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Abstract

Intrusion detection systems (IDSs) attempt to identify at-
tacks by comparing collected data to predefined signatures
known to be malicious (misuse-based I1DSs) or to a model
of legal behavior (anomaly-based IDSs). Anomaly-based
approaches have the advantage of being able to detect pre-
viously unknown attacks, but they suffer from the difficulty
of building robust models of acceptable behavior which may
result in a large number of false alarms. Almost all current
anomaly-based intrusion detection systems classify an in-
put event as normal or anomalous by analyzing its features,
utilizing a number of different models. A decision for an in-
put event is made by aggregating the results of all employed
models.

We have identified two reasons for the large number of
false alarms, caused by incorrect classification of events in
current systems. One is the simplistic aggregation of model
outputs in the decision phase. Often, only the sum of the
model results is calculated and compared to a threshold.
The other reason is the lack of integration of additional
information into the decision process. This additional in-
formation can be related to the models, such as the confi-
dence in a model’s output, or can be extracted from exter-
nal sources. To mitigate these shortcomings, we propose
an event classification scheme that is based on Bayesian
networks. Bayesian networks improve the aggregation of
different model outputs and allow one to seamlessly incor-
porate additional information. Experimental results show
that the accuracy of the event classification process is sig-
nificantly improved using our proposed approach.

1 Introduction

Intrusion detection can be defined as the process of iden-
tifying malicious behavior that targets a network and its re-
sources. Intrusion detection systems have traditionally been
classified as either misuse-based or anomaly-based. Sys-

tems that use misuse-based techniques contain a number of
attack descriptions, or ‘signatures’, that are matched against
a stream of audit data looking for evidence of the modeled
attacks. The audit data can be gathered from the network
[18, 25], from the operating system [7, 17], or from appli-
cation [23] log files. Signature-based systems have the ad-
vantage that they usually generate few false positives (i.e.,
incorrectly flagging an event as malicious when it is legiti-
mate). Unfortunately, they can only detect those attacks that
have been previously specified. That is, they cannot detect
intrusions for which they do not have a defined signature.

Anomaly-based techniques follow an approach that is
complementary with respect to misuse detection. These ap-
proaches rely on models, or profiles, of the normal behav-
ior of users [4, 8], applications [5, 26] and network traffic
[10, 14, 15]. Deviations from the established models are
interpreted as attacks. Anomaly detection systems have the
advantage that they are able to identify previously unknown
attacks. By defining an expected, normal state, any abnor-
mal behavior can be detected, whether it is part of the threat
model or not. This capability should make anomaly-based
systems a preferred choice. However, the advantage of be-
ing able to detect previously unknown attacks is usually
paid for in terms of a large number of false positives. This
can make the system unusable by flooding and eventually
desensitizing the system administrator with large numbers
of incorrect alerts.

We have identified two main problems that contribute
to the large number of false positives. First, the decision
whether an event should be classified as anomalous or as
normal is made in a simplistic way. Anomaly detection
systems usually contain a collection of models that eval-
uate different features of an event. These models return
an anomaly score or a probability value that reflects the
‘normality” of this event according to their current profiles.
However, the system is faced with the task of aggregat-
ing the different model outputs into a single, final result.
The difficulty is the fact that this aggregation is not easy
to perform, especially when the individual model outputs



differ significantly. In most current systems, the problem
is solved by calculating the sum of the outputs and com-
paring it to a static threshold. The disadvantage of this ap-
proach is the fact that this threshold has to be small enough
to detect malicious events that only manifest themselves in
a single anomalous feature (i.e., only one model outputs a
high value indicating malicious behavior). This can lead to
false positives, because events with many features that devi-
ate slightly from the profile might receive aggregated scores
that exceed the threshold.

The second problem of anomaly-based systems is
that they cannot distinguish between anomalous behavior
caused by unusual but legitimate actions and activity that
is the manifestation of an attack. This leads to the situa-
tion where any deviation from normal behavior is reported
as suspicious, ignoring potential additional information that
might suggest otherwise. Such additional information can
be external to the system, received from system health mon-
itors (e.g., CPU utilization, memory usage, process status)
or other intrusion detection sensors. Consider the example
of an IDS that monitors a web server by analyzing the sys-
tem calls that the server process invokes. A sudden jump in
CPU utilization and a continuous increase of the memory al-
located by the server process can corroborate the belief that
a certain system call contains traces of a denial-of-service
attack. Additional information can also be directly related
to the models, such as the confidence in a model output. De-
pending on the site-specific structure of input events, certain
features might not be suitable to distinguish between legiti-
mate and malicious activity. In such a case, the confidence
in the output of the model based on these features should be
reduced.

We propose to mitigate the two problems described
above by replacing the simple, threshold-based decision
process with a Bayesian network. Instead of calculating the
sum of individual model outputs and comparing the result
to a threshold, we utilize a Bayesian decision process to
classify input events. This process allows us to seamlessly
incorporate available additional information into the detec-
tion decision and to aggregate different model outputs in a
more meaningful way. The contribution of this paper is the
description of this decision process, a novel method of event
classification in anomaly-based intrusion detection systems.
Experimental results confirm that our approach is capable of
significantly reducing the number of false alarms.

The paper is structured as follows. Section 2 provides
background information on Bayesian networks to help the
reader in understanding the rest of the paper. Section 3 de-
scribes related work and discusses previous efforts to uti-
lize Bayesian techniques for intrusion detection. Section 4
introduces our approach of Bayesian event classification.
Section 5 describes the system implementation and provides
details of the underlying anomaly-based models. Section 6

shows experimental results that confirm that our solution is
more accurate (i.e., reports fewer false alerts) than previous
approaches. Finally, Section 7 briefly concludes.

2 Bayesian Networks

A Bayesian network is used to model a domain contain-
ing uncertainty [9, 13]. It is a directed acyclic graph (DAG)
where each node represents a discrete random variable of
interest. Each node contains the states of the random vari-
able that it represents and a conditional probability table
(CPT). The CPT of a node contains probabilities of the node
being in a specific state given the states of its parents. The
parent-child relationship between nodes in a Bayesian net-
work indicates the direction of causality between the corre-
sponding variables. That is, the variable represented by the
child node is causally dependent on the ones represented by
its parents.

Consider the following example where a farmer has a
bottle of milk that can be either infected or clean. She also
has a test that can determine with a high probability whether
the milk is infected or not (i.e., the outcome of the test is ei-
ther positive or negative). This situation can be represented
with two random boolean variables, i nf ect ed and pos-
i tive. The variable i nf ect ed is true when the milk is
actually infected and false otherwise. The variable posi -
ti ve is true when the test claims that the milk is infected
and false when the outcome of the test is negative. Note
that it is possible that the milk is clean when the test has a
positive outcome and vice versa.
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Figure 1. Bayesian Network and CPTs

A possible Bayesian network that models this situation
is shown in Figure 1. The two random variables are rep-
resented as two nodes in the network. It is assumed that
the farmer knows the CPT for the variable posi t i ve, that
is, the probability of a positive result given that the milk is



infected and the probability of a positive test result given
that the milk is clean. She also knows the CPT for the vari-
able i nf ect ed, which states the probability that a bot-
tle contains infected milk. The arrow from the i nf ect ed
to the posi ti ve node indicates a causal relationship be-
tween the respective variables. In this case, we expect that
the outcome of the test is dependent on the true state of the
milk (infected or clean). Variables without parents are not
influenced directly by other variables.

The node that represents the outcome of the test in Fig-
ure 1 is often called an information variable. The state of
these variables are usually given or can be measured in a
straightforward manner. The node that represents the actual
state of the milk is called a hypothesis variable. The states
of such variables cannot be obtained immediately. The pur-
pose of a Bayesian network is to allow one to calculate the
probability of the hypothesis variable(s) given the evidence
gathered from information variables. In our example, the
farmer might want to calculate the probability that the milk
is infected given a positive test result. By entering the evi-
dence (e.g., posi ti ve is true) into the Bayesian network,
the probability that i nf ect ed is true can be derived. The
numerical value for this probability, called the a-posteriori
probability given the support of the observed evidence, is
0.33. Intuitively, one would expect a higher value, espe-
cially when considering that the test is very accurate. How-
ever, the low initial probability of the milk being infected,
called the a-priori probability before any observations are
made, explains this result.

In the domain of intrusion detection, information nodes
are associated with measurable properties of input events
or corresponding model outputs. The hypothesis node is
a classification that determines the state of the event —
whether it is anomalous or not.

3 Redated Work

Axelsson [1] wrote a well-known paper that uses the
Bayesian rule of conditional probability® to point out the
implications of the base-rate fallacy for intrusion detection.
Similar to our example with the infected milk in the previ-
ous section, he observed that the positive result of a very ac-
curate test (such as the test for infection) does not necessar-
ily imply a high probability of the hypothesis variable to be
true (i.e., the milk to be actually infected). For the domain
of intrusion detection, this finding means that even tests or
models that identify malicious events very accurately may
raise many false alarms because the a-priori probability of
an attack in the input data stream is usually very low. Al-
though Axelsson’s paper is only remotely related to our

1The Bayesian rule of conditional probability is given as p(B|A) =
p(AU(3)§<B)
p(A :

work through the application of Bayesian probability the-
ory, it clearly demonstrates the difficulty and necessity of
dealing with false alarms.

Several researchers have adapted ideas from Bayesian
statistics to create models for anomaly-based IDSs. In
[16], a behavior model is introduced that uses Bayesian
techniques to obtain model parameters with maximal a-
posteriori probabilities. In [6], a model is presented that
simulates an intelligent attacker using Bayesian techniques
to create a plan of goal-directed actions. Their work is sim-
ilar to ours to the extent that Bayesian statistics is applied.
Their work differs from our approach because it uses Bayes’
rule to optimize or create models, while we utilize Bayesian
networks to classify events based on model outputs and ad-
ditional information from the environment.

Two anomaly-based IDS have been proposed that use
naive Bayesian networks to classify input events based
on the output of several models. A naive Bayesian net-
work is a restricted network that has only two layers and
assumes complete independence between the information
nodes (i.e., the random variables that can be observed and
measured). These limitations result in a tree-shaped net-
work with a single hypothesis node (root node) that has
arrows pointing to a number of information nodes (child
nodes). All child nodes have exactly one parent node, that
is, the root node, and no other causal relationship between
nodes are permitted. In [24], a naive Bayesian network
(shown in Figure 2) is employed to perform intrusion de-
tection on network events. In [19], a system is described
that detects malicious proxylets (executable code) in active
networks.

Unfortunately, the classification capability of a naive
Bayesian network is identical to a threshold-based system
that computes the sum of the outputs obtained from the
child nodes. This is due to the fact that all models (i.e., the
child nodes) operate independently and only influence the
probability of the root node. This single probability value
at the root node can be represented by a threshold in tra-
ditional approaches. In addition, the restriction of having
a single parent node complicates the incorporation of addi-
tional information. This is because variables that represent
such information cannot be linked directly to the nodes rep-
resenting the model outputs.

Alternatively, we propose an event classification that
makes full use of Bayesian networks. This allows us to
model inter-model dependencies (i.e., dropping the assump-
tions of independent child nodes) and to integrate additional
data such as model confidence (i.e., dropping the restriction
of at most a single parent node). Our experiments show that
these extensions improve the quality of the decision process
and significantly reduce the number of false alarms.
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Figure 2. Naive Bayesian Network

4 System Design

Given an ordered stream of input events S =
{e1, ea, ...}, the task of the event classification mechanism
is to decide for each ¢; € S whether it is normal or anoma-
lous. This decision is based on the outputs {o;[i = 1...k}
of k models M = {m1,..., my} and possibly additional
information 7. Each model m; € M analyzes one or more
features (or properties) of a given input event and compares
the event’s feature(s) to the model’s previously established
profile (i.e., the description that specifies the normal fea-
tures or properties). The result of this comparison is the
output value o; that characterizes the deviation of the event’s
features from the expected ‘normal’ values, one for each of
the & models. The restriction of a single return value o; per
model does not result in a loss of generality. Every model
that returns more that one result can be easily represented
by multiple logical models, each returning a single output.

Given these definitions, the event classification can be
defined more formally as a function EC that, for a cer-
tain input event e, accepts as parameters the corresponding
model outputs {o;|¢ = 1...k} and additional information
1. The result of the event classification function is a binary
value that identifies the input event e as normal or anoma-
lous. That is, for a certain event e, the event classification
function EC is defined as follows.

EC(01,09,...,0k,I) = {normal, anomalous} @)

In most current anomaly-based intrusion detection sys-
tems, EC is a simple function that calculates the sum of
the o; values (often referred to as anomaly scores) and com-
pares the result to a threshold, represented by I. That is,
EC is defined as follows.

EO(013027 .- '70163[) =
e isnormal : Zle 0, <1 @
eisanomalous: Y5 0; > 1

We propose to replace this simple summation scheme by
a Bayesian network. Our network consists of a root node
(i.e., hypothesis node) that represents a variable with two
states, namely normal and anomalous. In addition, we intro-
duce one child node for each model to capture the model’s
respective outputs {o;|i = 1...k}. The root node is con-
nected to each child node, reflecting the fact that the model
outputs depend on the input event — that is, the outputs are
expected to be different when the input event is anomalous
and when it is normal.

Depending on the domain, causal dependencies between
models are identified and appropriate links are introduced
into the network. Under certain circumstances, it is possi-
ble that the outputs of two models are correlated. This can
be as simple as a positive or a negative correlation (i.e., one
anomalous feature makes it more or less likely that another
one is also anomalous), but could also be more sophisticated
such as the situation where the value of a certain feature in-
dicates that the quality of a test performed by another model
is reduced. Section 5 shows examples of model dependen-
cies that we have identified for our intrusion detection sys-
tem and Section 6 presents experimental results that demon-
strate that incorporating dependencies reduces the number
of incorrect classifications.

Additional information sources might indicate that
anomalous behavior is in fact legitimate or might support
the decision that the host is under attack. This could be in-
formation from other intrusion detection systems or system



health monitors (e.g., CPU utilization, memory usage, pro-
cess status). An important piece of additional information is
the confidence value associated with each model. Depend-
ing on the input events that are utilized for establishing the
profile, a certain feature might not be very suitable to distin-
guish between attacks and regular behavior. It might be the
case that the same values of a feature appear in both regular
behavior and attacks or that the variance of a feature is very
high. In these situations, it is useful to reduce the influence
of the model output on the final decision. The confidence
in the output of a model is an indication of the expected ac-
curacy of this model. In our Bayesian network, each model
confidence is represented by a node that is connected to its
corresponding model node. Note that these additional nodes
require a non-naive network because each model node has
at least two parent nodes (the root node and the correspond-
ing confidence node). Section 5 discusses the models that
we utilize for our intrusion detection system and provides
details about their confidence levels.

Another possibility is to model dependencies between
events in the input stream. Attacks tend to manifest them-
selves in bursts of suspicious events. Therefore, it might be
useful to include a node in the Bayesian network that keeps
track of recent anomalies. However, this extension has not
been implemented and is left for future work.

5 System Implementation

We have implemented an intrusion detection system that
analyzes operating system calls to detect attacks against
daemon applications and setuid programs on machines run-
ning Linux or Solaris. In contrast to the work by Forrest
[5, 26], we do not perform detection on a sequence of sys-
tem calls but on individual system calls and their arguments.
Each system call invocation performed by a monitored ap-
plication is translated into an input event, represented by a
feature vector. A feature vector captures information spe-
cific to each system call such as the system call number, its
return code, and its arguments (such as file system paths,
mode bit-fields, and user/process credentials).

The feature vector serves as input to the analysis process
of the anomaly detection models. Each model evaluates one
or more features of the input event and outputs a value that
reflects the deviation of this event’s features from its pro-
file. We have developed four different models, described
below in more detail, that analyze individual system call ar-
guments (also called system call parameters). Three models
are particularly designed to characterize features of string-
type parameters, while one can be used for arbitrary argu-
ment types. For every monitored system call, we bind a
number of models to each of its arguments.

The task of the event classification process is to deter-
mine whether a certain system call is anomalous, given the

outputs of the individual models for all arguments. A sim-
ple event classifier was implemented that aggregates the
model outputs and compares the result to a threshold. We
also implemented our proposed Bayesian event classifica-
tion scheme and observed a significant decrease in the num-
ber of false alarms.

In order to provide a suitable input event stream on mul-
tiple platforms, a modular event provider architecture was
created to abstract away the platform-specific details of sys-
tem call logging. We implemented a Linux auditing facility
that converts Snare [21] audit data into feature vectors and
a tool that offers a similar functionality for Solaris’ Basic
Security Module (BSM) [3].

5.1 Models

This section briefly describes our underlying models
with their detection mechanisms and motivates why our
chosen characterization is useful. In the following sections,
we discuss the model confidence and the dependencies be-
tween models introduced in our system.

String Length

In many cases, the length of a string can be used to detect
anomalous input. System call argument strings are usually
relatively short and human-readable. However, the situa-
tion might look different when malicious input is present.
For example, to overflow a buffer, it is often necessary to
ship the shell code and additional padding, depending on
the length of the target. As a consequence, a string can con-
tain up to several hundred bytes. The goal of this model
is to approximate the actual but unknown distribution of the
lengths of a string argument and detect instances that signif-
icantly deviate from the observed normal behavior. Clearly,
we cannot expect that the probability density function of
the underlying real distribution follows a smooth curve. We
also have to assume that it has a large variance. Neverthe-
less, the model is able to identify significant deviations.

Character Distribution

The character distribution model captures the concept of a
‘normal’ system call parameter string by looking at its char-
acter distribution. It is based on the observation that regu-
lar strings contain mostly printable, human-readable char-
acters. A large percentage of characters in these strings are
drawn from a small subset of the 256 possible 8-bit values
(mainly from letters, numbers, and a few special charac-
ters). Like in English text, the characters are not uniformly
distributed, but occur with different frequencies. The anal-
ysis is based only on the frequency values themselves and
does not rely on the distributions of individual characters.
That is, it does not matter whether the character with the



most occurrences is an ‘a’ ora ‘@. For a regular parameter,
one can expect that the sorted, relative frequencies slowly
decrease in value. In case of manifestations of attacks, how-
ever, these frequencies can drop extremely fast (because of
a peak caused by a very high frequency of a single charac-
ter) or barely (in case of a nearly uniform character distribu-
tion). The ‘normal’ character distribution is determined as
the average of the character distributions of the strings en-
countered during the training phase. The model output for
a new string instance is calculated using the Pearson y2-test
statistical test [2] that estimates the similarity of the new
character distribution to the one derived as the average of
the training set.

Structure

Often the manifestation of an exploit is immediately visible
as unusually long strings, or as strings that contain repeti-
tions of non-printable characters. Such anomalies are easily
identifiable by the two mechanisms explained above. There
are situations, however, when an attacker is able to craft
her attack in a manner that makes the manifestation appear
more regular. For example, to exploit a vulnerability, it
might not be necessary to inject long chunks of exploit code.
As another example, repetitions of non-printable characters,
often found in the sled of a buffer overflow, can be replaced
by constructs that behave similarly but contain only print-
able characters.

In such situations, it is necessary to use a more detailed
model of the string that shows the trace of the attack. This
model can be acquired by analyzing the string’s structure.
For our purposes, the structure of a parameter means the
regular grammar that describes all its normal, legitimate
values. When structural inference is applied to a set of
strings, the result has to be a grammar that can derive at
least all training examples. Unfortunately, there is no single
grammar that can be uniquely defined for a set of sample in-
puts. When no negative examples are given (i.e., elements
that should not be derivable by the grammar), it is always
possible to create either a grammar that contains exactly the
training data or a grammar that allows one to derive arbi-
trary strings. The first case is called over-simplification, as
the resulting grammar is only able to derive the learned in-
put without providing any level of abstraction. This means
that no new information is deduced. The second case is a
form of over-generalization; although the grammar is capa-
ble of producing all possible strings, there is no structural
information left.

The basic approach used for our structural inference is
to generalize the grammar as long as it seems to be ‘rea-
sonable’ and stop before too much structural information is
lost. The notion of reasonable generalization is formalized
using hidden Markov models and Bayesian probability [22].

The output value of this model depends on whether a new
input string can be derived from the grammar or not.

Token Finder

The purpose of the token finder model is to determine
whether the values of a system call parameter are drawn
from a limited set of possible alternatives (i.e., they are to-
kens or elements of an enumeration). An application of-
ten passes identical values via APIs, such as flags or han-
dles. When an attack changes the normal flow of execu-
tion and branches into maliciously injected code, such con-
straints are often violated. When no such enumeration can
be identified in the training data, it is assumed that the val-
ues are randomly drawn from the argument type’s value do-
main (i.e., random values for every system call). The token
finder technique can be applied to any parameter type, but
it is mostly used for numerical values. In case that the mon-
itored values are tokens drawn from an enumeration, every
new value is expected to appear in the set of known identi-
fiers. Otherwise, the token finder cannot provide any useful
information.

5.2 Model Confidence

The confidence that the system has in the output of a
model should be an important factor in the event classifi-
cation process. When a model claims a high confidence in
its output, this model’s anomaly score should clearly have a
higher impact on the final decision than the score of a model
that can only provide low-confidence information. In tradi-
tional systems, the confidence is often neglected or approx-
imated with static weights. When a model is expected to
produce more accurate results, it receives a higher a-priori
weight. However, this is not sufficient, as the confidence in
a model can vary depending on the training data used to cre-
ate the corresponding profile. Consider, for example, the to-
ken finder model. When this model detects an enumeration
during the learning phase, its anomaly scores are considered
highly accurate. When random identifiers are assumed, the
anomaly score is not meaningful. With statically assigned
weights, this distinction cannot be made. Although it is pos-
sible to choose between two static weights in the case of the
token finder, the situation becomes more complicated with
other models. Therefore, a seamless integration of dynamic
weights that are calculated after the training phase is desir-
able.

We take the model confidences into account by including
a confidence node for every model. Each confidence node
in the Bayesian network has a link to the node which repre-
sents its corresponding model. The conditional probability
tables are adjusted so that the model output has a signifi-
cant influence on the decision when the confidence is high-
est and no influence on the final result when the confidence
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Figure 3. Bayesian Network for open and execve System Calls

is lowest. The model confidence is represented as one of
five discrete levels: very high, high, medium, low and none.
When models create their profiles of normal behavior, the
variance of the input training data is evaluated. When the
variance of the analyzed feature is high, a low confidence
value is assumed. When a small, coherent set of feature
values is observed during the training, the confidence in the
correctness of the model output is high.

5.3 Bayesian Network

Figure 3 shows the structure of the Bayesian networks
for the open and execve system call. Both system calls
have two parameters and are monitored by our intrusion de-
tection system. The three string models (String Length,
Character Distribution and Structure) are attached to the
first string parameter (file path and name in the case of the
open call, execution arguments in the case of the execve
call). The token finder is attached to the numerical parame-
ter in the case of the open call (mode flags) and to another
string parameter in case of the execve call (program im-
age executed). Similar but simpler networks are used for
other monitored system calls that have only a single argu-
ment. A different Bayesian network instance is utilized for
every system call; however, most of these networks have an
identical structure.

In addition to the structure of the Bayesian networks,
conditional probability tables (CPTs) were specified for
each node. We used our domain-specific knowledge to es-
timate appropriate probability values for the various tables.
For each node, one has to provide the probabilities for all
states of the corresponding variable, conditionally depen-

dent on the states of all parent nodes. When a suitable
structure of the network is chosen, these probabilities are
mostly intuitive and can be determined in a sufficiently ac-
curate way by a domain expert. Note that we have not tuned
the CPTs in any way for our experiments. The probabilities
were selected before the evaluation was started and were not
modified thereafter.

The output of the models is a real value in the interval
[0,1] that describes the deviation of the input event fea-
ture(s) from the profiles. This value is mapped onto one
of five possible states associated with each model node in
the network. The mapping of a continuous function out-
put onto a number of different states is called discretization.
This process is required to keep the CPTs of the Bayesian
network manageable and to allow efficient calculations of
the probabilities at the hypothesis nodes. As shown in Ta-
ble 1, model outputs close to zero indicate normal features
while outputs close to one indicate anomalous ones.

Anomaly Score Range | Level
[0.00,0.50) Normal
[0.50,0.75) Uncommon
[0.75,0.90) Irregular
[0.90,0.95) Suspicious
[0.95,1.00] Very Suspicious

Table 1. Anomaly Score Intervals

The Bayesian network in Figure 3 shows the two model
dependencies that we have introduced for our intrusion de-
tection system. One dependency connects the node cor-



responding to the output of the string length model to the
quality of the character distribution (which is also influ-
enced by the confidence in the output of the character dis-
tribution). The mediating node ‘Char Di stri buti on
Qual i ty’ in our network expresses the idea that the qual-
ity of the anomaly score calculated by the character distri-
bution is not only dependent on the “a-priori’ confidence of
the model in the quality of its profile, but also on the length
of the string that is currently analyzed. When this string
is very short, the quality of the statistical test that assesses
the character distribution is significantly reduced. This is
reflected by the conditional probability tables of the ‘Char
Di stribution Quality’node.

The other dependency is introduced between the nodes
representing the character distribution and the structure
model. The reason is that an “abnormal’ character distri-
bution is likely to be reflected in a structure that does not
conform to the learned grammar. This is an example of a
simple positive correlation of output values between mod-
els.

During the analysis phase, the output of the four mod-
els and their confidences are entered as evidence into the
Bayesian network. Then, the probabilities of the two states
(normal, anomalous) associated with the root node (Cl as-
si ficati on) are calculated. When the probability that
an event is anomalous is high enough, an alarm is raised.
Note that the requirement that the probability value being
‘high enough’ to raise an alarm could be interpreted as
a threshold as well. However, the difference is that this
probability value directly expresses the probability that a
certain event is an attack, given the specific structure of
the Bayesian network. The sum of model outputs in a
threshold-based system, on the other hand, is not neces-
sarily proportional to the probability of an event being an
attack. It is possible, due to the assumption of indepen-
dence of model outputs and the potential lack of confidence
information in these systems, that the sum of the outputs
is increasing while the probability of an attack is, in fact,
decreasing.

Both the threshold in a traditional system and the no-
tion of a sufficiently high probability for raising an alarm in
the Bayesian approach can be utilized to tune the sensitiv-
ity of the intrusion detection system. However, the result of
the Bayesian network directly reports the probability that an
event is anomalous, given the model outputs and the struc-
ture of the network, while a simple summation of model
outputs is only an approximation of this probability. The
difference between the exact value and the approximation
is important, and accounts for a significant number of false
alarms, as shown in Section 6.

5.4 Bayesian Network Library - Smile

We implemented the models as part of a C++ library and
utilized a Bayesian statistics library called Smile [20], de-
veloped by the Decision Systems Laboratory at the Uni-
versity of Pittsburgh, for our event classification module.
Smile was the best choice among the available statistical
software given the requirements that the package must im-
plement actual Bayesian networks rather than performing
Bayesian statistical analysis and must provide a usable API
rather than solely a GUI.

A problem with Smile is the fact that the source is not
freely available, and that its licensing precludes one from
using it in any open source software. Therefore, we wrote
adapter classes to provide an abstraction layer between our
modules and Smile. This allows for Smile’s replacement
should the issues become too great a liability.

The problem of belief propagation — that is, the calcula-
tion of probabilities at the hypothesis nodes when evidence
is entered at information nodes — is, in general, NP-hard [9].
Despite this fact, Smile implements efficient algorithms that
can solve almost all problems in a reasonable amount of
time. Note also that the NP-hard calculations need to be
done only once, given that the information and hypothesis
nodes do not change. In addition, these calculations can be
done off-line. The computational cost during run-time to
evaluate particular values is linear in the number of nodes
in the network. Our proposed solution takes advantage of
this fact as the sets of information and hypothesis nodes re-
main static. This allows our system to analyze a stream of
system calls in real-time without incurring noticeable com-
putational or memory overhead.

6 Evaluation

For the purposes of evaluating our approach, we used the
MIT Lincoln Labs 1999 data set [11]. This data set consists
of a series of network packet dumps and BSM system call
records which have been widely used for intrusion detection
system development and evaluation. We used data recorded
during two attack-free weeks to train our models and then
ran the system on the complete test data that was recorded
during the two following weeks. Although several aspects
of the Lincoln Labs data have been criticized, it still remains
the most used large-scale data set to evaluate intrusion de-
tection systems [12].

The truth file provided by MIT Lincoln Labs lists all at-
tacks carried out against the network installation during the
two week test period. When analyzing the attacks, it turned
out that many of these were reconnaissance attempts such
as network scans or port sweeps, which are only visible in
the network dumps, and do not not leave any traces at the
system call level. Therefore, we could not detect them with
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our approach, which is limited to the analysis of system call
parameters.

Another class of attacks are policy violations. This class
of attacks contains intrusions that do not exploit a weak-
ness of the system itself, but rather exploit a mistake that an
administrator made in setting up the access control mecha-
nism. These attacks are not visible to our system either, as
information is leaked by ‘normal’ but unintended use of the
system.

The most interesting class of attacks are those that ex-
ploit a vulnerability in a remote or local service and al-
low an intruder to elevate her privileges. The MIT Lincoln
Labs data contains several instances of attacks that try to
exploit vulnerabilities in four different programs: ej ect,
fbconfi g, f df or mat , and ps. Figure 4 shows the Re-
ceiver Operating Characteristic (ROC) curves for our sys-
tem when monitoring these applications. The ROC of a
classifier shows its performance as a trade off between se-
lectivity and sensitivity; a curve of the false positive rate
versus the true positive rate is plotted, while a sensitivity
or threshold parameter is varied. Ideally, a classifier has a
true positive rate of 1 and a false positive rate of 0. The
ROC curve for the Bayesian event classifier is plotted by
varying the ‘anomalous’ probability value that is required
for an event to be reported as an attack. The ROC curve
for the threshold-based classifier is determined by vary-
ing the threshold that is compared to the sum of outputs.
The graphs show that both classifiers output some false
alarms when all attacks are correctly detected. However,
the Bayesian approach consistently performs better — when
all attacks are correctly detected (i.e., the true positive rate

is 1), it only reports half as many false positives. Note that
the shapes of the curves are not a consequence of an insuf-
ficient number of data points. The horizontal and vertical
lines contain intermediate points, reflecting changes in ei-
ther the false positive or the true positive rate alone.

When analyzing the false positives raised by both classi-
fication approaches, we observed that the Bayesian scheme
always reported a subset of the false alarms raised by the
threshold-based mechanism. The false positives common
to both mechanisms are caused by system call invocations
that have arguments which significantly deviate from all ex-
amples encountered during the training phase. This is due
to the fact that the training data for these particular system
calls was very homogeneous, leading to profiles that were
very sensitive to changes. During the detection phase, le-
gitimate system calls with significantly different arguments
were observed. This resulted in their incorrect classifica-
tion.

The system calls that were reported as anomalous by the
threshold-based approach but correctly classified as normal
by the Bayesian scheme were instances with short string ar-
guments. As explained in Section 5.3, short strings can sig-
nificantly influence the quality of the character distribution
model, causing it to report incorrect anomalies. This prob-
lem is addressed by the Bayesian network using the medi-
ating ‘Char Di stribution Quality’node (seeFig-
ure 3), correctly evaluating these system calls as hormal.



7 Conclusions

In this paper, we presented a novel method for perform-
ing Bayesian classification of input events for intrusion de-
tection. We have improved upon the naive threshold-based
schemes traditionally used to combine model outputs by
employing Bayesian networks. This allows us to naturally
incorporate model confidence and dependencies between
models into the event classification process. The exper-
imental results show that a significant reduction of false
alerts was achieved. When all attacks in our test data set
are detected, the Bayesian event classification reports only
half as many false alerts as the traditional approach, based
on the same model outputs.
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