
Using Static Program Analysis

to Aid Intrusion Detection

Manuel Egele, Martin Szydlowski, Engin Kirda, and Christopher Kruegel

Secure Systems Lab
Technical University Vienna

{pizzaman,msz,ek,chris}@seclab.tuwien.ac.at

Abstract. The Internet, and in particular the world-wide web, have be-
come part of the everyday life of millions of people. With the growth of
the web, the demand for on-line services rapidly increased. Today, whole
industry branches rely on the Internet to do business. Unfortunately, the
success of the web has recently been overshadowed by frequent reports
of security breaches. Attackers have discovered that poorly written web
applications are the Achilles heel of many organizations. The reason is
that these applications are directly available through firewalls and are of-
ten developed by programmers who focus on features and tight schedules
instead of security.
In previous work, we developed an anomaly-based intrusion detection
system that uses learning techniques to identify attacks against web-
based applications. That system focuses on the analysis of the request
parameters in client queries, but does not take into account any infor-
mation about the protected web applications themselves. The result are
imprecise models that lead to more false positives and false negatives
than necessary.
In this paper, we describe a novel static source code analysis approach for
PHP that allows us to incorporate information about a web application
into the intrusion detection models. The goal is to obtain a more precise

characterization of web request parameters by analyzing their usage by
the program. This allows us to generate more precise intrusion detection
models. In particular, our analysis allows us to determine the names
of request parameters expected by a program and provides information
about their types, structure, or even concrete value sets. Our experimen-
tal evaluation demonstrates that the information derived statically from
web applications closely characterizes the parameter values observed in
real-world traffic.

1 Introduction

Intrusion detection systems (IDSs) are used to detect traces of malicious activ-
ities targeted against the network and its resources. These systems have tradi-
tionally been classified as either misuse-based or anomaly-based.

Systems that use misuse-based techniques [1–3] contain a number of attack
descriptions, or signatures, that are matched against a stream of audit data to

2

discover evidence that the modeled attacks are occurring. These systems are
usually efficient and generate few erroneous detections, called false positives.
The main disadvantage of misuse-based techniques is that they can only detect
those attacks that have been modeled. That is, they cannot detect intrusions for
which they do not have a signature (i.e., they cannot identify unknown attacks).

Anomaly-based techniques [4–6] follow an approach that is complementary to
misuse detection. The detection is based on models of normal user or application
behavior, called profiles. Any deviation from an established profile is interpreted
as being associated with an attack. The main advantage of anomaly-based tech-
niques is the ability to identify previously unknown attacks. By defining an
expected, normal state, any abnormal behavior can be detected, whether it is
part of the threat model or not. Unfortunately, the downside of being able to
detect previously unknown attacks, is a large number of false positives.

Profiles that describe legitimate program behavior or input can be con-
structed following one of two approaches. On one hand, the IDS can rely on
a priori knowledge about the application and its inputs to define specifica-
tions that encode legitimate behavior. A problem of such specification-based
systems [5, 7–9] is that they exhibit a limited capability for generalizing from
the specification. That is, these systems are typically tailored to a particular ap-
plication. Additional disadvantages of hand-written, specification-based models
are the need for human interaction during the training phase and the effort to
define a comprehensive specification.

Learning-based approaches are complementary to specification-based tech-
niques and do not rely on any a priori assumptions about the applications.
Instead, profiles are built by analyzing program traces or input collected dur-
ing normal program execution. More precisely, a learning-based system has to
complete a training phase during which the protected application and its inter-
action with the environment is monitored. The observed behavior is considered
legitimate and captured by appropriate models. Learning-based systems dispose
of the appealing property that they can establish profiles of normal behavior
in a quick and automated fashion. Thus, it is possible to deploy the IDS for a
broad range of applications without the prior need to gain an in-depth under-
standing of each application’s functionality. The main drawback compared to
specification-based techniques is that profiles are often not as precise. This is
due to the fact that the legitimate traces observed during the training phase
rarely cover the full range of possible application behavior.

In previous work [6], we developed an intrusion detection system that uses
anomaly detection techniques to identify attacks against web-based applications.
To this end, the system first analyzes client queries that reference server-side
programs and then creates models for a wide-range of different features of these
queries. Our IDS is following a learning-based approach. That is, the system
derives automatically the parameter profiles for different web applications by
monitoring their interaction with clients. More precisely, the system observes
legitimate web requests and extracts features for all parameters that are used as
part of these requests. The assumption is that whenever an attacker attempts

3

to compromise a web application by sending malicious input through one or
more parameters, this malicious input changes some property of the involved
parameters and thus, can be detected by the IDS. Clearly, the quality of the
detection depends on the quality of the models and their ability to accurately
characterize that input that is expected by the web application.

Our original system focuses solely on the monitoring of request parameters
and treats each application as a black box that is not taken into account when
building models. In this paper, we examine the possibility to incorporate infor-
mation extracted from the web applications into the model generation process.
The key observation is that the web application receives the request parameters
as input that is then processed. By analyzing how input is processed by an ap-
plication, one can draw valuable conclusions about the type and possible values
of data that is expected in certain parameters. This information is then used to
build more precise models of the input.

We perform light-weight static program analysis to determine how input pa-
rameters are handled by an application. In a first step, the type (e.g., integer,
boolean, string) of input parameters is inferred. Then, data flow analysis is used
to track the use of input parameters in comparison statements or as arguments
to sanitization routines. This allows us to determine constraints on parameters
(e.g., a parameter must be an integer larger than zero, or a string is not allowed
to contain single quotes) or even a set of concrete values that a parameter must
hold. A drawback of source code analysis is that one has to select a particular
programming language (or languages) that are supported by the analysis. For
this work, we decided to work with PHP [10] programs. The reason to choose
PHP was that our IDS is aimed at detecting attacks against web applications
and PHP is arguably the most popular programming language to create such
applications. Note, however, that the idea of extracting information from pro-
grams to improve models of their input is independent of the actual programming
language used and most concepts can easily be applied to other languages.

The key contributions of this paper are as follows:

– We describe a static source code analysis approach for PHP that allows us
to determine the names of request parameters expected by a web application
and the exact locations within the program code where they are used.

– We introduce a type inference mechanism and a light-weight data flow anal-
ysis to track the use of request parameters in comparison statements and as
function arguments. This allows us to identify the type of input parameters
or even provides precise expressions (such as regular expressions or sets of
concrete values) to characterize parameter values, leading to more precise
intrusion detection models.

– We present the results of our experimental evaluation that demonstrate that
our techniques closely capture the types and possible values of parameter
values observed in real-world traffic.

The paper is structured as follows. In Section 2, we discuss related work. Section 3
provides an overview of our proposed technique, while Section 4 discusses the

4

details. In Section 5, we summarize our experiences with our tool when analyzing
real-world PHP applications. Finally, Section 6 briefly concludes.

2 Related Work

A large variety of learning-based anomaly detection techniques have been pro-
posed to analyze different event streams. Examples include data mining on net-
work traffic [11], statistical analysis of audit records [12], or monitoring of system
call sequences during program run-time [13, 14]. Also, static program analysis
techniques have been extensively applied to solve security-related problems, typ-
ically for finding bugs and identifying security vulnerabilities. This includes tra-
ditional data flow analysis [15–18], model checking [19, 20], or meta-compilation
approaches [21, 22].

An important area in which static analysis was previously employed to build
more precise anomaly detection models is the monitoring of system call se-
quences. The first anomaly detection approach [13] used a training phase to
learn legitimate system call sequences collected during normal execution traces.
This system was improved in [23], where the authors introduced a system that
performs static analysis of the application’s source code to extract a model that
captures all possible system call sequences that the program can issue. Thus,
any deviation observed during run-time is guaranteed to be an attack. The pro-
posed model is realized as a pushdown automaton (PDA) extracted from the
control-flow graph of the application. Unfortunately, the run-time operation of
this pushdown automaton is prohibitively high for some programs, reaching sev-
eral tens of minutes per transaction. The major contributing factor to the time
and space complexity of the PDA approach was attributed to its severe non-
determinism. This problem was addressed in [24], using several optimizations
(e.g., the insertion of “null” system calls), and later in [25], where a Dyck model
is used to eliminate the non-determinism associated with stack transitions. As a
result, a context-sensitive model equivalent to the PDA automaton can be effi-
ciently implemented. A very similar approach, which uses source code analysis,
was introduced in [26]. In this work, system call inlining and “notify” calls are
used to remove non-determinism. Another system, which is based on a previous
gray-box technique [27], uses static analysis to extract an automaton with call
stack information [28].

The differences of system-call-based techniques when compared to our ap-
proach are twofold. First, previous systems use control flow information, while
our system is based on data flow analysis and type inference. The second differ-
ence is that system-call-based techniques generate models that directly capture
program behavior. We, on the other hand, use static analysis as a means to
improve the models that characterize the input of monitored applications.

5

3 System Overview

In this section, we briefly explain the goal of our project and the modus operandi
of the analysis tool we developed. Then, the following sections explain in detail
the different techniques we used to extract meaningful information from PHP
source code using static analysis.

As mentioned previously, PHP [10] is arguably the most popular program-
ming language to create dynamic web sites. One of the designers’ motivations
to create PHP was to design a programming language that is easier to learn and
to use than Perl, while retaining its flexibility. Although PHP has a stand-alone
interpreter, its main use is to provide dynamic web contents through either the
CGI interface or extensions to web servers (e.g., mod php for Apache). In this
paper, we focus in particular on the use of PHP as an implementation language
for web applications.

Unfortunately, the ease of use and the popularity of PHP lead to many ap-
plications that were created by developers who have little know-how of program-
ming. Furthermore, these developers are often unaware of security issues. This
ad-hoc web site development often results in applications that contain security
flaws. Hence, many PHP-based web applications exist that are vulnerable to
attacks such as SQL injection and cross-site scripting (XSS).

The analysis presented in this paper is specific to PHP, however, other pro-
gramming languages used for the development of web applications (e.g., Python,
Perl, or Java) have similar mechanisms of accessing parameters passed by HTTP
requests. Since many languages are derived from C/C++, their syntactical con-
structs also are comparable. Therefore, we do not expect it to be difficult to
extend our concepts to these languages. A modular approach is also imaginable,
with a parsing module for every language and a common analysis module.

The goal of our analysis is to extract the names, types, and sets of possible
values for the parameters that are passed to a PHP web application. The gained
knowledge can then be used during the training phase of a learning-based IDS.
More precisely, by providing the IDS with knowledge about the types, structures,
or even concrete values that can be expected for request parameters, more concise
models can be built. This reduces the false negative rate of the system. Moreover,
by providing the IDS with information about all the parameter names expected
by the application, false positives can be reduced. In particular, a valid parameter
that does not appear in the training set is not flagged as anomalous when the
IDS knows that the application can process it.

The analysis is performed in two steps (see Figure 1 for an overview of the
process). First, the source file is processed using a parser based on the original
PHP grammar from the Zend Corporation [10]. During this process, a more con-
venient, intermediate representation of the PHP file and the files it includes is
created in form of an abstract syntax tree. In addition, the discovered variables
and functions are stored in hash-tables to ease their retrieval in later steps. For
our parser, we decided to use the original grammar provided by the Zend Cor-
poration. Initially, we considered the use of a simplified grammar. However, we
soon discovered that this was insufficient to process real-world PHP applications

6

Output:

Parameter

Info

Link

Parameters

and Usage

Track

Variable

Values

Variable

Type

Inference

Identify

Interesting

Parameters

Abstract

Represen−

tation

Parse

Includes

File and

Input:

PHP

Source File

Fig. 1. Mode of operation

since most language features provided by PHP were frequently used by develop-
ers. The main advantage of the original grammar is that we can process almost
every valid PHP input file (for a matching, or at least compatible, version of
PHP). There are special cases, however, where the original Zend parser han-
dles input outside of the grammar. The parser does not call the flex-generated
scanner directly but through an intermediate function. This function intercepts
certain tokens to handle them separately, returning something different or noth-
ing at all to the parser. One example is the implicit semicolon at the end of PHP
input (the ?> tag). For such input, we had to adapt our parser to mirror the
functionality of the one provided by Zend.

The second analysis step uses the abstract syntax tree as a base for the
extraction of parameter names as well as variable types and values. Then, con-
nections between the parameters that are passed to a PHP program and the
variables that are used within this program are established. Based on these con-
nections and our knowledge of the types and value sets of variables, we can draw
conclusions about the structure of the request parameters. To obtain a start-
ing point for the analysis, we need to determine the locations within the code
where a parameter can “enter” the program. This happens in general through
the global $_GET and $_POST arrays, which hold the names and values of the pa-
rameters passed by HTTP GET and HTTP POST requests. However, other ways to
access the parameters exist (for a detailed discussion see Section 4.1). With the
starting points found, we need to identify which parameters are used. That is,
we have to determine the names of the parameters that the application expects
(Section 4.2). Finally, we try to determine how the values of the parameters
are used within the application to extract their types (Section 4.3) and possible
value sets (Section 4.4). Data flow analysis is used to track variables through
function calls, expressions, and assignments. The possible values for parameters
are in general constants (numbers, strings, boolean) that are found in the source

7

code (and these constants are in some way connected to the parameters). We are
also able to observe when parameters are processed by sanitization routines such
as htmlentities, urlencode, escapeshellcmd or preg_match, which provides
insight on what set of possible values a parameter is expected to hold. In the
following sections, the different steps of the analysis are discussed in more detail.

4 Analysis

4.1 Finding Parameter Entry Points

An important goal of the analysis is to identify the names of the CGI param-
eters that the PHP application expects. To do so, we first have to understand
which possibilities a PHP developer has to access these parameters inside her
application. That is, we have to find the locations in the code where parameter
values can enter the application.

Data that is sent from a client to a PHP application can be transmitted
through HTTP GET and HTTP POST requests or cookies. Within a PHP applica-
tion, this data is accessed through the corresponding superglobal1, associative
arrays $_GET, $_POST, and $_COOKIE. Additionally, the $_REQUEST array holds
all parameters contained in the previous three arrays.

The value of a parameter is obtained by indexing the appropriate array with
the name of the parameter. This is possible because associative arrays in PHP
are very similar to hash tables in other programming languages. That is, they
allow an arbitrary string as key for which the corresponding value is returned.
In the following example, the value of the parameter param is extracted from
the GET request.

$value = $_GET["param"];

Before the $_{GET, POST} arrays were introduced with PHP 4.1, alterna-
tive mechanisms to access parameters were used. These are still kept for com-
patibility with legacy applications, although their use is discouraged in the
official PHP documentation [10]. One such mechanism is through the global
$HTTP_{POST,GET}_VARS arrays. The main difference between these arrays and
the ones previously mentioned is that $HTTP_{POST,GET}_VARS are not super-
global. To access a global variable, which is not superglobal, from within func-
tions and classes, the following two possibilities exist:

– The variable can be explicitly declared to be in the global scope by prefixing
its name with global at the beginning of the function (example below).

1 function foo() {

2 global $HTTP_GET_VARS;

3 ...

4 $value = $HTTP_GET_VARS["param"];

1 Superglobals in PHP are predefined global variables which are accessible in every
scope of the program without the preceding keyword global.

8

5 }

Listing 1.1. Use of the global keyword

– Since the release of PHP 3.0, through the superglobal $GLOBALS array as
shown below.

1 function foo() {

2 ...

3 $value = $GLOBALS["HTTP_GET_VARS"]["param"];

4 }

Listing 1.2. Use of the $GLOBALS array

The most insidious way to access parameters is provided through the
register globals directive, which is a server-side configuration option and de-
faulted to on in all versions of PHP prior to 4.2. This directive automatically
promotes request parameters to global variables. For example, the request GET

/mail.php?mailbox=INBOX would create a variable $mailbox with the value
INBOX that can be accessed from anywhere inside the global scope of mail.php
and its included files. This creates potentially dangerous situations. Consider
the following example. To access sensitive information in the file secret.php,
authorization is required. This authorization is obtained through some sort of
mechanism that sets a global boolean variable $authorized. This variable is
then queried every time before the sensitive information is displayed. Unfortu-
nately, an attacker could access that information through the simple request GET
/secret.php?authorized=true. The reason is that this request would create
the global variable $authorized and set its value to true. Now, the protected
section of secret.php can be entered even if the authorization function fails
because of missing credentials.

The bottom line is that using register globals is risky. However, since this
behavior was the default for a long time, many PHP developers are used to
it and reluctant to change their existing habits. Furthermore, there are also
many legacy application that rely on this feature and were “fixed” to comply
with the newer versions by emulating register globals in software. This is ac-
complished through using the import_request_variables function, available
since PHP 4.1.0, or through self-written functions with analogous behavior.
The import_request_variables function transforms request variables (param-
eters coming from GET or POST requests or cookies) into global variables, just
as register globals does. Self-written functions are usually more or less sophis-
ticated variations of the following example, where $GLOBALS is the superglobal
array holding all global variables. The reason that this works is that global vari-
ables can be introduced from within every scope through the $GLOBALS array,
as shown in line 2 of Listing 1.3.

1 foreach ($_GET as $key => $value) {

2 $GLOBALS[$key] = $value;

3 }

Listing 1.3. Simple variable copying

9

4.2 Parameter Name Extraction

To sum up the previous discussion, there are two mechanisms to access request
parameters from within PHP:

1. Using the parameter name as an index into a parameter array (e.g., the
superglobal $_GET array).

2. Using register globals or emulating its behavior.

Our approach handles only the first case. The second possibility, besides being
deprecated, brings an unsurmountable obstacle for an automated analysis. The
reason is that the names of the parameters are not discernible from regular pro-
gram variables. Thus, it is impossible to identify parameters that are imported
via register globals by looking at the program code alone. To address this prob-
lem, one could incorporate information from log files (which contain many valid
parameter names), but this is outside the scope of our current analysis.

When considering the first case, the use of a constant parameter name as
index into a parameter array is the easiest and most straightforward method to
access a parameter in PHP. It also makes finding the parameter name during
analysis easy. The names are extracted simply by looking at all interesting ref-
erence variables2 and checking if the index is a constant. A reference variable is
considered interesting if it refers to one of the arrays through which parameters
can enter the program. For example, the expression $_GET[’param’] is repre-
sented in our syntax tree as shown in Figure 2. As can be seen, the name of the
extracted parameter is param.

VARIABLE

$_GET

REFERENCE_VAR

$_GET[’param’]

’param’

CONSTANT INDEX

Fig. 2. Syntax tree for a simple reference variable

Parameter arrays can also be indexed by variables. Our study of real-world
PHP applications revealed this to be rather the norm than the exception. Un-
der these circumstances, identifying the correct parameter names within a PHP
application is a far more difficult task than simply extracting constant indices.
Also, it is common practice, especially in larger PHP applications, to not access

2 Reference variables are variables which reference an element within an array, e.g.,
$a[’b’]. The superglobal arrays that store the parameter values are all reference
variables.

10

these parameters directly where they are used. Instead, the value is retrieved
through an intermediate function that takes the name of the parameter as ar-
gument. The intermediate function might also perform post-processing before
returning the appropriate parameter value to the calling function.

When dealing with variable indices, we need to employ data flow analysis
to determine the possible values of the index variable. In our current system,
we use flow-insensitive, inter-procedural data flow analysis to determine possible
values of index variables. To determine the value of a variable $x, we search
backwards within the function to find the first assignment statement with $x

on the left-hand side. When this statement assigns a constant value to $x, we
have successfully determined its value. This case is shown in the example in
Listing 1.4. Here, a constant param is first assigned to variable $x, which is
subsequently used as an index into the $_GET array.

1 $x = "param";

2 $_GET[$x];

Listing 1.4. Simple value extraction

Listing 1.5 shows a slightly more complicated case, which is also handled
by our analysis. Here, the value of the variable $y is not immediately used as
an index into the $_GET array but through the use of the intermediate variable
$x. To determine the value of $x in this case, we (again) search backwards
for the first assignment statement to the variable. This time, however, another
variable $y is used as the value in the assignment. Thus, we have to continue
the backtracking process; this time attempting to identify the value of $y. Note
that in our current analysis, we only handle constants and variables on the right-
hand side of an assignment. When a more complex expression is encountered,
the intra-procedural analysis terminates without result.

1 $y = "param";

2 $x = $y;

3 $_GET[$x];

Listing 1.5. Value extraction with intermediate variables

If a variable is identified to be an argument of the enclosing function, the
analysis performs an inter-procedural step. To this end, the analysis continues
recursively at every call site of this function (that is, at every occurence of
a function call to the function under investigation). For each call site, intra-
procedural backtracking analysis is employed to identifiy all constants that can
determine the value of the interesting function argument. This alternation of
intra- and inter-procedural analysis steps is then repeated until all relevant values
are found.

An example of the interplay between the intra- and inter-procedural analy-
sis steps is shown in Listing 1.6. This example demonstrates how the constant
actionid is identified to be an index into the $_GET array, and thus, a request
parameter.

11

1 class Util {

2 function getGet($var, $default = null) {

3 return (isset($_GET[$var]))

4 ? Util::dispelMagicQuotes($_GET[$var])

5 : $default;

6 }

7

8 function getFormData($arg , $default = null) {

9 return (($val = Util::getPost($arg)) !== null)

10 ? $val

11 : Util::getGet($arg , $default);

12 }

13 }

14

15 $actionID = Util::getFormData(’actionid ’)

Listing 1.6. Snippet from Horde’s Util class

– First, the parser identifies the use of the $_GET (lines 3,4) and flags them as
possible parameter entry points. The names of these parameters are unde-
termined, as $var is used as the array index.

– The intra-procedural analysis backtracks and eventually determines that
$var is an argument of the getGet function (line 2). This invokes the inter-
procedural step.

– Every call site to getGet is examined. In this example, a call is found in
getFormData (line 11). The argument $arg is determined to be the inter-
esting function argument that corresponds to $var in the getGet function.
Again, intra-procedural analysis is invoked, which determines that $arg is
an argument of the getFormData function (line 8).

– All calls to getFormData are investigated. In line 15, a call is found, and the
constant actionid is identified to be the interesting argument. Then, the
search terminates as no further calls to getFormData are present.

Using the data flow analysis outlined above, we can build a list of param-
eter names for each file of the PHP application. Note, however, that our flow-
insensitive analysis is neither sound nor complete. That is, it might miss certain
parameter names. However, the technique works well in practice. In the pro-
grams that we examined during the evaluation phase (see Section 5), we were
able to detect all relevant request parameters, and we expect that our analysis
tool is able to perform comparably well with other PHP applications.

4.3 Type Inference

The most basic information that we can determine about an input parameter is
its type. Knowing a variable’s type allows us to ensure that its value is drawn

12

from the type’s legal value set. For example, we can check that an integer pa-
rameter is composed only of number characters and at most one leading dash.
Any other value would be flagged as anomalous.

When a parameter is assigned to a variable in the program code, the knowl-
edge of this variable’s type would enable us to draw conclusions about the pa-
rameter’s type. In particular, we assume that when a programmer assigns input
to a variable of a certain type, this input is expected to hold a value of the
same type. Unfortunately, PHP uses a dynamic type system. That is, no static
type qualifiers are used in variable declarations. When variables are used in an
operation, their values are cast to the type expected by the operator on the fly.
As a result, the type of a variable is not immediately obvious.

To compensate for the lack of static type information, we introduce a type
inference process that attempts to identify the types of variables used by the
program. Our approach is based on analyzing the operations that are applied to
variables. More precisely, type information is gathered by analyzing the types
that are possible for the result of an operation. To this end, a type inference

matrix was generated for each operator. This matrix enables one to determine
the type of the result of an operation, given the types of the operands.

Of course, type information is often not available for all source operands,
and thus, one cannot immediately retrieve the type of the result from the ma-
trix. However, there are situations when the type of the result can be inferred
even without complete knowledge of the operand types. In the easiest case, an
operator is encountered that always returns a result of one particular type, inde-
pendent of the types of their arguments (in other words, all entries of the matrix
are identical). Here, the type of the variable that receives the result can be imme-
diately identified. For example, the binary logical operators (&& || xor) always
return a boolean result, as does the unary not operator (!). Another example are
the shift operators (<< >>), which always produce results of type integer. The
string concatenation operator (.), on the other hand, always produces results
of type string. In other situations, even the knowledge of the type of a single
operand is sufficient to unambiguously infer the type of the result. This is the
case when all entries in the matrix that correspond to the known type of the
source operand are identical.

Type information for a certain source operand can also be obtained through
other means. One possibility is that an operand is a constant literal in the source
code. In this case, the type can be determined statically. Another possibility is the
use of a type cast by the programmer to ensure that a variable has a particular
type. Finally, type information that has been derived during the analysis process
for a particular variable is propagated to all other locations where this variable
is used. Thus, whenever the type of a previously undefined variable is identified,
all expressions in which this variable appears are revisited. The reason is that
the newly derived type information might allow us to resolve the types of other
variables.

Deriving the type inference matrices for different operators was complicated
by the fact that information on operations’ result types is poorly documented

13

in the PHP manual (and sometimes only available by studying the PHP inter-
preter’s source code). For example, the bitwise negation (~) fails with an “unsup-
ported operand types” error when used on boolean operands, and automatically
rounds floating point operands to the nearest integer. The bitwise logical op-
erators (& | ^) always return an integer value, except when both operands are
strings, in which case the result has the type string as well. Using an operand that
evaluates to 0 with the modulo operator yields the value null, which evaluates
to FALSE in boolean contexts.

4.4 Value Extraction

After the type of a parameter has been determined, we try to extract sets of
possible values this parameter is expected to hold. To this end, we look for
string, number, or boolean constants that are compared with this parameter’s
value. More specifically, we handle three types of comparisons:

1. Direct comparison using the boolean operators ==,!=,<,>,...
2. Indirect comparison through the switch-case construct
3. Indirect comparison through sanitization code (e.g., regular expression match-

ing, or built-in functions such as htmlentities)

What all the possibilities have in common is the fact that neither the pa-
rameter nor the constant that it is compared to have to appear as immediate
operands of the comparison operation. The trivial case of such an immediate
comparison would look like

if ($_GET["param"] == 42)

...

where we could immediately add 42 to the list of possible values for the pa-
rameter param, since the application clearly expects this value and has some
mechanism of handling it. Frequently, however, intermediate variables are used,
or the values are packed into arrays. Therefore, it is necessary to track the usage
of parameters after they have entered the program. To this end, we perform a
forward reachability analysis to identify those variables that indirectly receive
input (i.e., parameter values) through assignment operations. Our analysis is
inter-procedural and follows interesting variables into function calls and over
return statements. In general, the process is very similar to the backtracking
described in Section 4.2, only the direction is reversed.

To see how the forward analysis can be used to extract interesting information
about parameters, consider the following (constructed) example (for details on
Util, refer to Listing 1.6).

1 $param = array(

2 "name" => "param",

3 "value" => Util::getFormData("param"),

4 "info" => "something boring ");

5 $otherparam = Util::getFormData("otherparam");

14

6 $thirdparam = do_something($_POST["thirdparam"]);

7

8 $strippedparam = stripslashes($param["value"]);

9 if ($strippedparam == "something")

10 ...

11 switch ($otherparam) {

12 case "something else":

13 ...

14 }

15 preg_match("/^([0 -9]{4}).*" , $thirdparam , $number);

Listing 1.7. Variable tracking examples

From the parameter name extraction (Section 4.2), we already know that
the function Util::getFormData(’param’) returns the value of the parameter
supplied as argument. Now, we have to determine how this parameter value is
used by the program. Therefore, we perform forward tracking to determine those
variables that receive the parameter value through assignments, and to examine
how these values are used by the program.

Listing 1.7, lines 1-6, has some examples how a parameter value can prop-
agate through the program. The simplest case is shown in line 5, where the
parameter value is directly assigned to $otherparam. In line 1, the value is in-
side the $param array and can be referenced through $param["value"]. Finally,
in line 6, the value is used as the first argument of a function (do_something).
In the last case, the further procedure depends on how much we know about the
function do_something. If the implementation for this function is part of the
application, we can analyze it directly and track the uses of the argument inside
the function. Additionally, if the value of the argument is part of the return
value, we assume that $thirdparam has received the value of the parameter and
shall be investigated further. On the other hand, if we do not have the function’s
code at our disposal, the tracking stops. However, provided that we know more
about the function (e.g., by reading its documentation), we can make use of
annotations. In this case, we could instruct the analyzer to handle the function
in line 6 as if it would simply return its value as argument and continue the
tracking with $thirdparam.

The next step is to examine the uses of variables that have received program
input. We see that $param["value"] is used as argument to the PHP built-in
function stripslashes, and that the result is assigned to $strippedparam in
line 8. Assume that stripslashes is known to return a string that is identical to
its function argument, except that all backslashes are removed. This is a typical
behavior for a sanitization routine. Then, we can report two things.

1. Backslashes are not desired as part of a value for the parameter param.
2. The processed string is assigned to the variable $strippedparam, thus, we

should examine its uses as well.

In line 9, we note that the value of $strippedparam is compared with a string
inside an if-statement, which leads us to the conclusion that the string is a

15

possible value for $strippedparam and, therefore, also for the parameter param.
The variable $otherparam is used in line 11 within a switch statement, which
is an efficient representation for an if-elsif* statement. It is compared with
every expression after the case keyword, so we add all these expression to the
possible values for this parameter. Finally, $thirdparam is passed as argument
to the (built-in) preg_match function. Because the function attempts to match
our variable of interest against a regular expression, we can consider this regular
expression as a likely characterization of the parameter.

These three examples illustrate the possibilities that our program has to find
interesting uses of request parameters. Experience has shown us that, in most
cases, we cover the majority of values that appear in the source code.

5 Evaluation

This section is divided into two parts. In Section 5.1, we present the findings of
our program when it is run on several real-world PHP web applications. Section
5.2 demonstrates that our findings capture well the real usage of parameters.
This is done through the comparison of long-term usage data in log files with
our programs results.

5.1 Results of Static Analysis

This section presents the results that our program returned on a number of
popular PHP web applications.

The first application we examined was the Horde framework (Version 2),
which provides a common code-base to its components including libraries and
a common user interface, along with its most widely-deployed component - the
Internet Messaging Program (IMP Version, 3.1) web mail client. The second
choice fell on Squirrelmail, which is another very popular web mail client. Then,
the open source bulletin board phpBB (Version 2.0.17) was analyzed, before
we turned our attention to a newer version of the Horde/IMP combination
(Horde3/IMP4). Finally, we examined PHP iCalendar (Version 2.1), a PHP-
based Internet calendaring file viewer to display iCal appointments in a browser.

The results of this analysis are listed in Table 1. In this table, ”Parame-
ters found” indicates the number of input parameters that were identified for
the given application. Either type or value information about the parameter is
considered detailed knowledge, and these sum up to the ”Details found” score.
The percentage value is simply the fraction of the detailed parameters among all
those found. At first glance, the fraction of about 30% of parameters for which
detailed information is available appears low. However, one has to take into ac-
count that many parameters are treated by the program as opaque data objects
that are not processed further. In these cases, no information can be extracted
from the code. Also, the provided information is in addition to existing models
and can be used to improve their precision. In particular, our results showed very

16

precise characterizations for certain parameters that are used directly to influ-
ence application logic (and thus, are typically most vulnerable to attacks). For
example, we discovered that the actionID parameter used in the Horde suite has
changed between Horde 2 and Horde 3 in its type and possible value set found
by our program. In Version 2, the program returned the following information
on actionID:

actionID: (TYPE_INT):

0,1,101,102,103,104,105,106,107,108,109,110,111,112,113,114, ...

whereas, for Version 3, it returned:

actionID: (TYPE_STRING):

’add_address’,’add_attachment’,’addchild’,’addchildform’, ...

This shows that the implementation has changed from using integer values to
using more descriptive string representations of the action to perform. Although
strings are human readable, the drawback is less precise type information (string
instead of integer) that can be used by the IDS. During the analysis of PHP
iCalendar, we were able to narrow down the domain for a number of parameters
that were checked against a regular expression. The following example provides
the technique used by PHP iCalendar to identify date values.

getdate (TYPE_STRING:2) Possible Values:

preg_match("/([0-9]{4})([0-9]{2})([0-9]{2})/")

Note that, for our experiments, a single annotation for Squirrelmail was neces-
sary. Squirrelmail retrieves parameters via the sqgetGlobalVar function, which
uses a by-reference argument to return the value of request parameters. Unfortu-
nately, our analysis does not support by-reference arguments, and the annotation
was needed to consider this reference argument as the function’s return value.

Application Parameters found Details found Percentage

Horde2/IMP3.1 153 47 31%

Squirrelmail 1.4.6-rc1 268 91 34%

phpBB 2.0.17 316 82 26%

Horde3/IMP4.0.2 298 64 21%

PHP iCalendar 2.1 23 15 65%
Table 1. Static analysis results

5.2 Comparison of Results and Log Files

We gathered log data from live usage of the Horde2/IMP 3.1 and Squirrelmail
applications and cross-checked them with the results of our analysis tool. To
accomplish this, we compared the set of parameters that are discovered by our

17

tool against the actual parameters stored in the log files. Since only HTTP GET

request parameters are logged by the web server, this data is based only on these
requests. Note that our analysis discovered many parameters in the application
that do not have correspondents in the log files. Nevertheless, the percentage of
parameters for which detailed information could be recovered remains roughly
unchanged. (Horde: 153 detected, 31% with details; Squirrelmail: 268 detected,
34% with details) This fact gives reason to believe that HTTP POST parameters
would be detected with a comparable probability.

Horde2/IMP 3.1 The log files used for this experiment cover about three
months of normal load on a department web server running the Horde2/IMP3.1
combination, which gives about 30,000 hits. Detailed information was extracted

Parameters appearing in log files 37

Parameters appearing in logs found 30 (81%)

Parameters appearing in logs with details found 9 (24%)

Parameters appearing in logs but not found by analysis 7 (21%)

Table 2. Horde2/IMP 3.1 comparison

for parameters such as reason, which holds a string representation of the reason
why a user was logged off the service. We identified the type to be string and
the set of possible values was limited to failed, logout or session, and in fact,
all occurrences of the parameter reason in the log files had exactly one of the
before mentioned values.

For parameters such as to,cc or bcc, the only information that could be
derived was that their type is string. However, this is not surprising, as these
parameters correspond to their homonymous email header fields which are highly
volatile. As shown in Table 2, our analysis failed to detect seven of the parameters
that appeared in certain requests recorded in the log files. After examining these
parameters and manually studying the source code, we identified all of them as
not being used by the program. For example, the parameter f appears to be a
relict from an older version to provide a filename to the download dialog. In the
examined version of Horde, however, this functionality is provided through the
extraction of the file’s name from the MIME header. Another example is the
parameter target1, which holds a copy of the parameter targetMBox, but only
targetMBox is ever read by the application. Finally, one parameter is used by
PHP to perform session handling, which is setup by the Horde framework but
never used.

Squirrelmail 1.4.5 About 13,000 hits make up the three weeks of logs for
Squirrelmail that were recorded to drive this experiment.

A closer look into the program’s output shows that, similar to Horde, no
set of possible values can be retrieved for volatile values of search parameters

18

Parameters appearing in log files 26

Parameters appearing in logs found 24 (92%)

Parameters appearing in logs with details found 12 (46%)

Parameters appearing in logs but not found by analysis 2 (7%)
Table 3. Squirrelmail 1.4.6-rc1 comparison

(what or where). In a few cases, we were not even able to determine the type of
the parameters. This is in contrast to parameters that control the application
logic. For example, for the parameter smaction, we could identify the type to
be string and all the occurrences in the log file have either one of the following
values, which we extracted from the program: draft, edit_as_new, forward,
forward_as_attachment, reply or reply_all. The two parameters we did not
discover in the source code, but which appeared in the log files, are used for
hyper-text references requested by a client, but not used by the program.

Our results demonstrate that it is possible to improve intrusion detection by
providing a priori information about request parameters such as their types or
sets of concrete values. In particular, we can improve a number of IDS models
presented in previous work [6].

We were able to identify all parameters that are used by the programs under
examination. The parameter presence and absence model can use this information
directly, instead of by learning, where we have no guarantee that all parameters
will occur during the training phase. This knowledge alone can help to prevent
attacks. For example, we ran our program on phpBB2 (Version 2.0.17), which
suffered a mass defacement attack in December 2005. Analyzing the request
that contains the exploit3, our system observed that a parameter was used that
was not reported as an expected parameter for the profile.php file. Thus, the
attacker’s request can be appropriately flagged as anomalous. When considering
each parameter that cannot be derived from the program code as potentially
malicious, we would have generated nine false positives for the two applications
evaluated above (seven for Horde, two for Squirrelmail). However, given that
we analyzed traffic over a period of three weeks, this increase in false positives
is very reasonable.

For those parameters for which detailed information was available, the struc-

tural inference and the token finder models can be improved. More precisely,
when the type of a parameter is known, we load the structural inference model

with the appropriate regular expression (e.g., [0-9][0-9]* for integer). For our
dataset, preparing the structural inference model did not lead to the generation
of additional false positives.

When our analysis is able to extract a set of concrete values for a parame-
ter, this set is used as input for the token finder model. Again, our experiments
showed no increase in false positives. That is, our analysis extracted a superset
of those parameter values that appeared in the log files. Summing up, the infor-

3 The exploit uses requests of the form profile.php?GLOBALS[...] to manipulate the
contents of the GLOBALS array.

19

mation gathered by our analysis provides better, more accurate models for an
existing IDS. This improves the detection rate of actual attacks, but possibly
at the cost of more false positives. However, our experimental evaluation shows
that the increase in false positives was very moderate for the analyzed data set.

6 Conclusions

Web applications are prime targets for attackers because they are typically di-
rectly available through firewalls and frequently contain vulnerabilities. To miti-
gate attacks against web applications, we previously developed an anomaly-based
intrusion detection system that uses learning techniques to identify attacks [6].
The main problem with this black-box approach is that no information from the
web application itself is taken into account.

In this paper, we presented a static analysis technique to extract information
from web applications written in PHP. The goal is to determine a more precise
characterization of web request parameters by analyzing their use by the pro-
gram. To this end, we first determine the names of request parameters and their
locations in the program. Based on this information, we attempt to identify con-
straints on the parameters, such as those expressed by the use of the parameter
in comparison operations, sanitization routines, or regular expressions.

We tested our prototype implementation on a number of popular, real-world
PHP web applications. Our findings demonstrate that using static program anal-
ysis on web applications to improve IDS precision is viable. Our tool was capable
to retrieve all request parameters that are processed by the analyzed applica-
tions and provided detailed information for about a third of these parameters.
Using our tool, a mass defacement attack on phpBB2 (Version 2.0.17), launched
in December 2005, could have been prevented simply by determining that an
unexpected parameter was supplied to the program.

References

1. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. In:
Usenix Security Symposium. (1998)

2. Lindqvist, U., Porras, P.: Detecting Computer and Network Misuse with the
Production-Based Expert System Toolset (P-BEST). In: IEEE Symposium on
Security and Privacy. (1999)

3. Vigna, G., Valeur, F., Kemmerer, R.: Designing and Implementing a Family of
IDSs. In: 9th European Software Engineering Conference. (2003)

4. Denning, D.: An Intrusion Detection Model. IEEE Transactions on Software
Engineering 13(2) (1987)

5. Ko, C., Ruschitzka, M., Levitt, K.: Execution Monitoring of Security-Critical Pro-
grams in Distributed Systems: A Specification-based Approach. In: IEEE Sympo-
sium on Security and Privacy. (1997)

6. Kruegel, C., Vigna, G.: . In: 10th ACM Conference on Computer and Communi-
cations Security (CCS). (2003)

20

7. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.: A Secure Environment for
Untrusted Helper Applications. In: Usenix Security Symposium. (1996)

8. Provos, N.: Improving Host Security with System Call Policies. In: Usenix Security
Symposium. (2003)

9. Chari, S., Cheng, P.: BlueBoX: A Policy-driven, Host-Based IDS. In: Symposium
on Network and Distributed System Security (NDSS). (2002)

10. Zend Corporation: PHP: Hypertext Preprocessor. http://www.php.net/ (2006)
11. Lee, W., Stolfo, S., Mok, K.: Mining in a Data-flow Environment: Experience in

Network Intrusion Detection. In: ACM International Conference on Knowledge
Discovery & Data Mining (KDD). (1999)

12. Javitz, H., Valdes, A.: The SRI IDES Statistical Anomaly Detector. In: IEEE
Symposium on Security and Privacy. (1991)

13. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A Sense of Self for Unix
Processes. In: IEEE Symposium on Security and Privacy. (1996)

14. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting Intrusions Using System
Calls: Alternative Data Models. In: IEEE Symposium on Security and Privacy.
(1999)

15. Ganapathy, V., Jha, S., Chandler, D., Melski, D., Vitek, D.: Buffer overrun de-
tection using linear programming and static analysis. In: ACM Conference on
Computer and Communications Security (CCS). (2003)

16. Larochelle, D., Evans, D.: Statically Detecting Likely Buffer Overflow Vulnerabil-
ities. In: Usenix Security Symposium. (2001)

17. Wagner, D., Foster, J., Brewer, E., Aiken, A.: A First Step Towards Automated
Detection of Buffer Overrun Vulnerabilities. In: Network and Distributed System
Security (NDSS). (2000)

18. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: IEEE Sympo-
sium on Security and Privacy. (2001)

19. Chen, H., Dean, D., Wagner, D.: Model Checking One Million Lines of C Code.
In: Network and Distributed System Security (NDSS). (2004)

20. Chen, H., Wagner, D.: MOPS: An infrastructure for examining security properties
of software. In: ACM Conference on Computer and Communications Security
(CCS). (2002)

21. Ashcraft, K., Engler, D.: Using Programmer-Written Compiler Extensions to Catch
Security Holes. In: IEEE Symposium on Security and Privacy. (2002)

22. Engler, D., Chen, D., Hallem, S., Chou, A., Chelf, B.: Bugs as Deviant Behavior:
A General Approach to Inferring Errors in Systems Code. In: ACM Symposium
on Operating Systems Principles. (2001)

23. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: IEEE Sympo-
sium on Security and Privacy. (2001)

24. Giffin, J., Jha, S., Miller, B.: Detecting Manipulated Remote Call Streams. In:
Usenix Security Symposium. (2002)

25. Giffin, J., Jha, S., Miller, B.: Efficient context-sensitive intrusion detection. In:
Network and Distributed System Security Symposium (NDSS). (2004)

26. Lam, L., Chiueh, T.: Automatic Extraction of Accurate Application-Specific Sand-
boxing Policy. In: Symposium on Recent Advances in Intrusion Detection (RAID).
(2004)

27. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly Detection using
Call Stack Information. In: IEEE Symposium on Security and Privacy. (2003)

28. Feng, H., Giffin, J., Huang, Y., Jha, S., Lee, W., Miller, B.: Formalizing Sensitivity
in Static Analysis for Intrusion Detection. In: IEEE Symposium on Security and
Privacy. (2004)

