
Towards Plug and Play in Home and Building Automation Networks

Georg Neugschwandtner
Automation Systems Group, Inst. of Computer Aided Automation, TU Vienna

Treitlstrasse 1-3, A-1040 Vienna, Austria
gn@auto.tuwien.ac.at

Abstract
High configuration cost hampers the adoption of pow-

erful home automation solutions. Automating the neces-
sary configuration steps will alleviate this problem. The
article defines the task of “plug and play” in the context of
a distributed control system built from smart sensors and
actuators and the network management services involved.
It gives an overview of existing approaches and outlines
the requirements for a comprehensive plug and play solu-
tion as well as work-in-progress toward this goal.

1. Introduction
Home and building automation are concerned with

monitoring and automatic control of building services.
Traditionally, these are primarily heating, ventilation and
air conditioning (HVAC) systems and devices for light-
ing and shading. Safety and security systems are also be-
ing integrated. Usually, the term “building automation”
is reserved for the context of functional buildings, while
“home automation” refers to residential installations. This
distinction reflects the different characteristics of the re-
spective domains. In functional buildings, automated so-
lutions are adopted for their potential to reduce opera-
tional cost through improved energy efficiency, optimised
management (including remote access) and detailed usage
reports. In the residential domain, all these apply as well.
Yet, the focus is more on the increased comfort and peace-
of-mind automation can offer. It also holds benefits for the
elderly (“assisted living”).

Although the number of devices participating is typi-
cally by orders of magnitude smaller than in a building,
the complexity of a home automation scheme is not to be
underestimated. Although systems such as access control
or flextime are not present, domestic appliances and con-
sumer electronic devices have to be integrated. Despite
common aspects, there is significant variation in the indi-
vidual homes, devices and owners’ demands. Given that a
system must have a certain complexity to deliver attractive
functionality, considerable configuration effort is required
for every individual installation. Thus, the share of con-
figuration cost is disproportionately high in home automa-
tion. This hampers its adoption despite significant poten-
tial benefits. It therefore appears useful to look for ways

to reduce the effort required for configuration. Such im-
provements will also be of benefit to building automation
if they are done right and can be expected to be applicable
to industrial automation settings as well.

1.1. Functional blocks and their connections
Home and building automation can be considered a

special case of process automation, with the indoor envi-
ronment (and possibly its surroundings) the process being
controlled. Especially in process automation, it is usual to
describe the function of automation systems using func-
tional blocks. Every block describes a self-contained sub-
task in “black-box” fashion. Blocks can also be com-
bined to form larger blocks to build the desired applica-
tion. On the other hand, blocks can also be broken down
into smaller blocks until they can be implemented on a
device (or a resource of a device). Ideally, the resulting
blocks correspond to functions for which an implementa-
tion already exists.

The interface of functional blocks is formed by their
incoming and outgoing data. They receive input data,
process it according to a certain rule, and send output
data. Blocks can also encapsulate the functionality of
field devices. Interaction with the controlled process of-
ten appears as a data source or sink within the block.
Such blocks will output data generated by a hardware data
source (a sensor) or direct input data towards a hardware
data sink (an actuator), both contained within the block.

Multiple blocks can be implemented on a single device
or be distributed over devices. In case the controller is
freely programmable, the functional block paradigm can
also be applied.1 Intelligent field devices, however, have
their functional blocks predefined (and pre-programmed)
by the manufacturer due to resource constraints. They
remain configurable within certain limits via parameters.
Depending on the complexity of the application, it is very
often possible to build a system entirely without custom
programming, from predefined blocks only.

The concept of distributed functional blocks makes no
implications about how it is implemented. The network
system technologies geared towards home and building
automation which are most strongly rooted in the concept

1Unlike in the industrial PLC world, vendor specific approaches still
are popular besides IEC 61131 for this purpose in building automation.

4611-4244-0681-1/06/$20.00 '2006 IEEE



of intelligent field devices provide special support for ex-
changing data between functional blocks distributed over
devices.

Both with KNX/EIB [1] and LonTalk [2], node appli-
cations define communication endpoints. When a change
occurs on an outgoing communication endpoint (e.g.,
a sensor value has changed), the node application just
passes the new value to the device firmware, which takes
care of propagating the change to other nodes (i.e., func-
tional blocks). Likewise, the node application is notified
by the firmware and provided with the new value when-
ever other devices make such a transmission and new data
are available for an incoming communication endpoint.
Which devices (respectively functional blocks they imple-
ment) are linked is defined at installation time. The cre-
ation of these logical links between complementary end-
points is referred to as “binding.” The node application is
created entirely independent of these bindings. The com-
munication endpoints are usually used to transfer values
using value-based semantics, but this is not mandatory.2

To allow mixing and matching devices from different
vendors within a system (and ensure maintainability), the
blocks defined for open systems such as LonWorks or
KNX are standardised. These standardised blocks can ful-
fil generic (such as an analogue input) or domain specific
functions (e.g., a dimming actuator).

1.2. Work flow
The work flow for building such a system thus basically

consists of selecting and connecting the proper blocks:
1. Define the desired top-level application (e.g., constant
light; plus management level requirements such as cen-
tral visualization and logging). 2. Break down the func-
tionality: (a) determine the necessary sensors and actu-
ators (dimmers, light sensors); (b) determine the neces-
sary functional blocks (processing of the control loop).
3. Choose an implementation: (a) select the devices that
will implement the field, automation and management
functions (DDC with 1..10 V output, electronic ballast,
light sensor with field bus interface, server application,
...); (b) determine where these devices will be installed
and how they will be connected physically. 4. Set up the
hardware: (a) obtain the devices; (b) install the medium (if
applicable); (c) install the devices; (d) make the physical
connections. 5. Set up the software: (a) assign identifiers
(addresses); (b) assign functionality: define parameters,
create and download programs, if required; (c) establish
bindings. 6. Test.

Step 2 will probably leave some degree of freedom
(variants), so that the precise allocation of functional
blocks will not be decided until step 3. The application
definition and functionality break-down can be done in a
more formal way (in larger projects) or rather informally
(such as in a do-it-yourself home situation). In the lat-
ter case, the software setup will also often be done in an
ad-hoc fashion after installation (on-line).

2E.g., relative dimming in KNX/EIB uses command based semantics.

Assuming a less ad-hoc approach, either the step of as-
signing identifiers alone or both this step and the assign-
ment of functionality and bindings can also be done before
physical installation (off-line). Configuration and down-
load before physical installation allows immediate testing
of the specified application functions by the installer. Only
performing identification beforehand allows to download
the entire system configuration en bloc, without having to
touch every device again, but leaving time to do the con-
figuration while the construction process goes on. Yet, this
complicates work organisation on larger projects, as every
device has to go over the project engineer’s desk and has
to be installed in a particular location (meaning it cannot
be replaced with an otherwise exactly identical part).

2. “Plug and Play”
The whole process as outlined above can be supported

by automated methods. Unlike projects such as [3] or
[4] which revolve around tools for the first two steps, the
present paper focuses on the “software setup” step. Actu-
ally, this is what is generally associated with the phrase
“plug and play” in automation networks: facilitate the
configuration of the system in the commissioning phase.
As an additional benefit, reconfiguration during the oper-
ation phase is made easier as well (cf. [5]). The ideal
would be to take a hardware component “out of the box”,
add it to the system and make use of it without further
configuration (cf. also [6]).

This will however not be possible entirely, if only for
the fact that parameters have to be set which define the
precise desired behaviour. Moreover, it will always be
necessary to manually designate the device intended to
perform a particular function when it is installed together
with a number of functionally equivalent ones (e.g., load
switches) – “plug, touch, and play” rather than “full plug
and play”.

2.1. Service elements
The classic “plug and play” procedure to support is as

follows: a device is attached to the network (or host); it ad-
vertises its services (possibly with the help of a supervis-
ing instance); other devices and applications are notified
of these events (or may discover the available services if
they joined later). To support this procedure, a distributed
protocol stack needs to provide certain service elements:
• Resource allocation: certain identifiers from the

available name space are assigned to the newly at-
tached device.

• Self-description: the device must be able to provide
information about itself, at least a “magic number”
that can be looked up in a data base. Of even greater
importance than the availability of this service itself
is how the information available through it is struc-
tured, as any automated configuration depends on it.

• Discovery: it must be possible to enumerate the de-
vices that are present in the system and their capa-
bilities, preferably according to certain filter criteria.

462



The attachment and detachment of devices needs to
be detected and announced.

The discovery element can be split in device and ser-
vice discovery. Although it is typically the services (capa-
bilities) of a device that are of interest, device discovery
may be a necessary means to perform service discovery,
or be of interest for management functions.

In the PC hardware plug-and-play scenario, consumers
usually choose the service to use ad-hoc (e.g., select which
of multiple attached USB hard disks to store a file to). The
same concept persists with classic plug-and-participate
frameworks such as Jini and UPnP. The communication
relationships between automation devices, however, are
typically long-lasting (at least concerning process data
communication): a certain switch will be used to control a
particular light for a long period of time. This requires that
binding, or rather some assistance with it, is considered as
an additional required step towards plug-and-play.

As discussed above, binding involves designating
which (otherwise identical) entities should communicate.
In many situations, devices with complementary functions
will be connected through more than one communication
endpoint each (e.g., a push button may receive status feed-
back from its associated switch actuator). Since the in-
staller typically needs to identify every connection sepa-
rately (e.g., by pushing a button on both participating de-
vices), related connections are treated en bloc by exist-
ing implementations to reduce the number of buttons (and
presses) required.

2.2. Selected open commercial implementations
While its predecessor EIB did not offer any form of

configuration assistance, the KNX specification describes
a variety of “easy” modes with the required protocol sup-
port. Devices to be linked can for instance be identified by
setting code wheels to identical positions (similar to X10)
or by pushing buttons on both. Configuration can also be
performed under guidance of hand-held programming de-
vices. “Easy” binding revolves around channels, which
combine the communication endpoints (“group objects”)
of several functional blocks, also defining which optional
elements are to be used. Channels are identified using a
single number. Some modes use a distributed network ad-
dress assignment procedure, while others exclusively rely
on message identifiers. All are limited to a single network
segment. “Easy” devices can be integrated into a system
managed by the standard KNX/EIB PC configuration tool,
although no further “easy” configuration is possible then.
Discovery functions are less developed.

Although LonTalk already provided basic device dis-
covery and self-description, significant plug and play
capabilities were only added recently when Echelon
launched the “Interoperable Self Installation” (ISI) pro-
tocol extension [7]. Communication endpoints (“network
variables”) are combined into “assemblies” for binding. It
is however possible that a communication partner binds
to a subset only. The protocol is fully peer-to-peer, rely-

ing on periodic broadcasting of the allocated network re-
sources to support devices disappearing and reappearing
without special precautions. An optional domain address
server can be added to allow larger ISI networks, which
may also span two network segments.

DALI [8] is an example of how obtaining plug and play
is radically simplified by an extremely narrow and strict
application model. Since the protocol is only capable of
addressing electronic ballasts (albeit with room for future
extensions) through a single master controller, and device
attachment requires the installer to go through an explicit
configuration procedure involving the controller, the pro-
tocol is extremely compact.

Not surprisingly, BACnet [9], being geared towards
large building automation projects, does not support ad-
hoc configuration. It does, however, offer a kind of name
service (Who-Is, Who-Has) which can map object names
to binary object identifiers and network addresses to assist
with system setup. In contrast, the ZigBee protocol [10]
was designed for sensor-actuator networking. Despite be-
ing a lightweight wireless protocol, it supports detailed
self-description and discovery. The communication end-
points for bindings between ZigBee devices are clusters
of key-value pairs, whose identifiers can also be used in
discovery queries.

3. Requirements
Despite the availability of commercial protocol imple-

mentations offering “plug and play” configuration, there
still is ample room for improvement. The ultimate goal
would be an object model and management services for
near-automatic configuration fulfilling (among others) the
following requirements:
• Supports “plug, touch, and play” as well as fully au-

tomatic binding (for single device instances such as
washing machines).

• Supports configuration of distributed, peer-to-peer
control networking schemes3 and can perform the
configuration process itself in peer-to-peer fashion.

• Allows to mix and switch back and forth between
various configuration procedures (push buttons, code
wheels, PC-based software or hand-held tools, ...).

• Adapts to the differences in work flow between “do-
it-yourself” home installations and the construction
of large buildings which is strongly based on the di-
vision of labour between different contractors.

• Allows to gradually add functionality (and complex-
ity) only when required by the user, without the need
for reconfiguring the functions already implemented.

• Also allows management functions to be handled this
way (e.g., visualisation, remote services, logging).

• Is forward and backward compatible with respect
to additional functionality offered by newer devices.
Older devices should be able to participate even
when new capabilities are being added over time.

3This is a key difference to master-slave approaches such as in [11].

463



• Should be able to cover functions from all domains,
not being bound to a rigid application model. De-
scribes devices and services (functions) using flexi-
ble semantics which can be extended as required.

• Handles non-configurable devices with only a trans-
mitter (e.g., wireless switches).

• Allows devices to join and leave spontaneously. This
is required for loose goods (e.g., vacuum cleaners).

• Does not assume an always-on Internet connection.
Still, set-ups as in [12] should be possible.

• Last, certainly not least: Scales well when faced with
a wide variety of functions and devices.4

4. Work in progress

The next step toward a system fulfilling the criteria
above will be a thorough analysis of relevant systems (as
those covered in Section 2.2) with respect to the men-
tioned aspects. It shall be investigated which design fea-
tures or constraints are closely associated with the individ-
ual requirements. The semantic models supporting self
description and binding, their flexibility and scalability
will be of particular interest. In this context, the work of
[13] and [14] shall also be taken into account.

This analysis shall establish criteria to judge a new de-
sign against. Based on it, a generic, resource efficient,
scalable plug, touch, and play concept shall be designed
and formally specified. In case particular requirements
should be found to be in conflict, a coherent subset shall
be chosen. The concept shall be validated by simulation
and implementation on top of a proven control network
technology. Still, its design shall be as network technol-
ogy independent as possible.

A first informal sketch of the model that appears most
promising at the moment shall be given in the following.
Starting out from the requirement to be able to gradually
add functionality, it appears an obvious choice to require
values which directly relate to actual system inputs or out-
puts (also known as “hard (data) points”) to always be
network-visible, rather than encapsulated within a func-
tional block. If this is combined with a strictly value based
semantic for process data exchange, the process image is
naturally available over the network at any time. Addi-
tional devices can be added without endangering consis-
tency. For example, consider a push button switch which
toggles a light. If it stores the assumed state of the light
internally, it will get out of sync when the light is turned
off via a newly added additional switch. This cannot occur
when it always bases its action on the actual state.

Nevertheless, the propagation of value changes over
the network shall remain event based. This is more ef-
ficient given the traffic pattern in home and building au-
tomation. For the same reason, the explicit separation of
data and events as in IEC 61499 does not appear neces-
sary. The required precision of timing and temporal co-

4E. g., it would be unacceptable to require each device to carry an
almanac describing the capabilities of all other devices on the market.

herence of events is low. Multicast support shall cater
for the cases where the latter is of concern. To conserve
bandwidth, a subscription scheme for event notifications
shall be provided where consumers shall be able to define
the criteria for generation. This could among others be a
value or time difference, or a combination. This service
could be loosely modelled on BACnet intrinsic reporting
(though with multicast support).

In general, communication relationships shall be re-
quired to be one way (that is, communication endpoints
either incoming or outgoing), and situations where multi-
ple outgoing communication endpoints are bound to a sin-
gle incoming endpoint (“fan-in”) disallowed for simplic-
ity and clarity. The same transparency as for hard points
shall be required for system internal values without imme-
diate relation to the real world (“soft points”)–set points,
but also schedules and similar. Thus, the actual task of
control processing can be flexibly assigned to whatever
device appears best suited.

Acknowledgment The author would like to thank Peter
Ferstl and Wolfgang Kastner for valuable input.

References
[1] Home and Building Electronic Systems (HBES), European

Std. series 50090.
[2] Open Data Communication in Building Automation, Con-

trols and Building Management - Control Network Proto-
col, European Std. series 14908.

[3] C. Schwab, M. Tangermann, A. Luder, A. Kalogeras, and
L. Ferrarini, “Mapping of IEC 61499 function blocks to
automation protocols within the TORERO approach,” in
Proc. INDIN 2004, June 2004, pp. 149–154.

[4] M. Kirchhof, U. Norbisrath, C. Skrzypczyk, “Towards au-
tomatic deployment in eHome systems: Description lan-
guage and tool support,” in Proc. CoopIS/DOA/ODBASE
2004, LNCS, Springer, vol. 3290, pp. 460–476, 2004.

[5] T. Sauter, “Integration aspects in automation - a technol-
ogy survey,” in Proc. ETFA’05, 2005, vol. 2, pp. 255-263.

[6] J. P. Thomesse, “Fieldbuses and interoperability,” Control
Engineering Practice, vol. 7, no. 1, pp. 81–94, 1999.

[7] ISI Protocol Specification, Echelon doc.# 078-0300-01C,
2005. [Online.] Available: http://www.echelon.com/isi

[8] A.C. supplied electronic ballasts for tubular fluorescent
lamps – Performance requirements, IEC Std. 60929, 2003.

[9] Building Automation and Control Systems (BACS)–Part 5:
Data Communication Protocol, ISO Std. 16484-5, 2003.

[10] ZigBee Specification 1.0, ZigBee doc.# 053474r06, 2006.
[Online]. Available: http://www.zigbee.org

[11] S. Pitzek and W. Elmenreich, “Plug-and-Play: Bridging
the semantic gap between application and transducers,” in
Proc. ETFA 2005, Sept. 2005, vol. 1, pp. 799–806.

[12] M. Wollschlaeger and D. Hasler, “Uniform identification
and maintenance functions for PROFIBUS devices as an
example for Web-based information systems in automa-
tion,” in Proc. WFCS 2004, Sept. 2004, pp. 385–388.

[13] G. Stein, “Composite Ports for an architecture-oriented
assembling of components,” in Proc. WFCS 2004, Sept.
2004, pp. 119–124.

[14] S. Deter, “Fieldbus device description using tag-based
trees,” in Proc. AFRICON’02, 2002, vol. 1, pp. 263-268.

464


