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Consider a rooted tree structure the nodes of which have been labelled monotonically by
elements of { 1, 2, . . .,k}, which means that any sequence connecting the root of the tree with a
leaf is weakly monotone .

For fixed k asymptotic equivalents of the form CA gA °n- ; 2 (n --oo) to the numbers of such
tree structures with n nodes are obtained for the family of extended unary-binary trees (i .e .,
Motzkin trees) and for the family of extended unary-t-ary trees . Furthermore the numbers of (not
extended) monotonically labelled binary and unary-binary trees are studied .

For each of these families the asymptotic behaviour of qA- as k -- is determined . This is done
by investigating a non-linear function sequence . The roots of the functions of this function se-
quence equal qA. . Thus one finds for instance qA .- (log 2)/k (k -goo) for the family of extended
unary-binary trees, and qA.-R/2k (k--oo) for the family of binary trees .

1 . Introduction

A large number of recent papers deal with the investigation of generalized classes
of tree structures . Compare e .g . [6], [7], [8], [9], [11] . Consider the nodes of a tree
labelled by elements of 11, 2, . . ., k} in such a way that any sequence connecting the
root of the tree with a leaf is weakly monotone .

These tree structures are of special interest e .g . in connection with some kind of
order preserving maps (cf . [11]) or in the enumeration of expression trees .

Let us study the latter case in some detail :
It is well-known that an arithmetic expression can be transformed to a correspon-

ding expression tree . The connection between formulas and trees is very important
in computer science . It occurs in a number of contexts in compiling, symbolic
manipulation systems, and related areas .

In most cases only the mapping of formulas to expression trees is of interest .
Sometimes, however, it is necessary to construct an algorithm that given an expres-
sion tree produces a corresponding expression . Since in this case usually many dif-
ferent expressions can be constructed from the same tree, it is convenient to reduce
the number of parentheses as much as possible . This is done by providing the
operators with distinct priorities .

We call expressions that do not involve parentheses or that do involve parentheses
only because some operators are not associative, canonical expressions. (For in-
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stance a * b + c d or a" * b" + c d"' + e would be such expressions, while a * (b + c)
or (a+ b)" would not be .)

Given a fixed set of operators (with priorities) and an algorithm like the one men-
tioned above, the question arises how often the algorithm will produce canonical ex-
pressions .

If we consider the priorities to be labels of an expression tree, canonical expres-
sions can only occur if the labeling is weakly monotone . Hence the question can be
answered by counting monotonically labelled trees .

In [11] Prodinger and Urbanek have considered the problem of finding asymp-
totic equivalents to the numbers of monotonically labelled tree structures with n
nodes in the case of some special families such as extended binary trees, extended
t-ary trees, and ordered trees. For fixed k they obtained asymptotic equivalents of
the form CA q A "n - 3/2 (n - oo) to the numbers of these families of trees . Prodinger
and Urbanek additionally showed that the sequence q k obeys a simple nonlinear
recurrence relation .

In the present paper we want to investigate the number of monotonically labelled
extended Motzkin trees (i .e ., unary-binary trees) and the number of monotonically
labelled (not extended) binary trees . The methods developed in this paper easily
generalize to families such as extended unary-t-ary trees and (not extended) unary-
binary trees with weights attached to their nodes . In all these cases asymptotic
equivalents of the form Ckgk: "n-3/2 (n --> co) to the numbers of these families of
trees are obtained . The essential difference to the paper of Prodinger and Urbanek
is that the sequence qk does not obey a simple recurrence relation, but appears as
the roots of the functions of a certain function sequence which satisfies a nonlinear
recurrence relation .

A detailed investigation of this function sequence allows to establish the asymp-
totic behaviour of qk as k-> oo . Thus the following results are obtained for

Extended Motzkin Trees . The number Mk, „ of Motzkin trees with n internal nodes
which are monotonically labelled by elements of 11, 2, . . ., k} fulfills as n oo

Mk , " - Ck, qk. n 3 i2

Here qk. is the only root of p k (Z) - Z in (0, 1), where pk (z) is defined by (k >- 0)

POW= 12
z

,

	

pk+ i (Z)=PA,00 -Z-Pk (z)),

and CA. is a constant . Moreover, qk fulfills as k- oo

log 2

	

(logk ) .
qk

_	
k +0 k2

Binary Trees . The number Bk," of binary trees with n nodes which are monotoni-
cally labelled by elements of 11, 2 , . . . , k} fulfills as n oo
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Bk n=0

	

for n=-0 (2,),
Bk,n-Ckgk nn-3/2 for n=-1 (2) .

Here qk is the only root of pk(z) in (0, 1), where pk(z) is defined by (k ?0)

POO= ,

	

Pk+,(z)=Pk(z)(1-Pk(z))-z2,

and Ck is a constant. Moreover, q k fulfills as k-> oo

+OClogk\
gk 2k

	

k )2

Similar, but more complicated asymptotic formulas can be obtained for the more
general tree structures mentioned above .

Properties of monotonically labelled tree structures have been studied extensively
in literature . In [8] Kirschenhofer and Prodinger have treated the problem of the
average height of monotonically labelled binary trees, in [6] and [7] Kirschenhofer
has studied the average shape, and in [9] Kirschenhofer and Prodinger have con-
sidered the average oscillation of the contour of monotonically labelled ordered
trees .

Remark . We will frequently use the symbol (y(z), z") for the coefficient of z" in
the power series y(z) .

2 . Monotonically labelled Motzkin trees

A Motzkin tree or unary-binary tree is either a single leave or it is build up by
an internal node 0 with either one or two (ordered) subtrees . This can be illustrated
by the following symbolic equation :

M M

	

M

Let Mk denote the family of Motzkin trees the internal nodes of which are labell-
ed monotonically by elements of 11, 2, . . ., k} . Let (yk, z" > be the number of trees
in Mk with n internal nodes, and let

.Yk(Z)= ~ (.Yk(Z),
Zn>Zn

n?0
(2 .1)

be a corresponding generating function .
Furthermore let Mk be the family of Motzkin trees the internal nodes of which
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are labelled monotonically by elements of {2, 3, . . .,k+ 1} . Then the Mk fulfill the
following system of symbolic equations :

M I =E]

	

+
M,

Mk - Mk 1+

gkyk-1(qk) <Iqk

M,

	

Mi

+ / \
Mk. Mk

	

Mk

(2.2)

This system of symbolic equations can be translated into a system of recurrence
relations for the generating functions yk (cf . [3]) :

A(z) = yk -1 (z) + zyk (z) + zyti (z) (k >-1),

	

yo(z) =1 .

	

(2.3)

To determine the asymptotic behaviour of (y k , z") we use a method originally
due to Darboux [21 which is described in Harary/Palmer [5, pp. 211 f] and in [I] .

Let qk denote the positive singularity of A of smallest modulus . We define :
F(z, w)=yk -, (z)+(z-1)w+zw2 .

	

(2.4)

The singularity q k must now fulfill (cf . [5], [1])

F(qk, Wk) =F,v(gk, WA) =0 with Wk =yk(gk) .

The solution of F,y = 0 is w=(I -z)/2z .
Substituting this into (2 .4) we see that q k is the smallest positive root of

zyk-, (z) _ (1 -z) 2/4 .

	

(2.5)

Moreover, qk is the only singularity with smallest modulus :
To see this consider z=qk to be a root of (2.5) with q k#qk , but l qk =q k . Since

the coefficients of A-, (z) are nonnegative, we have

_

	

1(	yk-I( qk ) -gkyk-1(qk)-
	 qk)2 <

4

which is obviously a contradiction .
By the method described in Harary/Palmer [5] we get

(yk(z), z"> - Ckgk "n -3/2 (n

Since (y k (z), z" ) ? ( y 1 (z), z" > , it is clear that

0<qk<-q,=3-M<1 .

	

(2.6)



We proceed to show that q k is the only root of pk(Z)=Z in (0, 1), where pk(Z) is
a function sequence that satisfies a nonlinear recurrence relation .

Definition 2.1 . Let the function sequence p„(z) be defined by

so that gkYk-i(qk)=pi(gk) for 1 <_i<_k . In particular we have

gkyo(gk) = qk = pk(gk )

Since qk lies in (0,1) by (2.6), qk is a root of pk(Z)=Z in (0, 1) .
Our next step will be to prove that q k is the only root of pk(Z)=Z in (0, 1) .

Definition 2.2 . hn(z) : =pn(z)/(1 -z) .

From this definition the following recurrence relation for h„ can easily be
derived :

ho(Z)=z,

	

hn+,(Z)=(I-z)h,,(Z)(I-hn(z)) .
Using this recurrence relation we will show by induction that

0_<hn+I(z)<hn(z)< 2' for 0<z< 1 and n>_ 1 .

The case n = I holds true, and if we assume 0 < 1 - z < 1, 0<- hn (z) < z , and
< 1 -h n (z)<_ 1, it is an easy consequence that

0_(I-Z)hn(Z)(1 -hn(Z))=hn+,(Z)<hn(Z)< z
We proceed to prove that hn(z) < 0 for 0 < z < 1 and n >- 1 : We have h j (z) _ - ,`' < 0
and for n >_ 1

h;, + I (Z) _ - h„(Z)(1 - h n(Z)) + hjz)(1 - Z)(1 - 2hn(Z)) .

Since h n (1 - h n ) >- 0 and (I - z)(1- 2h„) > 0 (see above), we have h,, (z) < 0 for n >_ 0 .
From these results and from the definition of hn it follows that

(1)

	

0<_pn+,(Z)<pn(Z)< z(1 -Z)=POW for 0<z< I and n>_ l, and

(2)

	

p,,(z)<0 for 0<z< 1 and n?0 .
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1 Z
(2.7)Po(Z) =

	

,

	

pn+,(Z)=pn(Z)(1 - Z -pn(ZA2

From this definition it follows that gkYk-, (qk) =p, (qk)-
Fxom (2.3) we have for 0:E: i!5 k- 1

z

	

22
ZYk-i-, = ZYk-i - Z Yk-i - Z Yk-i, (2 .8)
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Remark . Let qk(B) be the smallest positive singularity of the generating function of
the monotonically labelled extended binary trees. Then the following hold (cf . [I I]) :

(i)

	

qk+l(B)=gk(B)(I-qk(B)),

	

q0(B)=á,

(ii)

	

qk(B) = k +OCI 2k1
(k-- oo) .

Observing p k (0)=qk(B) we conclude from this remark and the considerations
above that q k is the only root of Pk(Z)=Z in (0, 1) .

Theorem 2.3 . The number (yk , Zn ) of Motzkin trees which are monotonically
labelled by elements of 11,2,...,k} fulfills as n - oo

(Yk, Zn>-Ckgk n
n -3/2

Here qk is the only root of Pk(Z)-Z in (0, 1), where pk(Z) is defined by (k ?0)

POW
1

2

	 Z
,

	

Pk + 1 (Z) =Pk(Z)(I - Z -pk(Z)),

and

1

	

k-1

	

vz
Ck-

	

«1 -
pk(gk))

	

(I -qk-2pi(gk))
11

2V7rg k

	

i=1

Proof . It remains to show the formula for CA-
Using Theorem 5 stated in [1] we see that

1 /2

CA, - 12V 7t
(F,(gk, A(qk))

so that, since

FZ(z, w)=yk-,+w+wz,

we only have to investigate yk-, .
Differentiating (2.8) we get the recurrence relation

2
Yk-i( 1 - Z-2ZYk-i) =Yk-i-I +Yk-i+Yk-i

Observing

Yk-i (qk) = pi(gk)1gk

we get at z = qk
k-i

	

k-i
Yk-i(qk) - qk 2 E (gkPk-j(qk)) H (I - qk 2Pk-l(qk)) 1

j=1

	

1-j



Hence

k-1

	

j
F,(qk, yk(gk))=qk

2
y (gkpj(gk)+pj (qk))

	

(1 - qk -2pl(gk)) 1
j=o

	

1-1

This reduces to the form stated in the proposition if we observe (2 .7) and the deriva-
tion of (2.7) . El

To determine the asymptotic behaviour of qk as k ~, we establish an asymp-
totic form of pk(z) .

The following lemma is inspired by Lemma 5 in [4], where a similar function se-
quence plays a central role in determining the average height of binary trees .

Lemma 2 .4 . For 0 < z < 1 we have

where

Monotonically labelled Motzkin bees
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z(I -z)"+1

(1 +
E,(z) .z 	-,

pn(z) = 1 - (I- Z)"

	

1 - (1 - Z)"

n-I

	

hEn(z)=2+~,(1-Z)k
Z)

k o

	

1 -hZ)k(

Proof. We start from the recurrence

hj+ , (z) _ (1 - z)hj(z)(1 - hj(z))

and we take out the (1 -z)J factor present in hj(z) . Let rj =hj(Z)/(1 -Z)', then we
have

rj+1 =rj (I -hj ) .

Since we have rj > 0 for 0 < z < 1, we can define sj : = rj- 1 and get

h`

	

h (l -z)'sj+l =sj (I-hj)-1 =sj (I+hj + I -h )=sj+(I-Z)j+
JI-h

If we sum up these identities for j = 0, . . . , n -1 and use so = ro 1 = h o 1 = 2 we get
n-1

	

f

	

n-1

	

hj

	

1-(1-Z)"sn = E (I - z)' + 2 + Y, (1 -

	

_

	

+ En (Z) .
i- o

	

j=o

	

I -hj

	

z

From this the lemma follows . 0

Lemma 2.5 . For 0 :5 z <_ qn (B) = 1 /n + O((log n)/n 2 ) the following holds uniformly :

pn
(Z) = Z(1 - Z)n + 1

1+0
log n

I -(I - Z) n (

	

( n ))
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Proof . Since x/(1 -x) is monotone increasing in (0, 1), and hk(Z) is monotone
decreasing in (0, 1), we have

hk < hk (0) = qk (B )
n- 1

	

11 -10 <_ E" (Z) <_ 2+ ~hk <- 2 +	 qk(B) = O(log n) .

	

(2 .9)
k=0 1 - hk

	

k-O 1- qk(B)
A simple argument shows that f(z) =Z/(1 - (1-z)") is monotone increasing in (0, 1) .
Hence

f(z) <f(q"(B)) = 0(1/n) .

Combining these results we get the desired estimate . 0

Lemma 2.5 enables us to determine the asymptotic behaviour of the root of
p" (Z)-z in (0, 1) .

Lemma 2.6 . Let z„ be the root of p"(z) = z in (0, 1) . Then

zn- logt
+0

/log n\ .
zn

	

\ n

Proof . If we observe Zn > 0,

Z"(l(
Z`,)n+1

C1+0
log n\

	

Zn
1-

	

nn /)=
implies

and

(I-z")"(2-Zn)=1+(1-zn)"
+10C

logn .
n

Since z, = 0(1 In) in (0, q,(B)),

1/(2-z")= z +0(1/n).

Hence

So

(1 - Z""= ; C1+OC logn \\

we get (Z" E IR + ) :

~	 gn
1-z" =exp -nlog2~(1+O

l nz »

and the lemma is proved . 0

J . Blieberger

1 -
logt +OClonz

J

	 n=	 \
1
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So we have shown the following

Theorem 2.7 . The smallest positive singularities qk of the generating functions yk
fulfill as k - o0

qk-lok
g 2

+0
(log

k)

It is possible to derive more precise estimates by iteration of this process, e.g . :

Theorem 2.8 . The smallest positive singularities q k of the generating functions yk
fulfill as k -> -

1

	

logk

	

1
\qk=log 2

k
- kz +O kz

Numerical results corresponding to Theorem 2 .7 are displayed in Table 1 .

The method developed in this section may be generalized to unary-t-ary trees with
weights attached to their nodes .

Such a tree consists of leaves and of internal nodes which have either one or t
ordered subtrees. The internal nodes with one successor are weighted with c l > 0,

Table 1

k qk qk k/log 2

1 0.171572875 0.248
2 0.129158910 0.373
3 0.105115939 0 .455
4 0.089186654 0 .515
5 0.077717283 0 .561
6 0.069007052 0 .597
7 0.062139224 0 .628
8 0.056570040 0 .653
9 0.051954174 0 .675

10 0.048060707 0 .693
50 0.012421752 0 .896
100 0.006511413 0 .939
200 0.003346614 0 .966
300 0.002254027 0 .976
400 0.001699733 0 .981
500 0.001364415 0 .984
600 0.001139674 0 .987
700 0.000978537 0 .988
800 0.000857343 0 .990
900 0 .000762874 0.991
1000 0 .000687166 0.991
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those with t successors are weighted with c, > 0 . So the family of weighted unary-t-

ary trees T may be defined by the formal equation :

T=E]+c, + c,
T

	

T

	

. . .

	

T

t times

Let Tk be the family of weighted unary-t-ary trees which are monotonically
labelled by elements of {1, . . .,k} . Furthermore let (yk(z),z") be the number of
trees of Tk with exactly n internal nodes .

Then one can show the following

Theorem 2.9 . The number of the monotonically labelled unary-t-ary trees with
weights attached to their nodes in the manner described above fulfills as n 00

( .Yk, z">-Ckgk
" n -3/2

Here qk is the only root of pk (z) - z in (0, 1 /c, ), where p k(z) is defined by (k ? 0)
1-c,z 1/(r-1)

	

1-tPOW = ( tc

	

,

	

pk+IW =pk(z)(1 - c,z - C1Pk (z)),
r

and Ck is a constant. Moreover, q k fulfills as k - 00

log(1+c,/c,) 1 +O(logk
9k =

	

\ .
c l (t- 1)

	

k

	

kz

Remark . If we set c, = 1 and let c, - 0, we formally obtain the results of Prodinger
and Urbanek [11] concerning the family of t-ary trees .

3. Monotonically labelled binary trees

In this section we illustrate how to apply the method developed in the previous
section to the case of not extended binary trees .

The family of not extended binary trees consists of trees the internal nodes of
which have two ordered successors .

Let the family of monotonically labelled (not extended) binary trees be defined
by the following symbolic equations (in this case the leaves are also considered to
be labelled) :

B,
(3 .1)



Bk =Bk- I + 1~+
B

	

Bk

Here Bk denotes the family of binary trees the nodes of which are labelled by
elements of { 1_.,k}, and Bk denotes the same family except that the nodes are
labelled by {2, 3, . . ., k+ 11 . Let (Yk(Z), z" ) be the number of trees in Bk with n
nodes (it is clear that (Yk(Z), Z2") =0) and let YJZ) = En>_o (Yk(Z), Z">z" be a cor-
responding generating function . Then (3 .1) can be translated into the following
system of recurrence relations :

Yk(Z) =Yk-I (Z) + Z+ ZYk(Z),

	

YO(Z) = 0 .

	

(3 .2)

From this we see that y k has two singularities, namely ± qk , q k > 0 .
If we define the function sequence p n(z) by

POW =z,

	

Pn+1 (Z)=Pn(Z)(I-Pn(Z))-z2,

	

(3 .3)

it is easy to show that the two singularities + qk and - qk of the generating func-
tion Yk are roots of pk(Z)=0 .

In the following we will show that qk is the only root of pk(Z)=0 in 0<z<1 .

Remark . Since p n(Z) is an even function for all n, it suffices to study pn (Z) for
0<z< 1 .

We will show by induction that Pn+I(Z)<pn(Z)< z for 0<z<_ 1, n? 1 . We have

P1(Z)=á-Z2< ;

and

Pn + I (Z) =Pn(I - Pn) - Z' < P n -Pn < Pn
Thus the proposition follows .

We proceed to prove that pn(Z) < 0 for 0 < z < 1, n >_ 1 . We have p ; (z) _ - 2z < 0
and using induction we see that

Pn+I = Pn( 1 -2pn )-2z<pn (1-2p n)<0 .
The last estimate holds, because of the assumption pn < 0 and because p n < z , which
was shown above .

From these two estimates we see that q k is the only root of pk(Z) in (0, 1) . Hence
we have shown

Theorem 3 .1 . The number (yk(Z), Z") fulfills as n--> oo

(Yk(Z), Z " i = 0

	

for n =- 0 (2),
(Yk(Z), z" > - Ck qk "n - 3/2 for rt =_- 1 (2) .

Monotonically labelled Motzkin trees
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Here qk is the only root of Pk(Z) in (0, 1), where Pk(Z) is defined by (k>_ 0)

POW =2',

	

Pk+I(Z)=Pk(Z)(1-Pk(Z))-Z2,

and Ck is a constant.

We are now going to establish the asymptotic behaviour of qk as k - oo .

We define hn(z) by

h,(z) : = P"(Z) + iz
1 + 2iz '

where i denotes the imaginary unit, i .e ., i 2 = - 1 .
Thus hn(z) fulfills the following recurrence relation for n >_ 0 :

where

ho(z) = z,

	

hn+I(Z)=(1+2iz)hn(Z)(1-hn(z)) .

Lemma 3 .2 . For 0 < z < 1 we have

2izO + 21z)" + I

	

En (z)21z I

P,(Z)
- (1 + 2iZ)n -

	

+ (1 + 2iZ)" - 1 )

	

iZ,

n-I

	

h .
,-,(z)=2+ ~ (1 + 21Z)-1	 J

i=o

	

1-hj

Proof . Very similar to the proof of Lemma 2.4 . 0

Before we continue, we need a crude estimate for qk .

Lemma 3.3 . We have 0<g k <C/k for a C>0 and g k s2/k for k-- co .

Proof . Let B2n+I,k denote the family of binary trees where all (2n+ 1) nodes (even
the leaves) are monotonically labelled by 11,2,

...,k};
let a2,+ I,k be the number of

different trees in B2n+I,k . Then we have (cf . Theorem 3 .1)

a2n+1,k - Ckqk (2n + 1)n- 3/2 (n- OD ) •

Let Bn,k be the family of binary trees with n internal nodes (and n+1 leaves) the
internal nodes of which are monotonically labelled by 11, 2, . . ., rk/21 } , and the
leaves of which are labelled by { rk/21 + 1, . . ., k} , where k >_ 2 and

rk/21

	

k/2

	

if k=-0 (2),
=

,(k+ 1)/2 if k= 1 (2) .

Let bn , k be the number of different trees in Bn,k . Then we have [11]

bn,k'-Ck(gFk/2](B))-n(k- rk/21)" +I n -3/2 (n-co),
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where qi(B) denotes like in the previous section the singularities of the generating
functions of the monotonically labelled extended binary trees .

Since for sufficiently large n we have a2n } 1 , k >_ b n , k , we get

qk < (k- rk/2]) -1 gFki2] (B) -- 4/k2 ,

because of qk(B)--- 1/k, which has been shown by Prodinger and Urbanek
[11] .

	

0

Lemma 3.4 . For O < z < qn we have

2iz(l +2iz)"+ 1

	

log nl
hn(Z)= (1+2iz)"-1 (1+O( n ))-

Proof .Proof . For 0 < z s qn we have I h n (z) <_ pn (O) + z, because of

VP2(Z)+Z2
I hnI = V1+4Z2 'Pn(Z)+Z<pn(O)+Z .

Since 1 + 2iz I J = 0(1) for 0 < z :s qn and because of the estimate above, we get

Since

n-1
le,(z) :s2+

2iz

i=o

1

	

(Iogl\

	

C
p~(0) =- +O	z

	

and 0<z<-,
j

	

j

	

n

we have En (z) = O(log n) for 0 < z s qn
The lemma follows now if we observe

(1 + 2iz)" - 1

Lemma 3.5 . If Zn is the root of p„ (z) = 0 in (0, 1), then

77 (log n\
Zn 2n

+ 0
n z

1 + 2izl'
1

I h .

- hj

-

(1)

	

C
O

	

for 0<z<- .
n

	

n

Proof . Lemma 3 .4 implies

(1+2iz,)"(1+4izn)=-1+0
log n

(	~ .
n

Since
1

	

1

	

C

1+4iz
=1+0

n

	

for 0<zn<
n

,
n

n-I

	

\
<2+0(

Z
(pi (0)+Z) / .

j-

	

/o

0

we have as n- o0
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this equals

(1+21z,,)n=(-1)C1+0
logn

n
	 ~~ .

Thus we get

1 +2iz„=exp%1 log(- 1)101 +0
log n\\

\n

	

/

	

nZ

Since log(-1)=in(21+ 1), 1 c Z, we find that for (Iln)in(21+ 1), 1? 1, we would have
z,>2/n, which would contradict Lemma 3 .3 . Hence

So we can state

Theorem 3.6 . The smallest positive singularities qk of the generating functions yk (z)
fulfill as k-oo

1+2iz„=exp%1 in1C1+0(
n2

))= 1+ n +0(
n2

	

0
\

n /

	

//

n

	

C
log k)

qk - 2k + 0 k2

Numerical results corresponding to Theorem 3 .6 are displayed in Table 2 .

Table 2

k qk qk k 2/n

1 0.500000000 0.318
2 0.340625019 0 .434
3 0.265821288 0 .508
4 0.220330088 0.561
5 0 .189147001 0.602
6 0.166208351 0.635
7 0.148520885 0.662
8 0.134412536 0.685
9 0.122866540 0 .704
10 0.113224938 0 .721
50 0.028398195 0.904
100 0.014822830 0.944
200 0.007601486 0.968
300 0.005115922 0.977
400 0.003856380 0 .982
500 0.003094894 0 .985
600 0.002584716 0 .987
700 0.002219022 0 .989
800 0.001944030 0 .990
900 0.001729710 0 .991
1000 0.001557971 0 .992
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Theorem 3 .6 can be generalized in the following way . The family M of the
weighted unary-binary trees may be defined in the following manner :

A unary-binary tree with weights attached to its nodes consists of a node with
either one or two ordered subtrees, where the weight c, > 0 is attached to the nodes
with one successor and the weight c 2 > 0 is attached to the nodes with two suc-
cessors . This is a special case of the so-called simply generated families of trees in-
troduced by Meir and Moon [10] .

The family M fulfills the following symbolic equation :

o

	

0
M=O+cI +c 2

M M M

If the nodes (even the leaves) are labelled monotonically by { I__, k} , one gets
the family Mk , the family of weighted monotonically labelled unary-binary trees .

Let < y k , z" ) be the number of trees in Mk, with n nodes . Then one can show the
following

Theorem 3.7. The number < y k , z" ) fulfills as n-> o0

< yk , Z") - Ck qk n
n-3 /2

where qk is the only root of P k(z) in (0, 1 /c l ) . Here Pk(z) is defined by (k >_ 0)

1-c l z
POW- 2c

	

Pk+I(Z)=Pk(z)( 1- c[z - c2Pk(z)) - z2 .
2

Moreover, qk fulfills as k-oo

qk =
log((c, +MAC, -ß))

k
+O

C
1 k k\

ß
	 -

	

2 ,

where ß = VC - 4c2 .

Remark . The results of Theorem 3 .7 are formally still valid, if c l ->0 .
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