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Abstract
The number and the importance of web applications have increased
rapidly over the last years. At the same time, the quantity and
impact of security vulnerabilities in such applications have grown
as well. Since manual code reviews are time-consuming, error-
prone and costly, the need for automated solutions has become
evident.
In this paper, we address the problem of vulnerable web appli-

cations by means of static source code analysis. To this end, we
present a novel, precise alias analysis targeted at the unique refer-
ence semantics commonly found in scripting languages. Moreover,
we enhance the quality and quantity of the generated vulnerability
reports by employing a novel, iterative two-phase algorithm for fast
and precise resolution of file inclusions.
We integrated the presented concepts into Pixy [16], a high-

precision static analysis tool aimed at detecting cross-site scripting
vulnerabilities in PHP scripts. To demonstrate the effectiveness of
our techniques, we analyzed three web applications and discovered
106 vulnerabilities. Both the high analysis speed as well as the low
number of generated false positives show that our techniques can
be used for conducting effective security audits.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis; D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Validation

General Terms Verification, Security, Languages

Keywords alias analysis, data flow analysis, static analysis, pro-
gram analysis, web application security, scripting languages secu-
rity, cross-site scripting, PHP

1. Introduction
Web applications have become one of the most important commu-
nication channels between various kinds of service providers and
clients on the Internet. Along with the increased importance of web
applications, the negative impact of security flaws in such applica-
tions has grown as well. Vulnerabilities that may lead to the com-
promise of sensitive information are being reported continuously,
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and the costs of the resulting damages are increasing. The main rea-
sons for this phenomenon are time and financial constraints, limited
programming skills, and lack of security awareness on part of the
developers.
The existing approaches for mitigating threats to web appli-

cations can be divided into client-side and server-side solutions.
The only client-side tool known to the authors is Noxes [18], an
application-level firewall offering protection in case of suspected
cross-site scripting (XSS) attacks that attempt to steal user creden-
tials. Server-side solutions have the advantage of being able to dis-
cover a larger range of vulnerabilities, and the benefit of a security
flaw fixed by the service provider is instantly propagated to all its
clients. These server-side techniques can be further classified into
dynamic and static approaches. Dynamic tools (e.g., [12, 25, 28],
and Perl’s taint mode [32]) try to detect attacks while executing the
audited program, whereas static analyzers ([13, 14, 16, 22, 23, 35])
scan the entire web application’s source code for vulnerabilities be-
fore it is deployed.
In a previous paper, we presented Pixy [16, 17], the first open

source tool for statically detecting taint-style vulnerabilities (in
particular, XSS vulnerabilities) in PHP 4 [27] code. Pixy features
a high-precision data flow analysis engine that is flow-sensitive,
interprocedural, and context-sensitive and performs alias analysis,
literal analysis, and taint analysis. These characteristics enabled
it to generate more comprehensive and precise results than those
provided by other approaches [13, 14, 23]. In this paper, we further
improve our work in the following key points:

• We present a novel, precise alias analysis targeted at the unique
reference semantics commonly found in scripting languages.
Without a preceding alias analysis, taint analysis would gen-
erate false positives as well as false negatives in conjunction
with aliases. In contrast to our previous approach, our new alias
analysis generates precise results even for conceptually difficult
aliasing problems. Our decision to develop a new alias analysis
is based on the belief that the straightforward adaptability of
existing solutions to this problem domain seems questionable,
since they are targeted at non-scripting languages such as C and
Java. This belief is backed by the observation that we were the
first to analyze aliases in the context of scripting languages.

• We enhance the quality and quantity of the generated vulner-
ability reports as well as our tool’s usability by integrating a
novel, iterative two-phase algorithm for fast and precise reso-
lution of file inclusions. In C, include statements only contain
static file names and thus, can be resolved easily. In PHP, how-
ever, include statements can be composed of arbitrary expres-
sions, requiring more sophisticated resolution techniques.

• We present empirical results for demonstrating that our tool can
be used to detect XSS vulnerabilities in real-world programs.



echo "Here is what you wrote: " . $_GET[’content’];

Figure 1. Very simple PHP script vulnerable to XSS.

The analysis process is fast, completely automatic, and pro-
duces a low false positive rate.

The rest of the paper is structured as follows. Section 2 introduces
the general class of vulnerabilities that Pixy aims to detect. In Sec-
tion 3, we present an overview of our analysis infrastructure. Sec-
tion 4 provides the details of our alias analysis, and Section 5 ex-
plains the workings of the include resolution algorithm. A summary
of our empirical results is presented in Section 6. After a discussion
of related work in Section 7, Section 8 briefly concludes.

2. Taint-Style Vulnerabilities and XSS Attacks
The analysis infrastructure that we are enhancing in this paper is
targeted at the detection of taint-style vulnerabilities. Tainted data
denotes data that originates from potentially malicious users and
thus, can cause security problems at vulnerable points in the pro-
gram (called sensitive sinks). Tainted data may enter the program at
specific places, and can spread across the program via assignments
and similar constructs. Using a set of suitable operations, tainted
data can be untainted (sanitized), removing its harmful properties.
Many important types of vulnerabilities (e.g., cross-site scripting,
SQL injection, or script injection) can be seen as instances of this
general class of taint-style vulnerabilities. An overview of these
vulnerabilities is given by Livshits and Lam in [22].
One of the main purposes of XSS attacks [5] is to steal the

credentials (e.g., the cookie) of an authenticated user. Every web
request that contains an authentication cookie is treated by the
server as a request of the corresponding user as long as she does
not explicitly log out. Thus, everyone who manages to steal the
cookie is able to impersonate its owner for the current session.
The browser automatically sends a cookie only to the web site that
created it, but with JavaScript, a cookie can be sent to arbitrary
locations. Fortunately, the access rights of JavaScript programs are
restricted by the sandbox model. That is, a JavaScript program has
access only to cookies that belong to the site from which the code
originated.
XSS attacks circumvent the sandbox model by injecting mali-

cious JavaScript into the output of vulnerable applications. In this
case, the malicious code appears to originate from the trusted site
and thus, has complete access to all (sensitive) data related to this
site. For example, consider the simple PHP script in Figure 1, where
a user’s posting to a message board is displayed after submitting it.
The posting’s content is retrieved from a GET parameter. There-
fore, it can also be supplied in a specifically crafted URL such
as the following, which results in the user’s cookie being sent to
“evilserver.com”:

http://vulnerable.com/post.php?

content=<script>document.location=

’evilserver.com/steal.php?’+document.cookie</script>

All that the attacker has to do is to trick a user into clicking this
link, for example, by sending it to the victim via email.
In general, an XSS vulnerability is present in a web application

if malicious content (e.g., JavaScript) received by the application
is not properly stripped from the output sent back to a user. When
speaking in terms of the sketched class of taint-style vulnerabilities,
XSS can be roughly described by the following properties:

• Entry Points into the program: GET, POST and COOKIE ar-
rays.

• Sanitization Routines: htmlentities(), htmlspecialchars(), and
type casts that destroy potentially malicious characters or trans-
form them into harmless ones (such as casts to integer).

• Sensitive Sinks: All routines that display data on the screen,
such as echo(), print() and printf().

3. Analysis Overview
We built our alias analysis into Pixy [16], a tool that performs data
flow analysis on PHP code to detect XSS vulnerabilities. Data flow
analysis is a well-understood topic in computer science and has
been used in compiler optimizations for decades ([1, 24, 26]). In
a general sense, the purpose of data flow analysis is to statically
compute certain information for every single program point (or for
coarser units such as functions). For instance, the classical constant
analysis1 computes, for each program point, the literal values that
variables may hold.
Data flow analysis operates on the control flow graph (CFG) of

a program. Hence, a parse tree is constructed from a PHP input
file using the Java lexical analyzer JFlex [15] and the Java parser
Cup [7]. The parse tree is then transformed into a linearized form
resembling three-address code with basic blocks [1], and stored as
a separate control flow graph for each encountered function. Then,
file inclusions are resolved using an iterative, two-stage preprocess-
ing step described in Section 5. This preprocessing step employs
literal analysis for computing the names of files referenced by non-
literal include statements. Note that file inclusion is a transitive pro-
cess. That is, include statements found in files that were previously
included are resolved as well. Afterwards, the alias analysis dis-
cussed in Section 4 computes alias relationships for each variable
at every program point. Finally, this information is utilized by a
taint analysis for determining the taint values of variables and re-
porting tainted variables that enter sensitive sinks.

4. Alias Analysis
For static detection of vulnerabilities, precise results can only be
achieved by considering possible alias relationships between vari-
ables. Two or more variables are aliases at a certain program point
if their values are stored at the same memory location. Two vari-
ables are must-aliases if they are aliases regardless of the actual
path that is taken by the program during run-time. If these variables
are aliases only for some program paths, while not for others, they
are called may-aliases. We will give a short introduction to aliases
in PHP to demonstrate why alias information is required for pre-
cise results, and to highlight the differences between PHP aliases
and pointers in other programming languages. After this problem
definition, we specify the workings of our alias analysis, which is
responsible for computing the desired information.

4.1 Aliases in PHP

In PHP, aliases between variables can be introduced by using the
reference operator “&”. This operator can be applied directly in
assignments, or in combination with formal and actual function
parameters to perform a call-by-reference. Figure 2 shows a simple
example for creating an alias relationship between variables $a and
$b (on Line 2). This figure also demonstrates why taint analysis
requires access to alias information. Without this information, taint
analysis would not be able to decide that the assignment on Line 3
does not only affect $a, but also the aliased variable $b. As a result,
we would miss the fact that $b eventually holds a tainted value,
which leads to the XSS vulnerability on Line 4. Analogously, the
lack of aliasing information can cause false positives.

1 Note that we will use the name “literal analysis” instead of the classical
term “constant analysis” in order to prevent confusion with PHP’s constants.



1: $b = ’nice’; // $b: untainted
2: $a =& $b; // $a and $b: untainted
3: $a = $evil; // $a and $b: tainted
4: echo $b; // XSS vulnerability

Figure 2. Simple aliasing in PHP.

1: $x1 = 1;
2: $x2 = 2;
3: a(&$x1);
4: echo $x1; // $x1 is still ’1’
5:
6: function a(&$p) {
7: $p =& $GLOBALS[’x2’];
8: }

Figure 3. References in contrast to pointers.

In the past, extensive work has been devoted to the area of
alias analysis (e.g., [2, 6, 20, 31, 34], to mention only a few). An
overview of existing solutions and open issues is given by Hind
in [11]. However, an important aspect to note is that the semantics
of references are fundamentally different from those of pointers in
languages such as C. The PHPManual [27] devotes a whole chapter
to explaining references and highlighting the differences to C point-
ers. In essence, while C pointers are special variables that contain
memory addresses, PHP references are symbol table aliases [27]
that do not directly address memory locations. Besides, PHP does
not provide a separate data type for references. Instead, all variables
are references by nature, even those containing only scalar values.
Another difference, which occurs in combination with parameter
passing, is illustrated by Figure 3. When entering function “a” on
Line 6, the formal parameter $p has been aliased with the actual
parameter $x1. However, since $x1 and $p are now only symbol
table aliases, the reference assignment on Line 7 only re-references
$p, leaving $x1 unmodified. In C, passing and modifying a pointer
in this way would make the pointer corresponding to $x1 point to
$x2 after returning from the function call on Line 3. To the best of
our knowledge, these issues have only been superficially addressed
in one of our previous works [17] so far. Moreover, PHP references
are mutable, as opposed to references in C++. Finally, as mentioned
by Xie and Aiken [35], the fact that PHP is a scripting language
leads to further problems for static analysis, such as implicit and
dynamic type information, or the lack of explicit variable declara-
tions. Liu et al. [21] briefly mention to have applied existing pointer
analysis algorithms to Python programs, unfortunately without pro-
viding further details.

4.2 Intraprocedural Alias Analysis

Figure 4 shows a program snippet annotated with alias informa-
tion that is valid after the execution of the corresponding code line.
In this figure (and in the following ones), we represent must-alias
(“u”) and may-alias (“a”) information separately. At the beginning
of the program on Line 1, there exist no aliases yet. After the ref-
erence assignment on Line 2, variables $a and $b are aliases. We
encode this fact by adding a new must-alias group to the must-alias
information. Must-alias groups are unordered and disjoint sets of
variables that are must-aliases. On Line 4, a second group is cre-
ated after redirecting $c to $d. This new group is extended by vari-
able $e as result of the statement on Line 5. Finally, we have to
merge the information entering from two different paths after the
if-construct on Line 7. Intuitively, it is clear that all must-aliases
created inside the if-construct must be converted into may-aliases.

1: skip; // u{} a{}
2: $a =& $b; // u{(a,b)} a{}
3: if (...) {
4: $c =& $d; // u{(a,b) (c,d)} a{}
5: $e =& $d; // u{(a,b) (c,d,e)} a{}
6: }
7: skip; // u{(a,b)} a{(c,d) (c,e) (d,e)}

Figure 4. Intraprocedural analysis information.

Instead of using sets of variables, we encode may-aliases by means
of unordered variable pairs. Hence, the must-alias group (c,d,e) is
split into the three may-alias pairs (c,d), (c,e), and (d,e). The reason
for this asymmetric encoding of must-alias and may-alias informa-
tion is that it simplifies the algorithms necessary for interprocedural
analysis (given in Appendix A). Figure 13 in Appendix A shows
the combination operator algorithm that is used for merging alias
information at the meeting point of different program paths (based
on the construction of strongly connected components). Note that
this combination operator does not simply compute must-aliases
through intersection and may-alias through union (although these
steps are performed as parts of the algorithm). For instance, using
such a straightforward procedure to combine the information from
Lines 2 and 5 of Figure 4 would result in empty may-alias informa-
tion, which deviates from the correct result shown on Line 7.
The separate tracking of must-alias and may-alias information

(instead of using only may-alias information) is motivated by the
resulting precision gain. Consider the case where variables $a and
$b are must-aliases and tainted. When encountering an operation
that untaints $a, our analysis is able to correctly untaint $b as well.
If the analysis only possesses may-alias information, it would have
to make a conservative decision and leave $b tainted.

4.3 Interprocedural PHP Concepts

Before going into the details of our interprocedural alias analysis,
we will give a brief overview of the PHP concepts necessary for
understanding the following sections. In terms of scoping, there
are two types of variables in PHP: local variables, which appear in
the local scope of functions, and global variables, which are located
in the global scope (i.e., outside every function). Note that formal
function parameters belong to the class of local variables. From
inside functions, global variables can be accessed in two ways. The
first method is using the “global” keyword. A statement such as
“global $x” has the effect that the local variable $x is aliased with
the global variable $x. The other way is to access global variables
directly via the special “$GLOBALS” array, which is visible at
every point in the program. Using this array, global variables can
even be re-referenced from inside functions, whereas the “global”
keyword does not offer this possibility.

4.4 Interprocedural Alias Analysis

The main problem arising with interprocedural analysis is the han-
dling of recursive function calls. Every instance of a called func-
tion contains its own copies of its local variables (variable incarna-
tions). In most cases, it is not possible to decide statically how deep
recursive call chains can become since the depth may depend on
dynamic aspects, such as values originating from databases, or user
input. Hence, static analysis would be faced with an infinite number
of variable incarnations. Since this would mean that the underlying
lattice would not satisfy the ascending chain condition [26] (i.e., it
would have an infinite height), the analysis would not terminate in
such cases. The solution to this problem is the following:

Inside functions, the analysis only tracks information about
global variables and its own local variable incarnations.



In the global scope, only global variables are considered. This vital
rule leads to a finite number of variables during the analysis and
forms the basis for the rest of the paper.
When encountering a function call during the analysis, the fol-

lowing two questions arise:

1. What alias information has to be propagated into the callee?

2. What alias information is valid after control flow returns to the
caller?

We will now give an overview of the answers to these questions.
A more detailed treatment will be presented afterwards. From the
callee’s point of view, the analysis has to provide the following
information:

• Aliases between global variables.
• Aliases between the callee’s formal parameters.
• Aliases between global variables and the callee’s formal param-
eters.

From the caller’s point of view, the following information has to be
obtained after the function returned:

• Aliases between global variables.
• Aliases between global variables and the caller’s local variables.
Note that the aliases between the caller’s local variables cannot be
modified by the callee. Similarly, the aliases between the callee’s
local variables are always the same on function entry. In the fol-
lowing sections, we will discuss each of the above issues in detail,
ordered by increasing complexity of the necessary concepts. The
detailed algorithms can be found in Appendix A.

4.4.1 Aliases between Global Variables

The alias relationships between global variables are important for
both the caller and the callee. On the one hand, the callee must
know about how global variables are aliased at the time the function
call is performed. On the other hand, the caller must be informed
about how the global aliasing information has been modified by
the callee. These aspects can be treated in a straightforward way,
similar to the method applied by Sharir and Pnueli in their classic
treatment of interprocedural analysis [30]. An example is given in
Figure 5. In this figure, we extend our notation by prefixing variable
names with the name of the containing function. Global variables
are considered to be contained in the special “main” function, ab-
breviated with “m”. When calling function “a” on Line 2, there
is no aliasing at all. This empty alias information is propagated
into the function. From the function’s entry until the call to “b” on
Line 9, we simply apply our intraprocedural techniques. As men-
tioned above, each function only tracks information about global
variables and its own local variables. Therefore, the information
about the local variables of “a” is removed prior to propagation
into “b”. The information about global variables, however, is prop-
agated as it is. Inside function “b”, the global aliases are modified
by the statement on Line 15. On Line 10, this modified information
is returned to function “a”, which also restores the alias information
for its own local variables. May-aliases between global variables,
which have not occurred in this example, are treated analogously.

4.4.2 Aliases between the Callee’s Formal Parameters

Aliases between formal parameters appear when there exists
an alias relationship between the corresponding actual call-by-
reference parameters. For instance, function “b” in Figure 6 has
two call-by-reference parameters, $bp1 and $bp2. The correspond-
ing actual parameters are $a1 and $a2, which are must-aliases at the
time of the call to function “b”. As a result, the formal parameters
$bp1 and $bp2 are must-aliases on function entry.

01: skip; // u{} a{}
02: a();
03: skip; // u{(m.x1, m.x2, m.x3)} a{}
04:
05: function a() { // u{} a{}
06: $a1 =& $a2; // u{(a.a1,a.a2)} a{}
07: $GLOBALS[’x1’] =& $GLOBALS[’x2’];
08: skip; // u{(a.a1,a.a2) (m.x1, m.x2)} a{}
09: b();
10: skip; // u{(a.a1,a.a2)
11: // (m.x1, m.x2, m.x3)} a{}
12: }
13:
14: function b() { // u{(m.x1, m.x2)} a{}
15: $GLOBALS[’x3’] =& $GLOBALS[’x1’];
16: skip; // u{(m.x1, m.x2, m.x3)} a{}
17: }

Figure 5. Aliases between global variables.

01: a();
02:
03: function a() { // u{} a{}
04: $a1 =& $a2; // u{(a.a1, a.a2)} a{}
05: b(&$a1, &$a2);
06: }
07:
08: function b(&$bp1, &$bp2) {
09: skip; // u{(b.bp1, b.bp2)} a{}
10: }

Figure 6. Must-aliases between formal parameters.

For the treatment of may-aliases between formal parameters,
additional considerations are necessary. First, recalling that may-
alias pairs are unordered, we can identify three types of may-
alias pairs that can exist at the time of a function call: (local,
local), (global, global), and (local, global). Next, we can distinguish
several cases depending on how many elements of a may-alias pair
are used as actual call-by-reference parameter (either one or both).
Of course, if no element of a may-alias pair is used as parameter, it
cannot induce aliases between formal parameters. Table 1 provides
an overview of all possible cases and the may-alias pairs resulting
for the callee. The table shows the may-aliases between the formal
parameters of a function with signature b(&bp1, &bp2) that result
from different calls to this function (given in the first column) and
different may-aliases at the time of the function call (given by the
second column, labeled with “Entering may-aliases”). An example
for the case in the second row of Table 1 is shown in Figure 7. Here,
the may-alias pair ($a1, $a2), which consists of two local variables,
reaches the call to function “b” on Line 8. Both of these local
variables are used as actual call-by-reference parameters. Hence,
this initially results in three may-alias pairs: ($bp1, $bp2), ($bp1,
$a2), and ($bp2, $a1). The last two pairs are not propagated to the
callee, since they contain local variables of the caller. Figure 14 in
Appendix A shows the exact algorithm that has been applied here.

4.4.3 Aliases between Global Variables and the Callee’s
Formal Parameters

For detecting aliases between global variables and the callee’s
formal parameters, we have to consider the following cases for the
actual call-by-reference parameter:

• The parameter is a must-alias of a global variable.



Function call Entering may-aliases Resulting relevant may-aliases Resulting irrelevant may-aliases
b(&$local 1, –) (local 1, local 2) none (bp1, local 2)
b(&$local 1, &$local 2) (local 1, local 2) (bp1, bp2) (bp1, local 2), (bp2, local 1)
b(&$global 1, –) (global 1, global 2) (bp1, global 2) none
b(&$global 1, &$global 2) (global 1, global 2) (bp1, global 2), (bp2, global 1), (bp1, bp2) none
b(&$local, –) (local, global) (bp1, global) none
b(&$global, –) (local, global) none (bp1, local)
b(&$local, &$global) (local, global) (bp1, bp2), (bp1, global) (bp2, local)

Table 1. May-aliases between formal parameters resulting from calls to a function with signature b(&bp1, &bp2)

01: a();
02:
03: function a() { // u{} a{}
04: if (...) {
05: $a1 =& $a2; // u{(a.a1,a.a2)} a{}
06: }
07: skip; // u{} a{(a.a1,a.a2)}
08: b(&$a1, &$a2);
09: }
10:
11: function b(&$bp1, &$bp2) {
12: skip; // u{} a{(b.bp1,b.bp2)}
13: }

Figure 7. May-aliases between formal parameters.

01: a();
02:
03: function a() { // u{} a{}
04: $a1 =& $GLOBALS[’x1’]; // u{(a.a1,m.x1)} a{}
05: b(&$a1);
06: }
07:
08: function b(&$bp1) { // u{(m.x1,b.bp1)} a{}
09: skip;
10: }

Figure 8. May-aliases between formal parameters and global vari-
ables.

• It is a global variable (and hence, a trivial must-alias of a global
variable).

• It is a may-alias of a global variable.
Fortunately, these cases are quite simple and can be handled with
the same means as those that have been applied in the previous
section. Figure 8 shows an example for the first case. At the call
to function “b” on Line 5, variable $a is a must-alias of the global
variable $x1. Since $a is used as actual call-by-reference parameter,
this means that the formal parameter $bp1 becomes a must-alias of
$x1 on function entry.

4.4.4 Aliases between Global Variables and the Caller’s
Local Variables

As mentioned previously, the aliases between local variables of a
caller cannot be changed by a callee. However, the aliases between
the caller’s local variables and global variables can be modified by
the callee in the following ways:

1. If a local variable is aliased with a global variable at the time of
the function call:

(a) Other global variables can be redirected to this global vari-
able, and hence, to the local variable.

(b) This global variable can be redirected to something else, and
hence, away from the local variable.

2. If a local variable is aliased with a formal parameter through
call-by-reference:

(a) Global variables can be redirected to this formal parameter,
and hence, to the local variable.

Note that each of these cases implies a number of subcases depend-
ing on whether must- or may-aliasing is performed. Our basic rule
for interprocedural analyses forbids the propagation of aliasing in-
formation about local variables to other functions. Hence, another
mechanism is necessary to be able to collect information about
changes of aliasing relations between global variables and local
variables. For this purpose, we will present the notion of shadow
variables.

Shadow Variables Our analysis uses two types of special vari-
ables for solving the problem mentioned above. The first type,
called formal-shadows (or f-shadows), are introduced at the be-
ginning of every function. There is one f-shadow for each formal
parameter of a function, and each f-shadow is aliased with its cor-
responding formal parameter at the beginning of this function. For
instance, consider the function with signature ”a($ap1, $ap2)”. The
analysis introduces the f-shadows $ap1 fs and $ap2 fs at the begin-
ning of the function, and aliases them with their formal parameters.
Therefore, $ap1 fs references the same memory location as $ap1,
and $ap2 fs references the same memory location as $ap2. Anal-
ogously, the second type of shadows are the global-shadows (or
g-shadows), which are also introduced at the beginning of every
function. For each global variable, there is one g-shadow per func-
tion, and each g-shadow is aliased with its corresponding global
variable at the beginning of the function. For instance, if there are
two global variables $x1 and $x2 in the program, then each func-
tion is assigned its own shadow variable $x1 gs for $x1, as well
as a shadow variable $x2 gs for $x2. These definitions lead to the
following properties of shadow variables:

• Shadow variables are local variables.
• Shadow variables cannot be accessed by the programmer, since
they are fresh variables introduced by the analysis. This implies
that they are never re-referenced after their initialization per-
formed by the analysis.

Intuitively, the f-shadows of a function have the purpose of repre-
senting local variables of the caller that were aliased with a formal
parameter of the function at the time of the call. Analogously, g-
shadows represent local variables of the caller that were aliased
with a global variable at the time of the function’s invocation. This
provides us with the means to determine how the aliases between
the caller’s local variables and global variables are modified by
function calls.



01: a();
02: skip; // u{(m.x1, m.x2)} a{}
03:
04: function a() { // u{(m.x1, a.x1_gs)
05: // (m.x2, a.x2_gs)} a{}
06: $a1 =& $GLOBALS[’x1’];
07: skip; // u{(m.x1, a.x1_gs, a.a1)
08: // (m.x2, a.x2_gs)} a{}
09: b();
10: skip; // u{(m.x1, m.x2, a.x2_gs)
11: // (a.a1, a.x1_gs)} a{}
12: }
13:
14: function b() { // u{(m.x1, b.x1_gs)
15: // (m.x2, b.x2_gs)} a{}
16:
17: $GLOBALS[’x1’] =& $GLOBALS[’x2’];
18:
19: skip; // u{(m.x2, b.x2_gs, m.x1)} a{}
20: }

Figure 9. Aliases between local variables and global variables.

To illustrate the value of shadow variables, consider Figure 9,
which shows a code snippet covered by Case 1b. At the time of
the call to function “b” on Line 9, the local variable $a1 is a
must-alias of the global variable $x1. Inside the called function on
Line 17, this global variable is re-referenced to another global vari-
able. Without using g-shadows, the analysis would not be able to
determine that $a1 is no longer aliased with $x1 when control flow
returns to function “a” (remember that propagating local variables
into the callee is not allowed). With the g-shadow, however, the
analysis is able to extract this vital fact: In the information flowing
back from function “b”, the g-shadow of $x1 is not aliased with
$x1 any more. Recalling the purpose of g-shadows, we know that
the g-shadow of $x1 is indirectly representing $a1 (since $a1 was
an alias of $x1 at the time of the call). Hence, we can deduce that
$a1 is not aliased with $x1 any longer. Also, note that the fact that
the global variable $x1 becomes an alias of the global variable $x2
is returned to the caller as well.
The detailed algorithm covering all presented cases can be

found in Figure 15 in Appendix A. Due to space limitations, we
abstain from a further discussion of the other cases. The inter-
ested reader is referred to our web site [19] for a comprehensive
collection of examples that have been used to test our algorithms
in practice. These examples clearly demonstrate the ability of our
analysis to solve even difficult aliasing problems.

4.4.5 Limitations

Currently, the employed analyses provide no support for object-
oriented features of PHP. This means that object or member vari-
ables never appear as elements of alias relationships. Besides, ref-
erence statements that contain arrays or array elements are not con-
sidered. However, this restriction did not appear to impart the re-
sults in our experiments. Also, note that this limitation only applies
to alias analysis, whereas literal and taint analysis invest signifi-
cant efforts into tracking the attributes of arrays and their elements.
These limitations are the reason why our analysis is unsound (i.e.,
it may generate false negatives). For instance, a taint value that is
propagated through alias relationships between array elements is
not detected.

5. Resolving Includes
Virtually all web applications written in scripting languages such
as PHP divide their code over several source files. These files are
consolidated at run-time by means of file inclusion. A major differ-
ence compared to file inclusions in C and other languages is that the
names of the included files need not be represented by static liter-
als. Instead, these names can be composed of arbitrary expressions.
Therefore, it is necessary to compute information about the value
of these expressions to be able to take into account included files
during static analysis. Straightforwardly applying a simple prepro-
cessor such as the one used for C programs would not suffice, as it
would leave a significant number of includes unresolved.
Basically, the task of resolving includes can be performed by

literal analysis. A straightforward approach would be to include
successfully resolved files “on the fly” during literal analysis. How-
ever, this results in the problem of having to modify the lattice of a
running data flow analysis, which is both conceptually demand-
ing and difficult to implement. Another issue is performance: It
would be desirable to immediately resolve literal includes without
the need to perform a fully-fledged literal analysis.
Our solution is to apply an iterative two-stage preprocessing

step that is fast, precise, and easy to implement. In the first stage,
we transitively resolve and include files whose names are directly
given by literals (strings). In the second stage, if there are any non-
literal include statements, we perform a literal analysis on the code
that resulted from the first stage. This second stage may lead to
the inclusion of additional files, which may again contain simple
literal includes. Hence, we continue with the next iteration of the
first stage and handle literal includes again. The process eventually
terminates when there are no resolvable includes left.
PHP also permits the definition of recursive include relation-

ships, which are used very rarely in practice. A simple approxima-
tive solution to this problem would be to include every file not more
than once. Unfortunately, this would be highly imprecise because
real-world applications often include the same files multiple times,
even if there are no recursive includes. This practice is analogous
to calling a function multiple times without calling it recursively.
Therefore, during our include resolution process, we build an in-
clude graph that is used to determine whether an encountered in-
clude is recursive or not. Only in case of real recursive includes, we
approximate such statements by treating them like no-ops.

6. Empirical Results
We used the presented concepts to enhance Pixy, the prototype sys-
tem introduced in our previous paper [16], and performed a series
of experiments to demonstrate its ability to detect previously un-
known cross-site scripting vulnerabilities. To this end, Pixy was run
on the current versions of three open source PHP programs. In con-
trast to C or Java programs, which have one clearly defined entry
point where the execution starts (i.e., the main function), web appli-
cations written in PHP usually have several different entry points.
These entry points correspond to the files visible in the browser’s
location bar while surfing the web application. We provided these
entry points as input files to Pixy, which automatically resolved
further file inclusions. Table 2 shows a summary of our results, in-
cluding the number of entry points and the total lines of code that
have been analyzed. To determine the line count, we do not fac-
tor out files that were analyzed multiple times in different contexts.
For example, if an entry file “a.php” includes a file “b.php” twice,
the lines of “b.php” are counted twice. Most entry files (together
with their transitively included files) were analyzed in less than a
minute using a 3.0 GHz Pentium 4 processor with 1GB RAM, even
though our prototype still presents many opportunities for perfor-



mance tuning. There was no analysis run that took longer than five
minutes.
In total, we discovered 106 exploitable XSS vulnerabilities in

the latest versions of the analyzed programs. In all cases, we in-
formed the authors about the issues and posted security advisories
to the BugTraq mailing list [4]. The false positive rate of about
50 % is relatively low and further alleviated by the fact that many
false positives are similar, which makes their recognition easier (see
Section 6.2). Pixy also reported a few programming bugs not rele-
vant for security, such as function calls with too many arguments.
Since these bugs have no influence on program security, they were
counted neither as vulnerabilities nor as false positives. These re-
sults clearly show that our analysis is capable of efficiently finding
previously unknown vulnerabilities in real-world applications.

6.1 A Case Study: MyBloggie

Detailed descriptions of the discovered vulnerabilities are given
in the corresponding BugTraq postings. In this section, we will
take a closer look at an interesting vulnerability that we discov-
ered in MyBloggie. This vulnerability is rather complex, especially
when inspected in its original, unsimplified form. The relevant code
spans three different source files and two functions, and includes
value flows between parameters, arrays, and variables from differ-
ent scopes. Finding such a vulnerability without the assistance of
an automated analysis tool is quite unlikely.
Figure 10 shows the code in a simplified and condensed form.

The sensitive sink on Line 11 receives a tainted value as input,
which is held by the function’s second formal parameter ($mes-
sage). This function is called from Line 8 with $tbstatus as ac-
tual parameter. Inside the branches of the preceding if-construct,
$tbstatus is either set to the empty string on Line 5 (which is un-
tainted), or is built up from the variable $tbreply on Line 3 (the “.” is
PHP’s string concatenation operator). The value of the global vari-
able $tbreply is set by the call to function “multi tb” on Line 2. A
closer look at this function reveals that $tbreply is tainted whenever
the first parameter $post urls of function “multi tb” is tainted. First,
$post urls is split into an array on Line 16. Afterwards, this array
is traversed by the loop starting on Line 17. Inside the loop, $tbre-
ply is assembled from the elements of the array $tb urls. In effect,
since $post urls can be controlled directly by the attacker (through
including the appropriate parameter in a request), this means that
the described data flow chain eventually leads to control of the crit-
ical $message variable on Line 11.
As already mentioned in Section 4.3, the “global” keyword has

the effect that a local variable is aliased with the corresponding
global variable. Thus, without the help of alias analysis, we would
not have been able to detect the value flow from $post urls to
$tbreply, leaving the described vulnerability undetected.

6.2 False Positives

Amajority of the reported false positives (38 of 57) were due to im-
possible program paths. Figure 11 shows a simplified example of
such a case, taken from DCP Portal. The analysis reported that the
sensitive sink on Line 4 receives tainted input, namely the value re-
turned by the call to function “SelectMember”. The return value
of this function may be equal to the global variable $site name
(Line 11). This global variable is initialized with an untainted value
on Line 2 only if the condition on Line 1 evaluates to true. Closer
inspection revealed that, in fact, this condition always evaluates
to true in practice. Otherwise, it would mean that the underlying
database would be seriously corrupted, which would hardly remain
unnoticed by the administrators. This particular case was responsi-
ble for 13 false positives. As soon as we determined the reason for
the first of these reports, it was easy to identify the remaining ones
as false positives as well.

01: if (...) {
02: multi_tb($post_urls, ...);
03: $tbstatus = $tbstatus . $tbreply;
04: } else {
05: $tbstatus ="";
06: }
07:
08: message(..., $tbstatus);
09:
10: function message(..., $message ) {
11: echo $message;
12: }
13:
14: function multi_tb($post_urls, ...) {
15: global $tbreply;
16: $tb_urls = split(’( )+’, $post_urls, 10);
17: foreach($tb_urls as $tb_url) {
18: $tbreply .= $tb_url;
19: }
20: }

Figure 10. Vulnerability in MyBloggie (simplified).

01: while ($row = mysql_fetch_array($result)) {
02: $site_name = $row["site_name"];
03: }
04: echo SelectMember(..., ...)
05:
06: function SelectMember($id, $opt) {
07: global $site_name;
08: if (...) {
09: ...
10: } else {
11: return $site_name;
12: }
13: }

Figure 11. False positive due to impossible path (simplified).

As described by Sharir and Pnueli in [30], there are two types of
context-sensitive interprocedural analyses, namely call-string anal-
ysis and functional analysis. Functional analysis usually provides
more precise results than call-string analysis. In general, none of
the two analyses is faster than the other per se, since their perfor-
mance largely depends on the call graph of the analyzed program.
However, for one entry point to MyBloggie, it turned out that func-
tional analysis created a large number of contexts during the inter-
procedural analysis. To address this problem, we decided to per-
form taint analysis as instance of a call-string analysis with one-
element call-strings for our experiments. The resulting twelve false
positives could be eliminated by simply switching back to func-
tional analysis. We believe that the imposed performance penalty
of performing a functional analysis can be effectively reduced by
refining some of the internal mechanisms of our analysis (such as
the workset order, or the merging of equivalent contexts into one).
Five false positives were caused by variable array indices. For

instance, the predefined PHP variables $ SERVER[’PHP SELF’]
and $ SERVER[’HTTP HOST’] are untainted, since they cannot
be controlled by an attacker. However, the value of some variable
entries of $ SERVER (such as $ SERVER[$v]) are conservatively
assumed to be tainted because there exist a few entries that can
be controlled by an attacker. Using literal analysis to resolve such
variable array indices could eliminate this type of false positive.



Program Entry Files LOC Time (sec/File) Vulnerabilities False Positives BugTraq ID
DCP Portal 6.1.1 22 61 617 6.0 61 35 427175
MyBloggie 2.1.3beta 6 20 326 58.3 14 5 427182
TxtForum 1.0.4-dev 15 4 398 1.3 31 17 427186, 427188

Totals 43 86 341 11.7 106 57

Table 2. Summary of vulnerability reports.

include(’lib/’ . $_POST[’fname’] . ’.inc.php’);
include($_POST[’path’] . ’/somefile.php’);

Figure 12. A harmless and a dangerous unresolvable inclusion.

The remaining two false positives resulted from custom sani-
tization using regular expressions. Our prototype does not regard
regex sanitization as reliable, since it is often difficult to cover all
possible attack vectors (that is, it is easy to omit certain dangerous
characters). Manual inspection, however, did not reveal any ways
of circumventing the protection applied in these two cases.

6.3 File Inclusion Effectiveness

Table 3 summarizes our observations concerning the applied file
inclusion algorithm. The second column lists the average number
of iterations that were necessary for processing the entry files of a
program (along with all their transitive inclusions). There was no
entry file that required more than four iterations, and each entry was
processed in less than 15 seconds. The third and fourth columns
show the average number of literal and non-literal includes that
were resolved per file. This demonstrates that non-literal includes
occur more frequently than literal includes, and, as a result, the
need for an intelligent resolution algorithm that is able to handle
non-literal cases. Otherwise, a significant number of inclusions
would be missed, leading to both false positives and false negatives.
All non-literal includes that could not be resolved assemble the

names of the files to be included from dynamic input (mostly from
user input, such as cookie fields and POST values, and sometimes
from file contents). A close manual inspection of such cases is
advisable, since they represent potential security leaks. If an at-
tacker has control over the names of the files that are to be in-
cluded, it might be possible to inject arbitrary scripts (i.e., arbitrary
PHP code) into the program. Most of the cases we encountered
are harmless and similar in structure to the first inclusion shown in
Figure 12. In this example, it is impossible to include a remote file
(e.g., located on the attacker’s server) because the name of the in-
cluded file starts with “lib”, and not with a protocol specifier such
as “http://”. However, it would still permit path traversal attacks
through the use of path strings containing elements such as “../..”.
For instance, an attacker could trick the statement into including
the server’s “/etc/passwd” file, which would be returned verbatim
by PHP. This threat is mitigated by the provided suffix “.inc.php”,
resulting in the restriction that only files with this extension are
included. In one case, however, an include statement such as the
second one shown in Figure 12 was encountered. Here, an attacker
can cause the inclusion of an arbitrary remote script with the name
“somefile.php”. By placing such a file on a web server under the
attacker’s control and providing this file’s URL in the POST pa-
rameter “path”, the code contained inside this file (written by the
attacker) is executed with the privileges of the running PHP server.

7. Related Work
Currently, there exist only few approaches that deal with static de-
tection of web application vulnerabilities. Huang et al. [14] were

the first to address this issue in the context of PHP applications.
They used a lattice-based analysis algorithm derived from type
systems and typestate, and compared it to a technique based on
bounded model checking in their follow-up paper [13]. Alias anal-
ysis or include file resolution is not performed.
A recent technical report by Xie and Aiken [35] addresses the

problem of statically detecting SQL injection vulnerabilities in
PHP scripts. By applying a custom, three-tier architecture instead
of using fully-fledged data flow analysis techniques, they operate
on a less ambitious conceptual level than we do. For instance,
recursive function calls are simply ignored, and no alias analysis
is performed. The authors briefly mention an approach to resolve
include statements that seems to yield good results in practice.
Unfortunately, comparing their approach to ours is difficult due to
the lack of a more detailed description. For instance, the problem
of recursive or non-literal includes is not addressed explicitly.
Livshits and Lam [22] applied an analysis supported by binary

decision diagrams developed by Whaley and Lam [33] for finding
security vulnerabilities in Java applications. Their work differs
from ours in the underlying analysis, which is flow-insensitive
for the most part, and the target language, which is typed. This
considerably eases the challenges faced by static analysis.
Minamide [23] presented a technique for approximating the

string output of PHP programs with a context-free grammar. While
primarily targeted at the validation of HTML output, the author
claims that it can also be used for the detection of XSS vulnerabili-
ties. However, without any taint information or additional checks, it
appears to be difficult to distinguish between malicious and benign
output. Only one discovered XSS flaw is reported, and the observed
false positive rate is not mentioned. Moreover, only “basic features”
of PHP are supported, excluding references.
Engler et al. have published various static analysis approaches

to finding vulnerabilities and programming bugs in C programs.
In [8], the authors describe a system that translates simple rules into
automata-based compiler extensions that check whether a program
adheres to these rules or not. In an extension to this work, the au-
thors present techniques for the automatic extraction of such rules
from a given program [9]. Finally, tainting analysis is used to iden-
tify vulnerabilities in operating system code where user supplied
integer and pointer values are used without proper checking [3].
An alternative approach aiming at the detection of taint-style

vulnerabilities introduces special type qualifiers to the analyzed
programming language. One of the most prominent tools that ap-
plies this concept is CQual [10], which has been, among other
things, used by Shankar et al. [29] to detect format string vulner-
abilities in C code. However, it remains an open question whether
this technique can be applied to untyped scripting languages.

8. Conclusion
Web applications have become a popular and wide-spread interac-
tion medium in our daily lives. At the same time, vulnerabilities
that endanger the personal data of users are discovered regularly.
Manual security audits targeted at these vulnerabilities are labor-
intensive, costly, and error-prone. In a previous paper [16], we pro-
posed a precise static analysis technique that is able to detect the



Program Iterations Resolved Literal Includes Resolved Non-Literal Includes Unresolved Includes
DCP Portal 6.1.1 3.9 0.9 5.8 1.9
MyBloggie 2.1.3beta 3 6.5 12.3 0
TxtForum 1.0.4-dev 1.5 1.8 2.6 1.7

Table 3. Summary of file inclusions (average numbers).

broad class of taint-style vulnerabilities automatically. Our anal-
ysis was based on data flow analysis, a well-understood and es-
tablished technique in computer science. It tackled several issues
specific to scripting languages such as PHP, which make these lan-
guages harder to analyze statically.
In this paper, we enhanced our previous work by integrating a

novel alias analysis using shadow variables. In contrast to the alias
analysis we applied previously, our new approach is able to gen-
erate precise solutions even for difficult aliasing problems. More-
over, we presented an iterative, two-stage preprocessing step for the
automatic resolution of file inclusions. We tested our concepts by
running our improved analysis tool on three web applications. The
empirical results show that we are able to efficiently and automati-
cally detect vulnerabilities with a low false positive rate.
There is an urgent need for automated vulnerability detection

in web application development, especially because web applica-
tions are growing into large and complex systems. We believe that
our presented techniques improve state-of-the-art solutions to this
problem, offering benefits to both users and providers of web ap-
plications.
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A. Algorithms

function combine (AliasInfo input-1, AliasInfo input-2) {
- AliasInfo output;
- output.may-aliases =
union of may-alias pairs of input-1 and input-2

- for each must-alias-group in input-1:
- in an auxiliary graph, create a strongly connected component
consisting of the group members

- for each must-alias-group in input-2:
- in the auxiliary graph, create a strongly connected
component consisting of the group members; if an edge to
be drawn already exists, promote it to a double edge

- for each normal (i.e., single) edge in the graph:
- add the may-alias-pair containing the corresponding nodes
to the output information

- for each strongly connected component that contains
only double edges:
- add the must-alias group containing the corresponding
nodes to the output information

- return output information
}

Figure 13. Algorithm for the combination operator.

- for each call-by-reference pair:
- create a placeholder variable for the formal parameter
and add it to the actual parameter’s must-alias group

- for each may-alias pair that contains the actual parameter:
- copy this pair, replace the actual parameter in the new pair
by the formal parameter’s placeholder, and add the new
pair to the set of may-aliases

- remove all local variables that belong to the caller
- remove all must-alias groups and may-alias pairs that
have only one element

- replace the placeholders by the corresponding
formal parameters

Figure 14. Algorithm for adjusting the alias information that is
propagated into a callee.

- origInfo: the information entering the call node
- localInfo: contains only the aliasing information between
locals of the caller (extracted from origInfo)

- interInfo: contains only the aliasing information between globals
(taken from the information at the end of the callee)

- outputInfo: initialized with localInfo and interInfo;
the following steps compute and add the aliases between
global variables and local variables;
results in the information at the local exit of the call node

// G-Shadows: Must-Aliases
- for each must-alias group in origInfo:
- if it contains at least one local variable v
and at least one global variable g:
- mark this group as visited
- if the g-shadow of g has at least one
global must-alias g u at the end of the called function:
- in outputInfo, merge the must-alias group containing v
with the must-alias group containing g u (also
considering implicit one-element groups)

- for each global may-alias g a of the g-shadow at
the end of the called function:
- add the may-alias-pair (v, g a) and all
may-alias-pairs (v u, g a) to outputInfo,
where v u denotes ”each local must-alias of v”

// G-Shadows: May-Aliases
- for each may-alias pair containing a local and a global
in origInfo:
- for each global alias (both must and may)
of the global’s g-shadow at the end of the callee:
- add the may-alias pair (local, alias) to outputInfo

// F-Shadows: Must-Aliases and May-Aliases
- for each local actual call-by-reference parameter p:
- determine the corresponding formal’s f-shadow fs
- find p’s must-alias group in origInfo
(also considering implicit one-element groups)

- if this group is not marked as visited:
- mark the group as visited
- if the f-shadow fs has at least one global must-alias f u
at the end of the callee:
- in outputInfo, merge the must-alias group containing
p with the must-alias group containing f u
(also considering implicit one-element groups)

- for each global may-alias f a of the f-shadow at
the end of the callee:
- add the may-alias pair (p, f a) and the may-alias-pairs
(p u, f a) to outputInfo , where p u denotes
”each local must-alias of p”

- for each local may-alias lma of p:
- for each global alias (both must and may) of
the f-shadow at the end of the called function:
- add the may-alias pair (lma, alias) to outputInfo

Figure 15. Algorithm for computing the alias information after a
function call.


