
Detecting Kernel-Level Rootkits

Through Binary Analysis

Abstract

Rootkits are tool sets used by intruders to modify the
perception that users have of a compromised system.
In particular, these tools are used by attackers to
hide their actions from system administrators. Orig-
inally, rootkits mainly included modified versions of
system auditing programs (e.g., ps or netstat on a
Unix system). However, for operating systems that
support loadable kernel modules (e.g., Linux and So-
laris), a new type of rootkit has recently emerged.
These rootkits are implemented as kernel modules,
and they do not require modification of user space
binaries to conceal malicious activity. Instead, the
rootkit operates within the kernel, modifying critical
data structures such as the system call table or the
list of currently-loaded kernel modules.

This paper presents a technique that exploits bi-
nary analysis to ascertain, at load time, if a mod-
ule’s behavior resembles the behavior of a rootkit.
Through this method, it is possible to provide addi-
tional protection against this type of malicious mod-
ification of the kernel. Our technique relies on an ab-
stract model of module behavior that is not affected
by small changes in the binary image of the module.
Therefore, the technique is resistant to attempts to
conceal the malicious nature of a kernel module.

Keywords: Rootkits, Binary Analysis, Kernel Hard-
ening.

1 Introduction

Most intrusions and computer security incidents fol-
low a common pattern where a remote user scans a
target system for vulnerable services, launches an at-
tack to gain some type of access to the system, and,
eventually, escalates her privileges. These privileges
are then used to create backdoors that will allow the
attacker to return to the system at a later time. In
addition, actions are taken to hide the evidence that
the system has been compromised in order to prevent
the system administrator from noticing the security
breach and implementing counter measures (e.g., re-
installing the system).

The tools used by an attacker after gaining admin-
istrative privileges includes tools to hide the presence
of the attacker (e.g., log editors), utilities to gather in-
formation about the system and its environment (e.g.,
network sniffers), tools to ensure that the attacker
can regain access at a later time (e.g., backdoored
servers), and means of attacking other systems. Com-
mon tools have been bundled by the hacker commu-
nity into “easy-to-use” kits, called rootkits [3].

Even though the idea of a rootkit is to provide
all the tools that may be needed after a system has
been compromised, rootkits focus in particular on
backdoored programs and tools to hide the attacker
from the system administrator. Originally, rootkits
mainly included modified versions of system auditing
programs (e.g., ps or netstat for Unix systems) [9].
These modified programs (also called trojan horses)
do not return any information to the administrator
that involves specific files and processes used by the

1

intruder. Such tools, however, are easily detected us-
ing file integrity checkers such as Tripwire [7].

Recently, a new type of rootkit has emerged. These
rootkits are implemented as loadable kernel modules
(LKMs). A loadable kernel module is an extension
to the operating system (e.g., a device driver) that
can be loaded into and unloaded from the kernel at
runtime. Solaris and Linux are two popular operat-
ing systems that support this type of runtime kernel
extension.

By implementing a rootkit as a kernel module, it
is possible to modify critical kernel data structures
(such as the system call table, the list of active pro-
cesses, or the list of kernel modules) or intercept re-
quests to the kernel regarding files and processes that
are created by an intruder [10, 14, 15]. Once the ker-
nel is infected, it is very hard to determine if a system
has been compromised without the help of hardware
extensions, such as the TCPA chip [12]. Therefore, it
is important that mechanisms are in place to detect
kernel rootkits and prevent their insertion into the
kernel.

In this paper, we present a technique for the de-
tection of kernel-level rootkits in the Linux operating
system. The technique is based on static analysis
of loadable kernel module binaries, in particular be-
havioral specifications and symbolic execution. The
analysis allows the kernel to determine if the module
being loaded includes evidence of malicious intent.

The contribution of this approach is twofold. First,
by using static analysis, our technique is able to deter-
mine if a kernel module is malicious before the kernel
module is actually loaded into the kernel and exe-
cuted. This is a major advantage, because once the
kernel image has been modified it may become in-
feasible to perform dynamic analysis of the module’s
actions in a reliable way. Second, the technique is
applied to the binary image of a module and does
not require access to the module’s source code. Be-
cause of this, the technique is widely applicable and
it is possible to analyze the behavior of device drivers
and other closed source kernel components that are
distributed in binary form only.

The rest of the paper is structured as follows. Sec-
tion 2 discusses related work on rootkits and rootkit
detection. Section 3 presents our approach to the de-
tection of kernel-level rootkits. Then, Section 4 pro-
vides an experimental evaluation of the effectiveness
and efficiency of our technique. Finally, Section 5 dis-
cusses possible limitations of the current prototype
while Section 6 briefly concludes.

2 Related Work

Kernel-level rootkits have been circulating in the un-
derground hacker community for some time and in
different forms [6]. In general, there are different
means that can be used to modify kernel behavior.

The most common way of modifying the kernel is
by inserting a loadable kernel module. The module
has access to the symbols exported by the kernel and
can modify any data structure or function pointer
that is accessible. Typically, these kernel-level root-
kits “hijack” entries in the system call table and pro-
vide modified implementations of the corresponding
system call functions [10, 14]. These modified system
calls often perform checks on the data passed back to
a user process and can thus efficiently hide informa-
tion about files and processes. An interesting varia-
tion is implemented by the adore-ng rootkit [15, 16].
In this case, the rootkit does not touch the system
call table but hijacks the routines used by the Vir-
tual File System (VFS), and, therefore, it is able to
intercept (and modify) calls that access files in both
the /proc file system and the root file system.

A related technique injects malicious code directly
into existing kernel modules instead of providing a
complete rootkit module. While this solution is in
principle similar to the insertion of a rootkit kernel
module, it has the advantage that the modification
will survive a kernel reboot procedure if the modified
module is automatically loaded in the kernel standard
configuration. On the other hand, this technique re-
quires the modification of a binary that is stored on
the file system, and, therefore, it may be detected
using integrity checkers.

2

Another way to modify the behavior of the kernel
is to access kernel memory directly from user space
through the /dev/kmem file. This technique (used, for
example, by SucKIT [13]) requires the identification
of data structures that need to be modified within
the kernel image. However, this is not impossible;
in particular, well-known data structures such as the
system call table are relatively easy to locate.

Kernel-level rootkits can be detected by utilizing
a number of different techniques. The most basic
include searching for modified kernel modules on disk,
searching for known strings in existing binaries, or
by searching for configuration files associated with
specific rootkits. The problem is that when a system
has been compromised at the kernel level, there is no
guarantee that these tools will return reliable results.
This is also true for signature-based rootkit detection
tools such as chkrootkit [11] that rely on operating
system services to scan a machine for indications of
known rootkits.

To circumvent the problem of a possibly untrusted
operating system, rootkit scanners such as kstat [4],
rkscan [2], or St. Michael [8] follow a different ap-
proach. These tools are either implemented as ker-
nel modules with direct access to kernel memory, or
they analyze the contents of the kernel memory via
/dev/kmem. Both techniques allow the programs to
monitor the integrity of important kernel data struc-
tures without the use of system calls. For example,
by comparing the system call addresses in the sys-
tem call table with known good values (taken from
the /boot/System.map file), it is possible to identify
hijacked system call entries.

This approach is less prone to being foiled by
a kernel-level rootkit because kernel memory is ac-
cessed directly. Nevertheless, changes can only be
detected after a rootkit has been installed. In this
case, the rootkit had the chance to execute arbitrary
code in the context of the kernel. Thus, it is pos-
sible that actions have been performed to thwart or
disable rootkit scanners. Also, rootkits can carry out
changes at locations that are not monitored (e.g., task
structures).

3 Rootkit Detection

The idea for our detection approach is based on the
observation that the runtime behavior of regular ker-
nel modules (e.g., device drivers) differs significantly
from the behavior of kernel-level rootkits. We note
that regular modules have different goals than root-
kits, and thus implement different functionality.

The main contribution of this paper is that we show
that it is possible to distinguish between regular mod-
ules and rootkits by statically analyzing kernel mod-
ule binaries. The analysis is performed in two steps.
First, we have to specify undesirable behavior. Sec-
ond, each kernel module binary is statically analyzed
for the presence of instructions sequences that imple-
ment these specifications.

Currently, our specifications are given informally,
and the analysis step has to be adjusted appropriately
to deal with new specifications. Although it might be
possible to introduce a formal mechanism to model
behavioral specifications, it is not necessary for our
detection prototype. The reason is that a few general
specifications are sufficient to accurately capture the
malicious behavior of all LKM-based rootkits. Nev-
ertheless, the analysis technique is powerful enough
that it can be easily extended. This may become nec-
essary when rootkit authors actively attempt to evade
detection by changing the code such that it does not
adhere to any of our specifications.

3.1 Specification of Behavior

A specification of malicious behavior has to model
a sequence of instructions that is characteristic for
rootkits but that does not appear in regular modules
(at least, with a high probability). That is, we have to
analyze the behavior of rootkits to derive appropriate
specifications that can be used during the analysis
step.

In general, kernel modules (e.g., device drivers) ini-
tialize their internal data structures during startup
and then interact with the kernel via function calls,
using both system calls or functions internal to the
kernel. In particular, it is not often necessary that a
module directly writes to kernel memory. Some ex-

3

ceptions include device drivers that read from and
write to memory areas that are associated with a
managed device and that are mapped into the ker-
nel address space to provide more efficient access or
modules that overwrite function pointers to register
themselves for event callbacks.

Kernel-level rootkits, on the other hand, usually
write directly to kernel memory to alter important
system management data structures. The purpose
is to intercept the regular control flow of the kernel
when system services are requested by a user pro-
cess. This is done in order to monitor or change the
results that are returned by these services to the user
process. Because system calls are the most obvious
entry point for requesting kernel services, the earliest
kernel-level rootkits modified the system call table
accordingly. For example, one of the first actions of
the knark [10] rootkit is to exchange entries in the
system call table with customized functions to hide
files and processes.

In newer kernel releases, the system call table is
no longer exported by the kernel, and thus it cannot
be directly accessed by kernel modules. Therefore,
alternative approaches to influence the results of op-
erating system services have been investigated. One
such solution is to monitor accesses to the /proc file
system. This is accomplished by changing the func-
tion addresses in the /proc file system root node that
point to the corresponding read and write functions.
Because the /proc file system is used by many au-
diting binaries to gather information about the sys-
tem (e.g., about running processes, or open network
connections), a rootkit can easily hide important in-
formation by filtering the output that is passed back
to the user process. An example of this approach is
the adore-ng rootkit [16] that replaces functions of
the virtual file system (VFS) node of the /proc file
system.

As a general observation, we note that rootkits per-
form writes to a number of locations in the kernel ad-
dress space that are usually not touched by regular
modules. These writes are necessary either to obtain
control over system services (e.g., by changing the
system call table, file system functions, or the list of

active processes) or to hide the presence of the kernel
rootkit itself (e.g., modifying the list of installed mod-
ules). Because write operations to operating system
management structures are required to implement
the needed functionality, and because these writes are
unique to kernel rootkits, they present a salient op-
portunity to specify malicious behavior.

To be more precise, we identify a loadable kernel
module as a rootkit based on the following two be-
havioral specifications:

1. The module contains a data transfer instruc-
tion that performs a write operation to an illegal
memory area, or

2. the module contains an instruction sequence that
i) uses a forbidden kernel symbol reference to cal-
culate an address in the kernel’s address space
and ii) performs a write operation using this ad-
dress.

Whenever the destination address of a data trans-
fer can be determined statically during the analysis
step, it is possible to check whether this address is
within a legitimate area. The notion of legitimate
areas is defined by a white-list that specifies the ker-
nel addressed that can be safely written to. For our
current system, these areas include function pointers
used as event callback hooks (e.g., br ioctl hook())
or exported arrays (e.g., blk dev).

One drawback of the first specification is the fact
that the destination address must be derivable during
the static analysis process. Therefore, a complemen-
tary specification is introduced that checks for writes
to any memory address that is calculated using a for-
bidden kernel symbol.

A kernel symbol refers to a kernel variable with its
corresponding address that is exported by the kernel
(e.g., via /proc/ksysm). These symbols are needed
by the module loader, which loads and inserts mod-
ules into the kernel address space. When a kernel
module is loaded, all references to external variables
that are declared in this module but defined in the
kernel (or in other modules) have to be patched appro-
priately. This patching process is performed by sub-
stituting the place holder addresses of the declared

4

variables in the module with the actual addresses of
the corresponding symbols in the kernel.

The notion of forbidden kernel symbols can be
based on black-lists or white-lists. A black-list ap-
proach enumerates all forbidden symbols that are
likely to be misused by rootkits, for example, the sys-
tem call table, the root of the /proc file system, the
list of modules, or the task structure list. A white-
list, on the other hand, explicitly defines acceptable
kernel symbols that can legitimately be accessed by
modules. As usual, a white-list approach is more
restrictive, but may lead to false positives when a
module references a legitimate but infrequently used
kernel symbol that has not been allowed previously.
However, following the principle of fail-safe defaults,
a white-list also provides greater assurance that the
detection process cannot be circumvented.

Note that it is not necessarily malicious when a for-
bidden kernel symbol is declared by a module. When
such a symbol is not used for a write access, it is not
problematic. Therefore, we cannot reject a module
as a rootkit by checking the declared symbols only.

Also, it is not sufficient to check for writes that tar-
get a forbidden symbol directly. Often, kernel root-
kits use such symbols as a starting point for more
complex address calculations. For example, to access
an entry in the system call table, the system call ta-
ble symbol is used as a base address that is increased
by a fixed offset. Another example is the module list
pointer that is used to traverse a linked list of mod-
ule elements until the one is reached that should be
removed. Therefore, a more extensive analysis has to
be performed to also track indirect uses of forbidden
kernel symbols for write accesses.

Naturally, there is an arms-race between rootkits
that use more sophisticated methods to obtain ker-
nel addresses, and our detection system that relies
on specifications of malicious behavior. For current
rootkits, our basic specifications allow for reliable de-
tection with no false positives (see Section 4 for de-
tails). However, it might be possible to circumvent
these specifications. In that case, it is necessary to
provide more elaborate descriptions of malicious be-
havior.

Note that our behavioral specifications have the
advantage that they provide a general model of un-
desirable behavior. That is, these specifications char-
acterize an entire class of malicious actions. This is
different from fine-grained specifications that need to
be tailored to individual kernel modules.

3.2 Symbolic Execution

Based on the specifications introduced in the previous
section, the task of the analysis step is to statically
check the module binary for instructions that corre-
spond to these specifications. When such instructions
are found, the module is labeled as a rootkit.

We perform analysis on binaries using symbolic ex-
ecution. Symbolic execution is a static analysis tech-
nique in which program execution is simulated using
symbols, such as variable names, rather than actual
values for input data. The program state and out-
puts are then expressed as mathematical (or logical)
expressions involving these symbols. When perform-
ing symbolic execution, the program is basically ex-
ecuted with all possible input values simultaneously,
thus allowing one to make statements about the pro-
gram behavior.

One problem with symbolic execution is the fact
that it is, due to the halting problem, impossible to
make statements about arbitrary programs in gen-
eral. However, it is often possible to obtain useful re-
sults in practice when the completeness requirement
is relaxed. Relaxing the completeness requirement
implies that the analysis is not guaranteed to detect
malicious instructions sequences in all cases. How-
ever, this can be tolerated when most relevant in-
stances are found.

In order to simulate the execution of a program,
or, in our case, the execution of a loadable kernel
module, it is necessary to perform two preprocessing
steps.

First, the code sections of the binary have to be
disassembled. In this step, the machine instructions
have to be extracted and converted into a format that
is suitable for symbolic execution. That is, it is not
sufficient to simply print out the syntax of instruc-
tions, as done by programs such as objdump. Instead,

5

the type of the operation and its operands have to be
parsed into an internal representation. The disas-
sembly step is complicated by the complexity of the
Intel x86 instruction set, which uses a large number
of variable length instructions and many different ad-
dressing modes for backwards compatibility reasons.

In the second preprocessing step, it is necessary to
adjust address operands in all code sections present.
The reason is that a Linux loadable kernel module is
merely a standard ELF relocatable object file. There-
fore, many memory address operands have not been
assigned their final values yet. These memory ad-
dress operands include targets of jump and call in-
structions but also source and destination locations
of load, store, and move instructions.

For a regular relocatable object file, the addresses
are adjusted by the linker. To enable the necessary
link operations, a relocatable object also contains,
besides regular code and data sections, a set of re-
location entries. Note, however, that kernel modules
are not linked to the kernel code by a regular linker.
Instead, the necessary adjustment (i.e., patching) of
addresses takes place during module load time by a
special module loader. For Linux kernels up to ver-
sion 2.4, most of the module loader ran in user space;
for kernels from version 2.5 and up, much of this
functionality was moved into the kernel. To be able
to simulate execution, we perform a process similar
to linking and substitute place holders in instruction
operands and data locations with the real addresses.
This has the convenient side-effect that we can mark
operands that represent forbidden kernel symbols so
that the symbolic execution step can later trace their
use in write operations.

When the loadable kernel module has been disas-
sembled and the necessary address modifications have
occurred, the symbolic execution process can com-
mence. To this end, an initial machine state is created
and execution starts with the module’s initialization
routine, called init module().

Handling Machine State

The machine state represents a snapshot of the sys-
tem during symbolic execution. That is, the machine

state contains all possible values that could be present
in the processor registers and the memory address
space of the running process at a certain point during
the execution process. Given the notion of a machine
state, an instruction can then be defined as a function
that maps one machine state into another one. This
mapping will reflect the effect of the instruction itself
(e.g., a data value is moved from one register to an-
other), but also implicit effects such as incrementing
the instruction pointer.

When complete knowledge about the processor and
memory state is available, and given the absence of
any input and external modifications of the machine
state, it would be possible to deterministically simu-
late the execution of a module. However, in our case,
the complexity of such a complete simulation would
be tremendous. Therefore, we introduce a number of
simplifications that improve the efficiency of the sym-
bolic execution process, while retaining the ability to
detect most malicious instruction sequences.

A main simplification is the fact that we consider
the initial configuration of the memory content as un-
known. This means that whenever a value is taken
from memory, a special unknown token is returned.
However, it does not imply that all loads from mem-
ory are automatically transformed into unknown to-
kens. When known values are stored at certain mem-
ory locations, these values are remembered and can
subsequently be loaded. This is particularly common
for the stack area when return addresses are pushed
on the stack by a call operation and later loaded by
the corresponding return instruction.

During symbolic execution, we can simulate the ef-
fect of arithmetic, logic, and data transfer instruc-
tions. To this end, the values of the operands are
calculated and the required operation is performed.
When at least one of the operands is an unknown
token, the result is also unknown.

Another feature is a tainting mechanism that tags
values that are related to the use of forbidden kernel
symbols. Whenever a forbidden symbol is used as an
operand, even when its value is unknown, the result
of the operation is marked as tainted. Whenever a
tainted value is later used by another instruction, its

6

result becomes tainted as well. This allows us to de-
tect writes to kernel memory that are based on the
use of forbidden symbols.

For the initial machine state, we prepare the pro-
cessor state such that the instruction pointer register
is pointing to the first instruction of the module’s
initialization routine, while the stack pointer and the
base (i.e., frame) pointer register refer to valid ad-
dresses on the kernel stack. All other registers and
the entire memory is marked as unknown.

Then, instructions are sequentially processed and
the machine state is updated accordingly. For each
data transfer, it is checked whether data is written
to kernel memory areas that are not explicitly per-
mitted by the white-list, or whether data is written
to addresses that are tainted because of the use of
forbidden symbols.

The execution of instructions continues until ex-
ecution terminates with the final return instruction
of the initialization function, or until a control flow
instruction is reached.

Handling Control Flow

Control flow instructions present problems for our
analysis when they have two possible successor in-
structions (i.e., continuations). In this case, the sym-
bolic execution process must either select a continu-
ation to continue at, or a mechanism must be intro-
duced to save the current machine state at the control
flow instruction and explore both paths one after the
other. In this case, the execution first continues with
one path until it terminates and then backs up to
the saved machine state and continues with the other
alternative.

The only problematic type of control flow instruc-
tions are conditional branches. This is because it is
not always possible to determine the real target of
such a branch operation statically. The most com-
mon reason is that the branch condition is based on
an unknown value, and thus, both continuations are
possible. Neither unconditional jumps nor call in-
structions are a difficulty because both only have a
single target instruction where the execution contin-
ues. Also, calls and the corresponding return opera-

tions are not problematic because they are handled
correctly by the stack, which is part of the machine
state.

Because malicious writes can occur on either path
after a conditional branch, we chose to save the ma-
chine state at these instructions and then consecu-
tively explore both alternative continuations. Unfor-
tunately, this has a number of problems that have to
be addressed.

branch (x) if (x) then
 block A;
else
 block B;

branch (y)

block E

if (y) then
 block C;
else
 block D;

block A block B

block C block D

1:

2: 3:

4:

5: 6:

7:

Figure 1: Example control flow graph.

One problem is caused by the exponential explo-
sion of possible paths that need to be followed. Con-
sider the case of multiple branch instructions that are
the result of a series of if-else constructs in the cor-
responding source code (see Figure 1). After each
if-else block, the control flow joins. In this example,
the machine state needs to be saved at node 1, at
the branch(x) instruction. Then, the first path is
taken via node 2. The machine state is saved a sec-
ond time at node 4 and both the left and the right
path are subsequently executed (using the state pre-
viously saved at node 4). Then, the execution process
is rewinded to the first check point, and continues via
the right path (i.e., via node 3). Again, the machine
state needs to be saved at node 4, and both alterna-
tives are followed a second time. In this example, a
total of four paths have to be explored as a result of
only two branch instructions.

7

Also, it is possible that impossible paths are being
followed. If, in our example, both the branch(x) and
the branch(y) instructions evaluated to the same
boolean value, it would be impossible that execution
flows through nodes 2 and 6, or through nodes 3 and
5. For our prototype, the path explosion problem
and impossible paths have not caused any difficulties
(refer to Section 4 for the evaluation of our system).
This is due to the limited size of the kernel modules.
Therefore, we use a simple approach, save the ma-
chine state at every conditional branch instruction,
and explore both alternative continuations.

Another problem is the presence of loops. Because
the machine state is saved at every branch instruction
and both alternatives are explored one after another,
the existence of a loop would prevent the execution
process from terminating. The reason is that both
continuations of the branch that corresponds to the
loop termination condition are explored (i.e., the loop
body and the code path after the loop). When the
path that follows the loop body eventually reaches the
loop termination condition again, the state is saved a
second time. Then, as usual, both alternative contin-
uations are explored. One of these continuations is,
of course, the loop body that leads back to the loop
termination condition, where the process repeats.

To force termination of our symbolic execution pro-
cess, it is necessary to remove control flow loops. Note
that it is not sufficient to simply mark nodes in the
control flow that have been previously processed. The
reason is that nodes can be legitimately processed
multiple times without the existence of loops. In the
example shown in Figure 1, the symbolic execution
processes node 4 twice because of the joining control
flows from node 2 and node 3. However, no loop is
present, and the analysis should not terminate pre-
maturely when reaching node 4 for the second time.

Instead, a more sophisticated algorithm based on
the control flow graph of the binary is necessary. In
[1], a suitable algorithm is presented that is based
on dominator trees. This algorithm operates on the
control flow graph and can detect (and remove) the
back-edges of loops. Simply speaking, a back-edge is
the jump from the end of the loop body back to the

Back-Edge

Figure 2: Control flow graph with loop.

loop header, and it is usually the edge that would
be identified as the “loop-defining-edge” by a human
looking at the control flow graph. For example, Fig-
ure 2 shows a control flow graph with a loop and the
corresponding back-edge.

For our system, we first create a control flow graph
of the kernel module code after it has been prepro-
cessed. Then, a loop detection algorithm is run and
the back-edges are detected. Each conditional branch
instruction that has a back-edge as a possible contin-
uation is tagged appropriately. During symbolic exe-
cution, no machine state is saved at these instructions
and processing continues only at the non-back-edge
alternative. This basically means that a loop is ex-
ecuted at most once by our system. Note, however,
that more sophisticated algorithms that attempt to
execute a loop multiple times will eventually hit the
limits defined by the halting problem. Thus, every
approach has to accept a certain degree of incom-
pleteness that could potentially lead to incorrect re-
sults.

A last problem are indirect jumps that are based on
unknown values. In such cases, it might be possible

8

to heuristically choose possible targets and specula-
tively continue with the execution process there. In
our current prototype, however, we simply terminate
control flow at these points. The reason is that in-
direct jumps based on unknown values almost never
occurred in our experiments.

4 Evaluation

The proposed rootkit detection algorithm was imple-
mented as a user space prototype that simulated the
object parsing and symbol resolution performed by
the existing kernel module loader before disassem-
bling the module and analyzing the code for the pres-
ence of malicious writes to kernel memory. The pro-
totype implementation was evaluated with respect to
its detection capabilities and performance impact on
production systems. To this end, an experiment was
devised in which the prototype was run on several
sets of kernel modules. Detection capability for each
set was evaluated in terms of false positive rates for
legitimate modules, and false negative rates for root-
kit modules. Detection performance was evaluated
in terms of the total execution time of the prototype
for each module analyzed. The evaluation itself was
conducted on a testbed consisting of a single default
Fedora Core 1 Linux installation on a Pentium IV 2.0
GHz workstation with 1 GB of RAM.

4.1 Detection Results

For the detection evaluation, three sets of kernel mod-
ules were created. The first set comprised the knark
and adore-ng rootkits, both of which were used dur-
ing development of the prototype. As mentioned pre-
viously, both rootkits implement different methods of
subverting the control flow of the kernel: knark over-
writes entries in the system call table to redirect var-
ious system calls to its own handlers, while adore-ng
patches itself into the VFS layer of the kernel to in-
tercept accesses to the /proc file system. Since each
rootkit was extensively analyzed during the proto-
type development phase, it was expected that all ma-
licious kernel accesses would be discovered.

The second set consisted of a set of seven addi-
tional popular rootkits downloaded from the Internet,
described in Table 1. Since these rootkits were not
analyzed during the prototype development phase,
the detection rate for this group can be considered a
measure of the generality of the detection technique
as applied against previously unknown rootkits that
utilize similar means to subvert the kernel as knark
and adore-ng.

The final set consisted of a control group of le-
gitimate kernel modules, namely the entire default
set of kernel modules for the Fedora Core 1 Linux
x86 distribution. This set includes 985 modules im-
plementing various components of the Linux kernel,
including networking protocols (e.g., IPv6), bus pro-
tocols (e.g., USB), file systems (e.g., EXT3), and de-
vice drivers (e.g., network interfaces, video cards). It
was assumed that no modules incorporating rootkit
functionality were present in this set.

Table 2 presents the results of the detection eval-
uation for each of the three sets of modules. As
expected, all malicious writes to kernel memory by
both knark and adore-ng were detected, resulting
in a false negative rate of 0% for both rootkits. All
malicious writes by each evaluation rootkit were de-
tected as well, resulting in a false negative rate of 0%
for this set. We interpret this result as an indication
that the detection technique generalizes well to pre-
viously unseen rootkits. Finally, no malicious writes
were reported by the prototype for the control group,
resulting in a false positive rate of 0%. We thus con-
clude that the detection algorithm is completely suc-
cessful in distinguishing rootkits exhibiting specified
malicious behavior from legitimate kernel modules, as
no misclassifications occurred during the entire detec-
tion evaluation.

To verify that the detection algorithm performed
correctly on the evaluation rootkits, traces of the
analysis performed by the prototype on each root-
kit were examined with respect to the correspond-
ing module code. As a simple example, consider the
case of the all-root rootkit, the analysis trace of
which is shown in Figure 3. From the trace, we
can see that one malicious kernel memory write was

9

Rootkit Technique Description
adore syscalls File, directory, process, and socket hiding

Rootshell backdoor
all-root syscalls Gives all processes UID 0
kbdv3 syscalls Gives special user UID 0

kkeylogger syscalls Logs keystrokes from local and network logins
rkit syscalls Gives special user UID 0

shtroj2 syscalls Execute arbitrary programs as UID 0
synapsys syscalls File, directory, process, socket, and module hiding

Gives special user UID 0

Table 1: Evaluation rootkits.

Module Set Modules Analyzed Detections Misclassification Rate
Development rootkits 2 2 0 (0%)

Evaluation rootkits 6 6 0 (0%)
Fedora Core 1 modules 985 0 0 (0%)

Table 2: Detection results.

kmodscan: initializing scan for rootkits/all-root.o
kmodscan: loading kernel symbol table from boot/System.map
kmodscan: kernel memory configured [c0100000-c041eaf8]
kmodscan: resolving external symbols in section .text
kmodscan: disassembling section .text
kmodscan: performing scan from [.text+40]
kmodscan: WRITE TO KERNEL MEMORY [c0347df0] at [.text+50]
kmodscan: 1 malicious write detected, denying module load

Figure 3: all-root rootkit analysis.

detected at .text+50 (i.e., at an offset of 50 bytes
into the .text section). By examining the disassem-
bly of the all-root module, the relevant portion of
which is shown in Figure 4, we can see that the over-
write occurs in the module’s initialization function,
init module()1. Specifically, the movl instruction
at .text+50 is flagged as a malicious write to kernel
memory. Correlating the disassembly with the corre-
sponding rootkit source code, shown in Figure 5, we
can see that this instruction corresponds to the write

1Note that this disassembly was generated prior to kernel
symbol resolution, thus the displayed read and write accesses
are performed on place holder addresses. At runtime and for
the symbolic execution, the proper memory address would be
patched into the code.

to the sys call table array to replace the getuid()
system call handler with the module’s malicious ver-
sion at line 4. Thus, we conclude that the rootkit’s
attempt to redirect a system call was properly de-
tected.

00000040 <init_module>:

40: a1 60 00 00 00 mov 0x60,%eax

45: 55 push %ebp

46: 89 e5 mov %esp,%ebp

48: a3 00 00 00 00 mov %eax,0x0

4d: 5d pop %ebp

4e: 31 c0 xor %eax,%eax

50: c7 05 60 00 00 00 00 movl $0x0,0x60

57: 00 00 00

5a: c3 ret

Figure 4: all-root module disassembly.

4.2 Performance Results

For the performance evaluation, the elapsed execu-
tion time of the analysis phase of the prototype was
recorded for all modules, legitimate and malicious.

10

1 int init_module(void)

2 {

3 orig_getuid = sys_call_table[__NR_getuid];

4 sys_call_table[__NR_getuid] = give_root;

5

6 return 0;

7 }

Figure 5: all-root initialization function.

Time spent parsing the object file and patching relo-
cation table entries into the module was excluded, as
these functions are already performed as part of the
normal operation of the existing module loader. The
goal of the evaluation was to provide some indication
as to the performance overhead the detection process
would incur on the module load operation in a pro-
duction kernel. Note that as mentioned previously,
no runtime overhead is incurred by our technique af-
ter the module has been loaded.

Figure 6 shows the elapsed execution time of all
evaluated modules, discretized into logscale buckets
with a width of 10 ms. As we can see, the vast major-
ity of modules would experience a delay of 10 ms or
less during module load. Several modules with more
complex initialization procedures (and thus complex
control flow graphs) required more time to fully an-
alyze, but as can be seen in Table 3, the detection
algorithm never spent more than 420 ms to classify
a module as malicious or legitimate. Thus, we con-
clude that the impact of the detection algorithm on
the module load operation is acceptable for a produc-
tion system.

Minimum Maximum Median Std. Deviation

0.00 ms 420.00 ms 0.00 ms 39.83

Table 3: Detection overhead statistics.

5 Discussion

Our prototype is a user space program that statically
analyzes Linux loadable kernel modules for the pres-

ence of rootkit functionality. These modules have to
be ELF object files that are compiled for the Intel x86
architecture.

The limitation on the classes of modules that can
be analyzed stems from the fact that a kernel module
needs to be parsed and its code sections disassem-
bled before the actual analysis can start. Therefore,
additional parsing and disassembly routines would be
necessary to process different object file formats or in-
struction sets. Because a vast majority of Linux sys-
tems run on Intel x86 machines, and because Linux
kernel modules have to be provided as ELF object
files, we developed our prototype for this combina-
tion. The analysis technique itself, however, can be
readily extended to other systems.

Our tool is currently available as a user program
only. In order to provide automatic protection from
rootkits, it would be necessary to integrate our ana-
lyzer into the kernel’s module loading infrastructure.
As an additional requirement, the analyzer must not
be bypassable when a process with root permissions
attempts to load a module. The reason is that kernel
modules can only be inserted by the root user. Thus,
the threat model has to assume that the attacker has
superuser privileges when attempting to load a kernel
module.

Up until Linux 2.4, most work of the module load-
ing process was done in user space, using the insmod
program. In this case, adding our checker to insmod
would not be useful because an attacker can simply
supply a customized version without checks. The so-
lution is to move the analyzer code into kernel space.
Interestingly, starting from Linux 2.5, most of the
module loading code has been moved into the kernel
space, providing an optimal place to add our checks.

Unfortunately, mechanisms have been proposed to
inject code directly into the kernel without using
the module loading interface. These ideas originated
from the fact that some system administrators dis-
abled the module loading functionality as a defense
against kernel-level rootkits. These mechanisms op-
erate by writing the code directly into kernel space
via the /dev/kmem device, completely bypassing the
module loading code.

11

 1

 10

 100

 1000

 0 100 200 300 400 500

N
um

be
r o

f M
od

ul
es

Execution Time (ms)

Detection Overhead

Figure 6: Detection overhead on module load.

In our opinion, a sensible and secure solution
would disallow modifications of kernel memory via
/dev/kmem, a feature that is already offered by Linux
security solutions such as grsecurity [5]. In addition,
our kernel-level rootkit analysis system would oper-
ate in kernel context behind the module loading in-
terface, thus having the opportunity to statically scan
each module before it gets to run as part of the kernel.

A possible way for rootkits to evade the behavioral
specification that is based on forbidden kernel sym-
bols (see Section 3 for details) is to stop using these
symbols. However, to perform the necessary mod-
ifications of the kernel data structures or function
pointers, their addresses are needed. Therefore, al-
ternative approaches to resolving these addresses are
required. One option is to use a brute force guessing
technique that works by scanning the kernel memory
for the occurrence of “known content” that is stored
at the target location. This is particularly effective
for the system call table. The reason is that its con-
tent is known because system call table entries are
pointers to handler functions whose symbols are ex-
ported.

Although a brute force guessing approach might
not always be suitable, we propose the addition of
a specification that considers the scanning of ker-
nel memory as another indication of the presence of
a rootkit. This specification checks for loops that,
starting from any kernel symbol, sequentially read
data and compare this data to constant values. Also,
note that the specification that checks for illegiti-
mate memory accesses based on actual destination
addresses works independently of kernel symbols ref-
erenced by the module.

6 Conclusions

Rootkits are powerful attack tools that are used by
intruders to hide their presence from system admin-
istrators. Kernel-level rootkits, in particular, directly
modify the kernel, and, therefore, can intercept and
prevent any attempt of an administrator to determine
if the security of the system has been violated. Be-
cause of this, it is important to devise mechanisms
that can protect the integrity of the kernel even in
the aftermath of the compromise of the administra-
tor account.

12

This paper presents a technique that is based on
static analysis to identify instruction sequences that
are an indication of rootkits. Informal behavioral
specifications define such characteristic instruction
sequences as data transfer operations that write to
certain illegitimate kernel memory areas. Symbolic
execution is then used to simulate the execution of
the kernel module to detect instructions that fulfill
these specifications. Through this method, it is pos-
sible to detect malicious behavior before a module is
loaded into the kernel, and, in addition, it is possi-
ble to operate on closed source components, such as
proprietary drivers.

We implemented our technique in a prototype tool
and we evaluated both the effectiveness and the per-
formance of the tool with respect to nine real-world
rootkits as well as the complete set of 985 legitimate
kernel modules that are included with the Fedora
Core 1 Linux distribution. The results show that all
tested rootkits were successfully identified, and no
false positives were raised on legitimate modules. We
thus conclude that the technique can reliably detect
malicious kernel modules and, therefore, it represents
a useful tool to harden the operating system kernel.
In addition, we show that detection can be done ef-
ficiently, despite the application of a potentially ex-
pensive static analysis technique.

Future work will be centered on devising a more
formal description of the aspects that characterize
rootkit-like behavior. In addition, we plan to study
how attacks that attempt to bypass our detection
procedures as discussed in Section 5 can be prevented.
Finally, we intend to integrate the detection compo-
nent into the kernel module loader infrastructure as a
step towards preparing the system for general usage.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers –
Principles, Techniques, and Tools. World Stu-
dent Series of Computer Science. Addison Wes-
ley, 1986.

[2] S. Aubert. rkscan: Rootkit Scanner.
http://www.hsc.fr/ressources/outils/
rkscan/index.html.en, 2004.

[3] Black Tie Affair. Hiding Out Under UNIX.
Phrack Magazine, 3(25), 1989.

[4] FuSyS. Kstat v. 1.1-2. http://s0ftpj.org/,
November 2002.

[5] grsecurity. An innovative approach to secu-
rity utilizing a multi-layered detection, preven-
tion, and containment model. http://www.
grsecurity.net/, 2004.

[6] Halflife. Abuse of the Linux Kernel for Fun and
Profit. Phrack Magazine, 7(50), April 1997.

[7] G. Kim and E. Spafford. The Design and Imple-
mentation of Tripwire: A File System Integrity
Checker. Technical report, Purdue University,
November 1993.

[8] T. Lawless. St. Michael and St. Jude. http:
//sourceforge.net/projects/stjude/, 2004.

[9] T. Miller. T0rn rootkit analysis. http://www.
ossec.net/rootkits/studies/t0rn.txt.

[10] T. Miller. Analysis of the KNARK Rootkit.
http://www.ossec.net/rootkits/studies/
knark.txt, 2004.

[11] N. Murilo and K. Steding-Jessen. Chkrootkit v.
0.43. http://www.chkrootkit.org/.

[12] D. Safford. The Need for TCPA. IBM White
Paper, October 2002.

[13] sd and devik. Linux on-the-fly kernel patching
without LKM. Phrack Magazine, 11(58), 2001.

[14] Stealth. adore. http://spider.scorpions.
net/~stealth, 2001.

[15] Stealth. Kernel Rootkit Experiences and the Fu-
ture. Phrack Magazine, 11(61), August 2003.

[16] Stealth. adore-ng. http://stealth.7350.org/
rootkits/, 2004.

13

