-Edge Symbolic Execution

It is not enough for a substance to be simple, indivisible,

or at least undecomposed for us to call it an element.

It is also necessary for it to be abundantly distributed in nature

and to enter as an essential and constituent principle

in the composition of a great number of bodies.

— Antoine Laurent Lavoisier, French chemist, (1743-1794)

4.2.1 Program States and Contexts

Informally a program state† s ∈ S can be envisioned as a set of ordered tuples
{(v1, e1), (v2, e2), · · · , (vk , ek)} where vi is a program variable and ei is an asso-
ciated symbolic expression describing the value of vi for 1 ≤ i ≤ k. We require
that for each variable vi there exists exactly one tuple in a given state s. Hence
the set of possible states can also be represented by a class of functions

S ⊆ {f : V → SymExpr} (4.13)

mapping symbolic expressions to program variables. A clean slate program
state s maps all variables in its domain to the corresponding initial value vari-
ables:

∀v ∈ Dom(s) : s(v) = v. (4.14)

Note that if we restrict our interest to a subset of V the program states are
partial functions.

A program context‡ c ∈ C is defined by an ordered tuple [s, p] where s denotes
a program state, and pathcondition p ∈ SymPred describes the condition for
which the variable bindings specified through s hold (cf. [Bli02, FS03]). A clean
slate program context consists of a clean slate state and a true pathcondition.

4.2.2 Symbolic Side-Effects and Branch Predicates

Table 4.3 contains the denotational definition of side-effects in the symbolic
domain of the Flow language. We have omitted the definition of the syntactic
domain which is of course identical to the one for standard-semantic side-effects
given in Table 3.1 (I) on page 22.

The semantic domain of symbolic side-effects contains symbolic expressions,
initial value variables, and symbolic predicates introduced in Section 4.1. States,
pathconditions, and program contexts have been introduced in the previous
section. With program contexts we introduce the operations st and pc in order
to access state and pathcondition of a program context.

To complete this denotational definition of side-effects in the symbolic do-
main we give a bottom-up description of the valuation functions listed in Ta-
ble 4.3 (II).

†Or state, if the context of use prevents a potential ambiguity due to the flow language
states of Chapter 3.

‡Or context , for short.

50 4.2 Single-Edge Symbolic Execution

(I) Semantic Domain

Symbolic Expressions

Domain e(x) : SymExpr

+,−, · : SymExpr× SymExpr → SymExpr

divs, rems : SymExpr× SymExpr \ {e(x) | e(x) = 0} → SymExpr

Program Variables

Domain v : V

Initial Value Variables

Domain v : V

Path Conditions

Domain p : SymPred

States

Domain s : S ⊆ {f : V → SymExpr}

Contexts

Domain c : C ⊆ [S × SymPred]

pc : C → SymPred st : C → S

pc ([s, p]) = p st ([s, p]) = s

(II) Valuation Functions

assign : Assignment → C → C

assign[[ident:=expr]]
(
[s1, p1]

)
=

λ
[
s2, p2

]
.
[
λs3.s3

[
ident[[ident]] 7→ expr[[expr]](s3)

]
(s2), p2

](
[s1, p1]

)

expr : Expression → S → SymExpr

expr[[expr1 binop expr2]](s) = expr[[expr1]](s) binop[[binop]] expr[[expr2]](s)

expr[[−expr]](s) = −expr[[expr]](s)

expr[[ident]](s) = s
(
ident[[ident]]

)

expr[[num]](s) = num[[num]]

expr[[(expr)]](s) = expr[[expr]](s)

num : Numeral → Integer

num[[num dig]] = 10 ·num[[num]] + dig[[dig]]

num[[dig]] = dig[[dig]]

dig : Digit → Integer

dig[[0]] = 0, dig[[1]] = 1, . . . ,dig[[9]] = 9

ident : Identifier → V (omitted)

binop : Binary Operator → {+,−, ·, divs, rems} (omitted)

Table 4.3: Symbolic Domain: Denotational Definition of Side-Effects

Semantics of Symbolic Program Execution 51

binop: This valuation function maps the terminals “+”, “−”, “∗”, “div” and
“rem” to the corresponding operations of addition, subtraction, multi-
plication, division (divs), and remainder (rems) in the domain SymExpr
of symbolic expressions. The terminal “−” may also serve as an unary
operator defined on SymExpr → SymExpr denoting change of sign.

ident: The valuation function for identifiers maps a derivation tree represent-
ing a variable identifier to the corresponding identifier v ∈ V. In this way
it is exactly the same function as the one for the standard-semantics, given
in Table 3.1 on page 22.

dig,num: Together, these valuation functions calculate the value of a given
integer numeral. They are the same functions as those for the standard-
semantics given in Table 3.1 on page 22.

expr: These valuation functions take an expression as argument and return a
function that maps a state to a symbolic expression. The syntactic struc-
ture of the expression derivation tree is specified between the emphatic
brackets ([[. . .]]) on the left-hand side of the given equations, whereas the
functions f : S → SymExpr represent the right-hand sides.

expr[[num]](s) = num[[num]]: For a derivation tree [[num]] the argument
s describing the program state is not needed. This follows from the
arity of the valuation function num. This argument is therefore
discarded on the right-hand side of this equation.

expr[[ident]](s) = s
(
ident[[ident]]

)
: For a derivation tree of structure

[[ident]] denoting an identifier we determine the corresponding pro-
gram variable v ∈ V that is then evaluated within the argument s
representing a program state.

expr[[expr1 binopexpr2]](s): For a tree [[expr1 binopexpr2]] we recursively
determine the values of the sub-expressions [[expr1]] and [[expr2]] which
are then combined using the operation that is returned from evalu-
ating the valuation function binop[[binop]].

assign: This valuation function takes a derivation tree [[ident:=expr]] corre-
sponding to an assignment statement as argument. From this it returns
a function that maps a program context c1 = [s1, p1] supplied as an argu-
ment to a program context c2 = [s2, p2]. Context c2 is generated from c1

by updating the state of c1 with a new value expr[[expr]] at ident[[ident]].

Table 4.4 contains the denotational definition of branch predicates in the
symbolic domain of the Flow language. Again we have omitted the definition
of the syntactic domain since it is identical to the one for standard-semantic
branch predicates given in Table 3.2 (I) on page 25. The semantic domain of
symbolic branch predicates depends on symbolic predicates and on program
contexts. We complete the denotational definition of branch predicates with a
description of the valuation functions listed in Table 4.4 (II).

rel-op: The valuation function rel-op maps the binary function symbols “<”,
“≤”, “=”, “≥”, “>”, and “<>” to the corresponding relational connec-
tives in the domain SymPred of symbolic predicates.

52 4.2 Single-Edge Symbolic Execution

(I) Semantic Domain

Symbolic Predicates

Domain p : SymPred

<,≤, =,≥, >, 6= : SymPred × SymPred → SymPred

∧ , ∨ : SymPred × SymPred → SymPred

¬ : SymPred → SymPred

(II) Valuation Functions

pred : Predicate → C → C

pred[[true]]
(
[s1, p1]

)
= [s1, p1]

pred[[false]]
(
[s1, p1]

)
= λ

[
s2, p2

]
.
[
s2, false

](
[s1, p1]

)

pred[[pred1 and pred2]]
(
[s1, p1]

)
=

λ
[
s2, p2

]
.
[
s2, p2 ∧

(
pc
(
pred[[pred1]]

(
[s2, true]

))

∧ pc
(
pred[[pred2]]

(
[s2, true]

)))] (
[s1, p1]

)

pred[[pred1 or pred2]]
(
[s1, p1]

)
=

λ
[
s2, p2

]
.
[
s2, p2 ∧

(
pc
(
pred[[pred1]]

(
[s2, true]

))

∨ pc
(
pred[[pred2]]

(
[s2, true]

)))] (
[s1, p1]

)

pred[[not pred]]
(
[s1, p1]

)
=

λ
[
s2, p2

]
.
[
s2, p2 ∧ ¬

(
pc
(
pred[[pred]]

(
[s2, true]

)))] (
[s1, p1]

)

pred[[expr1 rel-op expr2]]
(
[s1, p1]

)
=

λ
[
s2, p2

]
.
[
s2, p2 ∧

(
expr[[expr1]]

(
s2

)

rel-op[[rel-op]] expr[[expr2]]
(
s2

))] (
[s1, p1]

)

rel-op : Relational Operator → {<,≤, =,≥, >, 6=} (omitted)

Table 4.4: Symbolic Domain: Denotational Definition of Branch Predicates

pred: This valuation function takes a derivation tree from the set “Predicate”
as input and returns a function f of arity C → C according to the structure
of its syntactic argument. This structure is specified between the emphatic
brackets ([[. . .]]) on the left-hand side of the given equations, whereas the
functions f : C → C represent the right-hand sides.

It is the purpose of these functions to evaluate the branch predicate in the
program state of the context c = [s1, p1] passed as argument. The result is
a symbolic branch predicate p′. The pathcondition of the resulting context
is the conjunction of p′ and the pathcondition p1 of the argument context.
The application of f to the argument context c can therefore be written
as

f
(
[s1, p1]

)
= [s1, p1 ∧ p′]. (4.15)

pred[[true]]
(
[s1, p1]

)
: We have p′ = true, and by Identity (1) of Table 4.2

we get f
(
[s1, p1]

)
= [s1, p1 ∧ true] = [s1, p1].

pred[[false]]
(
[s1, p1]

)
: We have p′ = false, and by Identity (7) of Table 4.2

Semantics of Symbolic Program Execution 53

we get f
(
[s1, p1]

)
= [s1, p1 ∧ false] = [s1, false].

pred[[pred1 and pred2]]
(
[s1, p1]

)
: For a subtree [[pred1 and pred2]] we de-

termine the symbolic branch predicate p′ from the values of the sub-
trees [[pred1]] and [[pred2]]. These values are in fact program contexts
from which we derive p′ as the conjunction of the pathconditions that
have been extracted via operation pc.

pred[[pred1 or pred2]]
(
[s1, p1]

)
: Again we determine the symbolic branch

predicate p′ from the values of the subtrees [[pred1]] and [[pred2]].
These values are program contexts from which we derive p′ as the
disjunction of the the extracted pathconditions.

pred[[notpred]]
(
[s1, p1]

)
: We determine the value of the symbolic branch

predicate p′ from the negated pathcondition of the context that is
the value of the subtree [[pred]].

pred[[expr1 rel-op expr2]]
(
[s1, p1]

)
: We determine the values of the sub-

trees [[expr1]] and [[expr2]] by means of the valuation function expr
of Table 4.3. These results are then combined using the relational
operator returned from rel-op[[rel-op]] to form the symbolic branch
predicate p′.

4.2.3 The Symbolic Single-Edge Solution

In this section we describe the effect of a computational step associated with a
single edge e of a Flow program on the state of the computation, expressed by
a program context. We can express the effect of such a computational step on
a program context by a member of the class of functions

F ⊆ {f : C → C} (4.16)

with the following properties.

P1) F contains the identity function ι.

P2) F is closed under composition: ∀f, g ∈ F : f ◦ g ∈ F .
fk denotes iterated composition such that f 0 = ι and fk = fk−1 ◦ f .

The identity function ι of Property (P1) can be envisioned as a null-statement
that has no affect on the state of computation. Property (P2) ensures that
we can compose the computational steps of several edges, which is a property
that we will need in Section 4.3 to express the computational effects of entire
program paths.

An edge transition function Ms : E → F assigns a function f ∈ F to
each edge e ∈ E of the CFG. From Chapter 3 it follows that every edge e has
associated a branch predicate preds(e) and a side-effect σs(e). In the symbolic
domain these functions are of arity C → C, which contrasts their standard
semantic counterparts stated in Equations (3.2) and (3.4)§.

Our notational convention defined in Equation (3.11) allows us to formulate
branch predicate and side-effect for a given CFG edge e according to the Flow

§To distinguish between the two, we subscript the functions from the symbolic domain
with the letter s.

54 4.3 Single-Path Symbolic Execution

syntax. The valuation function edge[[. . .]] maps such a construct to the respec-
tive valuation functions for branch predicates and side-effects. In making use of
the denotational definitions for branch predicates and side-effects we can define
the functions f ∈ F in the following way.

f = Ms(e)
(
[s, p]

)

= σs(e) ◦ preds(e)
(
[s, p]

)
by Equation (3.5)

= edge[[e : pred ⇒ assign]]
(
[s, p]

)
by Equation (3.11)

= assign[[assign]]
(
pred[[pred]]

(
[s, p]

))
from Tables 4.3, 4.4

(4.17)

It follows immediately from the denotational definitions of side-effects (cf. Ta-
ble 4.3) and branch predicates (cf. Table 4.4) that the function class of Equa-
tion (4.17) fulfills Properties (P1) and (P2) above.

Example 4.5 Figure 4.2 shows the Flow example program introduced in Sec-
tion 3.4. We determine the transition function f for edge e2, which has associ-
ated the Flow construct u <> v ⇒ u := u+v. Applying Equation (4.17) and
the valuation functions for branch predicates and side-effects, we get

f = Ms(e2)
(
[s, p]

)

= edge[[e2 : u <> v ⇒ u := u+v]]
(
[s, p]

)

= assign[[u := u+v]]
(
pred[[u <> v]]

(
[s, p]

))

= assign[[u := u+v]]
(
λ
[
s1, p1

]
.
[
s1, p1 ∧ s1(u) 6= s1(v)

](
[s, p]

))

= λ
[
s2, p2

]
.
[
s2

[
u 7→ s2(u) + s2(v)

]
, p2

]

(
λ
[
s1, p1

]
.
[
s1, p1 ∧ s1(u) 6= s1(v)

](
[s, p]

))

= λ
[
s3, p3

]
.
[
s3

[
u 7→ s3(u) + s3(v)

]
, p3 ∧ s3(u) 6= s3(v)

](
[s, p]

)
.

Note that in the last step of the above simplifications we have combined branch
predicate and side-effect to obtain a single function f as the solution of symbolic
execution along edge e2.

4.3 Single-Path Symbolic Execution

We can extend the transition function Ms from edges e to program paths π if
we distinguish between forward (Mfw) and backward (Mbw) problems:

Mfw(π) =

{
ι, if π is the empty path

Ms(ek) ◦ Ms(ek−1) ◦ · · · ◦ Ms(e1), if π = 〈e1, . . . , ek〉
(4.18)

Mbw(π) =

{
ι, if π is the empty path

Ms(e1) ◦ · · · ◦ Ms(ek−1) ◦ Ms(ek), if π = 〈e1, . . . , ek〉.
(4.19)

In this way the transition function for a program path π is the composition of
the edge transition functions contained in π. As a shorthand notation we may
also use fe for Ms(e) and fπ for Ms(π).

Semantics of Symbolic Program Execution 55

ne [{(u, u), (v, v)}, true] = c0

n1 [{(u, u), (v, v)}, true]

n2 [{(u, u + v), (v, v)}, u 6= v]

n3 [{(u, u + v), (v, u)}, u 6= v]

n4 [{(u, v), (v, u)}, u 6= v]

nx [{(u, v), (v, u)}, u 6= v]

e1 : true

e2 : u <> v ⇒ u := u+v

e3 : true ⇒ v := u-v

e4 : true ⇒ u := u-v

e5 : true

Figure 4.2: Symbolic Execution Along Path π = 〈e1, e2, e3, e4, e5〉

4.3.1 The Single-Path Solution

Clearly if the computational effect of a single statement of a Flow program is
described by a function f ∈ F , the computational effect of program execution
along a path π is defined by

Mfw(π)(c0), (4.20)

where c0 denotes the initial context on entry to π. Proof by induction on the
length of π omitted.

Example 4.6 In Example 4.5 we have determined transition function Ms(e2)
which represents the effect of symbolic program execution along edge e2 of the
Flow program given in Figure 4.2. After determination of all transition functions
along the program path π = 〈e1, e2, e3, e4, e5〉, the effect of symbolic execution
along path π can be calculated according to Equation (4.20).

We assume that the initial context c0 passed as argument to Mfw(π) contains
two program variables u and v holding their initial values u and v. Then the
program contexts depicted in Figure 4.2 illustrate the transformation of the
initial context c0 during symbolic execution along π. The program context
shown for node nx represents the resulting context for Mfw(π)(c0).

Note that in the preceding example we determined the computational effect
of execution along one path, although the control flow graph contained in fact
two program paths from node ne to node nx. Symbolic execution along multiple
program paths will occupy us in the next section.

4.4 Multi-Path Symbolic Execution

Figure 4.3 shows three distinctive structural examples of CFGs. The CFG in
Figure 4.3 (a) contains a single program path π = 〈e1, e2〉 from ne to nx. The
program context valid in nx is thus defined by fe2

◦ fe1
(c0), where c0 denotes

the initial context on entry to π. The CFG in Figure 4.3 (b) contains two

56 4.4 Multi-Path Symbolic Execution

ne

n1

nx

e1

e2

(a)

ne

n1 n2

nx

e1

e2

e3

e4

(b)

ne

n1

nx

e1

e3

e2

(c)

Figure 4.3: Distinctive Structural Examples of Control Flow Graph Portions

paths from ne to nx. Each path contributes a partial symbolic solution stated
as a program context valid in nx: cπ1

= fe2
◦ fe1

(c0) along path π1 = 〈e1, e2〉,
and cπ2

= fe4
◦ fe3

(c0) along path π2 = 〈e3, e4〉. Hence the description of the
symbolic solution for Node nx of Figure 4.3 (b) has to take into account cπ1

and cπ2
. Finally the CFG depicted in Figure 4.3 (c) contains a cycle introduced

by edge e2. Due to this edge the number of program paths from ne to nx is
infinite. As a consequence the number of program contexts valid at nx is also
infinite.

From the above examples we conclude that the description of the symbolic
solution in terms of program contexts increases with the number of program
paths through a CFG. To be specific, each program path from the entry node ne

to a given node n contributes one program context to the symbolic solution
at node n. As long as CFGs are acyclic, the number of program contexts of
this symbolic solution is finite. With the introduction of cycles the number of
program paths from the entry node to a given node n, and hence the number
of program contexts of the symbolic solution at node n, becomes infinite (cf.
also [MR90, p. 134]).

4.4.1 Supercontexts

Sections 4.2 and 4.3 showed that a program context is a valid description of the
computational effect of symbolic execution along a single edge or program path.
In order to describe the joint effects of execution along several program paths,
we need a structure that allows us to aggregate program contexts.

Due to their illustrative nature the approach chosen here is based on sets .
Taking into account the fact that these sets can become infinite in case of
CFG cycles, we will replace this set-based structure by a finite structure in
Section 5.5.1.

A supercontext sc ∈ SC is a collection of program contexts c ∈ C and can
be envisioned as a (possibly) infinite set as follows:

sc =
{
c1, . . . , ck, . . .

}
=
{
[s1, p1], . . . , [sk, pk], . . .

}
.

We write c ∈ sc to denote that context c is an element of the supercontext sc.
For supercontexts sc1, sc2 ∈ SC the supercontext union operation sc1 ∪ sc2

contains those contexts that are either in sc1, or in sc2, or in both. If we regard
single contexts as one-element supercontexts, we can use the supercontext union
operation to denote a supercontext sc through union over its context elements.

Semantics of Symbolic Program Execution 57

For this purpose we use the following notation for supercontexts:

sc ∈ SC =

[
∞⋃

k=0

[sk, pk]

]
. (4.21)

Let C be the set of all possible program contexts, and SC = P (C) the power
set of C. By ∪ we denote the supercontext union operation. Then the algebraic
structure 〈SC,∪〉 has the following properties.

P1) 〈SC,∪〉 is closed under ∪: A, B ∈ SC ⇒ A ∪ B ∈ SC.

P2) ∪ is associative: (A ∪ B) ∪ C = A ∪ (B ∪ C), ∀A, B, C ∈ SC.

P3) Let ∅ ∈ SC be the empty collection of contexts. Then 〈SC,∪〉 contains
the identity element E = ∅: A ∪ E = E ∪ A = A, ∀A ∈ SC.

P4) ∪ is commutative: A ∪ B = B ∪ A, ∀A, B ∈ SC.

P5) No element of SC except E has an inverse in SC such that A ∪ A−1 =
A−1 ∪ A = E.

It is worth mentioning that supercontexts correspond to the notion of symbolic
environments mentioned in the introduction of this chapter.

4.4.2 The Meet Over All Paths Solution

An intuitive definition of the meet over all paths (MOP) solution for monotone
data-flow frameworks is given in [Hec77, p. 169]. Therein this solution is the
maximum information, relevant to the problem at hand, which can be derived
from every possible execution path from the initial node to that node.

Let Path(a, b) denote the set of program paths from node a to node b. All
possible execution paths from the initial node ne to a given node n are then
contained in Path(ne, n). For each such path π its computational effect fπ on
the initial context c0 is calculated. The meet over all paths solution for symbolic
execution is then the union over the resulting contexts, written as

mop(n) =
⋃

π∈Path(ne,n)

fπ(c0). (4.22)

Union denotes the supercontext union operation, and the MOP solution for
symbolic execution is therefore represented by a supercontext.

4.4.3 A Correctness Proof for Symbolic Execution

In this section we give a proof of correctness for the MOP solution stated in
Equation (4.22). At the same time we also proof Condition (4.3) stated on
page 38, since the symbolic side-effect Ssym[[P]] of program P on the initial
context c0 corresponds to the MOP solution at the exit-node nx of P .

At the heart of the proof we will relate the standard semantics with the
semantics of symbolic program execution and show that the two commute. To
distinguish between standard semantic and symbolic program execution, we
will henceforth use σc to denote the standard-semantic side-effect associated

58 4.4 Multi-Path Symbolic Execution

with an edge e, and σs to denote its symbolic counterpart. Likewise we will
use predc and preds to distinguish between standard-semantic and symbolic
branch predicates. This frees the letter σ which from now on will be used to
denote substitutions that will be introduced in the course of the proof.

There is one distinction needed regarding the semantics of symbolic program
execution: with the introduction of the symbolic rounding operation Rnd in De-
finition 4.2 on page 41 we noted that in order to implement rounding towards
zero we must be able to determine whether the argument of the rounding opera-
tion is less than zero. This decision has been postponed to Section 5.5.2, leaving
such expressions unevaluated in the meantime. As a consequence, the symbolic
integer division operation considered here is restricted to that of Definition 4.9
on page 42 and defers application of division-related simplifications (Case 1 and
Case 2 subsequent to Definition 4.9) to Section 5.5.2. It is Section 5.5.2 where
we will also prove the correctness of these simplifications.

As already announced in this introduction we start with a few definitions
that we need in order to accomplish the proof.

Definition 4.6 Given the set V of initial value variables and SymExpr, the
domain of integer-valued symbolic expressions. A SymExpr-substitution —
or simply substitution, if the domain SymExpr is irrelevant or clear from the
context of use — is a function σ : V → SymExpr such that σ(x) 6= x for only
finitely many xs. The finite set of variables that σ does not map to themselves
is called the domain of σ: Dom(σ) : : ={x ∈ V | σ(x) 6= x}. If Dom(σ) =
{x1, . . . , xn}, then we may write σ as

σ = {x1 →σ(x1), . . . , xn →σ(xn)}.

The application of a substitution σ to an expression e simultaneously replaces
all occurrences of variables by their respective σ-images. Any substitution σ
can be extended to a mapping σ̂ : SymDom → SymDom over the domain
of integer-valued symbolic expressions and symbolic predicates in the following
way.

σ̂(x) = σ(x), for x ∈ V (4.23)

σ̂(f(e1, . . . , en)) = f(σ̂(e1), . . . , σ̂(en)), for a non-variable expression (4.24)

From Equation (4.24) it follows that the extension σ̂ is an endomorphism on
the domain SymDom that coincides with the identity mapping on almost all
variables. To simplify notation we distinguish between a substitution σ and its
extension σ̂ only at places where this distinction is crucial. It should be noted
that the concept of SymExpr-substitutions is closely related to substitutions on
terms presented in [BN98].

Definition 4.7 An extended environment env ∈ Environment × B is an
ordered tuple [env, b] where env denotes an environment from the Flow standard
semantics (cf. Equation (3.1) on p. 19), and b ∈ B is a boolean value denoting the
standard semantic pathcondition. It is worth noting that such a pathcondition
was not needed for the transition function δ of the Flow standard semantics being
only defined for edges e for which predc(e)(env) = true (cf. Equation (3.5)) and
therefore assuming an implicit pathcondition that is always true.

Semantics of Symbolic Program Execution 59

Definition 4.8 In order to describe the standard semantic computational effect
of an arbitrary edge e, we use the function class

Fc ⊆ {fc : Environment × B → Environment × B}

with its member functions fc defined as

fc = Mc(e)
(
[env, b]

)
=
(
[σc(e)(env), b ∧ predc(e)(env)]

)
, (4.25)

where Mc : E → Fc represents the standard semantic edge transition function.
It is easy to see that for the domain of the transition function δ the function
class of Equation (4.25) is equivalent to δ in terms of the computed environ-
ment σc(e)(env) as well as the computed pathcondition b ∧ predc(e)(env). (The
latter due to the fact that with the transition function δ we have the implicit
pathcondition which is always true, since δ is only defined on edges e such
that predc(e)(env) = true). On the other hand, for values outside the domain
of δ we note that the function class of Equation (4.25) computes an extended
environment with a standard semantic pathcondition of false which is due to
the fact that those cases comprise edges e for which predc(e)(env) = false.

On the analogy of symbolic program execution we can extend the standard
semantic edge transition function Mc from edges e to program paths π. Resem-
bling Equation (4.18), we get

Mc(π) =

{
ι, if π is the empty path

Mc(ek) ◦ Mc(ek−1) ◦ · · · ◦ Mc(e1), if π = 〈e1, . . . , ek〉

for a forward problem. Therefore the standard semantic transition function for
a program path π is the composition of the standard semantic edge transition
functions contained in π.

Definition 4.9 Function sym transfers an extended environment [env, b] to a
program context in the symbolic domain.

sym : Environment × B → C

sym
(
[env, b]

)
= λ[env′, b′].[λenv′′.s[∀v ∈ Dom(env′′) : v 7→ v](env′), b′](env, b)

The extended environment [env, b] and the state of the resulting program con-
text [s, b] coincide on the contained program variables, that is, Dom(env) =
Dom(s). They differ however in the provided values, since state s maps pro-
gram variables vi to the corresponding initial value variables vi. The extended
environment and the resulting program context furthermore agree on the path-
condition b.

Definition 4.10 Function con takes an environment env and a program con-
text c as input and returns an extended environment env which is the result of
evaluation of c with the values provided by env.

con : Environment × C → Environment × B

con(env, c) = λ[env′, [s, p]].[env′[∀v ∈ Dom(s) : v 7→ σenv(s(v))], σenv(p)](env, c)

Therein the SymExpr-substitution σenv can be written as

σenv = {v1 → env(v1), . . . , vn → env(vn)}, (4.26)

60 4.4 Multi-Path Symbolic Execution

which means that occurrences of the initial value variables vi are replaced by
the concrete value of the corresponding variable vi in env (recall that SymDom
contains expressions in terms of the initial value variables from V (cf. Equa-
tion (4.6) on page 40). For this to work we need the side-condition that the
domains of env and s coincide, that is, Dom(env) = Dom(s).

We have now everything in place to set up the condition to be met for
the concrete and symbolic execution to commute on a single edge e. As illus-
trated in the commutative diagram of Figure 4.4, we start with an extended
environment [env, b] passed as argument to function Mc(e) representing the
standard semantic computational effect associated with edge e. This results
in a new extended environment [env1, b ∧ b1] which we consider the result
of standard semantic program execution along edge e (for reasons mentioned
with Definition 4.8 this coincides with the transition function δ iff b = true
and b1 = predc(e)(env) = true).

[env, b] [s, b]

[env1, b ∧ b1] [s1, b ∧ p1]

sym

Ms(e)Mc(e)
P1

con

Figure 4.4: Commutation of Single-Edge Concrete and Symbolic Execution

On the other hand, transferring the initial extended environment [env, b]
via function sym to the symbolic domain gives us a program context [s, b].
We can apply function Ms(e) that represents the computational effect in the
symbolic domain associated with edge e. (Note that we use Ms to distinguish the
edge transition function into the symbolic domain from its standard semantic
counterpart Mc.) The result is a program context [s1, b ∧ p1] that differs from
the input-context [s, b] in two ways.

• Program state s1 represents program state s updated according to the
side-effect σs(e) of edge e (cf. Equation (4.17) and Table 4.3).

• For the pathcondition b ∧ p1 we have b ∈ B and p1 ∈ SymPred. p1 rep-
resents the branch predicate preds(e) of the symbolic domain associated
with edge e (cf. Equation (4.17) and Table 4.4). The conjunction b ∧ p1

is due to Equation (4.15).

The transformation of the program context [s1, b ∧ p1] from the symbolic to the
standard semantic domain via function con uses environment env of the initial
extended environment [env, b] which provides the actual values to be substituted
for the initial value variables occurring in s1 and p1. This is denoted by the
dashed line in Figure 4.4, where P1 is the projection function from extended
environments to the first element, the contained environment.

For the concrete and symbolic execution to commute on edge e, the result of
the above transformation must agree with the extended environment obtained

Semantics of Symbolic Program Execution 61

as a result from standard semantic program execution. This process that is
illustrated in Figure 4.4 is generalized in the following lemma.

Lemma 2. Given a Flow program with its underlying control flow graph G =
〈N, E, ne, nx〉. For any edge e ∈ E of G, the condition

Mc(e)
(
[env, b]

)
= con

(
env, Ms(e)

(
sym

(
[env, b]

)))

holds which means that concrete and symbolic Flow program execution commute
for single edges.

In the course of the proof of Lemma 2 we will compare the valuation functions
of concrete and symbolic side-effects stated in Table 3.1 and Table 4.3. To facili-
tate this comparison we have summarized the relevant parts of both definitions,
amended with line-numbers, in Table 4.5. To distinguish valuation functions
into the concrete domain from valuation functions into the symbolic domain,
we use the subscripting-schema already applied with side-effects. Valuation
functions common to both definitions have been left without subscript. Like-
wise we will compare the valuation functions of concrete and symbolic branch
predicates from Table 3.2 and Table 4.4; The relevant parts of those definitions
are summarized in Table 4.6.

Proof. It follows from the definitions of functions sym and con that the trans-
formation of an extended environment [env, b] into the symbolic domain is in-
vertible using function con and the contained environment env, that is

con
(
env, sym

(
[env, b]

))
= [env, b]. (4.27)

From the valuation functions for assignment statements (cf. lines 1–3 of
Table 4.5) we know that a single side-effect updates exactly one program variable
of a given environment or state (at most one if we would allow the identity
function ι as side-effect). Line 11 of both definitions show us that concrete and
symbolic semantics employ the same valuation function for identifiers. Hence it
follows from line 3 of both definitions (from “ident[[ident]]”, to be specific), that
for a given side-effect the concrete and symbolic valuation functions update the
same program variable.

With this argument and Equation (4.27) we establish that in the diagram
of Figure 4.4 the environment env1 coincides with environment env in all but
one program variable, and that this is consistent with commutation. Without
loss of generality we may assume vi as the updated program variable.

In order to prove that concrete and symbolic execution commute on envi-
ronment env1, we must show that they update program variable vi consistently.
The notion of consistent update can be formalized based on the initial environ-
ment env, the corresponding state s, the concrete and symbolic valuation func-
tions computing the new value for vi (cf. line 3 of the corresponding definitions
of Table 4.5), and the substitution σenv (cf. Equation (4.26)) that is part of func-
tion con. Due to the involved concrete and symbolic valuation functions exprc

and exprs, the notion of consistent update is named exprc
s-consistency.

exprc
s-consistency ⇔ exprc[[expr]](env) = σenv

(
exprs[[expr]](s)

)
(4.28)

Recall that in this equation “expr” denotes a derivation tree corresponding to
a Flow expression. We prove exprc

s-consistency by structural induction on the

62 4.4 Multi-Path Symbolic Execution

1 assignc : Assignment → Environment → Environment

2 assignc[[ident:=expr]](env1) =

3 λenv2.env2

[
ident[[ident]] 7→ exprc[[expr]](env2)

]
(env1)

4 exprc : Expression → Environment → Integer

5 exprc[[expr1 binop expr2]](env) =

6 exprc[[expr1]](env) binopc[[binop]] exprc[[expr2]](env)

7 exprc[[−expr]](env) = −exprc[[expr]](env)

8 exprc[[ident]](env) = env
(
ident[[ident]]

)

9 exprc[[num]](env) = num[[num]]

10 exprc[[(expr)]](env) = exprc[[expr]](env)

11 ident : Identifier → V (omitted)

12 binopc : Binary Operator → {+,−, ·, div, rem} (omitted)

(a) Concrete Domain

1 assigns : Assignment → C → C

2 assigns[[ident:=expr]]
(
[s1, p1]

)
=

3 λ
[
s2, p2

]
.
[
λs3.s3

[
ident[[ident]] 7→ exprs[[expr]](s3)

]
(s2), p2

](
[s1, p1]

)

4 exprs : Expression → S → SymExpr

5 exprs[[expr1 binop expr2]](s) =

6 exprs[[expr1]](s) binops[[binop]] exprs[[expr2]](s)

7 exprs[[−expr]](s) = −exprs[[expr]](s)

8 exprs[[ident]](s) = s
(
ident[[ident]]

)

9 exprs[[num]](s) = num[[num]]

10 exprs[[(expr)]](s) = exprs[[expr]](s)

11 ident : Identifier → V (omitted)

12 binops : Binary Operator → {+,−, ·, divs, rems} (omitted)

(b) Symbolic Domain

Table 4.5: Comparison: Concrete vs. Symbolic Side-Effects

Flow expression derivation trees according to lines 5–10 of the exprc and exprs

valuation functions of Table 4.5. Lines 8 and 9 constitute the cases of the induc-
tion basis, as they represent the leaves of expression derivation trees (cf. also the
specification of Flow expression derivation trees given in Part (I) of Table 3.1).
The inductive step of the definition of expression derivation trees consists of the
case expressed through lines 5 and 6, which also subsumes the cases denoted by
lines 7 and 10.

Basis: First we must show that exprc[[ident]](env) = σenv

(
exprs[[ident]](s)

)
.

This holds if env
(
ident[[ident]]

)
= σenv

(
s
(
ident[[ident]]

))
which follows

from Equation (4.27).

Furthermore we must show that exprc[[num]](env) = exprs[[num]](s) which
is trivially true since the valuation function num[[num]] for numbers is
common to the concrete and symbolic domain (cf. Table 4.5).

Semantics of Symbolic Program Execution 63

Induction: In the inductive step we must show that

exprc[[expr1 binop expr2]](env) = σenv

(
exprs[[expr1 binop expr2]](s)

)
.

Substituting the right-hand sides of lines 6 from Table 4.5 and using the
shorthand notations

ec1 = exprc[[expr1]](env), es1 = exprs[[expr1]](s),

ec2 = exprc[[expr2]](env), es2 = exprs[[expr2]](s),

we must show that

ec1 binopc[[binop]] ec2 = σenv

(
es1 binops[[binop]] es2

)
. (4.29)

For the inductive step we may assume that ec1 = σenv(es1), and that
ec2 = σenv(es2). Based on the binary operator binop[[binop]] we can then
distinguish the following three cases.

Case 1: Let binop[[binop]] ∈ {+,−, ·}. From Definition 4.6 of substitu-
tion σenv we may write

σenv

(
es1 binops[[binop]] es2

)
= σenv(es1) binops[[binop]] σenv(es2),

but only since this rewriting step is backed by the algebras of mul-
tivariate polynomials and rational functions. And this is in fact a
crucial step, as it marks the transition from algebra to arithmetic,
from the domain of symbolic expressions to the integer numbers. It
is this identity that allows us to perform symbolic program execution
in the domain SymExpr of symbolic expressions and to substitute in-
teger values for the initial value variables in the resulting expressions
in order to generate the result corresponding to a given standard-
semantic program execution. Or, stated in brief: if concrete and
symbolic calculations commute, then it is due to this identity!

Having said that, there is now a note due to the binary opera-
tion binops[[binop]] on the right-hand side of the above identity:
strictly speaking, this operation operates on values of the concrete
domain, so it should read binopc[[binop]]. But since the concrete do-
main constitutes a subalgebra of the symbolic domain, we may also
use the operations from the symbolic domain here.

Returning to our proof, we insert the above identity into Equa-
tion (4.29), giving us

ec1 binopc[[binop]] ec2 = σenv(es1) binops[[binop]] σenv(es2).

This equation holds due to the assumption of the inductive step and
the before-mentioned relation of concrete and symbolic operations,
which concludes the proof for Case 1.

Case 2: Let binopc[[binop]] = div and let binops[[binop]] = divs. Defini-
tion 4.9 of integer division and further simplifications yield

σenv

(
es1 binops[[binop]] es2

)
=

= σenv

(
Rnd

(
es1 / es2

))
= Rnd

(
σenv(es1) / σenv(es2)

)
=

=

⌊
σenv(es1) / σenv(es2)

⌋
, if σenv(es1) / σenv(es2) ≥ 0

⌈
σenv(es1) / σenv(es2)

⌉
, else.

64 4.4 Multi-Path Symbolic Execution

Again we have used the round towards zero rounding mode. Inserting
the above right-hand side into Equation (4.29) concludes the proof
for Case 2 due to the assumption of the inductive step.

Case 3: Let binopc[[binop]] = rem and let binops[[binop]] = rems. The
proof of Case 3 then follows from Cases 1 and 2 and from the as-
sumption of the inductive step.

With the proof of Case 3 we have finally established exprc
s-consistency of Flow

expression derivation trees as postulated in Equation (4.28). This means that
concrete and symbolic execution commute on environment env1 as depicted
in Figure 4.4, and it remains to show that they also commute regarding the
pathcondition b ∧ b1.

From Figure 4.4 we observe that with the pathcondition b ∧ b1 of the ex-
tended environment [env1, b ∧ b1] the boolean variable b is due to the extended
input-environment [env, b]. Moreover, the boolean variable b1 is due to the
branch predicate associated with edge e. Hence in order to show that concrete
and symbolic execution commute regarding the pathcondition b ∧ b1, we must
show that they commute on b1 (Strictly speaking, we only need to show that
they commute on b1 if b = true, for false ∧ b1 = false, from Table 4.2.)

On the analogy of exprc
s-consistency we proceed with the definition of

predc
s-consistency as the condition that must be met for concrete and sym-

bolic branch predicates to commute on the boolean variable b1 as depicted in
Figure 4.4.

predc
s-consistency ⇔ b ∧ predc[[pred]](env) =

= pc
(
σenv

(
preds[[pred]]

(
[s, b]

))) (4.30)

We will establish predc
s-consistency of Flow predicates by structural induc-

tion on the predicate derivation trees according to the corresponding valuation
functions listed in Table 4.6 (the specification of the Flow predicate derivation
trees themselves has been given in Part (I) of Table 3.2). In the by-case defini-
tion of the valuation function preds in Table 4.6 (b) the induction basis consists
of Case 1 (line 2), Case 2 (line 3), and Case 6 (lines 12–14) which represent the
leaves of the Flow predicate derivation trees. The inductive step then consists of
Case 3 (lines 4–6), Case 4 (lines 7–9), and Case 5 (lines 10–11) of Table 4.6 (b).

What follows is the inductive proof of predc
s-consistency of Flow predicates

as outlined above.

Basis: We establish Case 1 by the following sequence of transformations.

b ∧ predc[[true]](env) = pc
(
σenv

(
preds[[true]]

(
[s, b]

)))

b ∧ true = pc
(
σenv

(
[s, b]

))

b = b

Likewise for Case 2:

b ∧ predc[[false]](env) = pc
(
σenv

(
preds[[false]]

(
[s, b]

)))

b ∧ false = pc
(
σenv

(
[s, false]

))

false = false.

Semantics of Symbolic Program Execution 65

1 predc : Predicate → Environment → Boolean

2 predc[[true]](env) = true

3 predc[[false]](env) = false

4 predc[[pred1 and pred2]](env) = predc[[pred1]](env) ∧ predc[[pred2]](env)

5 predc[[pred1 or pred2]](env) = predc[[pred1]](env) ∨ predc[[pred2]](env)

6 predc[[not pred]](env) = ¬predc[[pred]](env)

7 predc[[expr1 rel-op expr2]](env) = exprc[[expr1]](env)

8 rel-opc[[rel-op]] exprc[[expr2]](env)

(a) Concrete Domain

1 preds : Predicate → C → C

2 preds[[true]]
(
[s1, p1]

)
= [s1, p1]

3 preds[[false]]
(
[s1, p1]

)
= λ

[
s2, p2

]
.
[
s2, false

](
[s1, p1]

)

4 preds[[pred1 and pred2]]
(
[s1, p1]

)
=

5 λ
[
s2, p2

]
.
[
s2, p2 ∧

(
pc
(
preds[[pred1]]

(
[s2, true]

))

6 ∧ pc
(
preds[[pred2]]

(
[s2, true]

)))] (
[s1, p1]

)

7 preds[[pred1 or pred2]]
(
[s1, p1]

)
=

8 λ
[
s2, p2

]
.
[
s2, p2 ∧

(
pc
(
preds[[pred1]]

(
[s2, true]

))

9 ∨ pc
(
preds[[pred2]]

(
[s2, true]

)))] (
[s1, p1]

)

10 preds[[not pred]]
(
[s1, p1]

)
=

11 λ
[
s2, p2

]
.
[
s2, p2 ∧ ¬

(
pc
(
preds[[pred]]

(
[s2, true]

)))] (
[s1, p1]

)

12 preds[[expr1 rel-op expr2]]
(
[s1, p1]

)
=

13 λ
[
s2, p2

]
.
[
s2, p2 ∧

(
exprs[[expr1]]

(
s2

)

14 rel-ops[[rel-op]] exprs[[expr2]]
(
s2

))] (
[s1, p1]

)

(b) Symbolic Domain

Table 4.6: Comparison: Concrete vs. Symbolic Branch-Predicates

66 4.4 Multi-Path Symbolic Execution

Case 6 requires us to show that

b ∧
(
predc[[expr1 rel-op expr2]](env)

)
=

= pc
(
σenv

(
preds[[expr1 rel-op expr2]]

(
[s, b]

)))
.

Substituting the right-hand sides of Case 6 from Table 4.6 and using the
following shorthand notations

ec1 = exprc[[expr1]](env), es1 = exprs[[expr1]](s),

ec2 = exprc[[expr2]](env), es2 = exprs[[expr2]](s),

we get

b ∧
(
ec1 rel-opc[[rel-op]] ec2

)
= pc

(
σenv

(
[s, b ∧ (es1 rel-ops[[rel-op]] es2)]

))

= σenv

(
b ∧ (es1 rel-ops[[rel-op]] es2)

)

= b ∧
(
σenv(es1) rel-ops[[rel-op]] σenv(es2)

)
.

It is the exprc
s-consistency that we have stated in Equation (4.28) which

provides that ec1 = σenv(es1), and that ec2 = σenv(es2). Knowing that the
relational connective rel-ops[[rel-op]] on the right-hand side of the above
identity operates in this particular case on the concrete domain where it
is identical to its standard semantic counterpart concludes Case 6.

Induction: In Case 3 we must show that

b ∧
(
predc[[pred1 and pred2]](env)

)
=

= pc
(
σenv

(
preds[[pred1 and pred2]]

(
[s, b]

)))
.

Substituting the right-hand sides of Case 3 from Table 4.6 and using the
following shorthand notations

pc1 = predc[[pred1]](env), ps1 = preds[[pred1]]
(
[s, true]

)
,

pc2 = predc[[pred2]](env), ps2 = preds[[pred2]]
(
[s, true]

)
,

we get

b ∧
(
pc1 ∧ pc2

)
= pc

(
σenv

(
[s, b ∧ (pc(ps1) ∧ pc(ps2))]

))

= b ∧
(
σenv(pc(ps1)) ∧ σenv(pc(ps2))

)
.

The inductive hypothesis implies that true ∧ pc1 = σenv(pc(ps1)), and
that true ∧ pc2 = σenv(pc(ps2)), which concludes Case 3.

Case 4 is dual to Case 3 in the sense that the syntactic token “and” is to
be replaced by “or”, and that the pathconditions of ps1 and ps2 are joined
by disjunction.

Case 5 finally adds no new aspects to this routine:

b ∧ predc[[not pred]](env) = pc
(
σenv

(
preds[[not pred]]

(
[s, true]

)))

b ∧ ¬predc[[pred]](env) = b ∧ ¬σenv

(
pc
(
preds[[pred]]

(
[s, true]

)))
.

Semantics of Symbolic Program Execution 67

Considering the fact that from the inductive hypothesis we have

true ∧ predc[[pred]](env) = σenv

(
pc
(
preds[[pred]]

(
[s, true]

)))

concludes the case.

With the proof of Case 5 we have established predc
s-consistency of Flow pred-

icate derivation trees as postulated in Equation (4.30). Combining this result
with exprc

s-consistency proves the single-edge commutation property of concrete
and symbolic execution as depicted in Figure 4.4.

Having proved the commutation of single-edge concrete and symbolic execu-
tion, we will now extend this result to whole program paths. For this we need
the following definition that extends substitutions from the domain of symbolic
expressions and predicates to program states.

Definition 4.11 Any extended substitution σ̂ can be further extended to a
mapping ̂̂σ : S → S in the following way.

̂̂σ (s) = λs.s
[
∀v ∈ Dom(s) : v 7→ σ̂

(
s(v)

)]

As with Definition 4.6 we only distinguish between a substitution and its exten-
sions at places where this distinction is crucial.

Lemma 3. Given a Flow program with its underlying control flow graph G =
〈N, E, ne, nx〉. For any program path π through G, the condition

Mc(π)
(
[env, b]

)
= con

(
env, Ms(π)

(
sym

(
[env, b]

)))

holds, which means that concrete and symbolic Flow program execution com-
mute for program paths.

Proof. By induction on the length of program path π. The basis step |π | = 1
denotes the case of single-edge commutation already proved with Lemma 2.

Inductive step: Suppose the lemma is true for k edges, and let path π con-
tain k + 1 edges, that is, |π | = k + 1. The commutative diagram of Figure 4.5
then illustrates the inductive step.

Starting with program context [s, b], symbolic execution proceeds along
edges e1, . . . , ek resulting in program context [sk, b ∧ p1 ∧ · · · ∧ pk]. Due to the
assumption of the inductive step we know that concrete and symbolic execution
along edges e1, . . . , ek commute, hence

[envk, b ∧ b1 ∧ · · · ∧ bk] = con(env, [sk, b ∧ p1 ∧ · · · ∧ pk]).

(In Figure 4.5 the environment env of the above equation is provided across
projection P11

.) Moreover it follows from Lemma 2 that concrete and symbolic
execution along edge ek + 1 commute. This is depicted in the lower half of
Figure 4.5: if we transform the extended environment [envk, b ∧ b1 ∧ · · · ∧ bk]
to the symbolic domain, we get the program context c′k = [s′k, b ∧ b1 ∧ · · · ∧ bk].
Symbolic execution along edge ek+1 then gives us

Ms(ek+1)
(
[s′k, b ∧ b1 ∧ · · · ∧ bk]

)
= [s′k+1, b ∧ b1 ∧ · · · ∧ bk ∧ p′k+1] = c′k+1.

68 4.4 Multi-Path Symbolic Execution

[env, b] [s, b]

[env1, b ∧ b1] [s1, b ∧ p1]

[env2, b ∧ b1 ∧ b2] [s2, b ∧ p1 ∧ p2]

[envk, b ∧ b1 ∧ · · · ∧ bk] [sk, b ∧ p1 ∧ · · · ∧ pk]

c′k = [s′k, b ∧ b1 ∧ · · · ∧ bk]

c′k+1 = [s′k+1, b ∧ b1 ∧ · · · bk ∧ p′k+1]

[envk+1, b ∧ b1 ∧ · · · ∧ bk+1] [sk+1, b ∧ p1 ∧ · · · ∧ pk+1]

sym

Ms(e1)

Ms(e2)

Mc(e1)

Mc(e2)
P11

con

sym

Mc(ek+1)

P12

Ms(ek+1) Ms(ek+1)

con σsk

con

P13

Figure 4.5: Commutation of Single-Path Concrete and Symbolic Execution

Semantics of Symbolic Program Execution 69

The resulting program context c′k+1 can be transformed back to the concrete
domain, using the environment envk provided through projection P12

. Due to
Lemma 2 the result coincides with the result we get from concrete execution
along edge ek+1.

Now let σsk
be a substitution that transforms state s into state sk, such

that σsk
(s) = sk. The substitution σsk

can then be written as

σsk
= {v1 7→ sk(v1), . . . , vj 7→ sk(vj)}, with vi

1≤i≤j

∈ Dom(sk). (4.31)

Observe from Figure 4.5 that because σsk
transforms state s to state sk, it

corresponds to the accumulated symbolic side-effects along edges e1 · · · ek. Fur-
thermore it follows from the definition of function sym in conjunction with the
fact that Dom(env) = Dom(envk) that s = s′k, and therefore σsk

(s′k) = sk.
We will now use the already established single-edge commutation along

edge ek+1 together with the inductive hypothesis to show that the program
context ck+1 = [sk+1, b ∧ p1 ∧ · · · ∧ pk+1] is indeed the result of symbolic exe-
cution for the input-context [s, b] along edges e1 · · · ek+1. We will achieve this by
relating the program contexts c′k+1 and ck+1 via substitution σsk

as indicated
in Figure 4.5.

To begin with, we note that the endomorphism-property of σsk
that is due

to Equation (4.24) together with the fact that σsk
(s′k) = sk ensures that

σsk
(σs(s

′
k)) = σs(σsk

(s)) ⇒ σsk
(s′k+1) = sk+1.

In other words, starting with the clean slate program state s′k to which we apply
the side-effect σs of edge ek+1 results in state s′k+1. Applying substitution σsk

to this state yields the same result as if we would start with the clean slate
program state s, apply substitution σsk

, and subject the result to the side-effect
associated with edge ek+1. As a consequence, the endomorphism-property of σsk

also ensures that
σsk

(p′k+1) = pk+1.

This identity is already sufficient to determine the correctness of the pathcondi-
tion b ∧ p1 ∧ · · · ∧ pk ∧ pk+1 of program context ck+1, since the correctness of
the subcondition b ∧ p1 ∧ · · · ∧ pk is already due to the inductive hypothesis.

To conclude the proof we have to show that the transformation of program
context ck+1 into the concrete domain, using the environment env provided via
the projection function P13

, coincides with the extended environment envk+1 =
[envk+1, b ∧ b1 ∧ · · · ∧ bk+1]. In that case we have

con
(
env, [sk+1, b ∧ p1 ∧ · · · ∧ pk+1]

)
= envk+1. (4.32)

To show this we will use the already established single-edge commutation along
edge ek+1 from which it follows that

con
(
envk, [s′k+1, b ∧ b1 ∧ · · · ∧ bk ∧ p′k+1]

)
= envk+1. (4.33)

To make our point we will relate the program contexts c′k+1 and ck+1 and use
the commutation of context c′k+1 and environment envk as stated in Equa-
tion (4.33) to prove the commutation of context ck+1 and environment env
stated in Equation (4.32).

70 4.4 Multi-Path Symbolic Execution

Relating contexts again boils down to relating the contained program states
and pathconditions. From the inductive hypothesis of this lemma we may as-
sume that states s′k and sk are related such that

σenvk
(s′k) = σenv(sk) (4.34)

⇔ ∀v ∈ Dom(s) : σenvk

(
s′k(v)

)
= σenv

(
sk(v)

)
(4.35)

⇔ ∀v ∈ Dom(s) : σenvk
(v) = σenv

(
sk(v)

)
(4.36)

⇔ ∀v ∈ Dom(s) : σenvk
(v) = σenv

(
σsk

(
s(v)

))
(4.37)

⇔ ∀v ∈ Dom(s) : σenvk
(v) = σenv

(
σsk

(v)
)
. (4.38)

In the above sequence of transformations the step from Equation (4.35) to Equa-
tion (4.36) is due to the fact that state s′k maps a variable v to the corresponding
initial value variable v. The step from Equation (4.36) to Equation (4.37) is due
to the properties of substitution σsk

. Finally, the step from Equation (4.37) to
Equation (4.38) is due to the fact that state s, like state s′k, maps a variable v
to the corresponding initial value variable v.

A similar relation between state sk+1 and state s′k+1 is required for the
commutation stated in Equation (4.32):

σenvk
(s′k+1) = σenv(sk+1) (4.39)

⇔ ∀v ∈ Dom(s) : σenvk

(
s′k+1(v)

)
= σenv

(
sk+1(v)

)
. (4.40)

We have already noted in the proof of Lemma 2 that Flow program execution
along a single edge e changes the value of exactly one program variable vω of a
given environment or state. If it was not for that single program variable, Equa-
tion (4.35) would already imply Equation (4.40). Take now a given derivation
tree expr ∈ Expression constituting the syntactic representation of the update-
value of the before-mentioned program variable vω. A final look at Figure 4.5
confirms that for our proof the side-effect of edge ek+1 is evaluated twice: once
within state s′k, yielding e′k(x) = exprs[[expr]](s′k) as the corresponding symbolic
expression, and once within state sk, yielding ek(x) = exprs[[expr]](sk).

As with derivation trees, we can represent those expressions as trees, with
the initial value variables and integers constituting the leaves of the tree. As
a consequence of this “leaf-ness” of initial value variables, substitution σsk

ap-
plies only to the leaves of expression trees where it replaces the initial value
variables vj with the expression (sub)trees corresponding to the respective sym-

bolic expression σsk
(vj). An example of such a transformation is depicted in

Figure 4.6.
Returning to our proof the final leap addresses the condition that must be

met by the symbolic expressions e′k(x) and ek(x) to satisfy Equation (4.40)
regarding program variable vω .

σenvk
(e′k(x)) = σenv(ek(x)) (4.41)

⇔ ∀v ∈ Dom(s) : σenvk
(v) = σenv(σsk

(v)) (4.42)

Equation (4.42) is suggested by the already mentioned “leaf-ness” of substitu-
tion σsk

, but the fact that Equation (4.41) holds when Equation (4.42) holds fol-
lows immediately by induction on the structure of symbolic expressions (cf. also

Semantics of Symbolic Program Execution 71

fm

fn 10

vs vt

σsk

fm

fn 10

σsk
(vs) σsk

(vt)

Figure 4.6: Application of Substitution σsk
to Expression fm(fn(vs, vt), 10)

Figure 4.6). The condition σenvk
(v) = σenv(σsk

(v)) required by Equation (4.42)
already follows from the inductive hypothesis of this lemma, which closes the
case for program variable vω.

Because symbolic predicates are composed of symbolic expressions, we can
close the case of the relation of predicates p′

k+1 and pk+1 by the same argument.
The fact that the correctness of the remaining subcondition b ∧ p1 ∧ · · · ∧ pk

is already due to the inductive hypothesis finally establishes the commutation-
property postulated in Equation (4.32), which also ends the proof of Lemma 3.

With the definition of substitution σsk
in Equation (4.31) we noted that due

to the transformation of state s to state sk, σsk
corresponds to the accumulated

symbolic side-effects along edges e1 · · · ek. This idea can be generalized to edge
transition functions, giving way to the following corollary of Lemma 3.

Corollary. Given a Flow program with its underlying control flow graph G =
〈N, E, ne, nx〉. For any program path π = 〈e1, e2, . . . , ek〉 through G, the pro-
gram context [sk, pk] = Ms(π)([s, p]) that results from symbolic execution along
path π is a partial function of arity Environment×B → Environment×B that
represents the function composition Ms(ek)◦Ms(ek−1)◦· · ·◦Ms(e1). This partial
function is defined for those environments env for which the standard-semantic
iterated transition function δ∗ is defined (e.g., not in case of division by zero
or other program anomalies). It coincides with the standard-semantic iterated
transition function δ∗ for those environments env for which σenv(pk) = true.

Theorem 2. Correctness of the MOP solution.
⋃

π∈Path(ne,n)

con(env, Ms(π)(sym[env, b])) =
⋃

π∈Path(ne,n)

Mc(π)([env, b]).

Proof. Immediate from Lemma 3.

Chapter 5

Symbolic Evaluation

���
�����	�

��

��
�

��

��
�

� �

� �
�

��

�� �

�� �

�� �

— staccato drum-break from Phil Collins’ “In the Air Tonight”.

The symbolic execution approach laid out in the previous chapter is capable of
computing the MOP-solution for arbitrary program points. It is however not
constructive in the sense that we have not specified a method to obtain the set
of program paths leading from the entry node to a give program point needed
by this approach. Furthermore, the delivered MOP-solution is infinite.

In this chapter we will lay the foundations for a MOP-solution that is both
constructive and finite. As a first step we set up a method to describe program
paths by means of a regular expression algebra.

5.1 Program Paths and Regular Expression Al-

gebras

It is shown in [Tar81] how program paths π can be represented as regular expres-
sions: Let Σ be a finite alphabet disjoint from {Λ, ∅, (,)}. A regular expression
is any expression built by applying the following rules:

(1a) “Λ” and “∅” are atomic regular expressions; for any a ∈ Σ, “a” is an
atomic regular expression.

(1b) If R1 and R2 are regular expressions, then (R1 + R2), (R1 ·R2), and (R1)
∗

are compound regular expressions.

In a regular expression, Λ denotes the empty string, ∅ denotes the empty
set, + denotes union, · denotes concatenation, and ∗ denotes reflexive, transitive
closure under concatenation. Thus each regular expression R over Σ defines a
set L(R) of strings over Σ as follows:

(2a) L(Λ) = {Λ}; L(∅) = ∅; L(a) = {a} for a ∈ Σ.

(2b) L(R1 + R2) = L(R1) ∪ L(R2) = {w | w ∈ L(R1) or w ∈ L(R2)};

74 5.2 Interpretation of Path Expressions

(2c) L(R1 ·R2) = L(R1) ·L(R2) = {w1w2 | w1 ∈ L(R1) and w2 ∈ L(R2)};

(2d) L(R∗) =
∞
∪

k=0
L(R)k, where L(R)0 = {Λ}, and L(R)i = L(R)i−1 ·L(R).

Two regular expressions R1 and R2 are said to be equivalent , denoted by R1 ∼R2,
if L(R1) = L(R2). A regular expression R is simple if R = ∅ or R does not
contain ∅ as a subexpression. According to the definition given in [Sal66, p. 159]
two regular expressions are identical , denoted by R1 ≡R2, if they contain the
same symbols in the same order.

Given a CFG G = 〈N, E, ne, nx〉, we can regard any path π in G as a string
over E, but not all strings over E are paths in G. A path expression P of
type (v, w) is a simple regular expression over E such that every string in L(P)
is a program path from node v to node w.

5.2 Interpretation of Path Expressions

Courtingdisastus: Ave Praetor! This man wants to spin you a yarn.

Pirate: No I don’t! I’m an honest sailor working the Massilia–Corsica crossing...

— From “Asterix in Corsica”, by R. Goscinny and A. Uderzo.

Due to the introduction of supercontexts in Equation (4.21) we have to ex-
tend domain and codomain of the function class F introduced in Equation (4.16)
from contexts to supercontexts, yielding a new function class Fsc:

Fsc ⊆ {fsc : SC → SC}. (5.1)

We achieve this extension with the help of the wrapping operator wrap which
constructs a function fsc ∈ Fsc of arity SC → SC from a function fc ∈ F
of arity C → C in passing each context of the supercontext-argument of fsc

through fc :

wrap : (C → C) → (SC → SC)

wrap
(
fc

)
(sc) : : = fsc

([
∞⋃

i=0

[si, pi]

])
=

[
∞⋃

i=0

fc

(
[si, pi]

)
]

.
(5.2)

The function class Fsc has the following properties, which are easily verified
from the definition of the wrapping operator, the properties of supercontexts
(cf. Section 4.4.1), and the properties of the function class F on which Fsc is
based upon.

F1) Fsc contains the identity function ι.

F2) Fsc is closed under ∪: ∀f, g ∈ Fsc : (f ∪ g)(x) = f(x) ∪ g(x).

F3) Fsc is closed under composition: ∀f, g ∈ Fsc : f ◦ g ∈ Fsc.

F4) Fsc is closed under iterated composition:

f∗(x) =
[⋃

i≥0

f i(x)
]
,

Symbolic Evaluation 75

where f0 = ι and f i = f i−1 ◦ f . Since 〈SC,∪〉 is closed under the
supercontext union operation ∪ (cf. Section 4.4.1), the union over f i(x) is
again a supercontext.

F5) Continuity of f ∈ Fsc across supercontext union ∪:

∀f ∈ Fsc and X ⊆ SC : f(∪X) =

[
⋃

x∈sc

f(x)

]
.

Based on the edge transition function M (cf. Section 4.2.3) for the function
class F we define a new edge transition function Msc that encapsulates the
wrapping operator inside:

Msc : E → Fsc

Msc(e) : : = wrap
(
M(e)

)
.

(5.3)

We can compose edge transition functions from function class Fsc along program
paths in the same way as already shown for function class F in Equation (4.18).
In a similar way we use the shorthand notation fe for Msc(e), and fπ for Msc(π).

Let P 6= ∅ be a path expression of type (v, w). For all x ∈ SC, we define a
mapping φ as follows.

M1) φ(Λ) = ι,

M2) φ(e) = Msc(e) = fe,

M3) φ(P1 + P2) = φ(P1) ∪ φ(P2),

M4) φ(P1 ·P2) = φ(P2) ◦ φ(P1),

M5) φ(P ∗
1) = φ(P1)

∗.

Lemma 4. Let P 6= ∅ be a path expression of type (v, w). Then for all x ∈ SC,

φ(P)(x) =
[⋃

π∈L(P)

fπ(x)
]
.

Proof. By induction on the number of operation symbols in P . The lemma is
immediate if P is atomic:

φ(P)(x) = φ(e)(x) = fe(x).

Inductive hypothesis H: Suppose the lemma is true for path expressions con-
taining fewer than k operation symbols, and let P contain k operation symbols.
We distinguish three cases.

76 5.2 Interpretation of Path Expressions

Case 1: P = P1 +P2. Then

φ(P)(x) = φ(P1)(x) ∪ φ(P2)(x) by (F2) and (M3)

=
[⋃

π∈L(P1)

fπ(x)
]
∪
[⋃

π∈L(P2)

fπ(x)
]

by H

=
[⋃

π∈L(P1)∪L(P2)

fπ(x)
]

by (P1) on p. 57

=
[⋃

π∈L(P1 + P2)

fπ(x)
]

by (2b)

=
[⋃

π∈L(P)

fπ(x)
]

by P = P1 + P2

Case 2: P = P1 ·P2. Then

φ(P)(x) = φ(P2) ◦ φ(P1)(x) by (M4)

= φ(P2)
(
φ(P1)(x)

)

= φ(P2)
([⋃

π1∈L(P1)

fπ1
(x)
])

by H

=
[⋃

π1∈L(P1)

φ(P2)
(
fπ1

(x)
)]

by continuity (F5)

=
[⋃

π1∈L(P1)

[⋃

π2∈L(P2)

fπ1π2
(x)
]]

(cartesian product)

=
[⋃

π1∈L(P1)∧π2∈L(P2)

fπ1π2
(x)
]

=
[⋃

π∈L(P1 ·P2)

fπ(x)
]

by (2c)

=
[⋃

π∈L(P)

fπ(x)
]

by P = P1 ·P2

Case 3: As in case 2 we can show that if P1 has fewer than k operation
symbols, then

φ(P1)
i(x) =

[⋃

π∈L(P1)i

fπ(x)
]

(5.4)

Symbolic Evaluation 77

for any i ≥ 0. Suppose P = P ∗
1 . Then

φ(P)(x) = φ(P ∗
1)(x)

= φ(P1)
∗(x) by (M5)

=
[⋃

π∈L(P1)i,
i≥0

fπ(x)
]

by Equation (5.4)

=
[⋃

π∈L(P∗
1
)

fπ(x)
]

by (2d)

5.3 The Meet Over All Paths Solution Revised

We have already introduced the meet over all paths solution for symbolic exe-
cution in Section 4.4.2. It is based on the set of program paths π ∈ Path(ne, n)
from the entry node ne to a given node n of a control flow graph. In Section 4.4.2
we have left the origin of those program paths open, but with the introduction
of path expressions we have now a formalism at hand that allows us to describe
the set of program paths between two nodes of a control flow graph.

Moreover, as we will see in Section 6.2, there even exist data flow algorithms
that are capable of calculating those path expressions.

Hence we are ready to introduce the supercontext union over all paths solu-
tion (MOP) in the following theorem.

Theorem 3. For any node n let P (ne, n) be a path expression representing all
paths from ne to n. Then

mop(n) = φ
(
P (ne, n)

)
(sc0), (5.5)

where sc0 denotes the initial supercontext valid at entry node ne.

Proof. Let P 6= ∅ be a path expression of type (ne, n). The proof follows then
immediately from Lemma 4.

5.4 Loops, Induction Variables, and Systems of
Recurrences

In [ASU86, p. 643] a program variable v ∈ V is called an induction variable
of a loop L if every time the variable v changes values, it is incremented or
decremented by some constant. The fact that the sequence of values a vari-
able receives during execution of a loop is usually more complex resulted in
more general definitions of classes of variables (cf. e.g. [Hag95], with [GSW95]
containing a comprehensive classification and further references).

For the purpose of the following sections a general view is sufficient where
we speak of an induction variable v ∈ V of a loop L if v changes values within L.

78 5.4 Loops, Induction Variables, and Systems of Recurrences

ne

n1 n2

nx

e1 : true ⇒ b := b+1
e3 : true ⇒ j := j+b

e4 : j > m
e2 : j ≤ m ⇒ d := 2∗d

Figure 5.1: Example Loop

As an example we consider the control flow graph∗ depicted in Figure 5.1. It
contains the loop L which consists of the edges e2 and e3. From the side-effects
associated with those edges it follows that program variables f and i are the
induction variables of L.

Assume that we want to compute the MOP solution for node n1 which is
due to the path expression e1 ·(e2 · e3)

∗ of type (ne, n1). From Theorem 3 it
follows that

mop(n1) = φ
(
e1 ·(e2 · e3)

∗
)
(sc0),

where sc0 denotes the initial supercontext valid at entry node ne. Working
the mapping φ further down the line involves the computation of φ(e2 · e3)

∗.
Let f = Msc(e3) ◦ Msc(e2) be the accumulated effect of one iteration of the
loop body, then, due to the closure property regarding iterated composition
(cf. Property (F4) on p. 74),

f∗(sc0) =
[⋃

i≥0

f i(sc0)
]

=
[⋃

i≥0

f ◦ · · · ◦ f︸ ︷︷ ︸
i times

(sc0)
]
.

The interpretation of the above equation with respect to the control flow graph
of Figure 5.1 is such that, provided we start symbolic execution at node n1 with
supercontext sc0, f i(sc0) represents the result after i iterations of loop L. We
illustrate this with the one-element supercontext

sc0 = c =
[
{(b, b), (d, d), (j, j), (m, m)}, true

]
,

where, as a notational convenience, we depict the graph of the state of c rather
than the state itself. It is instructive to consider f i(c) for a few values of i.

c0 = f0(c) =
[
{(b, b), (d, d), (j, j), (m, m)}, true

]
= ι(c) = c (5.6)

c1 = f1(c) =
[
{(b, b), (d, 2 · d), (j, j + b), (m, m)}, j ≤ m

]
(5.7)

c2 = f2(c) =
[
{(b, b), (d, 4 · d), (j, j + 2 · b), (m, m)}, j ≤ m ∧ j + b ≤ m

]
(5.8)

...
...

...

ci = f i(c) =
[
{(b, b), (d, 2i · d), (j, j + i · b), (m, m)}, true

∧

1≤j≤i

p(j − 1)
]

(5.9)

∗This example originally appeared in [Sch01].

Symbolic Evaluation 79

In this way program context c0 of Equation (5.6) represents the result after zero
iterations of loop L. Likewise, c1 of Equation (5.7) and c2 of Equation (5.8)
denote the program contexts after the first and the second iteration respectively.
Given program context c1, the branch predicate j ≤ m of edge e2 evaluates
to j + b ≤ m, which is manifested in the pathcondition of program context c2.

Investigation into this series of loop iterations allows us to set up a “generic”
program context that represents the result after i iterations of loop L. It is based
on the observation that the values a given induction variable assumes during
subsequent iterations constitutes a sequence of terms that can be expressed
as a recurrence relation. Moreover, since the variable values of the current
iteration i are the sole basis for the values of the subsequent iteration i + 1,
the definition of a term a(i + 1) of such a sequence is restricted to induction
variable sequence terms of index i and precludes terms of index k < i. The
only exception to this rule is the initial term which corresponds to the value of
the respective induction variable upon entry of the loop. Since the initial term
satisfies the sequence before the recurrence relation takes effect, it is called the
initial condition or boundary condition of the recurrence relation.

Due to the before-mentioned restriction one iteration of the loop body of L,
represented as a function fsc ∈ Fsc, completely defines the recurrence relations
of the induction variables contained in L. In order to derive this system of
recurrence relations from L, we construct an initial program context

c0 = [s0, true], (5.10)

where s0 is a clean slate program state, and compute

sc = f1
sc

(
c0

)
. (5.11)

The set IV of induction variables is then characterized as

IV =
⋃

c∈sc

{vi ∈ V | st(c)(vi) 6= vi}. (5.12)

For each induction variable v ∈ IV the supercontext sc defines the correspond-
ing recurrence relation under the boundary condition

v(0) = v, (5.13)

which is due to s0 of Equation (5.10) being a clean slate program state. Because
of the endomorphism property stated in Equation (4.24) this boundary condition
is general in the sense that we can substitute arbitrary symbolic expressions
for v.

Returning to our example we note that the initial program context of Equa-
tion (5.10) corresponds to program context c0 of Equation (5.6), and that the
supercontext sc derived from Equation (5.11) is represented by the program
context c1 of Equation (5.7). The fact that there is only one program path
through the loop body of our example is the reason for sc being just a one-
element supercontext. From Equation (5.12) and context c1 of Equation (5.7)
we derive the set of induction variables for loop L, namely {d, j}. From the sym-
bolic expressions computed for context c1 and the boundary condition stated in
Equation (5.13) we can set up the recurrence relations for the variables in IV .

d(i + 1) = 2 · d(i), for i ≥ 0 j(i + 1) = j(i) + b, for i ≥ 0

d(0) = d j(0) = j

80 5.4 Loops, Induction Variables, and Systems of Recurrences

The closed forms for the ith terms of the above recurrence relations are

d(i) = 2i · d, for i ≥ 0,

j(i) = j + i · b, for i ≥ 0.
(5.14)

Substituting these closed forms for d and j in the clean slate state of Equa-
tion (5.6) gives us the state of the “generic” program context ci depicted in
Equation (5.9).

A note is due to the pathcondition of ci: after i iterations the pathcondition
of the program path e2 · e3 has been evaluated i times, and the pathcondition

true
∧

1≤j≤i

p(j − 1) (5.15)

of the resulting program context ci is the conjunction of the initial pathcondition
(true) and the i branch-predicates resulting from the i iterations along program
path e2 · e3 (cf. Table 4.4). In order to have a compact notation for a pathcondi-
tion consisting of i evaluations of a single branch-predicate, we write p(j−1) to
denote the jth evaluation of branch-predicate p, which happens in terms of the
induction variable values of iteration j − 1 of program context cj−1 (cf. Equa-
tions (5.6), (5.7), and (5.8)).

Together with the recurrence relations and their boundary conditions the re-
currence condition symbolically determines the number of iterations of a loop L.
In our example the recurrence condition is given by

j(i) ≤ m,

and we can determine the number of iterations of the loop which requires us to
find a z such that

z = min
(
{i | j(i) > m}

)

= min
(
{i | j + i · b > m}

)
.

Due to the integer arithmetic of the domain SymExpr of symbolic expres-
sions we are only interested in integer solutions of the above problem. Hence the
determination of the upper bound of a loop involves the solution of a Diophan-
tine equation (cf. [Hil00]). Although this problem is unsolvable in the general
case (cf. [Dav82]), there exist several solution methods for distinct classes of
Diophantine equations (cf. e.g., [Sma96]).

A final note is due to the determination of closed forms for recurrence rela-
tions. The literature contains several classifications for recurrence relations as
well as solution procedures, cf. e.g., [Lue80, GKP94, GK82, CLRS01, BZZ03].

Recent research in the area of program optimization and parallelization fo-
cused, among other topics, on the recognition and classification of induction
variables and their associated closed forms (cf. e.g. [GSW95, Hag95]). Another
recent approach, which is also capable of handling conditional recurrence rela-
tions, is described in [vE00, vE01, vEBS+04]. Section 7.5 in the related work
gives an overview of recent developments in this area.

As it is pointed out in [Bli02, p. 30], the determination of closed forms for
recurrence relations is in the general case undecidable. If we cannot find a closed

Symbolic Evaluation 81

form for a recurrence relation, we introduce a new value symbol for the unre-
solved variable (the variable for which no closed form can be determined). Value
symbols of unresolved variables are linked to the associated recurrence. Eval-
uation of unresolved variables has to proceed based on the new value symbols
instead of the recurrences. This method is due to [FS03].

Alternatively analysis precision can be degraded by resorting to a simpler
semantics† that will derive a weaker (yet computable) result for the unresolved
variable. For instance, [WCHP01] and [Fah98] present algorithms to determine
the monotonic behavior of unresolved variables. Another method operating on
imprecise semantics is outlined in the related work in Section 7.2.

The ultimate goal with such a degradation of analysis precision is of course
to stay as precise as possible, which is supported by the fact that with symbolic
analysis approximations can be introduced on a per variable basis. It is a
topic for further investigations to what extend several approximations can be
combined to achieve a stronger result (e.g., the monotonic behavior of a variable
together with another abstraction of its value towards < 0, 0, or > 0.

5.5 Symbolic Evaluation on the Form Level

Said a young man named A. Grothendieck‡:

In Geometry I’m rather weak.

I’m no Altshiller-Court§;

It’s just not my forte,

So I’d best make it more Algébrique.

— Limerick from [American Mathematical Monthly 73], commenting

on the increasing importance of algebra for the mathematical sciences.

5.5.1 Closure Contexts

In Section 4.4.1 we have introduced the supercontext as a means to express the
MOP solution for symbolic analysis. We have chosen a set-based approach where
a supercontext is a set of program contexts. Given a path expression P (ne, n)
of type (ne, n), we know from Theorem 3 (p. 77) that

mop(n) = φ
(
P (ne, n)

)
(c0) =

[
∞⋃

k=0

[sk, pk]

]
, (5.16)

where c0 denotes the initial program context valid at entry node ne. Every
program path of the path expression P (ne, n) contributes one program con-
text [sk, pk] to the solution of Equation (5.16). Strictly speaking, this so-
lution becomes infinite only if the Flow graph corresponding to path expres-
sion P (ne, n) contains cycles (this has been pointed out in Section 4.4). In this
case P (ne, n) contains at least one ∗ operator.

While Equation (5.16) is an exact characterization of the MOP solution at
node n, it is undecidable due to its infiniteness-property which in turn prohibits

†Simpler semantics are not considered in this thesis.
‡Alexander Grothendieck, born 1928 in Berlin, working in the area of algebraic geometry.
§Nathan Altshiller Court (1881–1968), geometer.

82 5.5 Symbolic Evaluation on the Form Level

its use on the form level. To be able to use supercontexts on the form level, we
have to find a finite characterization of a control flow graph cycle, that is, the
argument of the ∗ operator of path expressions, in terms of the infinitely many
program contexts it adds to the solution of Equation (5.16).

We will now introduce a finite representation of the infinitely many program
contexts that are due to a cycle. This representation is an extension of the con-
cept of program contexts, and we call this finite representation a closure context .
With the help of closure contexts the solution of Equation (5.16) becomes finite,
expressible by a finite supercontext.

For the following discussion we reserve the term loop body for the control
flow graph portion corresponding to the argument of the ∗ operator of path
expressions.

Definition 5.1 In analogy to the set V of program variables (cf. Definition 2.1),
we define the set L, V ∩ L = ∅, of loop index variables. Given the n-bounded
finite index-set IS = {x | x ≤ n} ⊂ N and a total function Idl : IS → L

that is one-to-one and onto, we write li, with i ∈ IS, to denote element Idl(i)
of L. If the meaning is clear from context, we also use unique named constants
that are functions of arity → L. These are denoted by lowercase letters, e.g.,
l, m, n. Conceptionally a loop index variable can be envisioned as an artificial
program variable that is assigned the value 0 upon entry to the loop body.
After each iteration of the loop body, its value is increased by one. As an

1 b := b + 1;
2 while j <= m loop
3 d := 2∗d;
4 j := j+b;
5 end loop;

1 b := b + 1;
2 l := 0;
3 while j <= m loop
4 d := 2∗d;
5 j := j+b;
6 l := l+1;
7 end loop;

Figure 5.2: Implicit and Explicit Loop Index Variable

example, Figure 5.2 contains the textual representation of our running example
from Section 5.4, together with a “conceptional” version with an explicit loop
index variable (cf. line 2 and 6). Associated with a loop index variable li is a
(symbolic) upper bound, denoted by li,ω (or just lω for a named constant l).
This upper bound corresponds to the number of loop iterations. In Section 5.4
we have shown how the number of loop iterations can be computed from the
recurrence condition of the loop.

We have also shown in Section 5.4 how the sequence of values that an in-
duction variable assumes during subsequent loop iterations can be described
by recurrence relations. An extension of the set of symbolic expressions of the
domain SymExpr allows us to describe recurrence relations, closed forms, and
recurrence conditions within SymExpr.

Definition 5.2 The inductive definition of the set of symbolic expressions of
the domain SymExpr (cf. Definition 4.3) is extended by

(v) L ⊂ SymExpr (i.e., loop index variables are symbolic expressions),

Symbolic Evaluation 83

(vi) for all vi ∈ V, and lj ∈ L, vi(0) ∈ SymExpr, vi(lj) ∈ SymExpr, vi(lj +
1) ∈ SymExpr, and vi(lj − 1) ∈ SymExpr (i.e., dereferencing the value
of a program variable to specify a recurrence relation yields a symbolic
expression).

Definition 5.3 A range expression is a symbolic expression of the form

0 ≤ lj ≤ lj,ω,

with loop index variable lj ∈ L, and lj,ω being the upper bound of lj . Specifically,
an upper bound of lj,ω = 0 implies zero loop iterations, as can be inferred from
Figure 5.2¶. We extend the set of symbolic predicates of the domain SymPred
(cf. Definition 4.4) by the following rule to include range expressions:

(iv) for all lj ∈ L, 0 ≤ lj ≤ lj,ω ⊂ SymPred (i.e., range expressions constitute
symbolic predicates).

As already described in Section 5.4, a recurrence describing an induction
variable consists of the boundary condition, the recurrence relation, and the
recurrence condition. Alternatively, a recurrence can be characterized by a
closed form expression and a recurrence condition. For the present discussion
this level of formalization of a recurrence is sufficient.

Definition 5.4 We denote a system of recurrences‖ over loop index variable l

by rs(l). It is an element of RS, the set of possible recurrence systems. We can
construct a set rss of k recurrence systems by

k⋃

s=0

rs
(
Idl(s)

)
.

The loop index variables of the above set are unique, which is a crucial property
in order to avoid interferences across recurrence systems. We base the remainder
of this work on the assumption that loop index variables of recurrence system
sets are always unique in the above way. This is in fact no restriction since
we can always replace a loop index variable li in a recurrence system rs(li)
by another loop index variable lj , thereby converting rs(li) into rs(lj) without
changing the underlying algebraic properties of the recurrence system at hand.

Recurrence system sets can be nested, and the set of all recurrence system
sets is denoted by RSS. For our purpose it is beneficial to impose a total order ≤
on the elements of a recurrence system set in order to obtain the semantics of a
list. In particular, we make use of the common Lisp-like functions

• Append : RSS1 ×RSS2 → RSS to append an element (from RSS1) to a
list (from RSS2),

• First : RSS → RSS, to retrieve the first element of a list (our intended
use prevents us from applying this operation to a non-nested recurrence
system set), and

¶This contrasts the notion of range expressions in contemporary programming languages,
where range L..U denotes the interval [L, U] (cf. also [Ada95, Section 3.5(4)]).

‖Or recurrence system, for short.

84 5.5 Symbolic Evaluation on the Form Level

• Rest : RSS → RSS to retrieve the rest (everything but the first element)
from a list.

We have now everything in place to extend the notion of program contexts
to closure contexts.

Definition 5.5 A closure context c is an element of the product C = S ×
SymPred × RSS, denoted by [s, p, rss]. For a clean slate closure context the
state s is a clean slate program state, p is a true pathcondition, and rss is the
empty set. A program context c = [s, p] can be considered a special case of
a closure context c = [s, p, rss] with rss = ∅. A supercontext consisting of a
finite number of closure contexts is denoted by sc, for the set of all such finite
supercontexts we write SC.

Definition 5.6 Let P 6= ∅ be a path expression of type (v, w). For all sc ∈ SC,
we define a mapping θ by

A1) θ(Λ) = ι,

A2) θ(e) = Msc(e) = fe,

A3) θ(P1 + P2) = θ(P1) ∪ θ(P2),

A4) θ(P1 ·P2) = θ(P2)
�

θ(P1),

A5) θ(P ∗
1) = θ(P1)

�
.

This mapping differs from the mapping used with Lemma 4 from Section 5.2
in two operators, namely

�
and

�
. We proceed with the description of these

operators.

Definition 5.7 Let f = θ(P) be a functional description of the accumulated
side-effect of one iteration of a given loop body represented by the path expres-
sion P . For a given closure context cin = [sin, pin, rssin] we define the properties
of the closure context cout = [sout, pout, rssout] resulting from the application
of f

�
to cin, that is,

cout = f
�

(cin). (5.17)

The alert reader will have noticed that the intended definition of the operator
�

and the mapping θ have a mutual dependency that we can however overcome in
participating loop nests and starting with the innermost loop first (the inner-
most loop body lacks the occurrence of a

�
operator). In this way the mutual

dependency with this definition is transformed into a dependency of
�

on θ.
We have already pointed out in Section 5.4 that one iteration of the loop

body determines the system of recurrences that is due to the induction variables
of the loop body. In analogy to Equations (5.10) and (5.11) we start with a
clean slate closure context c0 = [s0, p0, rss0] and compute the result of symbolic
evaluation of one iteration of the loop body, denoted by c1.

c1 = [s1, p1, rss1] = f(c0). (5.18)

A substitution σs,e for a given state s and an expression e ∈ SymExpr is
defined such that

σs,l = {v1 7→ v1(e), . . . , vj 7→ vj(e)}, with vi
1≤i≤j

∈ Dom(s). (5.19)

Symbolic Evaluation 85

What follows is the description of cout in terms of its state sout, its pathcon-
dition pout, and its recurrence system set rssout. Nested loops deserve treatment
in their own respect.

State: The state sout is computed from sin by replacing the symbolic expres-
sions that describe the values of the variables vi by the value of the recurrence
relation for vi over loop index variable l.

∀vi ∈ Dom(sin) : sout : : = sin[vi 7→ vi(l)] (5.20)

The graph of state sout is therefore of the form {(v1, v1(l), . . . , (vn, vn(l)}.

Pathcondition: The pathcondition pout of closure context cout has the form

pin ∧ (0 ≤ l ≤ lω) ∧
l∧

l′=1

p(l′ − 1). (5.21)

Therein the first term constitutes the pathcondition of closure context cin. The
second term is a range expression according to Definition 5.3. It defines the value
of the loop index variable l to be in the interval [0, lω]. The third term denotes
the pathcondition accumulated during l iterations of the loop (cf. also Equa-
tion (5.15)). It is actually a conjunction of l instances of the pathcondition p1

from Equation (5.18), where the l
′th instance corresponds to σsin,(l′−1)(p1).

An example will illustrate this. Assume the pathcondition p1 = j ≤ m from
Figure 5.2. After l > 0 iterations the third term in the above equation will read

j(0) ≤ m(0) ∧ j(1) ≤ m(1) ∧ · · · ∧ j(l − 1) ≤ m(l − 1)

=

l∧

l′=1

(
j(l′ − 1) ≤ m(l′ − 1)

)
.

The reader is invited to assure him that the third term in Equation (5.21)
really corresponds to the pathcondition after l > 0 loop iterations. The case of
zero iterations is covered by the fact that the minimum value of l

′ is 1, which
cancels the third term in this case.

Recurrence System: For the induction variables of the set IV (cf. Equa-
tion 5.12) we set up a recurrence system over the loop index variable l, from
which we construct a one-element recurrence system set rss as follows.

rss =

∀vi ∈ IV :

{
vi(0) : : = sin(vi)

vi(l + 1) : : =σsin,l

(
s1(vi)

) (1)

rc : : =σsin,l(p1) (2)

(li,ω , e) (3)

(5.22)

Part (1) denotes the recurrence for induction variable vi. The boundary value of
a variable upon entry of the loop body is the variable’s value from the “incom-
ing” context (cin in our case). We derive the recurrence relation for variable vi as
follows. State s1 basically contains the variable bindings after the first iteration
of the loop body. In replacing all occurrences of the initial value variables vi ∈ V

86 5.5 Symbolic Evaluation on the Form Level

by their recursive counterpart vi(l), we obtain the bindings after iteration l +1,
denoted by vi(l + 1). If we can derive a closed form for the recurrence relation
of variable vi, part (1) consists only of a symbolic closed form expression over
loop index variable l.

Part (2) holds the recurrence condition rc for this recurrence system. The
condition is basically a symbolic predicate obtained by replacing the initial
value variables in the pathcondition p1 (cf. Equation 5.18) by their recursive
counterparts.

If we can derive the upper bound for the number of iterations of the loop, we
store a symbolic expression describing this bound (lω), as indicated in part (3).

Having set up the recurrence system set rss according to Equation (5.22),
the recurrence system set rssout of closure context cout is derived from rssin by
appending rss to it.

rssout : : = Append(rss, rssin) (5.23)

Nested Loops: Nested loops deserve treatment in their own respect. The
requirement to nest recurrence system sets is in fact due to the possibility of
nested loops. For a given path expression P the contained loops and their
nesting relation are uniquely determined.

For the following discussion we assume a loop L1 with a loop L2 nested
within L1. Furthermore we assign the loop index variable l1 to loop L1, and l2

to loop L2. To distinguish between loops, we subscript terms applying to both
loops with the proper loop index variable.

During the computation of the result of symbolic evaluation of one iteration
of the loop body of L1, the nested loop L2 is analyzed as well. From the
definition of the

�
operator it follows that the set of recurrence systems rss1l1

computed in this step (cf. Equation (5.18)) will contain the one-element set of
recurrence systems rssl2 (in the sense of Equation (5.22)) for loop L2. This
recurrence system set is an integral part of the description of L2 that has to be
kept with L1.

However, the closure context c1l1
has been computed from the clean slate

closure context c0l1
, which means that the boundary conditions of the recur-

rences in rssl2 are in terms of the initial value variables vi ∈ V. In order to
“install” L2 in the context of L1, these initial value variables have to be rewrit-
ten. To be specific, each occurrence of vi ∈ V in the boundary conditions of
the recurrences in rssl2 has to be rewritten by vi(l1). We can safely pass this
task to substitution σs,e from Equation (5.19), since the boundary conditions
are the only parts in rssl2 that contain initial value variables (this is in fact a
direct consequence of Equation (5.22)).

Equation (5.24) describes the rewriting step in detail.

rsstmp : : =Append
(
σsin,l1

(
First(rss1l1)

)
, Rest(rss1l1)

)
(5.24)

We extract the first element from rss1l1 and apply the substitution σsin,l1 . The
result of the substitution is then appended to the tail of rss1l1 . The resulting
set of recurrence systems rsstmp has to be appended to the set of recurrence
systems for loop L1, which causes us to extend Equation (5.23) to

rssout : : =Append
(
Append

(
rsstmp, rss

)
, rssin

)
. (5.25)

Symbolic Evaluation 87

This concludes Definition 5.7. Before we proceed with the description of the
�

operator, we intertwine a short example. Lacking the
�

operator yet, we will
resort to ordinary function composition (◦) instead.

Example 5.1 We have familiarized with the example from Figure 5.1 in the
course of Section 5.4. The time has finally come to introduce this example to
the form level. Still we want to compute the MOP solution for node n1 which
is due to the path expression e1 ·(e2 · e3)

∗ of type (ne, n1). Using the mapping θ
on this path expression, we obtain

θ
(
e1 ·(e2 · e3)

∗
)

= θ(e1) ◦ θ(e2 · e3)
∗ (5.26)

= θ(e1) ◦ θ(e2 · e3)
�

(5.27)

= θ(e1) ◦
(
θ(e2) ◦ θ(e3)

) �

(5.28)

= fe1
◦ (fe2

◦ fe3
)

�

(5.29)

= (fe2
◦ fe3

)
�

(fe1
) (5.30)

Our initial clean slate closure context is

c = [s, p, rss] =
[
{(b, b), (d, d), (j, j), (m, m)}, true , ∅

]
,

and we are going to compute

(fe2
◦ fe3

)
�

(fe1
)(c).

From the first step we obtain the closure context cin.

cin = fe1
(c) =

[
{(b, b + 1), (d, d), (j, j), (m, m)}, true , ∅

]

Therefore our computation reduces to the calculation of

(fe2
◦ fe3

)
�

(cin),

which is precisely the situation described in Equation (5.17). We will now
proceed along the lines of Definition 5.7. Equation (5.18) tells us to use a clean
slate closure context c0 and compute the result of symbolic evaluation of one
iteration of the loop body. We can reuse the clean slate closure context c by
defining c0 : : = c and proceed with the calculation of c1 (cf. also Equation (5.7)).

c1 = (fe2
◦ fe3

)(c0) =
[
{(b, b), (d, 2 · d), (j, j + b), (m, m)}, j ≤ m, ∅

]

The closure context cout resulting from the computation of

cout = (fe2
◦ fe3

)
�

(cin)

can then be described in terms of its state sout, its pathcondition pout, and its
recurrence system set rssout. The loop index variable for this loop is l.

State: The state of cout is obtained from the state of cin by replacing the
symbolic expressions that describe the values of the variables vi by the value of
the recurrence relation for vi over loop index variable l. Hence we get

{(b, b), (d, d(l)), (j, j(l)), (m, m)} (5.31)

for sout.

88 5.5 Symbolic Evaluation on the Form Level

Pathcondition: According to Equation (5.21) we get the following pathcon-
dition for cout.

true ∧ (0 ≤ l ≤ lω) ∧
l∧

l′=1

(
j(l′ − 1) ≤ m

)
(5.32)

Recurrence System: From closure context c1 we derive the set of induction
variables, namely IV = {d, j}. According to Equation (5.22) we arrive at the
one-element recurrence system set rss.

rss =

{
d(0) : : = sin(d)

d(l + 1) : : =σsin,l

(
s1(d)

) (1a)

{
j(0) : : = sin(j)

j(l + 1) : : =σsin,l

(
s1(j)

) (1b)

rc : : =σsin,l(p1) (2)

(lω , e) (3)

Since sin denotes the state of cin, and s1 the state of c1, we can apply the
insertions due to the σ-substitutions to get

rss =

{
d(0) : : = d

d(l + 1) : : =2 · d(l)
(1a)

{
j(0) : : = j

j(l + 1) : : = j(l) + b + 1
(1b)

rc : : = j(l) ≤ m (2)

(lω, e) (3)

.

Inserting the closed forms for the induction variables from Equation (5.14), we
finally arrive at the recurrence system set

rss =

d(l) : : = 2l · d (1a)

j(l) : : = j + l ·(b + 1) (1b)

rc : : = j(l) ≤ m (2)

(lω, e) (3)

. (5.33)

It is now time to determine the upper bound of loop index variable l. We are
interested in an integer-valued expression e for lω, for which the following holds.

e = min{l | ¬ rc}

= min{l | j(l) > m}

= min{l | j + l ·(b + 1) > m}

= min{l | l >
m − j

b + 1
}

=

⌈
m − j + 1

b + 1

⌉

(5.34)

Symbolic Evaluation 89

Combining the results from Equations (5.31)–(5.34) gives us

[
{(b, b), (d, d(l)), (j, j(l)),(m, m)},

(0 ≤ l ≤ lω) ∧
l∧

l′=1

(
j(l′ − 1) ≤ m

)
, {rss}

] (5.35)

as the solution for cout. Due to the absence of nested loops the recurrence
system set {rss} has been derived from rss using Equation (5.23).

The closure context depicted in Equation (5.35) represents the result of
symbolic analysis for node n1 (cf. Figure 5.1) as specified by the mapping θ
from Definition 5.6. It is a finite representation of symbolic execution along the
infinitely many program paths in L(e1 ·(e2 · e3)

∗). This claim is justified by the
fact that the loop index variable l of cout assumes all values in the interval [0, lω].

There is a subtle yet important difference between the original solution from
the object level (the object level solution has been restated in Equation (5.16)),
and the form level solution developed in this section. In the presence of a cycle
the first is an infinite set of program contexts, while the latter, due to the upper
bound lω, describes a finite set of program contexts (except for endless loops∗∗,
where lω = ∞). This discrepancy is rooted in the fact that the MOP-solution on
the object level corresponds to an extensive enumeration of the program paths
in L(P), while our solution based on a closure context exploits the boundedness
of a loop to discard program paths that induce more than lω loop iterations.

Semantically the two solutions are of course equivalent; Discarding a pro-
gram path that induces more than lω loop iterations means to discard a pro-
gram path that generates a false pathcondition (it becomes false with itera-
tion lω + 1). Such a program path is artificial in the sense that it cannot result
from a standard-semantic program execution, because such an execution never
takes an edge with a branch predicate evaluating to false (this attribute of the
Flow language has been stated in Equation (3.3)).

Finally, if we set lω = ∞ (as with endless loops), then the solution described
by the finite structure cout is identical to the MOP-solution on the object level.

A note is now due to the relation of program contexts, closure contexts, and
supercontexts. As we have seen, a closure context is an extended program con-
text that represents the solution of symbolic execution along the infinitely many
program paths due to a loop cycle. However, a closure context, like his elderly
brother (the program context), cannot describe the result of symbolic execution
along several program paths that are not part of the same loop cycle (e.g., a
closure context is sufficient for the path expression e∗, but not for (e1 + e2)). To
handle the latter, we still need supercontexts. However, due to the properties
of closure contexts, supercontexts consist of a finite number of closure contexts.

In this way we have already reached the goal set for this section. We conclude
this section with a few simplifications that can be applied to closure contexts.

Closure Context Simplifications

Assume that in the above example we want to compute the MOP-solution at
node nx. At first sight this seems to be almost a trivial step, once we have the

∗∗Endless loops have been described towards the end of Section 3.5.3.

90 5.5 Symbolic Evaluation on the Form Level

solution for node n1 at hand, as it only adds the evaluated branch predicate j >
m to the pathcondition of cout. The resulting pathconditon is depicted in the
following equation.

(0 ≤ l ≤ lω) ∧
l∧

l′=1

(
j(l′ − 1) ≤ m

)
∧ j(l) > m

The nontrivial fact about this pathcondition is that there is only one value
for the loop index variable, namely l = lω, that fulfills it! Conversely, once
execution leaves the loop (e2 · e3)

∗, the MOP-solution of this example collapses
to a single program context. Although there are infinitely many program paths
from node ne to node nx in terms of the associated path expression, the program
semantics require to drop out of the loop iff lω is reached, not before, and not
later on.

Using the fact that l = lω, the above pathcondition can be rewritten to

lω∧

l′=1

(
j(l′ − 1) ≤ m

)
∧ j(lω) > m,

and the closure context for node nx, based on the recurrence system set rss
from Equation (5.33), is
[
{(b, b), (d, d(lω)), (j, j(lω)),(m, m)},

lω∧

l′=1

(
j(l′ − 1) ≤ m

)
∧ j(lω) > m, {rss}

] (5.36)

From Equation (5.34) we know the symbolic expression for lω, which we can use
to calculate d(lω) and j(lω). Inserting the results in the above closure context
finally gives us

[
{(b, b),

(
d, d · 2

⌈
m−j+1

b+1

⌉)
,

(
j, j + (b + 1) ·

⌈
m − j + 1

b + 1

⌉)
, (m, m)},

lω∧

l′=1

(
j(l′ − 1) ≤ m

)
∧

(
j + (b + 1) ·

⌈
m − j + 1

b + 1

⌉)
> m, {rss}

]
.

(5.37)

If we are only interested in the accumulated side-effect arising from symbolic
execution of the loop, and not in the loop internals, we might even discard the
recurrence system set rss and the associated part of the pathcondition.

5.5.2 Edge-Splitting

Introduction of the symbolic rounding operation Rnd in Section 4.1.1, Defini-
tion 4.2 caused a problem with the round towards zero rounding mode. As an
example, assume the Flow assignment statement

e : <cond> ⇒ x := x div y. (5.38)

According to Equation (4.9), x div y becomes Rnd(x/y). Let us assume that we
cannot establish the integer-valuedness of x/y, which means that further sim-
plifications of this expression depend on whether x/y < 0 (cf. Equation (3.10)).

Symbolic Evaluation 91

Unless we have further knowledge on the values of x and y, e.g., due to informa-
tion from the pathcondition, we have to introduce a by-case distinction of the
division operation. Figure 5.3 illustrates the original control flow graph portion

nu

nv

e : p ⇒

x := Rnd(x/y)
⇒

nu

nv

e′ : p ∧ (x/y < 0)

⇒ x := dx/ye

e′′ : p ∧ (x/y ≥ 0)

⇒ x := bx/yc

Figure 5.3: Edge-Splitting in Case of Integer Divison

with edge e and the transformation into a graph with two edges e′ and e′′ cor-
responding to the cases x/y < 0 and x/y ≥ 0. Note that in this figure we have
replaced the abstract syntax notation of Equation (5.38) by the corresponding
symbolic expressions, e.g., <cond> has become p.

The correctness of the above transformation follows from the definition of
the round towards zero rounding mode (stated in Equation (3.10)) and the fact
that the pathconditions of edge e′ and e′′ are disjunct (a requirement of the
Flow standard semantics stated in Equation (3.3)). Given a path expression P
containing edge e, the transformation depicted in Figure 5.3 corresponds to the
replacement of each occurrence of e in P by (e′ + e′′).

We can apply the same transformation principle to cover the cases resulting
from the integer division and remainder operations of univariate integer-valued
polynomials in the same indeterminate (cf. Section 4.1.1, Table 4.1). A total of
four edges is needed per division and per remainder operation. The conditions
for these edges follow from the conditions of the respective cases from Table 4.1,
and the fact whether the side-condition is valid or not. Again, these conditions
are disjunct, thus satisfying Equation (3.3). The correctness of this transfor-
mation is then a consequence of the correctness of the division mechanism for
univariate integer-valued polynomials.

Edge-splitting is also applicable to expressions with several rounding or di-
vision/remainder operations. However, split edges induce additional program
paths, and excessive splitting can under certain conditions lead to a combi-
natorial explosion in the number of program paths. The investigation of an
on-demand splitting mechanism can be regarded as a topic of further research.

Edge-splitting also occurs with expressions from the quotient field Q(Z[x]).
As an example, consider the expression x/y from Equation (5.38). The function
represented by this expression is undefined at y = 0. What we have not depicted
in Figure 5.3 is an edge ex originating at node nu representing the asynchronous
transfer of control due to a division by zero (we leave the target of this edge
open, usually it will be an exception handler or the exit node nx of the program).
The branch predicate of edge ex is the condition that the denominator equals
zero (y = 0 in our case). The existence of this edge, and the (presumed) fact
that the pathcondition p of edge e in Figure 5.3 contains the condition that the
denominator is unequal to zero, makes simplifications of expressions from the
quotient field Q(Z[x]) as presented in Section 4.1.1 safe.

92 5.5 Symbolic Evaluation on the Form Level

5.5.3 Term Representations and Normal Forms

In Section 4.1 we have introduced a hierarchy of abstractions for symbolic ex-
pressions. Until now we have treated symbolic expressions only on the topmost
level, where they exist as pure mathematical objects. For an implementation
of symbolic evaluation it is however necessary to discuss issues arising from the
“projection” of those mathematical objects onto a real computer. This section
is therefore devoted to the representation of the domain of symbolic expressions
on the form level.

An important problem that has to be solved on the form level is the necessity
for unique normal forms of symbolic expressions. Early results of research in this
area can be found in [Mos71]. Based on [LN73], Buchberger and Loos present
in [BL82] the construction of unique normal forms for multivariate polynomials,
rational functions, and radical expressions.

Hence we can represent integers, multivariate polynomials, and rational func-
tions as terms over a suitable signature Σ and specify the operational semantics
of a convergent term rewrite system (cf. [BN98]) that transforms them into a
unique normal form.

From [Gog80, Theorem 8] respectively [MG86, Theorem 11(2)] it follows
that these normal forms constitute an initial algebra (cf. [Wec92, Grä68]). This
implies that there exists a unique homomorphism into a Σ-algebra (such as Z,
Z[x], and Q(Z[x] from Section 4.1.1).

Our case constitutes an order-sorted framework, which is due to the fact
that

Z ⊆ Z[x] ⊆ Q(Z[x]). (5.39)

The generalization of many-sorted algebra to order-sorted algebra is shown
in [GM02], other sources of information include [GM96] and [GD94].

Due to Birkhoff’s Theorem (cf. [BN98]) semantic equivalence coincides with
syntactic equality and we can decide the first based on the latter.

Finally this notion of a convergent term rewrite system for symbolic expres-
sions is extensible to states, program contexts, closure contexts, finite supercon-
texts, and path expressions. However, the next two sections show simplifications
of branch-predicates with inequalities, where we also rely on semantic informa-
tion.

5.5.4 Validity

(∀n > 2)(∀x)(∀y)(∀z)[xn + yn 6= zn] (5.40)

a > a + 1 = false. (5.41)

Every symbolic predicate for which we can establish validity can be replaced
by true, which is a valuable simplification for the representation of pathcon-
ditions. Unfortunately there exists no algorithm capable of determining the
validity of a formula such as Equation (5.40) stated in elementary arithmetic
built up from +, ∗, =, constants, variables for nonnegative integers, quantifiers
over nonnegative integers, and the sentential connectives ¬, ∧, ∨, ⇒, ⇔ sub-
ject to the requirement that every variable in such a formula be acted on by
some quantifier. This follows from a conclusion from Gödel’s incompleteness
theorem, [Rog87, p. 38] contains the corresponding proof.

Symbolic Evaluation 93

In the following section we will deal with a subclass of elementary arithmetic
for which satisfiability and validity are decidable.

A Decidable Subclass of Flow Predicates

I never can decide anything very important in any length of time, at all.

— Richard P. Feynman, theoretical physicist, in “The Pleasure of Finding Things Out”.

For a subclass of elementary arithmetic called Presburger arithmetic, validity
is decidable [Sho79]. Presburger formulas are those formulas that can be con-
structed by combining first degree polynomial (affine) constraints on integer
variables with the connectives ¬, ∧, ∨, and the quantifiers ∀ and ∃. Constraints
are affine due to the fact that Presburger arithmetic permits addition and the
usual arithmetical relations (<,≤, >,≥, =), but no arbitrary multiplication of
variables††.

The Omega test [Pug92] is a widely used algorithm for testing the satisfia-
bility of arbitrary Presburger formulas. We can use it as a decision procedure
for Flow predicates that are within this subclass of elementary arithmetic.

A method capable of transforming certain classes of general polynomial con-
straints into a conjunction of affine constraints has been presented by Maslov
and Pugh [MP94].

5.5.5 Satisfiability

There exist predicates from the domain SymPred of symbolic predicates which
are unsatisfiable, e.g.,

a < b ∧ a ≥ b (5.42)

Predicates that are unsatisfiable can be replaced by false. A program context
with a false pathcondition can be discarded, which makes the recognition of un-
satisfiable predicates an important issue for the representation of supercontexts.

It is a well-known result that the satisfiability problem for logical formulae
over boolean variables is NP-complete (cf. e.g., [Sed88]). As a matter of fact,
the Flow language contains no boolean variables but symbolic predicates as
specified in Table 4.4 on page 52. Symbolic predicates are more general than the
formulae of the before-mentioned satisfiability problem over boolean variables,
which already suggests that satisfiability of symbolic predicates could be even
“worse” than NP-complete.

Indeed we can establish the undecidability of the satisfiability problem for
Flow predicates with an argument from [HR04]: a given predicate p is unsatis-
fiable if, and only if, ¬ p is valid. From Section 5.5.4 it follows that we cannot
compute validity, hence we cannot compute satisfiability either.

Again this accounts for the general case. As already pointed out in Sec-
tion 5.5.4, there exist subclasses for which we can decide satisfiability.

††Although it is convenient to use multiplication by constants as an abbreviation for re-
peated addition.

Chapter 6

Experimental Results

It’s a contest in purposeless suffering.

— Lance Armstrong, six-times∗ Tour de France winner,

in “It’s Not About the Bike — My Journey Back to Life”.

In this chapter we dissect the entire SPEC95 benchmark suite [CPU95] in or-
der to derive the corresponding resource requirements for symbolic evaluation.
Our symbolic evaluation approach is based on path expressions. Correspond-
ingly, our measurements are based on a series of metrics on path expressions
that capture the control flow information contained in the underlying control
flow graphs. Path expressions as well as the metrics data itself are computed
by a data-flow framework. Our measurements show that symbolic evaluation
is a methodology capable of coping with the considerable problem sizes that
arise from contemporary real-world applications such as those from the SPEC95
benchmark suite.

6.1 Preliminaries

Definition 6.1 A regular expression R is unambiguous if each string in L(R)
is represented uniquely in R. A precise definition of the term “unique represen-
tation” follows.

Let a1, a2, . . . , am be the symbols appearing in the regular expression in
their natural order, and let f be the function relating the ai to the symbols
in R. The expression R′ then denotes the corresponding regular expression over
the ai. For example, if R = (0 +11)∗0, then m = 4, R′ = (a1 +a2 · a3)

∗a4,
and f(a1) = f(a4) = 0, and f(a2) = f(a3) = 1. If t ∈ L(R), t = s1s2 . . . sl,
then there are legitimate ways of assigning to each si an aj . In our example,
if t = 01100, then a legitimate assignment is t′ = a1a2a3a1a4 where f(t′) = t.
We say that t is denoted in exactly one way if there exists a unique legitimate
assignment. Formally, t ∈ L(R) is denoted by R in exactly k ways if there are
exactly k distinct strings t1, . . . , tk in L(R′) with f(ti) = t. It is clear that this
discussion applies only to nonempty strings.

∗At the time of writing.

96 6.1 Preliminaries

Definition 6.2 An automaton A = (Q, Σ, δ, q0, F) is unambiguous if for each
t ∈ L(A), t 6= Λ, there exists a unique path in the state transition diagram†

of A from q0 to a state in F .

Definition 6.3 An automaton A = (Q, Σ, δ, q0, F) is primitive if no input
symbol appears more than once in the state transition diagram. That is

(∀s ∈ Σ)(∀q ∈ Q)
[
|δ(q, s)| ≤ 1

]
, and (6.1)

(∀s ∈ Σ)(∀q, q′ ∈ Q)
[
(q = q′) ∨ (δ(q, s) = ∅) ∨ (δ(q′, s) = ∅)

]
. (6.2)

Therefore, if A is primitive, |Σ| is equal to the number of edges in the state
transition diagram. Clearly, a primitive automaton is unambiguous.

Definition 6.4 Given an automaton A = (Q, Σ, δ, q0, F), we can rename the
states of A in such a way that the resulting automaton A′ has the set of
states Q′ = {1, . . . , n} for some integer n. Let us use Rk

i,j as the name of a
regular expression whose language is the set of strings such that each string r
denotes a path from state i to state j in A′, with the additional constraint that r
contains no intermediate state whose number is greater than k. Note that the
endpoints i and j are not considered “intermediate” since we require that an
intermediate state must be entered and then left. The following inductive defi-
nition constructs the expressions Rk

i,j for A′.

Basis: The basis is k = 0. Since states are numbered such that Q′ = {1, . . . , n},
the restriction on paths is that they must not contain intermediate states
at all. We distinguish two cases:

i 6= j:

R0
i,j =

{
s1 + . . . + sk if s1, . . . , sk are labels from state i to state j,

∅ if there are no labels from i to j in A′.

i = j:

R0
i,j =

{
Λ + s1 + . . . + sk if s1, . . . , sk are self-labels of state i,

Λ if there are no self-labels of state i in A′.

The empty string Λ of the latter case accounts for the path of length zero
from state i to i itself.

Induction: For k > 0 we have

Rk
i,j = Rk−1

i,j + Rk−1
i,k (Rk−1

k,k)∗ Rk−1
k,j .

Informally, the definition of Rk
i,j above means that a path from state i

to state j in A′ that does not pass through an intermediate state higher
than k is either

1) in Rk−1
i,j (in which case it never passes through an intermediate state

as high as k); or

†Confer [HU79, p.16].

Experimental Results 97

2) composed of a path in Rk−1
i,k (which takes A′ from state i to state k

for the first time), followed by a path in (Rk−1
k,k)∗ (which takes A′

zero or more times from state k to k itself without passing through
a state higher than k), followed by a path in Rk−1

k,j (which takes A′

from state k to state j).

Definition 6.5 Given an automaton A = (Q, Σ, δ, q0, F) and a set M ⊆ Q, we
let RM

i,j denote the regular expression whose language is the set of strings r such
that every path from state i to state j in A is represented by a string r (and
vice versa), with the additional constraint that r must not contain intermediate
states q 6∈ M . In particular, the regular expression with the empty set, R∅

i,j ,
denotes the language of strings without intermediate states and hence amounts
to the set of direct edges from state i to state j (the empty set is a subset of
every set, that is, ∅ ⊆ S, whenever S is a set (cf. [Ros95, pp.40])). In this way
we have L(R∅

i,j) ⊆ L(RM
i,j), since every direct edge is considered a path from

from state i to state j with zero intermediate states q ∈ M . Note that the
endpoints i and j are not considered “intermediate” since we require that an
intermediate state must be entered and then left.

Lemma 5. We can view a control flow graph G = 〈N, E, ne, nx〉 as the state
transition diagram of an automaton AG = (N, E, δ, ne, {nx}), where the nodes
of G correspond to the states of the automaton. Start node ne and terminal
node nx denote the start- and accepting state of AG. The edge set E corresponds
to the alphabet of AG, with the transition function

δ(n, e) = m ⇔ (h(e) = n ∧ t(e) = m).

There are two direct consequences of the fact stated in Definition (2.3), that the
set E of edges of a CFG consists of ordered pairs of elements of N .

(1) The transition function δ is a partial function.

(2) The automaton AG is a primitive (and hence deterministic) automaton.

Thus for every CFG in the sense of Definition (2.3) there exists a corresponding
primitive automation. The converse is not true since we require that a CFG has
a single terminal node.

Definition 6.6 In a CFG, a node x dominates another node y iff all paths from
the entry node ne to y always pass through x. We write x dom y to indicate
that x dominates y. If x dom y and x 6= y, then x strictly dominates y, denoted
by x stdom y. A node x is said to immediately dominate another node y, denoted
as x = idom(y), if x stdom y and there is no other node z 6= x and z 6= y such
that x stdom z stdom y. The dominance relation is reflexive and transitive, and
can be represented by the so-called dominator tree. An edge e = (x, y) is an
edge in the dominator tree of a CFG iff x = idom(y). Given a node x in the
dominator tree, we define sub(x) to be the set of nodes of the dominator subtree
rooted at x.

6.2 Path Expression Generation

In this section we define a forward data-flow problem along with a solution
procedure that allows us to compute path expressions for a given CFG. The

98 6.2 Path Expression Generation

data-flow problem is based on the following equations.

R(ne) = Λ (6.3)

R(n) = +
n′∈Preds(n)

[
R(n′) ·R∅

n′,n

]
(6.4)

Recall that in Definition (2.3) on page 17 we required that in(ne) = ∅, so the
empty string Λ is indeed the only regular expression that takes us from node ne

to ne itself.

ne R(ne) = Λ

n1 R(n1) = R(ne) · e1 +R(n1) · e2

nx R(ne) = R(n1) · e3

e1

e3

e2

Figure 6.1: CFG with Infinite Number of Program Paths

Due to Equation(6.4) this data-flow problem cannot be solved by an itera-
tive algorithm in the presence of loops. As an example consider the CFG and
its associated data-flow equations depicted in Figure 6.1. The regular expres-
sion e1 · e

∗
2 · e3 is a valid path expression of type (ne, nx). Iterative algorithms

fail to compute this expression once they attempt to determine the solution for
the data-flow equation at node n1. This is due the fact that the underlying
lattice for this data-flow problem is infinite.

Application of an elimination-based algorithm can however solve this data-
flow problem. Blieberger [Bli02, Section 3] and Ryder et al. [RP86] mention
several elimination algorithms that exploit the structure of flowgraphs for im-
proved time complexity. For our purposes we use Sreedhar’s algorithm presented
in [Sre95]. As pointed out in [Pau88], we define a normal form for our equa-
tions and set up a loopbreaking rule that allows us to handle circularities of the
before-mentioned kind.

A data-flow equation E for our path expression data-flow problem is in
normal form, if it has the form

E : R(n) =

+
m∈M⊆sub(idom(n))

[
R(m) ·R

Sm⊆sub(m)\{m}
m,n

]
if n 6= ne,

Λ else.

(6.5)

Equation (6.5) subsumes data-flow equations (6.3) and (6.4), which is not ob-
vious for the latter equation. To explore this normal form in full detail we need
to take into account the properties of our elimination algorithm (in fact the
normal form of Equation (6.5) is tailored to the needs of this algorithm). Since
the elimination algorithm is subject of Section 6.4.1 (pp. 109), full treatment
of Equation (6.5) is postponed until then. In the meantime we only note that,
contrary to Equation (6.4), it is possible for a data-flow equation in normal
form, to depend on other nodes than its control flow predecessors. This is due
to substitutions that occur during elimination (cf. [Pau88]). It can furthermore
happen that due to substitutions the left-hand side of an equation Ei occurs

Experimental Results 99

several times on the right-hand side of an equation Ej , e.g.,

Ei : R(ni) = R(nk) · e1

Ej : R(nj) = R(ni)R
S1

ni,nj
+ · · ·+ R(ni)R

Sl
ni,nj

.

In such a case we employ the following rewrite-rule based on the distributive
law of regular expression algebra (cf. e.g. [Sal66]) in order to transform Ej to
normal form.

R1 ·R2 +R1 ·R3 −→R1 ·(R2 + R3) (6.6)

Resuming the above example, we get R(nj) = R(ni) ·(RS1
ni,nj

+ · · ·+RSl
ni,nj

) for
the data-flow equation Ej .

It is the purpose of the loopbreaking rule to replace a data-flow equation E
which depends on itself by an equivalent equation e for which the left-hand side
of E does not appear on the right-hand side. Assume a data-flow equation for
a given node n, for which the set Sn is defined as

Sn ⊆ sub
(
idom(n)

)
\
(
{idom(n)} ∪ sub(n)

)
.

Then the data-flow equation under consideration is

E : R(n) = R(idom(n)) ·RSn

idom(n),n︸ ︷︷ ︸
t1

+R(n) ·R
S′

n⊆sub(n)\{n}
n,n︸ ︷︷ ︸

t2

. (6.7)

Clearly this data-flow equation for node n contains a dependency on the im-
mediate dominator of n, constituted by the term t1. Moreover, it contains
a dependency on n itself, constituted by the term t2. By further dissecting
terms t1 and t2, we arrive at

t1 = R(idom(n)) ·RSn

idom(n),n︸ ︷︷ ︸
t11

, and t2 = R(n) ·R
S′

n⊆sub(n)\{n}
n,n︸ ︷︷ ︸

t21

.

Therein term t11
constitutes all program paths from idom(n) to n itself, possibly

via intermediate nodes n′ ∈ Sn. According to the definition of set Sn, no
program path of term t11

is allowed to contain idom(n), n, or a node dominated
by n as an intermediate node. Term t21

constitutes all program paths from
node n back to n itself, possibly via nodes strictly dominated by n.

We define our loopbreaking rule to replace Equation (6.7) by the equation

e : R(n) = R(idom(n)) ·RSn

idom(n),n︸ ︷︷ ︸
t1

·
(
R

S′
n⊆sub(n)\{n}

n,n

)∗
︸ ︷︷ ︸

t3

. (6.8)

6.3 Program Path Metrics

In this section we define a series of metrics aiming at the determination of the
space-requirements that can be expected for symbolic evaluation of programs.
Programs are given as control flow graphs from which path-expressions are con-
structed. A path-expression of type (ni, nj) represents all program paths from

100 6.3 Program Path Metrics

node ni to node nj in the underlying control flow graph (CFG). Metrics are cal-
culated by reinterpreting the operations +, ·, and ∗ that are used to construct
path expressions (cf. [Tar81]).

The number of program paths through a CFG advances from finite to infinite
with the introduction of cycles. Our symbolic evaluation method provides an
abstraction mechanism that keeps the space requirements that are due to cycles
finite. This is due to the fact that symbolic evaluation is based on acyclic
program paths.

The term “acyclic program path” has already been coined in the literature,
e.g., for path profiling ([BL96]), but we use a different approach of partitioning
a given flowgraph into acyclic subgraphs. Moreover, our approach is based on
path-expressions rather than on the flowgraphs themselves.

The metrics that we develop in the course of this section calculate the number
of acyclic program paths through a given flow graph G = 〈N, E, ne, nx〉 from
a path expression RN

ne,nx
representing all program paths in G from the entry

node ne to its exit node nx. Strictly speaking, these metrics determine the
natural loops (cf. [ASU86, Section 10.4]) in RN

ne,nx
. The acyclic program paths

then follow from the acyclic condensation (cf. [ZC91]) of these loops across all
nesting levels.

Irreducible loops do not have the property of natural loops that they possess
a unique header. In this way irreducibility introduces a kind of indeterminism in
the path-expression generation data-flow problem of Section 6.2, because one of
the possible loop entry nodes has then to be promoted as loop header. For the
algorithms that calculate our metrics this indeterminism is of no concern since
an operand of the ∗ operator has a unique header per definition. As we will see
in Section 6.4, this indeterminism will however be of concern with respect to
the minimality of these metrics.

6.3.1 Loops as Black-Boxes (npp)

For the number of acyclic program paths that have to be considered by sym-
bolic evaluation, the following metric calculates a lower bound. It treats subex-
pressions that correspond to cycles (loops) as black boxes with a resource-
requirement of 1. Apart from that, cycles (loops) are not considered further
by this metric.

ne

n1

nx

e1

e3

e2

Figure 6.2: CFG with Infinite Number of Program Paths

For an example of a CFG with a cycle and hence an infinite number of pro-
gram paths consider the graph depicted in Figure 6.2. The program paths from
node ne to node nx are defined by the path expression e1 · e∗2 · e3 of type (ne, nx).
The subexpression e∗2 corresponding to the cycle in Figure 6.2 accounts for the
infinite number of program paths.

Experimental Results 101

We can now define a mapping that allows us to compute the number of
acyclic program paths (npp) from regular expressions representing sets of pro-
gram paths. With the inductive definition below, P denotes a path (sub)ex-
pression, and e denotes an arbitrary CFG-edge.

npp(Λ) = 0, (6.9)

npp(∅) = 0, (6.10)

npp(e) = 1, (6.11)

npp(P1 +P2) = npp(P1) + npp(P2), (6.12)

npp(P1 ·P2) = npp(P1) ∗ npp(P2), (6.13)

npp(P ∗
1) = 1. (6.14)

Equation (6.14) of this mapping assigns cycles a resource-requirement of 1 and
is for this reason responsible for the black-box view of this metric with respect
to loops.

Applying this metric to the example of Figure 6.2, we get

npp(e1 · e
∗
2 · e3) = npp(e1) ∗ npp(e∗2) ∗ npp(e3)

= 1 ∗ 1 ∗ 1

= 1.

(6.15)

A more elaborate example of a kite-shaped CFG is depicted in Figure 6.3.
Equation (6.16) presents the path expression P of type (ne, nx). To facilitate
reading we have used curly and square brackets in addition to the round brackets
normally used for grouping regular expressions and path expressions.

P =

R1︷ ︸︸ ︷((
e1 ·(e2 · e3 + e4)

∗ · e6

)
+
(
e5 · e7

))
· e∗16 ·

{
[

R2︷ ︸︸ ︷
e9 ·(((e10 · e12) +(e11 · e

∗
17 · e13)) · e14)

∗ ·

R3︷ ︸︸ ︷
(((e10 · e12) +(e11 · e

∗
17 · e13)) · e15)]

+ e8

}

(6.16)

Applying the npp metric to the path expression of Equation (6.16), we get

npp(P) = npp(R1) ∗
(
npp(R2) ∗ npp(R3) + npp(e8)

)

= 2 ∗ (1 ∗ 2 + 1)

= 6.

(6.17)

In relating this calculation to the CFG of Figure (6.3), it becomes clear that
the npp-metric is only a lower bound for the resource-requirements needed
for symbolic evaluation: the loops corresponding to path expressions e∗16, e∗17,
(e2 · e3 + e4)

∗ and ((e10 · e12) +(e11 · e∗17 · e13) · e14)
∗ are all estimated to have a

resource requirement of 1. While this is true for loops e∗16 and e∗17 which both
have only one path through its loop body, it underestimates the number of
acyclic program paths for the latter two loop bodies. We will define metrics
that compensate the under-estimate of the npp-metric in the next section.

102 6.3 Program Path Metrics

ne

n2 n1 n3

n4

n5

n6 n7

n8

nx

e1 e5

e6 e7

e10 e11

e8

e9

e12 e13

e15

e2

e3
e4

e16

e17

e14

Figure 6.3: Elaborate Example: Kite-Shaped CFG

6.3.2 Loop-Aware Path Metrics

R1 = e1 ·(e
∗
2 · e3 · e4)

∗e∗2 · e3 · e5

R2 = e1 ·(e2︸︷︷︸
R3

)∗ · e3 ·(e4 · e
∗
2 · e3︸ ︷︷ ︸

R4

)∗ · e5

R0 = e1 ·(e2 + e3 · e4)
∗ · e3 · e5

se

s1

s2

sx

e1

e3

e5

e2 e4

Figure 6.4: Example: Common Subexpression e∗2 in Expressions R1 and R2

Figure 6.4 contains a flowgraph with nested loops. The outer loop l1 is
along the program path π1 = 〈e3, e4〉, whereas the inner loop l2 is along the
path π2 = 〈e2〉. Furthermore Figure 6.4 depicts two equivalent regular ex-
pressions R1 and R2 of type (se, sx) for the respective flowgraph. From the
npp-metric introduced in Section 6.3.1 we get

npp(R1) = npp(R2) = 1.

This result is an under-estimate in the sense that it does not take into account
the subexpressions R3 and R4 (cf. Figure 6.4). This omission is due to the
npp-rule

npp(P ∗
1) = 1

of Equation (6.14). Informally, we can compensate this under-estimate if we
add the cost for expressions R3 and R4 in terms of the npp-metric. Using path

Experimental Results 103

expression R2 of Figure 6.4 we can calculate the precise result r as shown in the
following equation.

r = npp(R2) + npp(e∗2) + npp(e4 · e
∗
2 · e3)

= 1 + 1 + 2

= 4

(6.18)

Therein the first term corresponds to the original npp-metric, whereas the sec-
ond and third term account for the calculation of the npp-values of subexpres-
sions R3 and R4. On the other hand, if we take path expression R0 of Figure 6.4,
we get the following result r′ in terms of our metric (observe that R0 and R2

are equivalent regular expressions).

r′ = npp(R0) + npp(e2 + e3 · e4)

= 1 + 2

= 3

(6.19)

From this example it becomes immediately clear that equivalent regular
expressions need not yield the same result with respect to our metric. In this
particular case it is the double occurrence of subexpression e∗2 in expression R2

that imposes the extra cost of 1 compared to expression R0. Regarding symbolic
evaluation of a program corresponding to the CFG of Figure 6.4, the double
occurrence of subexpression e∗2 in R2 would mean that the loop represented by
this subexpression is actually evaluated twice: once due to regular expression R3,
and once in the course of the evaluation of expression R4.

We cannot expect that for each double occurrence there exists an equivalent
regular expression without it. Moreover, the computational complexity of the
required rewrite operations might be prohibitive. Double occurrences are not
even restricted to loops — the edge e3 occurs twice in expression R2, and e3

could in fact be replaced by an arbitrarily complex CFG.
In this way it is desirable to detect common subexpressions within path ex-

pressions in order to spend the effort for symbolic evaluation only once. Concep-
tually this corresponds to the introduction of so-called meta-variables to the al-
gebra of path expressions. For example, if we define that meta-variable M1 = e∗2,
then we get

R2 = e1 ·M1a
· e3 ·(e4 ·M1b

· e3)
∗ · e5

for expression R2 (note that we have used an additional level of subscripts to
distinguish between the two occurrences of M1 in the subsequent discussion).
If, during symbolic evaluation of expression R2, the meta-variable M1 is en-
countered for the first time at M1a

, the symbolic evaluation of the expression
associated with M1 will be carried out. For the second occurrence of meta-
variable M1 at M1b

we can already use the result derived at M1a
.

As already pointed out, the utilization of common regular subexpressions
to reduce the effort associated with symbolic evaluation is not restricted to
loops. In this way we might as well introduce an additional meta-variable for
the edge e3 in R2. In the following discussion we will however focus on the use
of common subexpressions representing loops.

Given the fact that regular expressions are not unique in the sense that
equivalent regular expressions may describe the same set of program paths

104 6.3 Program Path Metrics

(cf. expressions R1 and R2 of Figure 6.4), we are faced with the problem of
determining equivalence of regular expressions in order to spot common subex-
pressions. There exist algorithms that decide on the equivalence of regular sets
(e.g., [Gin67, HU79, HMU01]), but the following two properties of the elimina-
tion algorithm of [Sre95] (cf. also Section 6.4.1) ensure that in order to show
the equivalence of regular expressions representing loops it is sufficient to show
their identity .

(1) Data-flow equations containing loops are inserted into other equations only
after the path expression corresponding to the loop has been determined
(this follows from the fact that the only possible remaining dependency
for an equation at the time of insertion into other equations is one on
its immediate dominator which clearly excludes dependencies on the loop
body).

(2) A path expression corresponding to a loop body is not altered once it has
been determined.

In other words, we can be sure that we will not encounter common subexpres-
sions representing a loop body that are equivalent but not identical.

1 procedure Slice (e : PathExpr; s : in out Set) is
2 begin
3 if Match (e, RDot (a, b)) or Match (e, ROr (a, b))
4 then
5 Slice (a, s);
6 Slice (b, s);
7 elsif Match (e, RStar (a)) then
8 s := s ∪ a;
9 Slice (a, s);
10 end if ;
11 end Slice;

Figure 6.5: Slicing Procedure

The algorithm that calculates our metric for a given path-expression P con-
sists of two steps. In the first step we extract natural loops P ∗

1 from P (P1

denotes an arbitrary regular expression), and collect them in the set S. In the
second step we calculate the npp-metric for the path-expression P and for all el-
ements in the set S and sum up the results. This two-step algorithm is depicted
in pseudo-code in Figure 6.5 (Step 1) and Figure 6.6 (Step 2).

The slicing procedure of Figure 6.5 takes as input a path-expression P and
a set S and recursively descends the syntax tree of P . It uses pattern matching
(expressed through the call to procedure “Match” in lines 3 and 7) in order
to determine the structure of P . In this particular case pattern matching is
very simple since the matching decision is solely based on the operation symbol
of the root node of the syntax (sub)tree of P . As a notational convention
we append an underscore to a variable to denote the fact that this variable can
match arbitrary regular expressions. On the contrary, the variable name without
underscore denotes the corresponding matched regular expression. If during the
recursive descent of expression P a natural loop is encountered (line 7), then
the corresponding loop body is added to the set S (line 8).

Experimental Results 105

Input:

a path-expression P

Output:

Metric (P)

(the loop-aware metric of acyclic program paths of P)

Algorithm:

S := {P};

Slice (P, S);

Metric (P) =
∑
p∈S

npp(p);

Figure 6.6: Metric Algorithm

Note that the fact that S is a set ensures that common subexpressions
denoting loop bodies are counted only once. If we declare S to be a multiset,
with operator ∪ in line 8 of Figure 6.5 denoting the multiset union operation,
than our metric counts each occurrence of a loop body. This leads us to the
definitions of the following two loop-aware path metrics.

Definition 6.7 Given a path-expression P . With S being a multiset and ∪
the multiset union operation, the metric algorithm given in Figures 6.5 and 6.6
calculates a loop-aware npp-metric (cf. Section 6.3.1) that compensates the effort
associated with a subexpression b that denotes a loop body for each occurrence
of b in expression P . We call this metric ncp, the number of considered acyclic
program paths .

Definition 6.8 With S being a set and ∪ the set union operation, the met-
ric algorithm given in Figures 6.5 and 6.6 calculates a loop-aware npp-metric
(cf. Section 6.3.1) that compensates the effort associated with a loop body only
once. We call this metric loncp which stands for loop-optimized ncp.

Coming back to the kite-shaped CFG of Figure 6.3 on page 102, we can now
calculate the ncp-metric for the corresponding path-expression P of type (se, sx)
stated in Equation (6.16). Applying the algorithm of Figure 6.6, we get

ncp(P) = npp(P)

+ npp(e2 · e3 + e4)

+ npp(e16)

+ npp((e10 · e12 + e11 · e
∗
17 · e13) · e14)

+ npp(e17)

= 13.

(6.20)

Due to the double occurrence of the subexpression denoting the loop body e∗17,
the value that we get for the ncp-metric of expression P is one higher than the
value calculated by the loncp-metric.

As already pointed out for the npp metric calculations of equations (6.18)
and (6.19), equivalent regular expressions need not yield the same result with
respect to the npp metric. Since the metrics ncp and loncp are based on the npp

106 6.4 Loncp-Minimal Path-Expressions

metric, they are also affected by this fact. Given a regular expression R, we
often face the question whether there exists an equivalent regular expression R′

that yields a lower value than R with respect to one of our metrics. Naturally
this leads to the question whether a given regular expression R is minimal
with respect to one of our metrics. In the following definition we specify the
requirements for a regular expression to be npp-minimal. The definitions for
the other two metrics are similar.

Definition 6.9 Let A denote the set of regular expressions. The equivalence
relation ∼ ⊆ A×A over regular expressions induces an equivalence class [a]∼ :=
{a′ ∈ A | a∼a′} for each a ∈ A. A given element a of an equivalence class [a]∼
is npp-minimal, if there exists no other element b ∈ [a]∼, b 6= a, such that
npp(b) < npp(a). Note that an npp-minimal element need not be unique in its
equivalence class.

6.4 Loncp-Minimal Path-Expressions

In this section we show that the path-expressions generated by the data-flow
framework defined in Section 6.2 are loncp-minimal for reducible flowgraphs. Fi-
nally we present an adversary argument showing that for irreducible flowgraphs
these path expressions are not loncp-minimal in the general case.

We start out with a few lemmas that are needed to make our point. In
Subsection 6.4.1 we show that the generated path expressions are unambiguous .
This result is utilized in Subsection 6.4.2 to show that unambiguous path ex-
pressions are loncp-minimal for reducible flowgraphs. Subsection 6.4.3 contains
the corresponding adversary argument for irreducible flowgraphs.

Lemma 6. Given two regular expressions Ra = R
M∪{y}
x,y and Rb = R

N\{y}
y,z over

a primitive, Λ-free automaton A = (Q, Σ, δ, q0, F). If the regular expressions Ra

and Rb are unambiguous, then their concatenation, denoted by Ra ·Rb, is also
unambiguous.

Proof. We utilize the concept of the proof of [BEGO71, Theorem 1]. Ac-
cording to Definition (6.3), a primitive automaton is unambiguous. Hence we
know from Definition (6.2) that no two different paths through automation A
correspond to the same string t ∈ L(A), given that A is Λ-free.

t′j︷ ︸︸ ︷
x© t′i y© s1 s2 · · · sl︸ ︷︷ ︸

t
′′

i

y© sl+1 sl+2 · · · sn︸ ︷︷ ︸
t
′′

j

z©

Figure 6.7: Decomposition of string t = t′it
′
j = t

′′

i t
′′

j .

Assume, now, that string t ∈ L(Ra ·Rb) and that t can be decomposed in
two ways: t = t′it

′
j = t

′′

i t
′′

j , where t′i, t
′′

i ∈ L(Ra), and t
′

j , t
′′

j ∈ L(Rb). If t′i < t
′′

i ,

then t
′′

i = t′is1s2 · · · sl, where l ≥ 1 and sk ∈ Σ, 1 ≤ k ≤ l < n. Figure 6.7
depicts string t and its corresponding decompositions. Note that the positions
where t passes states x, y, and z have been marked with x©, y©, and z©.

Experimental Results 107

It follows from t
′′

i ∈ L(Ra), that in the state transition diagram of A, sl is
an edge entering state y. However, sl is also a symbol in t′j , and t′j ∈ L(Rb) does

not contain paths with intermediate state y. Thus, t′i = t
′′

i , and consequently,

t′j = t
′′

j . According to the initial assumption that Ra and Rb are unambiguous,
t′i is denoted in exactly one way in Ra, and t′j is denoted in exactly one way
in Rb. As a consequence, t = t′it

′
j is denoted in exactly one way in Ra ·Rb.

Corollary 1. Given two regular expressions Ra = R
M\{y}
x,y and Rb = R

N\{y}
y,z

over a primitive, Λ-free automaton A = (Q, Σ, δ, q0, F). If the regular expres-
sions Ra and Rb are unambiguous, then their concatenation, denoted by Ra ·Rb,
is also unambiguous.

The Corollary is a special case of Lemma (6) where the regular expression Ra

must not contain an intermediate state y. Hence the decomposition t = t
′′

i t
′′

j

depicted in Figure 6.7 is illegal due to t
′′

i containing the intermediate state y. In
fact there exists only one possible decomposition for t ∈ L(Ra ·Rb), namely t =
t
′′′

i t
′′′

j , where t
′′′

i ∈ L(Ra), and t
′′′

j ∈ L(Rb).

Lemma 7. Given a regular expression R = R
M\{y}
y,y over a primitive, Λ-free au-

tomaton A = (Q, Σ, δ, q0, F). If the regular expression R is unambiguous, then
the regular expression R∗, denoting the closure of L(R), is also unambiguous.

Proof. From the inductive definition of languages described by regular expres-
sions (cf. Case (4), on p. 74), we have

L(R∗) = (L(R))∗ =
∞
∪

k=0
L(R)k.

Therein L(R)0 = {Λ}, and L(R)k = L(R)k−1 ·L(R). But it also holds that

∞
∪

k=0
L(R)k = L

(∞
+

k=0
Rk
)
,

where R0 = Λ, and Rk = Rk−1 ·R (proof by induction on the number of
operation symbols omitted). We can then prove the lemma in two steps.

(1) First we show that the regular expressions Rk =
(
R

M\{y}
y,y

)k
, for k ≥ 0,

are unambiguous.

(2) Based on (1) we show that the regular expression R∗ =
∞
+

k=0
Rk is unam-

biguous.

ad (1): By structural induction on the unambiguity of Rk.

Basis: We use k = 0, k = 1, and k = 2 as base cases. R0 = Λ is un-
ambiguous since it represents the empty string in exactly one way.
Furthermore, R1 = R0 ·R = Λ ·R = R is unambiguous due to the ini-
tial assumption of this lemma. R2 = R1 ·R = R ·R is unambiguous
due to Corollary (1) if we substitute state y for state x and state z.

Induction: Let Rk+1 = Rk ·R, for k ≥ 2, be a regular expression built
by the inductive step of the definition. The regular expression R is
unambiguous due to the initial assumption of this lemma. For the

108 6.4 Loncp-Minimal Path-Expressions

inductive step of the proof we may assume that Rk is unambigu-
ous, too. It remains to show that Rk ·R is an unambiguous regular
expression.

The essential observation therein is that, although R = R
M\{y}
y,y is

a regular expression without intermediate state y, the concatena-

tion of R
M\{y}
y,y with itself yields a regular expression that contains

intermediate state y. In this way Rk, for k ≥ 2, qualifies as expres-
sion Ra in Lemma (6). Note that, strictly speaking, Definition (6.5)

requires Ra = R
M∪{y}
x,y to contain all paths from state x to state y.

This is not the case for Rk, since

L(Rk) = L(
(
RM\{y}

y,y

)k
) ⊆ L(

(
RM\{y}

y,y

)∗
) = L(RM∪{y}

y,y).

The proof of Lemma (6) however includes also this sub-case. Sub-
stituting R for Rb in Lemma (6) finally shows that Rk ·R is indeed
unambiguous.

ad (2): From step (1) we already know that every term Rk in

R∗ =
∞
+

k=0
Rk

is unambiguous. In order to establish that R∗ is unambiguous it remains
to show that L(Ri) ∩ L(Rj) = ∅, for 0 ≤ i, j ≤ ∞ and i 6= j. Observe
that L(R0) ∩ L(Rj) = ∅, for 0 ≤ j ≤ ∞, since L(R0) = {Λ}, and R
(and hence Rj) are Λ-free due to A being Λ-free. Moreover, L(Rk) ∩
L(Rk+j) = ∅, for k ≥ 1 and j > 1, since L(Rk) contains only paths that
pass intermediate state y exactly k − 1 times, whereas L(Rk+j) contains
only paths that pass intermediate state y exactly k + j − 1 times.

Lemma 8. Given two regular expressions Ra = R
M\{y}
x,y and Rb = R

N\{y}
y,y over

a primitive, Λ-free automaton A = (Q, Σ, δ, q0, F). If the regular expressions Ra

and Rb are unambiguous, then the regular expression denoted by Ra ·R∗
b is also

unambiguous.

Proof. According to Definition (6.3), a primitive automaton is unambiguous.
Hence we know from Definition (6.2) that no two different paths through au-
tomation A correspond to the same string t ∈ L(A), given that A is Λ-free.

t′j︷ ︸︸ ︷
x© t′i y© s1 s2 · · · sl︸ ︷︷ ︸

t
′′

i

y© sl+1 sl+2 · · · sn︸ ︷︷ ︸
t
′′

j

y©

Figure 6.8: Decomposition of string t = t′it
′
j = t

′′

i t
′′

j .

Assume, now, that string t ∈ L(Ra ·Rb) and that t can be decomposed in
two ways: t = t′it

′
j = t

′′

i t
′′

j , where t′i, t
′′

i ∈ L(Ra), and t
′

j , t
′′

j ∈ L(R∗
b). If t′i < t

′′

i ,

Experimental Results 109

then t
′′

i = t′is1s2 · · · sl, where l ≥ 1 and sk ∈ Σ, 1 ≤ k ≤ l < n. Figure 6.8
depicts string t and its corresponding decompositions. Note that the positions
where t passes states x and y have been marked with x© and y©.

It follows from t
′

i ∈ L(Ra), that in the state transition diagram of A, s1 is an

edge emanating from state y. However, s1 is also a symbol in t
′′

i , and t
′′

i ∈ L(Ra)

does not contain paths with intermediate state y. Thus, t′i = t
′′

i , and conse-

quently, t′j = t
′′

j . According to the initial assumption that Ra is unambiguous,
t′i is denoted in exactly one way in Ra. From the initial assumption that Rb is
unambiguous and from Lemma (7) we know that t′j is denoted in exactly one way
in R∗

b . As a consequence, t = t′it
′
j is denoted in exactly one way in Ra ·Rb.

6.4.1 Unambiguity of Path Expressions

Lemma 9. The path-expressions for a given reducible CFG as generated by the
data-flow framework described in Section 6.2 are unambiguous in general.

Proof. The elimination algorithm described in [Sre95] operates on the DJ
graph of a flowgraph rather than the flowgraph itself. The first step of this proof
is therefore to show how the data-flow equations (6.3) and (6.4) can be applied
to a DJ graph without affecting the underlying CFG-based data-flow problem.
The elimination algorithm itself comprises two phases. The elimination phase
performs DJ graph reduction and variable substitution of the equation system
until the DJ graph is reduced to its dominator tree. After the first phase the
equation at every node is expressed only in terms of its immediate dominator,
with the root node ne being the only exception (cf. Equation (6.3)). The second
phase of the algorithm is concerned with the propagation of the solution at the
root-node in a top-down fashion along the dominator tree to compute the solu-
tions at the other nodes. In this way the latter two parts of the proof establish
that both phases, elimination and propagation, leave us with unambiguous path
expressions.

DJ Graph-Based Path Expression Generation. As pointed out in [Sre95,
Corollary 3.1], we can construct a DJ graph from a flowgraph G by adding
every missing immediate dominance edge (x, y) if this edge is not already
present in G. As a consequence a DJ graph can contain more edges than
the corresponding CFG.

Data-flow equations (6.3) and (6.4) are applicable to a DJ graph if we
require that for an edge e = (x, y) that is part of the CFG but not of the
DJ graph,

R∅
x,y = ∅. (6.21)

This ensures that edge e will not affect our CFG-based data-flow prob-
lem since the set of paths from node x to node y considered for path
expression generation is now the empty set. Note that this is in line with
Definition (6.5).

It is also worth mentioning that a DJ graph can be viewed as a primitive
automation, which is a result of the following two facts.

1) According to Lemma (5), the underlying CFG can be viewed as a
primitive automaton.

110 6.4 Loncp-Minimal Path-Expressions

2) The immediate dominance edges that are added during transforma-
tion of the CFG to the DJ graph are unique, hence they occur only
once as an input symbol in the state transition diagram derived from
the DJ graph, as required by Definition (6.3).

Elimination. In this part of the proof we establish that the elimination phase
of the elimination algorithm described in [Sre95] results in data-flow equa-
tions

E : R(n) =

R(idom(n)) ·R
Sn⊆sub(idom(n))\{idom(n)}
idom(n),n if n 6= ne,

Λ else,

(6.22)

where
R

Sn⊆sub(idom(n))\{idom(n)}
idom(n),n (6.23)

is an unambiguous path expression describing all program paths from
node idom(n) to node n that do not contain strict dominators of node n
as intermediate nodes. We will achieve this result by structural induction
on Property (6.4.1) below.

It is worth mentioning that Equation (6.22) is of the normal form defined
in Equation (6.5). It is however more specific in the sense that it depends
only on its immediate dominator (elimination has reduced it to a depen-
dency on the immediate dominator). Taking this reduction into account,
we will refer to the resulting normal form as the reduced normal form.
Consequently, the form of Equation (6.5) is then referred to as the general
normal form. Reduced normal form implies general normal form.

Property 6.4.1
Data-flow equations generated during the elimination phase are in general
normal form, with the additional constraint, that the regular expressions

RSm⊆sub(m)\{m}
m,n

contained in those normal-formed equations are unambiguous.

Note that, at first sight, Property (6.4.1) seems too weak since it requires
only general normal form, whereas Equation (6.22) is in reduced normal
form. It is however a property of the elimination algorithm that after
elimination each equation is reduced to a dependency on its immediate
dominator. In this way reduced normal form is already a consequence of
elimination and need not be taken care of by our proof!

Basis: Our base case is is the system of data-flow equations we derive once
we transform the CFG to the DJ graph and apply Equations (6.3)
and (6.4) under the constraint specified in Equation (6.21). The
resulting data-flow equations clearly fulfill Property (6.4.1), since E-
quations (6.3) and (6.4) are in normal form, and the regular expres-
sions

R∅
n′,n, with n′ ∈ Preds(n)

contained in those normal-formed equations are unambiguous due
to the automaton corresponding to a DJ graph being a primitive
automaton.

Experimental Results 111

Induction: For the inductive step, we may assume that our system of
data-flow equations fulfills Property (6.4.1). We have now to consider
the effects of the ε-rules E1 and E2 (cf. [Sre95, Section 4.1]) that
carry out DJ graph reduction and variable substitution in order to
show that the resulting equations again fulfill Property (6.4.1). This
lengthy part of the proof is contained in Sections 6.4.1 (Lemma (11))
and Section 6.4.1 (Lemma (12)).

Propagation. Elimination leaves us with data-flow equations in reduced nor-
mal form as stated in Equation (6.22). Propagation is based on the prin-
ciple that the concatenation of two path expressions R1 and R2, where
R1 denotes all program paths from node ne to a given node idom(n),
and R2 denotes all program paths from node idom(n) to node n, results
in a path expression R1 ·R2 that denotes all program paths from node ne

to n. Equation (6.23) states the side-condition that R2 must not contain
strict dominators of node n as intermediate nodes.

Lemma 10. Propagation of the solution R(ne) along the dominator tree
results in unambiguous path expressions.

Proof. By structural induction on the unambiguity of the involved reg-
ular expressions.

Basis: For the base case we note that R(ne) = Λ denotes the empty string
that corresponds to all program paths from node ne to node ne itself
unambiguously. We can then propagate the solution at the root node
to nodes ni ∈ {n | idom(n) = ne} that are immediately dominated
by it. Thus we get the following result

R(ni) = R(ne) ·R
Sni

⊆sub(ne)\{ne}
ne,ni

= Λ ·R
Sni

⊆sub(ne)\{ne}
ne,ni

= R
Sni

⊆sub(ne)\{ne}
ne,ni ,

which is unambiguous due to Property (6.4.1).

Induction: For the inductive step, we may assume that in the equation

R(n) = R
S′

n⊆sub(ne)\{ne}
ne,idom(n)︸ ︷︷ ︸

t1

·R
Sn⊆sub(idom(n))\{idom(n)}
idom(n),n︸ ︷︷ ︸

t2

term t1 is unambiguous as it is the result of earlier propagations.
Term t2 is unambiguous due to Property (6.4.1). The unambiguity
of t1 · t2 follows then directly from Lemma (6) on page 106.

The result that the propagation phase of our elimination algorithm leaves us
with unambiguous path-expressions concludes also the proof of Lemma (9).

Elimination Rule E1

Figure 6.9 illustrates the elimination of edge (y, y) due to an application of ε-
rule E1. Dashed lines represent dominator edges, and solid lines represent join
edges.

112 6.4 Loncp-Minimal Path-Expressions

Edge (y, y) corresponds to a circular dependency and is therefore exactly the
case for which the loopbreaking rule of our data-flow problem (cf. Section 6.2)
has been designed. Equation (6.7) on page 99 holds for node y before the
loopbreaking rule is applied, and Equation (6.8) holds afterwards.

x x

y
E1

y

Figure 6.9: Graphical Illustration of Rule E1 for the Substitution “y → y”.

When setting up Property (6.4.1) on page 110, we concluded that it was
sufficient to require general normal form, since the utilized elimination algorithm
would, during its elimination phase, eventually reduce equations to reduced
normal form. Figure 6.9 bears witness to this fact: before the application of
the loopbreaking rule, the equation at note y is in general normal form, since it
depends on its immediate dominator (node x), and on y itself. The loopbreaking
rule removes the dependency on node y which reduces the equation to reduced
normal form. Without the circular dependency at node y this would already
have happened during an application of rule E2 that we will discuss in the next
section. We conclude this section with the proof of the following lemma.

Lemma 11. The data-flow equation from Equation (6.8) fulfills Property (6.4.1).

Proof. As already observed, Equation (6.8) is in reduced normal form which
implies general normal form. What remains to be checked for Property (6.4.1)
is that the contained regular expressions have to be unambiguous. Unambiguity
follows directly from Lemma (8) on page 108.

Elimination Rule E2

The elimination algorithm described in [Sre95] actually contains two rules named
E2a and E2b subsumed to rule E2. As pointed out in [Sre95, Section 10.4.1],
the distinction between these two E2 rules is only minor. Our proof therefore
considers only rule E2b, with the provision that the proof for rule E2a follows
along the same line.

Figure 6.10 illustrates the elimination of edge (y, z) due to an application
of ε-rule E2b. This corresponds to a substitution of the data-flow equation at
node y into the equation at node z. The dotted line in Figure 6.10 from w
to x represents the dominator tree path from w to x, dashed lines represent
dominator edges, and solid lines represent join edges.

Before application of ε-rule E2b we have the following equation at node z,

Experimental Results 113

w w

z z

x
E2b

x

y y

Figure 6.10: Graphical Illustration Rule E2b for the Substitution “y → z”.

which is also in general normal form.

R(z) = +
n∈S⊆sub(idom(z))
∧n6∈{x}∪sub(y)

R(n) ·RSn⊆sub(n)\{n}
n,z

+R(x) ·R
Sx⊆sub(x)\

(
{x}∪sub(y)

)
x,z

+R(y) ·RSy⊆sub(y)\{y}
y,z

(6.24)

Therein the third term (last line) represents a dependency on the equation R(y)
at node y. This dependency is represented by the edge (y, z) in Figure 6.10. To
be specific, the regular expression

RSy⊆sub(y)\{y}
y,z

denotes paths from node y to node z that may contain only intermediate nodes
that are strictly dominated by y. Moreover, the second term in Equation (6.24)
represents a dependency on the equation R(x) at node x. This dependency is
represented by the edge (x, z) in Figure 6.10. The regular expression

R
Sx⊆sub(x)\

(
{x}∪sub(y)

)
x,z

denotes paths from node x to node z that may contain only intermediate nodes
that are strictly dominated by x and not dominated by y. Hence we have

Sx ∩
{
Sy ∪ {y}

}
= ∅. (6.25)

The property stipulated in Equation (6.25) holds due to the facts that the
equation at node y has not yet been substituted into node z, and that no
equation into which node y has been substituted before this substitution has
already been substituted into node z.

The data-flow equation at node z may furthermore contain dependencies on
nodes as specified through the first term of Equation (6.24), but these depen-
dencies have been omitted from Figure 6.10.

Given the data-flow equation R(y) at node y,

R(y) = R(x) ·R
S′

x⊆sub(x)\{x}
x,y︸ ︷︷ ︸

t1

,

114 6.4 Loncp-Minimal Path-Expressions

we may now perform the substitution R(y) → R(z), which yields

R(z) = +
n∈S⊆sub(idom(z))
∧n6∈{x}∪sub(y)

R(n) ·RSn⊆sub(n)\{n}
n,z︸ ︷︷ ︸

tn

+R(x) ·R
Sx⊆sub(x)\

(
{x}∪sub(y)

)
x,z︸ ︷︷ ︸

t2

+R(x) ·R
S′

x⊆sub(x)\{x}
x,y︸ ︷︷ ︸

t1

·RSy⊆sub(y)\{y}
y,z︸ ︷︷ ︸

t3

.

(6.26)

Applying the rewrite-rule stated in Equation (6.6) on page 99, this can be
brought to the general normal form

R(z) = +
n∈S⊆sub(idom(z))
∧n6∈{x}∪sub(y)

R(n) ·RSn⊆sub(n)\{n}
n,z︸ ︷︷ ︸

tn

+R(x) ·
(
R

Sx⊆sub(x)\
(
{x}∪sub(y)

)
x,z︸ ︷︷ ︸

t2

+ R
S′

x⊆sub(x)\{x}
x,y︸ ︷︷ ︸

t1

·RSy⊆sub(y)\{y}
y,z︸ ︷︷ ︸

t3

)
.

(6.27)

Lemma 12. The data-flow equation stated in Equation (6.27) fulfills Prop-
erty (6.4.1).

Proof. As already observed, Equation (6.27) is in general normal form. What
remains to be checked for Property (6.4.1) is that the contained regular expres-
sions have to be unambiguous. It follows from the induction hypothesis that the
regular expressions denoted by tn and by t1 · · · t3 are unambiguous. Moreover,
the regular expression t1 · t3 is unambiguous due to Lemma (6) on page 106.
Finally, t2 +(t1 · t3) is unambiguous since t2 contains no path via y, and t1 · t3
denotes only paths via y. Hence L(t2) ∩ L(t1 · t3) = ∅.

6.4.2 Reducible CFGs and Loncp-Minimality

Theorem 4. An unambiguous path-expression P of type (ne, nx) from a re-
ducible CFG G = 〈N, E, ne, nx〉 is loncp-minimal in general.

Proof. If path-expression P is unambiguous, then each string in L(P) is rep-
resented uniquely in P (according to Definition 6.1 on page 95). Since each
such string corresponds to a program path through the flow graph G, each pro-
gram path through G is in this case uniquely represented in P . We can now
distinguish two cases.

(1) CFG G is acyclic. If G is acyclic, then the number of acyclic program
paths as computed by the npp-metric corresponds to the actual number of
program paths through G (proof by structural induction on the number of
operation-symbols in P omitted). As the number of acyclic program paths
cannot be lower than the number of program paths, we have established
npp-minimality. Then loncp-minimality follows from the fact that for
acyclic flowgraphs the npp- and the loncp-metric compute the same result.

Experimental Results 115

(2) CFG G contains cycles. Due to G being irreducible, every cycle corre-
sponds to a natural loop in G. It is the purpose of the slicing procedure
depicted in Figure 6.5 on p. 104 to extract every natural loop, across all
nesting levels. It is worth mentioning that a natural loop may contain
other natural loops nested inside, and that these nested natural loops are
not only extracted as part of the enclosing loop, but also as natural loops
in their own respect (see also [Ram99]). When applying the npp-metric to
a path-expression P corresponding to a natural loop nest, Equation (6.14)
(p. 101) has the affect of condensing a nested loop to a single node. In
this way the condensed version of P is again an acyclic graph to which
Case (1) above applies.

6.4.3 Irreducible CFGs and Loncp-Minimality

Theorem 5. Unambiguous path-expressions from irreducible CFGs are not
loncp-minimal in general.

Proof. Indirect. Assume that unambiguous path-expressions from irreducible
CFGs are loncp-minimal. Figure 6.11 depicts an irreducible CFG. For the un-
ambiguous path-expression

R1 = e1 +(e2 + e1 · e4) ·(e3 · e4)
∗ · e3

of type (ne, nx) we have loncp(R1) = 4. On the other hand, for the equivalent
unambiguous path-expression

R2 = (e1 + e2 · e3) ·(e4 · e3)
∗

we get loncp(R2) = 3, which concludes the case.

ne

nx n1

e1 e2

e4

e3

Figure 6.11: Potentially Loncp-Minimal Irreducible CFG.

As already pointed out, irreducible CFG-portions constitute loops that do
not have a unique header. This not only separates them from reducible CFGs,
but it also holds responsible for the above observation — depending on the node
that we regard as the loop header (n1 for R1 vs. nx for R2), we get a different
result from our loncp-metric.

116 6.5 Experiment and Evaluation

6.5 Experiment and Evaluation

Finally I put to you for consideration by your discrete judgment that

you should not wonder (but rather excuse me) if what I propound shall be not

exactly comparable with the experiences and observations to be made

by you and others, because there are may ways to err.

One, almost inescapable, is some mistake in calculation; besides that,

the smallness of these planets and their being observed with the telescope,

which so greatly enlarges every object seen, means that an error even one second

in the meetings and separations of these stars is made more apparent and noticeable

than one thousand times as great an error in the aspects of other [naked eye] stars.

— Galileo Galilei, Sunspot Letters, Rome, 1613.

We shall now come to the description and evaluation of the experiments con-
ducted on the SPEC95 benchmark suite. The following section describes the
extraction of input-data and the basic setup of the experiment. Section 6.5.2
describes the validation of the data computed by our data-flow framework. In
Section 6.5.3 we apply several data analysis methods from [Cle93] to evaluate
the data collected in our experiment. The reader interested in the raw data
collected in the experiment is referred to [BSB04, pp. 35–284].

6.5.1 Basic Setup

Diagram (6.28) depicts the basic setup of our experiment. C- and Fortran
source files (SRC) are input to the GCC compiler. The command line option
“-dw” causes GCC to generate debug output (DBG) that contains, among other
information, the control flow information of the input program. This option is
only valid with optimization enabled (at least “-dw”), which in turn also affects
the structure of the control flow information. We have used GCC 3.2 for the
IA-32 architecture under RedHat 9.0 for this step.

SRC
GCC // DBG

SCR // CFG
FW // RN

ne,nx

M // Data (6.28)

A combination of sed-, awk-, and perl scripts (SCR) is used to extract the
control flow information from GCC’s debug output in order to generate control
flow graphs (CFG) that serve as input to our data-flow framework (FW).

It is the purpose of the data-flow framework to compute path expressions
from control flow graphs according to the data-flow problem defined in Sec-
tion 6.2. The metrics (M) defined in Section 6.3 have then been applied to
these path expressions.

6.5.2 Validation

We have validated the implementation of our data-flow framework described in
Section 6.2 in comparing the state transition diagrams corresponding to control
flow graphs with the state transition diagrams corresponding to the generated
path expressions. This approach is depicted in the following diagram which is

Experimental Results 117

an extension of part of Diagram (6.28).

CFG

t2

��

t1 // RN
ne,nx

t3

��

DFA DFA′+3
isomorphism

ks

(6.29)

We take a given control flow graph CFG = 〈N, E, ne, nx〉 as input. According
to Lemma 5 on page 97 we can view this graph as a deterministic finite au-
tomaton DFA (denoted by transformation t2). Transformation t1 denotes the
conversion of the control flow graph to a path expression of type (ne, nx) by our
data-flow framework (cf. also Diagram (6.28)). The generated path expression
is denoted by RN

ne,nx
. Transformation t3 is a compound transformation that

comprises the following steps: the conversion of the path expression to a nonde-
terministic finite automaton, the subsequent conversion to a deterministic finite
automaton, and the minimization of the result. The resulting deterministic fi-
nite automaton DFA′ is then checked for isomorphism against automaton DFA.
This approach worked sufficiently well even for large flowgraphs. In fact we
could validate 5048 out of 5053 graphs using this approach.

However, for the remaining 5 graphs validation turned out to be intractable.
We investigated a different approach, based on [HU79, Theorem 3.8]. From
there it follows that the languages L(A1) and L(A2) accepted by two finite
automatons A1 and A2 are the same if

(
L(A1) ∩ L(A2)

)
∪
(
L(A1) ∩ L(A2)

)
= ∅.

In the above equation overlining denotes the complement of a language. Comple-
menting a language required to compute the complement of a deterministic finite
automaton. Making the automaton computed from the path expression RN

ne,nx

deterministic turned out to be intractable for the remaining 5 graphs.
For the conversions and tests on automata and regular expressions described

in this section we have used the Grail tool [RW94], a symbolic computation
environment for finite-state automata and regular expressions. We have ported
this tool to Linux, using the GNU toolchain with g++ 3.3. In addition we
needed to add an integer alphabet to Grail in order to support automata with
several thousand states and input symbols.

118 6.5 Experiment and Evaluation

6.5.3 Data Evaluation

The SPEC CPU95 benchmark contains 18 benchmark programs divided into 8
integer (CINT95) and 10 floating point (CFP95) benchmarks. Tables 6.1 and 6.2
enumerate these benchmark programs along with the corresponding benchmark
number and a short program description.

no. name description

099 go an internationally ranked go-playing program

124 m88ksim a chip simulator for the Motorola 88100 microprocessor

126 gcc GNU C compiler (version 2.5.2)

129 compress a in-memory version of the common Unix utility

130 li Xlisp interpreter

132 ijpeg image compression/decompression on in-memory images

134 perl an interpreter for the perl language

147 vortex an object oriented database

Table 6.1: SPEC CINT95 Benchmarks

no. name description

101 tomcatv vectorized mesh generation

102 swim shallow water equations

103 su2cor Monte-Carlo method

104 hydro2d Navier Stokes equations

107 mgrid 3d potential field

110 applu partial differential equations

125 turb3d turbulence modeling

141 apsi weather prediction

145 fpppp from Gaussian series of quantum chemistry benchmarks

146 wave5 Maxwell’s equations

Table 6.2: SPEC CFP95 Benchmarks

All 18 benchmark programs together account for a total of 5053 procedures.
Figure 6.12 depicts the distribution of these 5053 procedures among the bench-
mark programs.

We further differentiated between procedures with reducible and irreducible
flowgraphs. From 5053 procedures, we found 5005 to contain reducible flow-
graphs, while only 48 procedures turned out to be irreducible (the procedures
with irreducible flowgraphs are listed in Table 6.3).

Experimental Results 119

372

1 6 37 42 12 16

252

23

2001

24

357

467

276

96
38

110

923

09
9

10
1

10
2

10
3

10
4

10
7

11
0

12
4

12
5

12
6

12
9

13
0

13
2

13
4

14
1

14
5

14
6

14
7

Figure 6.12: Number of Procedures Per Benchmark

benchmark # procedure name

1 099 g2 c readfile

2 124 asm c a pname

3 124 cmdparser c pname

4 124 rm c rm

5 126 c-lex c yylex

6 126 caller-save c save call clobbered regs

7 126 c-common c check format info

8 126 c-decl c store parm decls

9 126 combine c expand field assignment

10 126 c-parse c yyparse

11 126 cse c fold rtx

12 126 cse c cse insn

13 126 expr c get pointer alignment

14 126 flow c mark used regs

15 126 fold-const c div and round double

16 126 loop c find and verify loops

Table 6.3: SPEC95 Procedures with Irreducible Flow Graphs

120 6.5 Experiment and Evaluation

benchmark # procedure name

17 126 rtl c read rtx

18 126 reorg c mark target live regs

19 126 reorg c fill simple delay slots

20 126 rtlanal c note stores

21 126 rtl c read skip spaces

22 126 sched c schedule block

23 126 stmt c check for full enumeration handling

24 126 stmt c bc check for full enumeration handling

25 126 stmt c group case nodes

26 126 ucbqsort c qst

27 130 xllist c map

28 132 libpbm1 c pm init

29 132 libpbm5 c pbm dumpfont

30 132 rdgif c start input gif

31 134 cmd c cmd exec

32 134 doarg c do pack

33 134 eval c eval

34 134 doio c do exec

35 134 dolist c do match

36 134 dolist c do split

37 134 dolist c do unpack

38 134 dolist c do kv

39 134 form c format

40 134 perly c yyparse

41 134 regcomp c regcomp

42 134 regcomp c regclass

43 134 str c intrpcompile

44 134 toke c yylex

45 134 toke c load format

46 145 fmtgen f fmtgen

47 145 fmtset f fmtset

48 147 query c Query AssertOnObject

Table 6.3: SPEC95 Procedures with Irreducible Flow Graphs

Observation 1: For the SPEC95 benchmark suite the share of irreducible con-
trol flow graphs is less than 1% and hence almost negligible.

Another topic of interest has been the edge/node ratio of SPEC95 control
flow graphs. Figure 6.13 lists the ratio edges/nodes over nodes on a logarithmic
scale.

Observation 2: It can be seen in Figure 6.13 that the edge/node ratio of
SPEC95 control flow graphs is constant. This means that the number of edges

Experimental Results 121

0 250 500 750 1000 1250 1500

nodes

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30
lo

g1
0

(e
)

/ l
og

10
 (

n)

Figure 6.13: Edge/Node Ratio

is a linear function on the number of nodes.

Figure 6.14 graphs the loncp values of the SPEC95 procedures over the
corresponding number of edges. Again we distinguish between reducible and
irreducible control flow graphs. The fit for the data on reducible flowgraphs
turns out to be a straight line for the logarithmic scale chosen for the loncp
values. The fitted function is

loncp(e) = 2.9131 ∗ exp(0.076542 ∗ e),

where e denotes the number of edges of a given procedure. The correlation
coefficient of this function is 0.86041. This leads us to the following observation.

Observation 3: For the procedures of the SPEC95 benchmark suite the loncp
metric is exponential in the number of CFG edges.

The fitted function for irreducible flowgraphs suggests that the loncp metric
grows at a slower rate for irreducible graphs, but the sample of only 48 graphs
of that kind is by no means representative.

Figure 6.15 (a) contains a quantile plot of the loncp values of the SPEC95
procedures. The f quantile q(f) of a set of data is a value along the measure-
ment scale of the data with the property that approximately a fraction f of the
data are less than or equal to q(f). The 0.25-, 0.50-, and 0.75-quantiles are dis-
tinguished values called lower quartile, median, and upper quartile respectively.
If we order our observations of loncp values from smallest to largest, we can
graph them against f . In this way quantile plots are an effective means of visu-
alizing distributions. Coming back to our quantile plot depicted in Figure 6.15
(a), we arrive at the following observation.

122 6.5 Experiment and Evaluation

0 500 1000 1500 2000 2500 3000

edges

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

lo
nc

p
irreducible
reducible
fit, reducible
fit, all
fit, irreducible

Figure 6.14: Regression

Observation 4: The distribution of loncp values starts at the lowest possible
value (1) and increases modestly up to the 0.94 quantile. Thereafter we can
observe an excessive increase of quantiles which suggests that the final 6 percent
of our distribution represent costly outliers. Figure 6.15 (b) has been scaled and
excludes outliers above 106. The two distinguished data points in the upper right
corner represent the 0.9 quantile and the 0.94 quantile. Hence we learn that for
90 percent of the distribution the loncp-value is below 3238, and for 0.94 percent
it is still below 100000. The bottom line of this observation is that for the major
part of SPEC95 procedures the loncp metric yields surprisingly low values, but
that a few outliers turn out to be very costly.

Observation (4) is also supported by the box plots of the loncp values de-
picted in Figure 6.16. For these plots the SPEC95 procedures have been grouped
into the 18 benchmark programs, with an additional box plot titled “all” for
the overall distribution. Note that benchmark programs 101 and 102 contain
too few procedures to justify a box plot. For this reason their loncp values
have been depicted as single data points. For benchmark 102 the data point at
loncp = 17 actually represents three occurrences, which is in line with the total
number of six procedures given in Figure 6.12.

Figure 6.16 (b) has again been scaled to exclude outliers above 106. In
addition it contains a line connecting the medians of the respective plots. This
line is helpful for locating the median for distributions like that of benchmark
program 130 where the median falls together with one of the quartiles. Note
that with all box plots the whiskers are drawn to the 0.1 and 0.9 quantiles.

Observation 5: Although the distributions of the SPEC95 benchmark pro-
grams have a large spread, their center , represented by the median, has a low
loncp value. As an example consider the overall distribution depicted in the

Experimental Results 123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.94

f-value

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

10
5

lo
nc

p

Quantile
94% < 100_000 loncp
90% < 3238 loncp

(a) Loncp Quantile Plot: complete distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.94

f-value

10
0

10
1

10
2

10
3

10
4

10
5

10
6

lo
nc

p

Quantile
94% < 100_000 loncp
90% < 3238 loncp

(b) Loncp Quantile Plot: outliers above 106 removed

Figure 6.15: Quantile Plot for SPEC95 Programs

124 6.5 Experiment and Evaluation

099
101

102
103

104
107

110
124

125
126

129
130

132
134

141
145

146
147

all

benchmark programs

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

10
5

lo
nc

p

(a) Loncp Box Plot: complete distribution

099
101

102
103

104
107

110
124

125
126

129
130

132
134

141
145

146
147

all

benchmark programs

10
0

10
1

10
2

10
3

10
4

10
5

10
6

lo
nc

p

(b) Loncp Box Plot: outliers above 106 removed

Figure 6.16: Box Plot for SPEC95 Programs

Experimental Results 125

rightmost column of Figure 6.16. It spreads across the interval of [1, 1063],
whereas the median is at 8 (cf. also the 0.5 quantile of Figure 6.15 (b)).

Observation 6: The interquartile ranges of the SPEC95 benchmark programs
are small. This means that the middle 50 percent of the data are tightly packed
around the median. As an example we consider again the overall distribution
depicted in the rightmost column of Figure 6.16 (b); It has a lower quartile of 2
and an upper quartile of 66 which results in an interquartile range of only 64.

Small interquartile ranges and low loncp values for the median support our
argument stated in Observation (4) that the major part of SPEC95 procedures
yield low loncp values, but that a few outliers are very costly.

Observation 7: The distributions of the majority of surveyed benchmark pro-
grams are skewed towards larger loncp values. This observation is supported
by three facts regarding median, whiskers, and outliers of the plots.

1. For most benchmark programs the median is closer to the lower than to
the upper quartile.

2. For every benchmark program the lower whisker ranging from the 0.1 to
the 0.25 quantiles is smaller than the upper whisker ranging from the 0.75
to the 0.9 quantiles.

3. For every benchmark program the lower relative range of outliers (up to
the 0.1 quantile) is by orders of magnitudes smaller than the corresponding
upper relative range.

It should be noted that similarly to the interquartile range, the whiskers provide
summaries of spread and shape of our benchmark data. But contrary to the
interquartile range, the whiskers are not concerned with the center but with the
extremes (or tails) of a distribution. The outliers, in turn, provide insight on
the spread and shape in the extreme tails.

The remaining observations deal with the improvement of the loncp met-
ric over the ncp metric. For all procedures except procedure toke c yylex

from benchmark program 134 we have determined both ncp and loncp values‡.
Figure 6.17 depicts the results of this survey.

Observation 8: From the 5052 examined SPEC95 procedures

• 18 percent had already the minimum metric value of 1,

• 22 percent yielded a smaller result for the loncp metric than for the ncp
metric,

• and 60 percent could not be improved with the loncp metric.

In addition to the reduction in absolute values we also computed the relative
reduction r’ according to the formula

r’ = round
[
10 ∗ (100 −

loncp(P)

ncp(P) ∗ 10−2
)
]
∗ 10−1, (6.30)

126 6.5 Experiment and Evaluation

60%: loncp = ncp

22%: loncp < ncp

18%: not applicable

Figure 6.17: Loncp Metric: Number of Unaffected vs. Improved Procedures

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

10
15

10
16

10
17

10
18

10
19

10
20

metrics

0

20

40

60

80

100

re
la

tiv
e

im
pr

ov
em

en
t (

%
)

 loncp metric
 ncp metric

Figure 6.18: Relative Improvement of Loncp over Ncp Metric

Experimental Results 127

where “round” denotes the round to nearest rounding function. It became then
apparent that there exist cases where the loncp metric achieves substantial im-
provements in terms of absolute values, but the relative reduction is compara-
tively small.

Figure 6.18 lists the ncp and loncp values (x-axis) of all procedures with a
relative reduction (y-axis) greater than zero. This figure already suggests that
higher ncp values result in lower relative reduction.

ncp

10
0

10
3

10
6

10
9

10
12

10
15

10
18

10
21

10
24

10
27

10
30

10
33

ab
so

lu
te

 im
pr

ov
em

en
t

absolute improvement

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

10
24

10
26

10
28

10
30

10
32

10
34

10
36

10
38

10
40

0

5

10

15

20

re
la

tiv
e

im
pr

ov
em

en
t (

%
)

relative improvement (%)

Figure 6.19: Comparison of Relative and Absolute Improvement

We derive the confirmation of this observation from Figure 6.19, where we
directly compare absolute and relative reduction for ncp values. The x-axis of
Figure 6.19 corresponds to the ncp values of procedures with an absolute reduc-
tion greater than zero. The y-axis on the left-hand side of this figure lists the
relative reduction, whereas the y-axis on the right-hand side gives the absolute
reduction. Every datapoint represents the average of the ncp-interval [i, 10 ∗ i),
with 1 ≤ i ≤ 1040. Note that the 0.75 quantile for this distribution is below 105,
which means that datapoints above this value represent comparatively few out-
liers. This is also in line with Observation 7. In this way the representative part
of the graphs is located in the ncp interval [1, 105]. This leads us to our final
observation.

Observation 9: For the majority of SPEC95 procedures that can be improved
by the loncp metric, we have a negative correlation between ncp values and rel-
ative improvement, and a positive correlation between ncp values and absolute
improvement.

The reason for this observation is at the moment unclear and needs further
investigation. One possible cause could be that the optimization achieved with

‡For procedure toke c yylex only the loncp value has been computed.

128 6.5 Experiment and Evaluation

the loncp metric is based on the elimination of loops, and that programmer-
supplied loops rarely exceed a given size. This in turn also limits the potential
of a method targeting at loops. The loops contained in path expressions with
high ncp values could be due to the use of goto statements. Another source for
such loops (also possibly due to gotos) could be machine-generated code (e.g.,
scanners and parsers). It is likely that source code of this kind displays other
characteristics as man-made goto-less code. It should however be noted that
static program analysis methods are, for obvious reasons, mainly applied to the
latter category.

Chapter 7

Related Work

7.1 Early Entrepreneurs

As early as in 1976 J. King [Kin76] introduced symbolic execution along distinct
program paths as a software testing and program verification methodology. Ex-
ecution proceeds as with standard semantic execution, except that the values
of expressions may be symbolic formulas over the input symbols. The state of
the computation is represented by the set of program variables, a statement
counter, and a pathcondition. Program verification is facilitated by allowing
the programmer to specify boolean predicates at certain program points, which
are then evaluated using the current state of the computation. Overall, the
approach can be viewed as an early attempt to automate static analysis, in this
case restricted to classes of input resulting in the same program path taken.

Around the same time T. E. Cheatham and J. A. Townley started work
on a program development system that aimed at the provision of tools and
facilities for program development and maintenance. One of the planned tools
was the Symbolic Evaluator (SE) which was needed to generate a program
database for a given program. The database contained the original program,
annotated with symbolic values for each construct, plus further known facts on
the program such as constraints. The operation of the SE on several example-
loops is sketched in [CT76]), with a focus on the determination of induction
variables, recurrence relations, closed forms, and bounds for the number of loop
iterations. The paper already mentions the computation of normal forms for
symbolic expressions. Further descriptions of the program development systems
are given in [CTH79, CHT81].

In [CHT79] symbolic evaluation with the Symbolic Evaluator is used as a
means of static program analysis for sequential EL1 programs. The approach
considers all paths that reach a program point thus implying exponential growth.
The used program representation is somewhat costly in the sense that program
statements, predicates of conditional assignments, and variable values are all
separately represented and linked via context numbers and time labels. A list
of values ever assigned to a variable is explicitly stored and retrieved via time
stamps. Techniques to solve recurrence relations and to simplify systems of
constraints are introduced, with a restriction to linear problems. Path conditions
are not employed with this approach. In [Plo79] the Symbolic Evaluator is

130 7.2 Abstract Interpretation

extended to support interprocedural symbolic analysis by so-called templates
that describe the accumulated side-effects of a procedure as a function of its
input parameters and the initial values of free variables. Procedures are analyzed
as if the call-environment were unknown. However, for cases where this generic
template mechanism would create undue complexity, information from the call-
site is used to create a template of restricted applicability. At a procedure call
site a template is therefore checked for applicability before it is instantiated with
the call environment.

In the work of E. Ploedereder [Plo80] a comprehensive semantic model for
symbolic analysis and program verification based on denotational semantics is
presented. The basic model provides semantic descriptions for constants, iden-
tifiers, pure functions, selection, assignment, sequenced and conditional expres-
sions, compound expressions, declarations, input/output functions, assertions,
procedures, and loops. The basic model is then extended to the semantics of
EL1. A further extension includes recursive procedure calls, pointer-related se-
mantics, and run-time exception detection. Despite the provision of semantic
functions for weakest symbolic preconditions and strongest symbolic postcon-
ditions in the sense of Dijkstra’s predicate transformers (cf. [Dij76]), there is
a clear-cut distinction between symbolic evaluation and the utilization of its
results, e.g., by a program verification tool.

7.2 Abstract Interpretation

Paralleling the ongoing research on symbolic evaluation, P. and R. Cousot ini-
tiated work in the area of abstract interpretation (cf. [CC77]), which can be
considered a theory of semantic approximation for the analysis of sequential
programs. The need for semantic approximations arose from the fact that stan-
dard semantic valuation functions are not in general computable. Hence the
idea arose to use a simplified non-standard semantics whose valuation functions
are computable. In order to obtain standard-semantic meaning from the non-
standard semantics of a program, the two meanings must be related by the ab-
straction relation that describes the abstracted aspects as well as the properties
of the standard-semantic meaning that can be deduced from the non-standard
semantics. There is a clear trade-off between the level of abstraction and the
precision of the computed results. Moreover, the non-standard semantics have
to be carefully tailored to the needs of the particular application. Due to its
approximations abstract interpretation is incomplete, but it may find solutions
to problems which can tolerate imprecise results.

An example of an application of abstract interpretation is the extraction
and propagation of variable range constraints across a program. It is used by
F. Bourdoncle in [Bou93] to determine the range of scalar variables in Pascal
programs (although the constraints are not symbolic in this work). Blume
and Eigenmann [BE96] use it to determine constraints about variable ranges
in shared memory parallel programs. Their way of determining the ranges of
program values employs data-flow analysis involving iteration to a fixed point.
To make this computation feasible, widening operations are employed in order
to reduce the number of iterations. Widening must be considered a further
conservative approximation disturbing the accuracy of the computed results.
In order to compensate for the loss of accuracy due to widening a subsequent

Related Work 131

narrowing step is introduced which discards infinite bounds but does not tighten
finite bounds.

P. Cousot and N. Halbwachs (cf. [CH78]) apply abstract interpretation to
determine linear equality and inequality relations among variables of a sequen-
tial program. With their approach, sets of constraints between variables are
represented as n-dimensional convex polyhedrons computed by abstract inter-
pretation.

M. Haghighat and C. Polychronopoulos [HP96] describe several symbolic
analysis techniques that are based on abstract interpretation. The informa-
tion of all incoming program paths to a statement is intersected at the cost
of analysis accuracy. We describe the symbolic domain used by this approach
in Section 7.3, the symbolic differencing method for induction expressions is
discussed in Section 7.5.

Comparing abstract interpretation to our approach of symbolic analysis, it
has to be noted that symbolic analysis precisely represents the values of program
variables which contrasts the approximations produced by abstract interpreta-
tion. As already mentioned, applications of abstract interpretations have to face
the trade-off between the level of abstraction and the precision of the computed
results. The representations of the two methods are also fundamentally differ-
ent: while abstract interpretation is only concerned with state information, our
symbolic evaluation method is based on the notion of supercontexts which also
include information from pathconditions to determine under which conditions
the symbolic values encapsulated in a program state reach a certain flow graph
node.

Finally, the introduction of an approximation is also an option for symbolic
evaluation to treat those cases where an exact solution is not feasible. How-
ever, with symbolic evaluation we can precisely delimit the application of an
approximation to the unsolvable subpart of a problem (e.g., the recurrence re-
lation of an induction variable v for which no closed form can be derived), while
still being elevated by the exact results “surrounding” the unsolvable subpart
(e.g., closed forms of induction variables that are part of the recurrence relation
of v). In minimizing the number of approximations we can expect to keep the
precision of the analysis at a maximum.

7.3 Symbolic Domains

Geddes et al. [GCL92, Chapter 2] survey the algebraic structures that our sym-
bolic domain introduced in Section 4.1.1 is based upon. Chapter 3 of [GCL92]
addresses various computer representations of algebraic objects, together with
a treatment of the zero equivalence problem and normal forms. Involved is the
issue of simplification of algebraic objects, which has already been raised by
Moses [Mos71]. Geddes et al. introduce three levels of abstraction in order to
distinguish between mathematical objects and their computer representations.
With our work we have adopted this hierarchy (cf. Section 4.1).

In [GCL92] there is already a distinction between equivalence and identity
of expressions, which is however not due to the distinction between syntax and
semantics, but to the use of an equivalence operator = on the object level and
an identity operator ≡ on the form level. A semantics-based transformation
function converts expressions within the same equivalence class.

132 7.4 Symbolic Evaluation

As already mentioned, there is no clear distinction between syntax and se-
mantics of symbolic expressions. Furthermore this approach does not make use
of syntax-based term rewriting, and there is no notion of a symbolic predicate
domain.

The abstract symbolic domain of Haghighat presented in [Hag95] is based
on Geddes et al. [GCL92]. It is implementation-centered in the sense that it is
mainly concerned with the data-structure level. There is no clear-cut distinction
between syntax and semantics of symbolic expressions, but the zero equivalence
problem is solved on the syntactic level, based on a unique normal form for
symbolic expressions. It is however not mentioned how symbolic expressions are
transformed into canonical form. As this approach does not use pathconditions,
there is also no notion of a symbolic predicate domain.

The method of denotational semantics is often used to map derivation trees
of a given programming language to a semantic domain where symbolic evalu-
ation can then be performed. As noted in Section 2.2.2, semantic domains are
algebras, which, according to the hierarchy of Section 4.1, are located on the ob-
ject level. Obviously an underlying implementation is however restricted to the
form or data structure level. Even if this distinction is not made, the presence of
the form level is usually manifested through symbolic expression simplification
facilities which, among other purposes, have to derive unique normal forms for
symbolic expressions.

Initially our approach also employs denotational semantics, but we establish
a clear-cut distinction between object and form level, as outlined in Section 5.5.

7.4 Symbolic Evaluation

In [Bli02] symbolic evaluation is employed to estimate the worst-case execu-
tion time of sequential real-time programs. With this approach programs are
mapped to control flow graphs such that graph nodes represent the basic blocks
of the program, and edges denote the transfer of control between basic blocks.
Symbolic evaluation is set up as a data-flow problem, with equations describing
the solutions at the respective CFG nodes. Figure 7.1 shows the Ada-code of
our running example from Section 5.4 together with the associated control flow
graph.

1 b := b + 1; -- node n1

2 while j <= m loop -- node n2

3 d := 2∗d; -- node n3

4 j := j+b; -- node n3

5 end loop;

ne

n1

n2 n3

nx

Figure 7.1: Example Program and Control Flow Graph

A variant of denotational semantics is used to derive the branch predicates
and side-effects from the source-code of the program. Equations (7.1)–(7.5)
constitute the data-flow equations for this example, where Xni

denotes the

Related Work 133

data-flow equation for node ni.

Xne
=
[
{(b, b), (d, d), (j, j), (m, m)}, true

]
(7.1)

Xn1
= Xne

| {(b, b + 1)} (7.2)

Xn2
= Xn1

∪ Xn3
(7.3)

Xn3
= (j ≤ m) � Xn2

| {(d, 2 · d), (j, j + b)} (7.4)

Xne
= ¬(j ≤ m) � Xn2

(7.5)

The graph of the program state together with the pathcondition makes up a
program context, as can be seen in Equation (7.1)∗. The effect of a basic block
is denoted by the term after the “|”-operator, branch predicates are followed by
the symbol “�”.

With this notation Equation (7.4) reads as follows: Equation Xn3
for node n3

depends under the branch predicate j ≤ m on Equation Xn2
for node n2, with

the local effect of setting the value of variable d to 2 · d, and the value of variable j
to j + b.

In order to solve this data-flow problem by an elimination algorithm, a nor-
mal form for equations, a procedure to insert one equation into another, and
a loopbreaking rule to resolve circular equational dependencies are introduced.
During a loopbreaking step the induction variables of the loop body are deter-
mined, a system of recurrence relations is set up, and closed forms are derived
where possible.

The elimination algorithm reduces the control flow graph to the dominator
tree, while performing equation insertions and loop breaking in parallel. Once
the control flow graph is reduced to the dominator tree, each data-flow equa-
tion depends only on its immediate dominator. The solution to the data-flow
equation at the root node of the dominator tree (Xne

in the above example) can
then be propagated along the dominator tree to derive the data-flow solution
for the exit node.

In formulating symbolic evaluation as a data-flow problem this approach dif-
fers from ours since we set up a data-flow problem to calculate path expressions
(cf. Section 6.2) that are then interpreted by redefining the operators of the
regular expression algebra. Another difference concerns the flow graph nodes,
for which a solution is computed: we can compute the MOP solution for any
node in the control flow graph (also for nodes within a loop), while in [Bli02]
the solution for the exit node is computed. The emphasis on the exit node is
due to the fact that for worst-case execution time analysis the time spent until
and including the exit note is of sole interest.

Despite its initial orientation towards worst-case execution time analysis this
approach has been successfully applied to many other application areas [BB98,
BBS99, BBS00, BB03]. The technique of symbolic instrumentation ([Bli02,
Definition 15]) is furthermore an elegant example of an auxiliary semantics
(cf. [WM95, Section 10.2.3]) that can easily be adopted by our approach.

In [Sch01, FS03] a novel representation for program contexts is introduced.
It consists of a state s, a state condition t, and a path condition p. While s
and p are comparable to our notions of program state and pathcondition, the

∗Although in [Bli02] the word “context” corresponds to our notion of a “supercontext”.

134 7.4 Symbolic Evaluation

state condition t is used to store additional assumptions on the values of vari-
ables in s, such as constraints between variable values or user assertions. The
representation of program contexts is a sparse representation that makes use
of a folding operator � in order to collapse analysis information at confluence
nodes. It joins two contexts [s′, t′, p′] and [s′′, t′′, p′′] and generates a symbolic
state composition [s′′′, t′′′, p′′′], written as

[s′, t′, p′] � [s′′, t′′, p′′] = [s′′′, t′′′, p′′′].

Therein

s′ = {v1 = e1, . . . , vn = en},

s′′ = {v1 = f1, . . . , vn = fn},

and the context [s′′′, t′′′, p′′′] resulting from the folding operation is defined such
that

gi =

{
ei : if ei = fi,

new symbol : otherwise,

s′′′ = {v1 = g1, . . . , vi = gi, . . . , vn = gn},

Ω′ =
∧

1≤i≤n,ei 6=fi

(gi = ei),

Ω′′ =
∧

1≤i≤n,ei 6=fi

(gi = fi),

t′′′ = (t′ ∨ t′′) ∧ ((p′ ∧ Ω′) ∨ (p′′ ∧ Ω′′)),

p′′′ = p′ ∨ p′′.

The definition of the folding operator � considers only variables with different
symbolic values in state s′ and state s′′. For those variables with different
symbolic values new symbols are introduced and bound either to the symbolic
value of s′ or the symbolic value of s′′, depending on the path condition.

Furthermore, [Sch01, FS03] contain denotational definitions for assignments,
input/output operations, conditional statements, loops, procedures, and dy-
namic data structures. An array algebra models symbolic read and write oper-
ations on array variables. An algorithm for the generation of program contexts
from a reducible control flow graph extended by loop preheader-, postbody-,
and postexit-nodes of a program is also presented.

Alone from the number of supported programming language constructs this
approach is very comprehensive and therefore hardly comparable to the ap-
proach chosen with our simple, yet Turing-equivalent Flow language. A major
difference is clearly rooted in the fact that with our approach we employ path ex-
pressions to capture the control flow information of programs, which also works
for irreducible control flow graphs. Admittedly our correctness proof is very
much facilitated by the simplicity of the Flow language. The sparse context
representation is an efficient alternative to the path-enumerating representa-
tion used with our approach. The rich set of supported programming language
constructs, esp. the formalism for symbolic arrays, can be considered valuable
extensions of our approach.

Related Work 135

7.5 Induction Variable Substitution

Symbolic analysis methods used by current state-of-the-art restructuring com-
pilers require the availability of closed-form expressions at the source-code level,
which involves treatment of induction variables in loops. Generalized induction
variables (GIVs) are a general class of induction variables that form polynomial
and geometric progressions through loop iterations [GSW95]. The recognition of
GIVs and the subsequent replacement of GIV-uses with semantically equivalent
closed form expressions is called induction variable substitution (IVS).

Haghighat’s symbolic differencing method [Hag95] recognizes generalized in-
duction variables and determines closed form expressions by a method called
symbolic differencing . Therein a generalized induction variable (GIV) is char-
acterized by its function X defined by

X (n) = ϕ(n) + ran, (7.6)

where n is the loop iteration number, ϕ is a polynomial of order k, and a and r
are loop-invariant expressions. The forward difference operator ∆ is defined by

∆X (n) = X (n + 1) −X (n).

Each term in the successive differences of ϕ is the sum of two parts, one arising
from ϕ(n), and the other from ran. Since ϕ(n) is a polynomial of order k, the
part arising from it will vanish after k + 1 differences, and the remaining parts
in the differences will form a geometric progression with the common ration r.

Conversely, if the first few terms of a series are known, and if the (k + 1)th

differences of these terms form a geometric progression whose common ratio is r,
then it is assumed that the general term of the given series is of the form stated
in Equation (7.6), where ϕ is an integer-valued polynomial in n of degree k.

From this an algorithm for the recognition and substitution of generalized
induction variables can be devised†. Given a loop L, where fsc denotes the
accumulated effect of one iteration of the loop body of L. We can compute the
effect of the first i iterations of the loop body on a clean slate program context c,
denoted by

c1 = f1
sc(c), c2 = f2

sc(c), . . . , cj = f j
sc(c).

Suppose we are interested in variable vi. After constructing a difference table
for the expressions st(cν)(vj), 1 ≤ ν ≤ i, Newton’s formula for forward interpo-
lation (cf. [Bac96, Equation 3.1], [Hag95], [Knu97, pp. 503–505]) will give us an
interpolating formula for a closed form expression for variable vj .

Example 7.1 Consider again our running example from Section 5.4. The pro-
gram contexts cν for 1 ≤ ν ≤ 2 are given in Equations 5.7 and 5.8. Suppose
we are interested in variable j, which gets assigned the expression j + b of or-
der k = 1. Figure 7.2 depicts the difference table for the expressions

st(cν)(j), 1 ≤ ν ≤ 3,

describing the value of variable j during the first three iterations of the exam-
ple loop. Employing forward interpolation (cf. [Hag95, Section 4.3.1]) yields

†The explanation of this algorithm will already be given in terms of our symbolic evaluation
approach.

136 7.5 Induction Variable Substitution

k symbolic differences

0 j + b j + 2 · b j + 3 · b

1 b b

2 0

Figure 7.2: Difference Table for Variable j

the closed form expression for variable j that we have already established in
Equation 5.9.

X (i) = j + b + b ·

(
i − 1

1

)
= j + i · b

It is pointed out in [vE01] that the method of symbolic differencing is unsafe
if the number of computed loop iterations, which is a user-supplied constant,
is set too low. In that case an order-underestimate of recognized induction
variables happens, which in turn causes wrong interpolations. Consequently
the user must be knowledgeable about the type of program analyzed to make a
wise decision.

Another method of induction variable substitution closely related to sym-
bolic differentiation is based on chains of recurrences (CR). Chains of recur-
rences originated in the work of Bachmann, Zima, and Wang [BWZ94, Bac96,
Zim95], they expedite the evaluation of closed form functions on regular grids
(for further references cf. [Bac97, KMZ98, Zim01]). The CR-based IVS method
recently developed by R. van Engelen et al. [vEBS+04, vE00, vE01] is more gen-
eral than the symbolic differencing method because it recognizes progressions
due to polynomials, exponentials, factorials, and compositions of these.

Chapter 8

Conclusion and Future
Work

Ever tried. Ever failed. No matter.

Try again. Fail again. Fail better.

— Samuel Beckett, quoted in “The Lure of the Quest”,

a report on the dog sled race “Yukon Quest”, written by John Balzar.

In this work we have taken a novel approach to symbolic analysis based on
path expressions. We have shown that by means of path expressions we can
capture the control flow information that is inherent in a program. By reinter-
preting path expressions we have obtained a mapping from the path expression
algebra into the symbolic analysis domain. At the heart of this domain is the
supercontext, an algebraic structure capable of describing all possible variable
bindings valid at a well-defined program point. For a possible implementation
we have outlined a finite representation for supercontexts. Furthermore we have
set up a data-flow problem in order to compute path expressions from arbitrary
(i.e., reducible and irreducible) control flow graphs. We have defined metrics on
path expressions in order to asses the required analysis effort. We have proved
the minimality of the generated path expressions with respect to a given met-
ric. Furthermore, the empirical data collected in an extensive survey show that
symbolic evaluation is a methodology capable of coping with the considerable
problem sizes that arise from contemporary real-world applications.

In the following we outline several topics for future work.

8.1 Induction Variables and Recurrences

Finding closed form expressions for the recurrence relations of a system of re-
currences can be considered a major challenge for every symbolic analysis ap-
proach. Since this problem is undecidable in the general case, it is necessary to
gain knowledge on the type of recurrence relations that occur in applications.
Solution procedures will have to take into account symbolic differencing and the
chains of recurrences method outlined in the related work. The latter is espe-
cially interesting due to its possible applicability to conditional recurrences.

138 8.2 Parallel Execution Within Flow

8.2 Parallel Execution Within Flow

In Equation (3.3) on page 20 we required that for a given state s of our Flow

execution-model the branch predicate of exactly one outgoing edge evaluates to
true. We can weaken this requirement and allow more than one predicate to
evaluate to true:

1 ≤ | ∪
ei∈out(s)

{pred(ei)(env) = true} | . (8.1)

This will incorporate the parallel execution-model into Flow. Two topics that
have to be solved with this step are enumerated below.

1. Parallel threads of execution are bound to race-conditions (remember that
all Flow variables are global). Therefore all possible interleavings between
threads have to be generated as contexts.

2. Introduce a synchronization primitive that allows Flow program segments
to enforce mutual exclusion in order to tackle the before-mentioned prob-
lem.

8.3 Flow Extensions and Implementation

We have proved in Section 3.5 that the computational model of the language
Flow is equivalent to the computational model of a Turing machine. Yet there
are several programming language features that, once incorporated into Flow,
would facilitate the symbolic analysis of programs.

An important feature is the capability to analyze arrays. In [Sch01] an array
algebra for symbolic arrays is described. Symbolic arrays can also be incor-
porated into our method of symbolic analysis. Despite their importance as a
data-structure, arrays can also be used to model the memory of a computer. In
this way arrays can be considered a prerequisite for an effective analysis target-
ing at the detection of aliases, memory leaks (cf. [SBF00]), and buffer overflows.
Moreover, the pointer arithmetic of contemporary programming languages, and
also of the intermediate language that the GCC uses, can be modeled with sym-
bolic arrays. Mapping the intermediate language of GCC to Flow would enable
us to symbolically analyze programs written in all programming languages for
which a GCC frontend exists.

Currently we work on an implementation to automatically generate finite
supercontexts from path expressions and side-effects. This implementation is
based on OBJ3 [GWM+93]. We are planning to incorporate the path expression
generation mechanism described in Chapter 6 to obtain an integrated framework
that takes an input program, computes the path expressions and side-effects for
its control flow graph edges, and generates the MOP solution for arbitrary flow
graph nodes. We plan to investigate the application of this framework to several
areas of static program analysis.

I keep riding, into the highest peering hills, up the pitch of a mountainside,

where green leaves quiver in the cold sun.

— Lance Armstrong.

Bibliography

[AC76] F. E. Allen and J. Cocke. A Program Data Flow Analysis Proce-
dure. Communications of the ACM, 19(3):137, 1976.

[Ada95] ISO/IEC 8652. Ada Reference Manual, 1995.

[All86] L. Allison. A Practical Introduction to Denotational Semantics.
Cambridge Computer Science Texts. Cambridge-University-Press,
1986.

[AS03] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Appli-
cations, Generalizations. Cambridge University Press, 2003.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers—Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[Bac96] O. Bachmann. Chains of Recurrences. PhD thesis, Kent State
University, Kent, Ohio - 44240, U.S.A., December 1996.

[Bac97] O. Bachmann. MPCR: An Efficient and Flexible Chains of Recur-
rences Server. SIGSAM Bulletin (ACM Special Interest Group on
Symbolic and Algebraic Manipulation), 31(1):15–21, March 1997.

[BB98] J. Blieberger and B. Burgstaller. Symbolic Reaching Definitions
Analysis of Ada Programs. In Proc. of the Ada-Europe Interna-
tional Conference on Reliable Software Technologies, pages 238–
250, Uppsala, Sweden, June 1998.

[BB03] J. Blieberger and B. Burgstaller. Eliminating Redundant Range
Checks in GNAT Using Symbolic Evaluation. In Proc. of the Ada-
Europe International Conference on Reliable Software Technologies,
pages 153–167, Toulouse, France, June 2003.

[BBS99] J. Blieberger, B. Burgstaller, and B. Scholz. Interprocedural Sym-
bolic Evaluation of Ada Programs with Aliases. In Proc. of the
Ada-Europe International Conference on Reliable Software Tech-
nologies, pages 136–145, Santander, Spain, June 1999.

[BBS00] J. Blieberger, B. Burgstaller, and B. Scholz. Symbolic Data Flow
Analysis for Detecting Deadlocks in Ada Tasking Programs. In
Proc. of the Ada-Europe International Conference on Reliable Soft-
ware Technologies, pages 225–237. Springer-Verlag, 2000.

140 Bibliography

[BBS02] J. Blieberger, B. Burgstaller, and G.-H. Schildt. Informatik.
Springer, 4th edition, 2002.

[BE96] W. Blume and R. Eigenmann. Demand-Driven, Symbolic Range
Propagation. In LCPC ’95: Proceedings of the 8th International
Workshop on Languages and Compilers for Parallel Computing,
pages 141–160. Springer-Verlag, 1996.

[BEGO71] R. Book, S. Even, S. Greibach, and G. Ott. Ambiguity in Graphs
and Expressions. IEEE Transactions on Computers, 20(2):149–153,
February 1971.

[BJ66] C. Boehm and G. Jacopini. Flow Diagrams, Turing Machines And
Languages With Only Two Formation Rules. Communications of
the ACM, 9(5):366–371, May 1966.

[BL82] B. Buchberger and R. Loos. Algebraic Simplification. In B. Buch-
berger, G. E. Collins, and R. Loos, editors, Computer Algebra:
Symbolic and Algebraic Computation, volume 4 of Computing. Sup-
plementum, pages 11–43, Wien / New York, 1982. Springer.

[BL96] T. Ball and J. R. Larus. Efficient Path Profiling. In Proceedings
of the 29th Annual ACM/IEEE International Symposium on Mi-
croarchitecture, pages 46–57. IEEE Computer Society, 1996.

[Bli02] J. Blieberger. Data-Flow Frameworks for Worst-Case Execution
Time Analysis. Real-Time Systems, 22:183–227, 2002.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cam-
bridge University Press, New York, 1998.

[Bou93] F. Bourdoncle. Abstract Debugging of Higher-Order Imperative
Languages. In PLDI ’93: Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and Implementation,
pages 46–55. ACM Press, 1993.

[BSB04] B. Burgstaller, B. Scholz, and J. Blieberger. Tour de Spec — A Col-
lection of Spec95 Program Paths and Associated Costs for Symbolic
Evaluation. Technical Report 183/1-137, Department of Automa-
tion, Vienna University of Technology, June 2004.

[BWZ94] O. Bachmann, P. S. Wang, and E. V. Zima. Chains of Recurrences
- A Method to Expedite the Evaluation of Closed-Form Functions.
In ISSAC ’94: Proceedings of the International Symposium on Sym-
bolic and Algebraic Computation, pages 242–249. ACM Press, 1994.

[BZZ03] R. Bagnara, A. Zaccagnini, and T. Zolo. The Automatic Solution
of Recurrence Relations. I. Linear Recurrences of Finite Order with
Constant Coefficients. Quaderno 334, Dipartimento di Matematica,
Università di Parma, Italy, 2003.

[CC77] P. Cousot and R. Cousot. Abstract Intrepretation: a Unified Lat-
tice Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints. In Conference Record of the 4th ACM

Bibliography 141

Symposium on Principles of Programming Languages, pages 238–
252, Los Angeles, CA, January 1977.

[CH78] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Re-
straints Among Variables of a Program. In POPL ’78: Proceedings
of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 84–96. ACM Press, 1978.

[CHT79] T. E. Cheatham, G. H. Holloway, and J. A. Townley. Symbolic
Evaluation and the Analysis of Programs. IEEE Transactions on
Software Engineering, 5(4):403–417, July 1979.

[CHT81] T. E. Cheatham, G. H. Holloway, and J. A. Townley. Program
Refinement by Transformation. In ICSE ’81: Proceedings of the
5th International Conference on Software Engineering, pages 430–
437. IEEE Press, 1981.

[Cle93] W. S. Cleveland. Visualizing Data. Hobart Press, 1993.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to Algorithms. McGraw-Hill, 2nd edition, 2001.

[CPU95] SPEC CPU95 Benchmark Suite, Version 1.10, August 1995.

[CR81] L. A. Clarke and D. J. Richardson. Symbolic Evaluation Methods
for Program Analysis. In S. S. Muchnick and N. D. Jones, editors,
Program Flow Analysis: Theory and Applications, pages 264–300.
Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1981.

[CT76] T. E. Cheatham and J. A. Townley. Symbolic Evaluation of Pro-
grams: a Look at Loop Analysis. In SYMSAC ’76: Proceedings of
the 3rd ACM Symposium on Symbolic and Algebraic Computation,
pages 90–96. ACM Press, 1976.

[CT04] K. D. Cooper and L. Torczon. Engineering a Compiler. Morgan
Kaufmann, San Francisco, 2004.

[CTH79] T. E. Cheatham, J. A. Townley, and G. H. Holloway. A System for
Program Refinement. In ICSE ’79: Proceedings of the 4th Inter-
national Conference on Software Engineering, pages 53–62. IEEE
Press, 1979.

[Dav82] M. Davis. Computability and Unsolvability. Dover, 1982.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, En-
glewood Cliffs, N. J., 1976.

[DST93] J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra: Sys-
tems and Algorithms for Algebraic Computation. Academic Press,
New York, NY, USA, second edition, 1993. With a preface by
Daniel Lazard. Translated from the French by A. Davenport and J.
H. Davenport. With a foreword by Anthony C. Hearn.

142 Bibliography

[Fah98] T. Fahringer. Efficient Symbolic Analysis for Parallelizing Com-
pilers and Performance Estimators. Journal of Supercomputing,
Kluwer Academic Publishers, 12(3):227–252, May 1998.

[Feh89] E. Fehr. Semantik von Programmiersprachen. Studienreihe Infor-
matik. Springer-Verlag, first edition, 1989.

[FS03] T. Fahringer and B. Scholz. Advanced Symbolic Analysis for Com-
pilers, volume 2628. LNCS, Springer-Verlag, 2003.

[GCL92] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Com-
puter Algebra. Kluwer Academic Publishers Group, Norwell, MA,
USA, and Dordrecht, The Netherlands, 1992.

[GD94] J. Goguen and R. Diaconescu. An Oxford Survey of Order Sorted
Algebra. Mathematical Structures in Computer Science, 4(3):363–
392, September 1994.

[Gin67] A. Ginzburg. A Procedure for Checking Equality of Regular Ex-
pressions. J. ACM, 14(2):355–362, 1967.

[GK82] D. Greene and D. E. Knuth. Mathematics For the Analysis of
Algorithms. Birkhäuser, Cambridge, MA, USA; Berlin, Germany;
Basel, Switzerland, second edition, 1982.

[GKP94] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Math-
ematics: A Foundation for Computer Science. Addison-Wesley,
Reading, MA, USA, second edition, 1994.

[GM96] J. Goguen and G. Malcolm. Algebraic Semantics of Imperative
Programs. MIT Press, Cambridge, Mass., 1. edition, 1996.

[GM02] J. A. Goguen and J. Meseguer. Order-Sorted Algebra I: Equational
Deduction for Multiple Inheritance, Overloading, Exceptions and
Partial Operations, March 08 2002.

[Gog80] J. A. Goguen. How to Prove Algebraic Inductive Hypotheses with-
out Induction, with Applications to the Correctness of Data Type
Implementation. In W. Bibel and R. Kowalski, editors, Proceed-
ings of the 5th Conference on Automated Deduction, volume 87 of
LNCS, pages 356–373, Les Arcs, France, July 1980. Springer.

[Grä68] G. Grätzer. Universal Algebra. Van Nostrand Reinhold, Princeton,
1968.

[GS90] C. A. Gunter and D. S. Scott. Semantic Domains. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science: Vol-
ume B: Formal Models and Semantics, pages 633–674. Elsevier,
Amsterdam, 1990.

[GSW95] M. P. Gerlek, E. Stoltz, and M. Wolfe. Beyond Induction Variables:
Detecting and Classifying Sequences Using a Demand-Driven SSA
Form. ACM Transactions on Programming Languages and Systems
(TOPLAS), 17(1):85–122, January 1995.

Bibliography 143

[GWM+93] J. Goguen, T. Winkler, J. Meseguer, F. Futatsugui, and J. Jouan-
naud. Introducing OBJ. Draft, Oxford University Computing Lab-
oratory, 1993.

[Hag95] M. R. Haghighat. Symbolic Analysis for Parallelizing Compilers.
Kluwer Academic, 1995.

[Hec77] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier Science
Inc., 1977.

[Hil00] D. Hilbert. Mathematische Probleme. Vortrag, gehalten auf dem
internationalen Mathematiker-Kongreß zu Paris 1900. Nachrichten
von der Königlichen Gesellschaft der Wissenschaften zu Göttingen,
pages 253–297, 1900.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison-Wesley,
N. Reading, MA, 2nd edition edition, 2001.

[HP96] M. R. Haghighat and C. D. Polychronopoulos. Symbolic Analysis
for Parallelizing Compilers. ACM Transactions on Programming
Languages and Systems, 18(4):477–518, July 1996.

[HR04] M. R. A. Huth and M. Ryan. Logic in Computer Science: Modelling
and Reasoning about Systems. Cambridge University Press, 2nd

edition, 2004.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, N. Reading, MA,
1979.

[Jac74] N. Jacobson. Basic Algebra I. W. H. Freeman and Company, San
Francisco, CA, USA, 1974. ISBN 0-7167-0453-6 (v. 1.).

[Kil73] G. A. Kildall. A Unified Approach to Global Program Optimiza-
tion. In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 194–
206. ACM Press, 1973.

[Kin76] J. C. King. Symbolic Execution and Program Testing. Communi-
cations of the ACM, 19(7):385–394, 1976.

[KMZ98] V. Kislenkov, V. Mitrofanov, and E. Zima. Multidimensional
Chains of Recurrences. In ISSAC ’98: Proceedings of the 1998
International Symposium on Symbolic and Algebraic Computation,
pages 199–206. ACM Press, 1998.

[Knu97] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison-Wesley, Reading MA, 3rd edi-
tion, 1997.

[Lei03] A. Leitsch. Algorithmen–, Rekursions– und Komplexitätstheorie,
Skriptum zur Vorlesung. TU Wien, Institut für Computersprachen,
AG Theoretische Informatik und Logik, 2003.

144 Bibliography

[LN73] H. Lausch and W. Nöbauer. Algebra of Polynomials. North-
Holland, Amsterdam, 1973.

[Lou93] K. C. Louden. Programming Languages – Principles and Practice.
PWS-Kent, Boston, Massachusetts, 1993.

[Lue80] G. S. Lueker. Some Techniques for Solving Recurrences. ACM
Computing Surveys (CSUR), 12(4):419–436, 1980.

[MG86] J. Meseguer and J. A. Goguen. Initiality, Induction, and Com-
putability. In M. Nivat and J. C. Reynolds, editors, Algebraic
Methods in Semantics, pages 459–541. Cambridge University Press,
1986.

[Mos71] J. Moses. Algebraic Simplification: A Guide for the Perplexed. In
Proc. of the Second Symposium on Symbolic and Algebraic Manip-
ulation, pages 282–304. ACM, March 1971. Also available in Com-
munications of the ACM, 14(8), 527–537, August 1971 (Section on
Lexicographic Ordering not in revised version).

[Mos90] P. D. Mosses. Denotational Semantics. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science: Volume B: Formal
Models and Semantics, pages 575–631. Elsevier, Amsterdam, 1990.

[MP94] V. Maslov and W. Pugh. Simplifying Polynomial Constraints Over
Integers to Make Dependence Analysis More Precise. In Proc. of the
International Conference on Parallel and Vector Processing, pages
737–748, Linz, Austria, 1994.

[MR90] T. J. Marlowe and B. G. Ryder. Properties of Data Flow Frame-
works. A Unified Model. Acta Informatica, 28(2):121–163, Decem-
ber 1990.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
New York, 1994.

[Pau88] M. C. Paull. Algorithm Design: A Recursion Transformation
Framework. Wiley-Interscience, 1988.

[Plo79] E. Ploedereder. Pragmatic Techniques for Program Analysis and
Verification. In 4th International Conference on Software Engineer-
ing (ICSE ’79), pages 63–72. IEEE Press, September 1979.

[Plo80] E. Ploedereder. A Semantic Model for the Analysis and Verifica-
tion of Programs in General, Higher-Level Languages. PhD thesis,
Division of Applied Sciences, Harvard University, 1980.

[Pug92] W. Pugh. The Omega Test: A Fast and Practical Integer Program-
ming Algorithm for Dependence Analysis. Communications of the
ACM, 35(8):102–114, August 1992.

[Ram96] G. Ramalingam. Data Flow Frequency Analysis. In Proceedings
of the ACM SIGPLAN ’96 Conference on Programming Language
Design and Implementation, pages 267–277. ACM Press, 1996.

Bibliography 145

[Ram99] G. Ramalingam. Identifying Loops in Almost Linear Time. ACM
Transactions on Programming Languages and Systems, 21(2):175–
188, 1999.

[Rog87] H. Rogers Jr. Theory of Recursive Functions and Effective Com-
putability. MIT Press, Cambridge, MA, 1987.

[Ros95] K. H. Rosen. Discrete Mathematics And Its Applications (3rd ed.).
McGraw-Hill, Inc., 1995.

[RP86] B. G. Ryder and M. C. Paull. Elimination Algorithms for Data
Flow Analysis. ACM Computing Surveys, 18(3):277–315, Septem-
ber 1986.

[RW94] D. Raymond and D. Wood. Grail: A C++ Library for Automata
and Expressions. Journal of Symbolic Computation, 17(4):341–350,
1994.

[Sal66] A. Salomaa. Two Complete Axiom Systems for the Algebra of
Regular Events. J. ACM, 13(1):158–169, 1966.

[SBF00] B. Scholz, J. Blieberger, and T. Fahringer. Symbolic Pointer Anal-
ysis for Detecting Memory Leaks. In ACM SIGPLAN Workshop on
”Partial Evaluation and Semantics-Based Program Manipulation”
(PEPM’00), Boston, January 2000.

[Sch86] D. A. Schmidt. Denotational Semantics — A Methodology for Lan-
guage Development. Allyn and Bacon, 1986.

[Sch01] B. Scholz. Symbolic Analysis of Programs and its Applications.
PhD thesis, Institute of Computer Languages, Vienna University
of Technology, Vienna, Austria, 2001.

[Sed88] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, USA,
2nd edition, 1988.

[Sho79] R. E. Shostak. A Practical Decision Procedure for Arithmetic with
Function Symbols. Journal of the ACM, 26(2):351–360, April 1979.

[Sma96] N. Smart. The Algorithmic Resolution of Diophantine Equations.
Cambridge University Press, November 1996.

[Sre95] V. C. Sreedhar. Efficient Program Analysis Using DJ Graphs. PhD
thesis, School of Computer Science, McGill University, Montréal,
Québec, Canada, 1995.

[Tar81] R. E. Tarjan. A Unified Approach to Path Problems. Journal of
the ACM (JACM), 28(3):577–593, 1981.

[Ten76] R. D. Tennent. The Denotational Semantics of Programming Lan-
guages. Journal of the ACM (JACM), 19(8):437–453, August 1976.

[vE00] R. A. van Engelen. Symbolic Evaluation of Chains of Recurrences
for Loop Optimization. Technical Report TR-000102, Florida State
University, Computer Science Deptartment, 2000.

146 Bibliography

[vE01] R. A. van Engelen. Efficient Symbolic Analysis for Optimizing
Compilers. Lecture Notes in Computer Science, 2027:118–132,
2001.

[vEBS+04] R. A. van Engelen, J. Birch, Y. Shou, B. Walsh, and K. A. Galli-
van. A Unified Framework for Nonlinear Dependence Testing and
Symbolic Analysis. In ICS ’04: Proceedings of the 18th Annual
International Conference on Supercomputing, pages 106–115. ACM
Press, 2004.

[Wat91] D. A. Watt. Programming Language Syntax and Semantics. In-
ternational Series in Computer Science. Prentice Hall, 1st edition,
1991.

[WCHP01] P. Wu, A. Cohen, J. Hoeflinger, and D. Padua. Monotonic Evolu-
tion: An Alternative to Induction Variable Substitution for Depen-
dence Analysis. In ICS ’01: Proceedings of the 15th International
Conference on Supercomputing, pages 78–91. ACM Press, 2001.

[Wec92] W. Wechler. Universal Algebra for Computer Scientists, volume 25
of EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 1992.

[WM95] R. Wilhelm and D. Maurer. Compiler Design. Addison Wesley,
1995.

[ZC91] H. Zima and B. Chapman. Supercompilers for Parallel and Vector
Computers. ACM Press, New York, 1991.

[Zim95] E. V. Zima. Simplification and Optimization Transformations of
Chains of Recurrences. In ISSAC ’95: Proceedings of the 1995
International Symposium on Symbolic and Algebraic Computation,
pages 42–50. ACM Press, 1995.

[Zim01] E. V. Zima. On Computational Properties of Chains of Recur-
rences. In ISSAC ’01: Proceedings of the 2001 International Sym-
posium on Symbolic and Algebraic Computation, pages 345–352.
ACM Press, 2001.

Curriculum Vitae

Bernd Burgstaller

Contact Information

Institute of Computer Aided Automation
Vienna University of Technology
Treitlstr. 1–3/4
A-1040 Vienna, Austria
bburg@auto.tuwien.ac.at

Education

06/2002–02/2005 Doctoral Dissertation “Symbolic Evaluation of Imperative
Programming Languages”, Supervisor: Prof. J. Blieberger.

1997 M.S. (with distinction), Vienna University of Technology.

“The WOOP Preprocessor—An Implementation of Discrete
Loops in Ada95”, Supervisors: Prof. J. Blieberger and
Prof. U. Schmid.

1989–1997 Studies in Computer Science

Positions

02/2000–01/2004 Assistant Professor, Institute of Computer Aided Automa-
tion, Vienna University of Technology, Vienna, Austria.

03/1997–01/2000 Software Engineer and Software Architect,
Philips Consumer Electronics, Vienna, Austria.

Architecture, design and implementation of embedded soft-
ware for VCRs and DVD+RWs, CMM level 2 and 3 process
definition and implementation.

10/1988–05/1989 Military Service

Scholarship

01/1995–12/1996 FWF Austrian Science Fund, sponsored M.S. thesis.

