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ABSTRACT
Malicious programs spy on users’ behavior and compromise
their privacy. Even software from reputable vendors, such
as Google Desktop and Sony DRM media player, may per-
form undesirable actions. Unfortunately, existing techniques
for detecting malware and analyzing unknown code samples
are insufficient and have significant shortcomings. We ob-
serve that malicious information access and processing be-
havior is the fundamental trait of numerous malware cate-
gories breaching users’ privacy (including keyloggers, pass-
word thieves, network sniffers, stealth backdoors, spyware
and rootkits), which separates these malicious applications
from benign software. We propose a system, Panorama, to
detect and analyze malware by capturing this fundamental
trait. In our extensive experiments, Panorama successfully
detected all the malware samples and had very few false
positives. Furthermore, by using Google Desktop as a case
study, we show that our system can accurately capture its
information access and processing behavior, and we can con-
firm that it does send back sensitive information to remote
servers in certain settings. We believe that a system such
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as Panorama will offer indispensable assistance to code an-
alysts and malware researchers by enabling them to quickly
comprehend the behavior and innerworkings of an unknown
sample.
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D.4.6 [Operating Systems]: Security and Protection—In-
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General Terms
Security
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1. INTRODUCTION
Malicious software (i.e., Malware) creeps into users’ com-

puters, collecting users’ private information, wrecking havoc
on the Internet and causing millions of dollars in damage.
Surprisingly, even software provided by reputable vendors
may contain code that performs undesirable actions which
may violate users’ privacy. For example, Google Desktop, a
popular local file system search tool, actually sends sensitive
user information such as the local search index files back to
Google’s servers in certain configuration settings [18]. In an-
other widely publicized example, Sony Media Player installs
a rootkit without the user’s knowledge in order to enforce
copyright restrictions and sends back users’ music listening
habits [34].

Malware detection and analysis is a challenging task, and
current malware analysis and detection techniques often fall
short and fail to detect many new, unknown malware sam-
ples. Current malware detection methods in general fall into
two categories: signature-based detection and heuristics-
based detection. The former cannot detect new malware
or new variants. The latter are often based on some heuris-
tics such as the monitoring of modifications to the registry
and the insertion of hooks into certain library or system
interfaces. Since these heuristics are not based on the fun-
damental characteristics of malware, they can incur high
false positive and false negative rates. For example, many
benign software access and modify registry entries. Hence,
just because an application creates hooks in the registry does
not mean that it is malicious (i.e., the application could be a



useful system utility). Furthermore, to evade detection, mal-
ware may attempt to hook library or system call interfaces
that the detector does not monitor. Even worse, since many
rootkits hide in the kernel, most such heuristics-based detec-
tors cannot detect them as they do not necessarily modify
any visible registry entries or library or system call inter-
faces.

In this paper, we propose a novel approach for the detec-
tion and analysis of privacy-breaching malware. We observe
that numerous malware categories, including spyware, key-
loggers, network sniffers, stealth backdoors, and rootkits,
share similar fundamental characteristics, which lies in their
malicious or suspicious information access and processing
behavior. That is, they access, tamper, and (in some cases)
leak sensitive information that was not intended for their
consumption. For example, when a user inputs some text
into an editor, benign software (except the editor) will not
access this text, whereas a keylogger will obtain the text,
and then send it to the attacker. This behavior is typically
exhibited without the user’s knowledge or consent and it is
this fundamental trait that separates such malicious appli-
cations from benign software.

Thus, based on this observation, we have designed and
developed an end-to-end approach to automatically identify
this fundamental trait of malicious/suspicious information
access and processing behavior of a given program. At a
high level, our approach is a three-step process: test, mon-
itor, and analyze. When examining a malware sample, we
first load it into our analysis environment and run a series
of automated tests on it. Each test generates events that in-
troduce sensitive information into the system in a way that
is not destined for the sample under analysis. For example,
the introduced information may be keystrokes that are in-
tended for the Windows login process, or user input that is
entered into web forms. We then monitor the behavior of
the sample during the tests and record its information access
and processing behavior. Finally, we automatically analyze
the recorded information access and processing behavior of
the sample to detect malicious/suspicious behavior and use
the behavioral information we extract from the sample for
detailed analysis.

To monitor and record the information access and process-
ing behavior of the sample in the test cases, we propose to
use whole-system, fine-grained taint tracking. The approach
works by marking the sensitive information introduced in the
tests as tainted, and monitoring taint propagation over the
whole system (including the propagation through the kernel
and all applications). We monitor the taint propagation at
the hardware level. To perform meaningful analysis, we also
need a mechanism to extract operating-system level infor-
mation. For example, we need to know which processes and
which program modules operate on tainted data, or which
files the tainted data is written to. We call this concept
operating-system-aware taint analysis.

By combining the taint propagation information at the
hardware level with operating-system-level knowledge, we
then generate taint graphs. A taint graph is a representa-
tion of information flow that shows the processes that access
tainted data, how the data propagates through the system,
and finally, to which file or network connection this data is
written to. Based on taint graphs, we can define various
policies that specify the characteristic behavior of different
types of malware. By checking the policies against the taint

graph of an unknown sample, we can then enable automatic
detection and analysis of malicious code from numerous cat-
egories.

To explore the feasibility of our approach, we have de-
signed and developed an end-to-end prototype called Panorama.
Our experiments demonstrate that Panorama is successful
in detecting all malicious code samples in our test set, gen-
erating only a small number of false positives. During the
tests, we also observed that fine-grained taint analysis suf-
fers from a significant performance degradation (a slowdown
by a factor of 20). However, since Panorama is targeted to
support off-line detection and analysis of malware, and since
optimization is not our main focus while building the pro-
totype, we believe that although significant, this overhead
is not a severe limitation for our purposes. We also believe
that the approach we propose can be used in combination
with existing malware crawlers (e.g., such as [25]) to search
the web for unknown malware.

In summary, this paper makes the following contributions:

• We observe that a fundamental trait of privacy-breaching
malware lies in their information access and process-
ing behavior to sensitive information, and propose an
end-to-end automatic approach to classify and detect
malware using their information access and processing
behaviors. Our approach does not rely on signatures
and thus, it can detect novel instances of malicious
code. And since it captures the fundamental trait of
malware, it provides a unified approach to detect and
analyze a wide spectrum of different malware.

• We have designed and developed Panorama, an end-
to-end system that can automatically analyze samples
for malicious information access and processing behav-
ior. As a critical component of Panorama, we have
designed and developed a whole-system, fine-grained,
operating-system-aware, dynamic taint tracking sys-
tem to enable us to monitor and investigate the un-
known sample’s information access and processing be-
havior to sensitive information.

• In our extensive experiments, our system detected all
the malware samples and had very few false positives.
The malware samples include a wide range of different
classes of malware, such as keyloggers, password snif-
fers, packet sniffers, stealth backdoors, rootkits and
spyware. Using the Google Desktop as a case study,
we demonstrate that our system accurately captures
its information access and processing behavior, and
that we can confirm by automated analysis that it does
leak sensitive information to remote servers.

The paper is structured as follows: The next section gives
an overview of our approach. Section 3 presents details on
the design and implementation of Panorama. Section 4 dis-
cusses our taint graph-based malware analysis and detec-
tion. Section 5 presents the experimental results. Section 6
discusses the potential evasions and our countermeasures.
Section 7 surveys related work and Section 8 concludes the
paper.

2. OVERVIEW OF APPROACH
Given an unknown program to analyze, we wish to au-

tomatically determine whether it exhibits malicious infor-
mation access and processing behavior. At a higher level,
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Figure 1: System Overview

our approach to automatically detect whether an unknown
sample exhibits malicious behavior is a three-step process:
test, monitor, and analyze. In this work, we focus on the
analysis of Windows-based malware. Hence, we use an out-
of-the-box installation of Microsoft Windows as the analysis
environment. We regard all code that comes with this instal-
lation as being trusted (in contrast to the unknown sample
about which we have no information). We load the sam-
ple to be analyzed into this environment and mark which
files belong to the loaded sample. We then run the entire
environment including Microsoft Windows and the loaded
sample in our system Panorama. Figure 1 depicts the ar-
chitecture of Panorama. The system consists of the taint
engine, the test engine, the malware detection engine, and
the malware analysis engine.

To perform our automatic malware detection and analy-
sis, we run a series of automated tests, which is performed
by the test engine. For each test, we generate events that
introduce sensitive information into the guest system. This
sensitive data is sent to some trusted application, and is
not destined for the sample that is under analysis. We then
monitor the behavior of the sample during the tests and
record its information access and processing behavior with
respect to the sensitive information introduced in the tests.
To this end, we have designed the taint engine, which per-
forms whole-system, fine-grained information flow tracking.
It monitors how the sensitive information propagates within
the whole guest system (including the propagation through
the kernel and all applications). In particular, we need to in-
vestigate whether the information has propagated into the
sample (i.e., whether it has been accessed by the sample)
and what the sample has done with the information (e.g.,
sending it to an external server via the network).

Note that even though dynamic taint analysis has been
proposed before, our approach is the first generic framework
that applies dynamic taint analysis to the problem domain
of detecting and analyzing privacy-breaching malware. Fur-
thermore, our system offers several new capabilities that
are necessary in our problem setting: (1) Our system is
OS-aware—in addition to hardware-level taint tracking, we
need to understand the high-level representations of hard-
ware states for the analysis; (2) We also need to identify
what actions are performed by or on behalf of the sample
under analysis, even if the sample performs code unpacking
and dynamic code generation, and executes actions through
libraries, etc.; (3) Our monitoring needs to be whole-system
and fine-grained, in order to precisely detect all actions of
the sample.

The system-wide information behavior is captured by a
graph representation, which we call taint graph. Taint graphs
capture the taint propagation from the initial taint source
(i.e., the sensitive information introduced in the tests) through-
out the system. Using taint graphs, we can determine whether
the unknown sample has performed malicious actions. In
general, the decision whether an information access and pro-
cessing behavior is considered malicious or benign is made
with the help of policies. One characteristic property of
many types of malicious code (such as keyloggers, spyware,
stealth backdoors, and rootkits) is that they steal, leak or
tamper with sensitive user information. Consider the fol-
lowing examples: (1) The user is typing input into an appli-
cation such as a Microsoft Notepad, or is entering his user
name and password into a web login form through a browser,
while an unknown sample also accesses these keystrokes; (2)
The user is visiting some websites, while an unknown sam-
ple accesses the webpages or URLs and sends them to a
remote host; (3) The user is browsing a directory or search-
ing a file, while an unknown sample intercepts the access to
the directory entries and tampers with one or more entries.
We devise a set of policies, which are used by the malware
detection engine to detect malware from unknown samples.
Finally, since taint graphs present invaluable insights about
the samples’ information access and processing behaviors,
analysts can use the malware analysis engine to examine
the taint graphs, for detailed analysis information. More
information on taint-graph-based analysis and detection is
provided in Section 4.

3. DESIGN AND IMPLEMENTATION
In this section, we describe the design and implementation

of Panorama. First, we describe the hardware-level taint
tracking in Section 3.1. Then we discuss the mechanisms
that can map hardware-level operations (such as instructions
executed on the processor) to the corresponding operating-
system objects (such as processes), in Section 3.2. Finally,
we describe our approach to performing automated testing
and generating taint graphs in Section 3.3.

3.1 Hardware-level Dynamic Taint Tracking
To perform whole-system, fine-grained taint tracking, we

need to monitor how tainted data propagates throughout the
whole system including the OS and the applications. Since
the source code for commodity software such as the Windows
operating system and applications are usually not available,
we choose the approach of dynamic instrumentation—i.e.,
we monitor the whole system execution in a processor em-



ulator and dynamically instrument code to keep track of
how tainted data propagates during program execution. We
choose to implement Panorama on QEMU [29, 3], a generic
and open source processor emulator, because of its efficiency
(achieved through dynamic translation and caching ) when
compared to previous processor emulators such as Bochs [5].

Our hardware-level taint tracking is similar in spirit to a
number of previous systems [10, 26, 13, 35, 12]. However,
since our goal is to enable whole-system fine-grained taint
analysis, our design and implementation is the most com-
plete. For example, previous approaches either operate on
a single process only [12, 26, 35], or they cannot deal with
memory swapping and disks [10, 13].

Shadow Memory.
We use a shadow memory to store the taint status of each

byte of the physical memory, CPU’s general-purpose regis-
ters1, the hard disk and the network interface buffer. Each
tainted byte is associated with a small data structure stor-
ing the original source of the taint and some other book
keeping information (which is necessary for generating taint
graphs). The shadow memory is organized in a page-table-
like structure to ensure efficient memory usage. With the
shadow memory for the hard disks, the system can continue
to track the tainted data that has been swapped out. Obvi-
ously, this also enables the tracking of the tainted data that
has been saved to a file and is then read in.

Taint Sources.
All sensitive information that is introduced into the sys-

tem in the automated tests is marked as a taint source.
Panorama supports taint input from hardware, such as the
keyboard, network interface, and hard disk. Tainting a high-
level abstract data object (e.g. the output of a function call,
or a data structure in a specific application or the OS ker-
nel) would also be appropriate. Note that taint sources have
to be specified as close to the hardware (i.e., low-level) as
possible. For example, tainting the input typed at the key-
board level is better than tainting the input in a browser
form. Otherwise, malware may try to evade detection by
creating hooks that are invoked before the input arrives at
the browser.

Taint Propagation.
After a data source is tainted, we need to monitor each

CPU instruction and DMA operation that manipulates this
data in order to determine how the taint propagates. For
data movement instructions and DMA operations, the des-
tination will be tainted if and only if the source is tainted.
For arithmetic instructions, the result will be tainted if and
only if any byte of the operands is tainted. We also handle
the following special situations.

Constant function: some instructions or instruction se-
quences always produce the same results, independent of the
values of their operands. A good example is the instruction
“xor eax, eax” that commonly appears in IA-32 programs
as a compiler idiom. After executing this instruction, the
value of eax is always zero, regardless of its original value.

1For the sake of simplicity, in the current implementa-
tion, flags, debug registers, control registers and SIMD (e.g.
MMX and SSE) registers are not considered. However,
adding the necessary tracking for these registers would be
straightforward.

We recognize a number of such special cases and untaint the
result.

Table lookup: a tainted input may be used as an in-
dex to access an entry of a table. The taint propagation
policy above will not propagate taint to the destination, be-
cause the value that is actually read is untainted. Unfortu-
nately, such table lookup operations appear frequently, such
as for Unicode/ASCII conversion in Windows. Thus, we
augmented our propagation policy with the following rule:
if any byte used to calculate the address of a memory loca-
tions is tainted, then, the result of a memory read using this
address is tainted as well.

Control flow evasion: the taint information may also
propagate through control flow. The following example il-
lustrates this situation.

switch(x) {
case ’a’: y=’a’; break; case ’b’: y=’b’; break; ...

}

Note that the above code fragment copies the value of
variable x to y, without propagating the taint status. That
is, y will always be untainted, even when x is tainted.

The situation outlined above occurs rarely in regular code.
However, it does appear in the keystroke handling routines
in Windows 2000 and later versions. In our experiments
with Windows XP, we observed that the Unicode characters
derived from keystrokes were not tainted as expected. After
reviewing the raw taint propagation events and examining
the Windows kernel code using IDA Pro [22], we determined
that taint tracking stops at a keystroke Unicode conversion
routine called _xxxInternalToUnicode (which is in part of
the win32k.sys system file). Interestingly, Chow et al. faced
the same problem in their TaintBochs [10]. Unfortunately,
they did not have a solution. The translation of scancode
into corresponding unicode characters involves a loop that
contains a switch statement such as the example discussed
previously. We solved the problem by specially instrument-
ing an instruction within the function _xxxInternalToUni-

code. This instrumentation checks the taint status of the
input parameter of the function, and appropriately propa-
gates the taint status to its output parameter.

Being aware of this property, malicious code may exploit
control flow evasion in the future to cut off the taint flow
in order to thwart detection. The current implementation
of Panorama does not handle this situation. This does not
cause problems for now, because to the best of our knowledge
no existing malware has used this technique. Furthermore,
we will incorporate the static analysis approach proposed in
[14] into the future implementation of Panorama to prevent
this potential evasion.

3.2 OS-Aware Taint Tracking

Resolving process and module information.
When an instruction is operating on tainted data, we need

to know which process and module this instruction comes
from. In some rare situations, instructions may also be dy-
namically generated and executed on the heap.

Maintaining a mapping between addresses in memory and
modules requires information from the guest operating sys-
tem. To obtain this information, we developed a kernel
module called module notifier. We load this module into
the guest operating system to collect the updated memory



map information. The module notifier registers two callback
routines. The first callback routine is invoked whenever a
process is created or deleted. The second callback routine
is called whenever a new module is loaded and gathers the
address range in the virtual memory that the new module
occupies. In addition, the module notifier obtains the value
of the CR3 register for each process. As the CR3 register
contains the physical address of the page table of the cur-
rent process, it is different (and unique) for each process. All
the information described above is passed on to Panorama
through a predefined I/O port.

Since our module notifier component resides in the guest
operating system, malicious code may attempt to tamper
with it. For example, malware could attempt to send incor-
rect information to the predefined I/O port or tamper with
the code image of the module. To ensure the authenticity of
the messages that Panorama receives from the module no-
tifier, we check the program counter of the instruction that
is responsible for sending this message. Of course, only in-
structions that belong to the module notifier are permitted
to send messages. We also protect the integrity of the code
of the module notifier by marking the corresponding mem-
ory region read-only. As a result, any attempts to tamper
with the code of the module notifier can be detected and
prevented. Note that a more secure approach to resolving
process and module information is to directly examine the
process and module objects from the outside. The disadvan-
tage of this approach is less of portability. That is, different
versions of Windows, and even different service packages,
need be handled differently. Thus, we decided to use the
first, more portable approach in our proof-of-concept proto-
type implementation.

Resolving filesystem and network information.
In addition to mapping instructions executed on the pro-

cessor to operating-system processes, we are also interested
in obtaining more information when data is exchanged be-
tween the memory and hardware devices. In particular, we
are interested in more details about when tainted data is
written to the hard disk or sent over the network. More
precisely, when tainted data is written to the hard disk, we
wish to identify which file it is written to. Analogously, when
tainted data is transmitted over the network, we would like
to know which TCP (or UDP virtual) connection it is sent
over or received from.

We integrated a disk forensic tool called “The Sleuth Kit”
(TSK) [36] into Panorama for gathering filesystem informa-
tion. Specifically, when tainted data is written to a block
on the hard disk, TSK can determine which file this block
belongs to. In addtion, when a file on disk is selected as a
taint source, TSK will identify all data blocks that belong
to this file (so that all blocks can be appropriately tainted).
The toolkit achieves these goals by scanning and parsing the
on-disk meta-data structures.

Resolving network information is straightforward. When
tainted data is sent out, we simply check the packet header
to find out which connection it belongs to.2 Similarly, when
selectively tainting the incoming traffic of a specific connec-

2We may not be able to obtain transport-layer information
directly from IP fragments. In the current prototype imple-
mentation, we do not solve this infrequent case. However,
re-assembling the fragments and extracting this information
is quite straightforward if desired.

tion, we check its packet header and taint the packet accord-
ingly. Tainting incoming network packets from the network
card is performed at the granularity of (virtual) connections.

Identifying the code under analysis and its actions.
An important task of our system is to identify the actions

of the code under analysis. In particular, we are interested
in observing cases in which the potential malware sample
accesses tainted data. It is clear that the code under anal-
ysis operates on tainted data if an instruction in it accesses
the taint directly. This can be checked in a straightforward
fashion by consulting the mapping between instruction ad-
dresses and modules. However, there are two important
cases in which it is not the malicious sample itself that ac-
cesses tainted data, but code that operates on its behalf.

The first case occurs when the sample under analysis dy-
namically generates new code (either by decrypting data
regions, or by generating code on the fly). In this case, the
derived code belongs to the sample under analysis, but the
origin of the code is not reflected in our module mapping. To
handle this situation, we taint the complete code segment of
the sample under analysis, using a special label. Whenever
an instruction is executed that is marked with the special
label, the output of this instruction receives the special la-
bel as well. This strategy helps identify all code regions
derived from the original sample, such as uncompressed and
decrypted instructions from packed executables, or those dy-
namically generated.

The second case occurs when the given code calls a piece
of trusted code in order to perform tainted operations on
its behalf. In this case, the program counter would point to
the trusted code, and we would miss the potential malicious
behavior of the given sample, if we only look at the program
counter. We use the following observation to identify taint
propagation that is performed by trusted system modules on
behalf of the malware: Whenever the malicious code calls
a trusted function to propagate tainted data, the value of
the stack pointer at the time of the function call must be
greater than the value of the stack pointer at the time when
the tainted data is actually propagated. This is because one
or more stack frames have to be pushed onto the stack when
making function calls, and the stack grows toward smaller
addresses on the x86 architecture.

Based on our observation, we use the following approach
to identify the case when trusted functions propagate tainted
values on behalf of the code under analysis: Whenever the
execution jumps into the code under analysis (or code de-
rived from it), we record the current value of the stack
pointer, together with the current thread identifier. When
executing jumps out of this code, we check whether there
is a recorded stack pointer for the current thread identifier,
and if so, whether this value is smaller than the current
stack pointer. If this is the case, we remove the record as
the code is not on the stack anymore. Whenever a trusted
module propagates tainted data, we check whether there is
a recorded stack pointer under the current thread identifier.
If so, we consider this tainted data being propagated by the
code under analysis. Note that the current thread identifier
is mapped into a well-known virtual address in Windows.
Hence, obtaining its value is straightforward.

Note that the strategy described above will detect all
taint-related action on behalf of the malicious code, given
that they are performed in the same thread context. While



this is true most of the time, there are cases in which the
actual taint propagation occurs in an asynchronous fashion.
For example, when the code calls an API function asyn-
chronously to save the tainted data to a file, the API func-
tion immediately returns to the caller. The actual action
that is requested is performed later. We have identified sev-
eral kernel API calls (dealing with filesystem and network
access) that may be used asynchronously. When such a func-
tion is invoked, we analyze the stack pointers to determine
whether both the code under analysis is calling this func-
tion and the input buffer is tainted. If this is the case, we
treat this tainted buffer as being propagated by the analyzed
sample.

3.3 Automated Testing and Taint Graph Gen-
eration

3.3.1 Automated Testing
The test engine in Panorama allows us to perform the

analysis of samples and the detection of malicious code with-
out human intervention. It executes a number of test cases
that mimic common tasks that a user might perform, such
as editing text in an editor, visiting several websites, and
so on. The specific test cases used in our experiments will
be discussed in Section 4.1. To automatically run tests, our
test engine is equipped with scripts that execute all steps
necessary for each test case. For our current implementa-
tion, these scripts are based on the open source program
AutoHotkey [1]. Scripts can be either manually written or
automatically generated by recording user actions while a
task is performed.

Whenever the test engine executes a certain test case, it
introduces input (such as keystrokes or network packets) into
the system. To determine which part of this input should
be tainted (and with which taint label), the test engine co-
operates with the taint engine. Currently, our system de-
fines the following nine different types of taint sources: text,
password, HTTP, HTTPS, ICMP, FTP, document, and di-
rectory, which will be discussed in Section 4.1. For example,
when editing a document in an editor, the test engine asks
the taint engine to send keystrokes to the editor, and label
them as text; when entering password in a secure web form,
the test engine asks the taint engine to send keystrokes and
label them as password. When considering these cases, it
becomes evident that the taint engine requires support from
the test engine to properly label input. In both cases, the
keystroke information enters the system. However, in the
former case, the keystroke is considered text as it is sent to
the one of the text editors. In the latter, the recipient of
the input is a password field and the keystroke information
is marked as password. Clearly, this information is test-
specific and not available at the hardware level. The data
received as a response to the web requests are tainted as
HTTP. The packets received in response to ping requests
are labeled ICMP. The information sent by the FTP server
are marked FTP. Finally, when listing a directory, all ac-
cessed disk blocks that hold file directory information are
tainted as directory. The communication between the test
engine and the taint engine is via an intercepted registry
writing API: the test engine writes information into a pre-
determined registry entry, and taint engine intercepts this
API call and then obtains the information.

3.3.2 Taint Graph Generation
The system-wide propagation of tainted input introduced

by the test engine forms a graph over the processes/program
modules and OS resources. For example, assume that a
keystroke is tainted as text because it is part of the input sent
to a text editor. When a user process A reads the character
that corresponds to the keystroke, this fact is recorded by
linking the text taint source to process A. When this process
later writes the character into a file F, from where it is then
read by process B, we can establish a link from process A
to the file, and subsequently from file F to process B. For
clarity, we generate one graph for each taint source with a
different label (that is, one graph that shows the flow of data
labeled as text, one for password, . . . ). For each taint source,
the taint propagation originating from this source forms a
directed graph. We call this graph a taint graph.

More formally, a taint graph can be represented as g =
(V, E), where V is a set of vertices and E is a set of directed
edges connecting the vertices, and we use g.root to represent
the root node of graph g (i.e., the taint source). A vertex
can either represent an operating system object (such as a
process or module), an OS resource (such as a file), or a
taint source (such as keyboard or network input with the
appropriate labels). An edge between two vertices v1 and
v2 is introduced when tainted data is propagated from the
entity that corresponds to v1 to the entity that corresponds
to v2.

When generating the taint graphs, the taint engine maps
the hardware-level taint propagation information to operating-
system level. For example, the taint engine determines which
process and which module (such as which dll) has per-
formed a certain operation, and it also keeps track of whether
this operation is performed on behalf of the sample under
analysis. Also, writes to disk blocks are attributed to file
objects and network operations to specific network connec-
tions. To further simplify the taint graphs, we apply the
following optimizations, without losing the dependencies be-
tween the sample under analysis and other objects: (1) we
make the vertices for system kernel modules transparent; (2)
for user-level instructions, if they are not derived from the
sample under analysis (i.e., they are trusted), they are at-
tributed to the processes they are running in, instead of the
modules they are from.3

In a taint graph, each vertex is labeled with a (type, value)
pair, where value is the unique name that identifies the ver-
tex. For the root node, the type is one of the nine different
input taint labels introduced previously. For any non-root
node, the type represents the category of the node as a OS
object, including process, module, keyboard, network, and
file. Formally, the type of a vertex can be defined in a hier-
archical form, as follows:

type ::= taint_source | os_object
taint_source ::= text | password | HTTP | HTTPS| FTP

| ICMP | document | directory
os_object ::= process | module | network | file

Figure 2 shows an example of a taint graph. We use el-
lipses to represent process nodes and use shaded ellipses to
represent the module node. We use an octagon to represent
the taint source (here, a password typed on the keyboard),

3In other words, the presence of a module node in a taint
graph indicates at least one instruction of this module stems
from the sample.



password Winlogon.exe

lsass.exe

Winlogon.exe!mscad.dll c:\ginalog.log

Figure 2: An example of taint graph. This graph
reflects the procedure for Windows user authenti-
cation. While a password thief is running in the
background, it catches the password and saves them
to its log file “c:\ginalog.log”.

and a rectangle to represent the other nodes. We will give
more description of this graph in Section 4.2.

4. TAINT-GRAPH-BASED MALWARE DE-
TECTION AND ANALYSIS

In this section, we describe how taint graphs can be used
to detect malware, and how they help to understand the
actions of malicious code,

4.1 Taint-Graph-Based Malware Detection
Our essential observation is that numerous types of mali-

cious code, including keyloggers, password thieves, network
sniffers, stealth backdoors, spyware/adware, and rootkits,
exhibit anomalous information access and processing behav-
ior. Currently, we categorize three kinds of anomalous be-
havior: anomalous information access, anomalous informa-
tion leakage, and excessive information access.

Anomalous information access behavior.
For some information sources, a simple access performed

by the samples under analysis is already suspicious. We refer
to this behavior as anomalous information access behavior.

Considering the keyboard inputs, such information sources
may include the text input sent to the text editor, the com-
mand sent to the command console, and the passwords sent
to the Windows Logon dialog and secure web pages. Benign
samples do not access these inputs, whereas keyloggers and
password thieves will access these inputs. Keyloggers refer
to the malicious programs that capture keystrokes destined
for the other applications, and thus will access all these in-
puts. Password thieves, by definition, steal the password
information, and therefore will access the password inputs.
Note that password thieves can be a subset of keyloggers,
because keyloggers may also record passwords.

Similarly, some network inputs are not supposed to be
accessed by unknown samples. For example, ICMP is de-
signed for network testing and diagnosis purpose, and hence
only operating system and trusted utilities (e.g. ping.exe)
use it. For many TCP and UDP applications, the incoming
TCP and UDP traffic can only be accessed by their own and
the operating system. Benign samples do not interfere with
the process of these inputs. However, network sniffers and
stealth backdoors access these inputs for different purposes.
Network sniffers eavesdrop on the network traffic to obtain
valuable information. Even though a network sniffer may
not be directly interested in these inputs, it usually has to
access them to check if they are valuable. Stealth backdoors
refer to a class of malicious programs that contact with re-
mote attackers without explicitly opening a port. To achieve
stealthiness, the stealth backdoors either use an uncommon

Test case description Introduced inputs

1. Edit a text file and save it text, document
2. Enter password in a GUI program password
3. Log in a secure website URL, password, HTTPS
4. Visit several websites URL, HTTP
5. Log into an FTP server text, password, FTP
6. Recursively list a directory directory
7. Send UDP packets into the system UDP
8. Ping a remote host ICMP

Table 1: The test cases and introduced inputs.
.

protocol such as ICMP, create a raw socket, or intercept the
network stack, in order to communicate with remote adver-
saries. The ICMP-based stealth backdoors will access ICMP
traffic. The raw-socket-based stealth backdoor will access all
the packets with the same protocol number. For example, a
TCP raw socket will receive all TCP packets. The stealth
backdoors intercepting the network stack will behave like a
network sniffer.

Anomalous information leakage behavior.
For some other information sources, it is acceptable for the

samples to access them locally, but unacceptable to leak the
information to third parties. For example, spyware/adware
programs record users’ surfing habits and send this private
information to third parties. In contrast, benign BHOs (i.e.,
Browser Helper Objects) may access this information but
will not send it out. We consider the following as informa-
tion leakage: the sample under analysis accesses the infor-
mation and then saves it to disk or sends it over the network.
Note that saving the information to disk covers three situ-
ations: saving it to files, the registry, and even individual
disk blocks. We consider information sources like HTTP,
HTTPS, documents, and URLs fall into this category.

Excessive information access behavior.
For some information sources, benign samples may access

some of them occasionally, while malicious samples will ac-
cess them excessively to achieve their malicious intent. We
refer to it as anomalous information excessive access behav-
ior.

The directory information is such a case. Rootkits exhibit
excessive access behavior to the directory information, be-
cause they attempt to conceal their presence in the filesys-
tem by intercepting the accesses to directory information
and removing the entries that point to their files. Thus,
when recursively listing directories, we will see the rootkit
samples accessing many disk blocks that contain directory
information. A benign program may access some directory
entries, or even scan directories occasionally. However, it
is very unlikely that it accesses the same directories at the
same time while we list directories.

Test cases and policies.
According to the above discussion, we compile the follow-

ing test cases and introduce the inputs with corresponding
labels, as shown in Table 1. Specifically, we introduce text,
password, URL inputs from the keyboard, HTTP, HTTPS,
FTP, ICMP, and UDP inputs from the network, and doc-
ument and directory input from the disk. Note that in the
test case 6, to eliminate the possibility that a benign pro-
gram scans the same directory at a different time, we clean
the taint labels of the visited directory entries after finishing



with listing the directory. After finishing all the test cases,
the test engine waits for a while (a configurable parameter)
and then shuts down the guest machine.

From the above discussion, we set up the following poli-
cies: (1) text, password, FTP, UDP and ICMP inputs cannot
be accessed by the samples; (2) URL, HTTP, HTTPS and
document inputs cannot be leaked by the samples; (3) direc-
tory inputs cannot be accessed excessively by the samples.
More formally, we show how these policies are enforced on
the taint graphs:

∀g ∈ G, (∃v ∈ g.V, v.type = module) ∧

g.root.type ∈ {text, password, FTP, UDP, ICMP}

→ V iolate(v, “No Access′′) (1)

∃g ∈ G, (∃v ∈ g.V, v.type = module) ∧

(g.root.type ∈ {URL, HTTP, HTTPS, document}) ∧

(∃u ∈ descendants(v), u.type ∈ {file, network})

→ V iolate(v, “No Leakage!′′); (2)

(∀g ∈ G, g.root.type = directory →

∃v ∈ g.V, v.type = module)

→ V iolate(v, “No Excessive Access′′) (3)

4.2 Taint-Graph-Based Malware Analysis
Given a taint graph, the first step is to check this graph

for the presence of a node that corresponds to the sample
under analysis. If such a node is present, we obtain the in-
formation that the sample has accessed certain tainted input
data. This is already suspicious, because the test cases are
designed such that input data is sent to trusted applications,
but never to the sample under analysis. Once we determine
that a sample has accessed certain input, the sample’s suc-
cessor nodes in the graph can be examined. This indicates
what has been done with the data that was captured. Such
insights can be instrumental for system administrators and
analysts to understand the behavior and actions of malware.

As an example, recall the taint graph previously shown in
Figure 2. This taint graph has been produced by automati-
cally analyzing the behavior of the password thief program
GINA spy [16]. Note that the entered password is received
by the Windows Logon process (Winlogon.exe). This pro-
cess passes the password on to lsass.exe for subsequent
authentication. Interestingly, the password data is also ac-
cessed by the sample under analysis (mscad.dll), which is
loaded by Winlogon.exe. This code module reads the pass-
word and saves it to a file called c:\ginalog.log. The
graph correctly reflects how the user password is processed
by Windows, and how the password thief intercepts it. In
Section 5.2, we discuss a more complex real-world example
that we investigated during our experiments.

5. EVALUATION
In this section, we present details on the experimental

evaluation of our Panorama system. Our evaluation con-
sisted of three parts. First, we investigated the effective-
ness of our taint-graph-based malware detection approach
using a large body of real-world malware and benign sam-
ples. Then, by using Google Desktop as a case study (i.e., a
sample from a vendor whose privacy policy we believed we
could trust), we explored the amount of detailed information

Category Total FNs FPs

Keyloggers 5 0 -
Password thieves 2 0 -
Network sniffers 2 0 -
Stealth backdoors 3 0 -
Spyware/adware 22 0 -
Rootkits 8 0 -
Browser plugins 16 - 1
Multi-media 9 - 0
Security 10 - 2
System utilities 9 - 0
Office productivity 4 - 0
Games 4 - 0
Others 4 - 0
Sum 98 0 3

Table 2: Summary of detection results against mal-
ware and benign samples.

that we could extract from the taint graph of an unknown
sample. Third, we performed tests to evaluate the perfor-
mance overhead of our prototype. In all our experiments, we
ran Panorama on a Linux machine with a dual-core 3.2 GHz
Pentium 4 CPU and 2GB RAM. On top of Panorama, we
installed Windows XP Professional with 512M of allocated
RAM.

5.1 Malware Detection
Our malware collection consisted of 42 real-world malware

samples, including 5 keyloggers, 2 password thieves, 2 net-
work sniffer, 3 stealth backdoors, and 22 spyware BHOs, and
8 rootkits. Some of these samples were publicly available on
the Internet (e.g., from web sites such as www.rootkit.com),
while others were collected from academic researchers and
an Austrian anti-virus company. Furthermore, we down-
loaded 56 benign, freely-available samples from a reputable
and trustworthy web site (www.download.com). These be-
nign samples were freeware programs from a wide range of
different application domains (such as browser plug-ins, sys-
tem utilities, and office productivity applications), with the
size up to 3MB.

To further facilitate the experiments, we developed a tool
using Python to run the samples and automatically perform
the installation procedure (if required) using several heuris-
tics. The tool can handle 70% of the samples in our test set.
For the remaining samples, some required manual configu-
ration (they were all malware samples), and the others were
not properly handled by the heuristics. We then manually
installed the remaining samples. We installed up to 3 sam-
ples each time. After that, we ran the test cases. We set
the test engine to wait for 5 minutes before shutting down
the guest machine. Depending on the installation delay, the
whole procedure lasts 15 to 25 minutes.

Table 2 summarizes the results of this experiment. We
can see that Panorama was able to correctly identify all
malware samples, but falsely declared three benign samples
to be malicious.

Two of these false positives were personal firewall pro-
grams. The third false positive was a browser accelerator.
By checking the taint graphs related to these three sam-
ples, we observed that the information access and processing
behaviors of these benign samples closely resemble that of
malware. In fact, the two personal firewalls install packet



filters and monitor all network traffic. Hence, their behav-
ior resembles that of a malicious network sniffer. In the
case of the browser accelerator, we observed that the appli-
cation prefetches web pages on behalf of the browser and
stores them into its own cache files. This behavior resem-
bles that of spyware that monitors the web pages that a
user is surfing. The reason for our false positives is that
our taint-graph-based detection approach can only identify
the information access and processing behavior of a given
sample, but not its intent. In real-life, the taint graphs are
invaluable for human analysts, as they help them to quickly
determine and understand whether an unknown sample is
indeed malicious, or whether it is benign software that is
exhibiting malware-like behavior.

5.2 Malware Analysis
In order to determine how well we are able to perform

detailed analysis on an unknown sample, we chose Google
Desktop for a case study. This application claims in its
privacy policy [19] that it will index and store data files,
mail, chat logs, and the web history of a user while the
user is working on her system. Furthermore, if the special
configuration setting “Search Across Computers” is enabled,
Google Desktop will securely transmit copies of the user’s
index files to Google servers. Hence, Google Desktop, in
fact, exhibits some malware-like behavior, as the index files
may contain sensitive information about a user (e.g., a list
of web sites that the user has visited), and these files are
sent to an external server.

First, we downloaded the installation file (GoogleDesk-
topSetup.exe). Before installing the tool, we marked the
installation file such that we could track which components
would be installed into the system. After the installation
was complete, we observed that 18 executables and shared
libraries, as well as a dozen data files were installed.

Second, we ran the test cases, using the default settings
of Google Desktop (in which “Search Across Computers”
is disabled). After performing the test cases, we observed
that some components extracted from the installation file
accessed the tainted inputs, including HTTPS, HTTP and
document. All of this information was later saved into the
index files in the local installation directory. To determine
if the information is sent out to remote hosts, we kept the
system alive for 12 hours. However, we did not observe this
behavior.

Third, we changed the settings of Google Desktop and en-
abled the feature “Search Across Computers”. Then, we ran
the test cases again and kept the system alive for another
30 minutes. It was evident from the generated taint graphs
that, in this mode, Google Desktop did leak the collected
information via HTTPS connections to Google servers. We
picked a representative taint graph, which clearly illustrates
how the components of Google Desktop process the incom-
ing traffic of an HTTP connection from the QEMU web site
we visited, (see Figure 3).

By examining this taint graph, we can draw several con-
clusions: (1) the incoming web page was first received and
processed by the Internet Explorer (IEXPLORE.EXE), which
later saved the content into a cache file (qemu[1].htm) un-
der the temporary Internet file folder; (2) a component from
Google Desktop (GoogleDesktopAPI2.dll) was loaded into
the IEXPLORE.EXE, obtained the web page, and passed it
over to a stand-alone program also from Google Desktop

(GoogleDesktopIndex.exe); (3) GoogleDesktopIndex.exe

further processed this information and saved it into two data
files (rpm1m.cf1 and fiih.ht1) in its local installation di-
rectory; and (4) it sent some information derived from the
web page to a remote Google server (72.14.219.147) through
an HTTPS connection.

With the capability provided by Panorama, we could con-
firm that Google Desktop really sends some sensitive infor-
mation if a special feature is activated (as it also claims in
its privacy policy).

5.3 Performance Overhead
We measured Panorama’s performance overhead using sev-

eral utilities in Cygwin, such as curl, scp, gzip, and bzip2.
When running these tools, we tainted file and network in-
puts accordingly. We found that the current unoptimized
implementation of Panorama suffers a slowdown of 20 times
on average. Since Panorama aims to support off-line mal-
ware detection and analysis, we believe that this overhead
is not a severe limitation for our intended application sce-
narios. When one considers that unknown malware samples
are currently mostly analyzed manually, it is clear that an
automated system such as Panorama significantly simplifies
and speeds up this task. Also, note that some research has
been done to explore more efficient means for dynamic taint
analysis. Ho et. al. proposed Demand Emulation, in which
a running system dynamically switches between virtualized
and emulated execution, and emulation is only used when
tainted data is being processed by the CPU [20]. Explor-
ing finer-grained hardware protection provided by ECC may
further improve the performance significantly [30]. Recently,
Qin et. al. explored several optimizations on dynamic binary
instrumentation to minimize the run-time overhead [31].

6. DISCUSSION
In this section, we discuss several potential evasion tech-

niques that malware writers may attempt to use in order to
thwart the current implementation of Panorama. Further-
more, we discuss the countermeasures that we can employ.

Breaking the propagation of taint information.
As mentioned in Section 3.1, a malware author can at-

tempt to design his code such that the taint engine fails to
properly keep track of tainted information. For example, by
exploiting indirect dependencies (dependencies encoded us-
ing control flow decisions), a malicious program could con-
ceal the fact that sensitive information is leaked. This is
a limitation of our current implementation. We will en-
hance the implementation to keep track of taint propaga-
tion via control flow in the future, as in our earlier imple-
mentation [14]. Moreover, it is important to note that the
current system observes all instances in which the sample
under analysis accesses tainted data. That is, a malware
sample can only hide the fact that it leaks information (as
well as the operating system resources that this information
is written to). Fortunately, the mere fact that sensitive data
is accessed without authorization is often enough to classify
a sample as malware.

Not behaving maliciously when tested.
Malware may evade detection by simply not performing

malicious behavior while the test cases are conducted. It
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[tcp]72.14.219.147:1068:443

Figure 3: A taint graph that presents how Google Desktop handles incoming web pages. Here, %INST DIR%
represents “c:\Program Files\Google\Google Desktop Search”, and %TEMP% is “c:\Documents and
Settings\user\Local Settings\Temporary Internet Files”.

may stay inactive until certain conditions are satisfied. For
example, time bombs activate themselves only on specific
dates, and some keyloggers only record keystrokes for cer-
tain applications or windows. Malware may also detect if it
is running in the QEMU environment and remains dormant
if indeed. Ferrie discussed the technique to detect the virtual
machines and emulators including QEMU [15]. Our current
prototype will not detect this kind of malware. However,
some complementary work has been done to address this
problem. Vasudevan et al. proposed several stealthy tech-
niques, such that the analysis environment cannot be easily
detected [37]. Moser et al. [24] and Brumley et al. [7, 6] also
used QEMU to built malware analysis systems, which are
able to uncover hidden behavior of malware by exploring
multiple execution paths. Incorporating these techniques
into our system will be our future work.

Subverting Panorama.
As an emulated environment, Panorama provides strong

isolation such that it is unlikely for the malware running
inside to interfere with Panorama and the host system. Al-
though it is usually true, some study shows the possibility
of subverting the entire emulated environment by exploiting
buffer overflows and integer bugs [27]. This problem can be
solved by fixing these bugs.

7. RELATED WORK

Malware detection approaches.
Signature based malware detection has been in use for

years to scan files on disk and even memory for known signa-
tures. Although semantic-aware signature checking [11] im-
proves its resilience to polymorphic and metamorphic vari-
ants, the inherent limitation of the signature based approach
is its incapability of detecting previously unseen malware
instances. Its usefulness is also limited by the rootkits that
hide files on disk and, as demonstrated in Shadow Walker [9],
may even hide malware footprints in memory.

Behavior based malware detection identifies malicious pro-
grams by observing their behaviors and system states (i.e.,
detection points). By recognizing deviations from “normal”
system states and behaviors, behavior based detection may
identify entire classes of malware, including previously un-
seen instances. There are a variety of detections that ex-
amine different detection points. Strider GateKeeper [39]
checks auto-start extensibility points in the registry to de-
termine surreptitious restart-surviving behaviors. VICE [8]
and System Virginity Verifier [33] search for various hooks
that are usually used by rootkits and the other malware.
Behavior based detection can be defeated, either by explor-
ing stealthier methods to evade the known detection points,
or by providing misleading information to cheat detection
tools. In addition, current detection tools usually reside
together with malicious programs, and therefore expose to
complete subversion. In contrast, our system overcomes
these three weaknesses. First, it captures the characteris-
tic information access and processing behavior of malware,
and thus cannot be easily evaded. Second, it detects mal-
ware based on the hardware-level knowledge and makes very
few assumption at software level, and hence cannot be eas-
ily cheated. Third, it is implemented completely outside
of the victim system, and so strongly protected from being
subverted.

The cross-view based rootkit detection technique (e.g. Black-
light [4], Rootkit Revealer [32], and Strider Ghostbuster [2])
identifies hidden files, processes, registry entries by compar-
ing two views of the system: the upper-level view is derived
from calling common APIs, while the low-level view is ob-
tained from system states in the kernel or from hardware if
applicable. In comparison, our approach for rootkit detec-
tion has two advantages: (1) the cross-view based technique
requires enumerating all files and registry entries, etc. to
find hidden entries, which often takes several hours, whereas
our approach only takes a few minutes; (2) the result given
by the cross-view based technique can only identify a list
of hidden entries, while our approach recognizes the rootkit
directly.



Dynamic Taint Analysis.
Dynamic taint analysis has been applied to solve and an-

alyze other security related problems. Many systems [26,
13, 28, 12, 35] detect exploits by tracking the data from
untrusted soruces such as the network being misused to al-
ter the control flow. Chow et al. made use of whole-system
dynamic taint analysis to analyze how sensitive data are
handled in operating systems and large programs [10]. The
major analysis was conducted in Linux, with source code
support of the kernel and the applications. Egele et al.
also utilized whole-system dynamic taint analysis to exam-
ine BHO-based spyware behavior [14]. Vogt et al. extended
the JaveScript engine with dynamic taint analysis to prevent
cross-site scripting attacks [38]. Our system is independently
developed with OS-aware analysis for closed-source operat-
ing systems, and devises a unified machinery for detecting
malware from several different categories.

Information flow analysis.
Our system works by analyzing taint graphs to identify

suspicious information access and processing behavior of for-
eign code. This is related to previous work that performs
forensic analysis based on information flows. For example,
some systems track the flow of information between oper-
ating system processes to perform intrusion analysis [23],
intrusion recovery [17], and malware removal [21]. However,
these systems typically monitor the system call interface and
thus, are not as comprehensive and do not provide the same
level of precision as our technique. Another limitation of pre-
vious systems is that it is often not possible to precisely track
data while it is processed by a program. This can introduce
incorrect connections between data objects or lead to missed
information flows. Also, previous systems do not apply to
kernel-mode attacks. Thus, we believe that by performing
whole-system, fine grained taint tracking, our method pro-
vides higher accuracy than previous work, and we can also
handle kernel attacks.

8. CONCLUSION
Malware has brought along serious security and privacy

threats. However, existing techniques for malware detec-
tion and analysis are ineffective. In this paper, we have
proposed whole-system fine-grained taint analysis to discern
fine-grained information access and processing behavior of a
piece of unknown code. This behavior captures the intrin-
sic characteristics of a wide-spectrum of malware, including
keyloggers, password sniffers, packet sniffers, stealth back-
doors, BHO-based spyware, and rootkits. Thus, the detec-
tion and analysis relying on it cannot be easily evaded. To
evaluate the effectiveness of this approach, we have designed
and developed a system, called Panorama. In the experi-
ments, we have evaluated 42 malware samples and 56 benign
samples. Panorama yields zero false negative and very few
false positives. Then we use Google Desktop as a case study.
We have demonstrated that Panorama can accurately cap-
ture its information access and processing behavior, and we
confirm that it does send back sensitive information to re-
mote servers. We believe that a system such as Panorama
will offer indispensable assistance to malware analysts and
enable them to quickly comprehend the behavior and inner
workings of malware.
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