
AN OPEN APPROACH TO EIB/KNX SOFTWARE
DEVELOPMENT

Wolfgang Kastner, Georg Neugschwandtner, Martin Kögler

TU Wien, Institute of Automation, Automation Systems Group,
Treitlstraße 1, A-1040 Vienna, Austria,
{k,gn,mkoegler}@auto.tuwien.ac.at

Abstract: EIB/KNX is a field bus used in home and building automation. When build-
ing application programs for EIB/KNX nodes, one was hitherto faced with low-level
constructs. To improve this situation, a RAD (Rapid Application Development) like
approach was adopted. This model encapsulates the system software entities in a way
which is inspired by the object-oriented paradigm. It also makes use of functional blocks
to describe the application behaviour. To allow the roles of software developer and project
engineer to be separated, the tool chain is designed for interfacing with an integration tool.
The article discusses the work flow when building an EIB/KNX system and the resulting
requirements on the tool chain. The GCC-based solution which was developed is pre-
sented. Specific challenges in porting the GNU tool chain to the standard microcontroller
for EIB/KNX nodes are sketched. The implementation also includes an open PC-based
EIB/KNX network access and management server. Copyright c© 2005 IFAC

Keywords: Embedded Systems, Software Engineering, Fieldbus, Configuration,
Programming Approaches

1. INTRODUCTION

The structure of EIB/KNX systems requires that node
applications can be customized without low-level pro-
gramming skills. A common tool software is avail-
able for this purpose. Still, the first-time creation of
these applications remains a highly technically in-
volved process. The goal of the present project is to
apply an RAD approach to this step while respecting
these particular work flow requirements.

1.1 EIB/KNX

The European Installation Bus EIB (Kastner et al.,
2005) is a home and building automation bus system.
It is optimized for low-speed control applications like
lighting and shading. A European standard since 1998,
EIB now forms a subset of the KNX specification
(Konnex Association, 2004).

EIB/KNX is specified over various physical media,
including powerline, with twisted pair (TP) being the
mainstay. Tunnelling EIB/KNX frames over IP net-
works is known under the term EIBnet/IP. EIBnet/IP
provides a point-to-point mode, e. g. for remote con-
figuration, as well as a multicast mode for coupling
multiple EIB/KNX subnets via IP. These modes are –
in a slightly confusing fashion – labelled Tunnelling
and Routing, respectively.

TP and powerline EIB/KNX devices are frequently
split into two parts. Generic modules providing bus
connectivity (so-called Bus Coupling Units, BCUs)
are combined with application specific hardware mod-
ules. The standard 10-pin connector between BCUs
and these application modules is called the Physical
External Interface (PEI). It can be operated in a variety
of configurations covering parallel and serial digital
I/O and analog input.

BCU

MC68HC05x

KNX Network

10

Physical External Interface (PEI)

ROM
(Network stack,

application
environment)

EEPROM
(User application)

RAM

Application module
(e.g., wall switch, motion sensor)

Transceiver / Power supply

 Serial interface, A/D converter, pulse length
modulator and other on-chip peripherals

Power + digital/analog
parallel and serial pin

configurations

Fig. 1. EIB/KNX Bus Coupling Unit

BCUs are based on Freescale M68HC05 family
microcontrollers, which are complemented with a
transceiver and link power supply (cf. Fig. 1). They
contain an implementation of the entire EIB/KNX
network stack and application environment in their
ROM. The application software customizing the BCU
for a particular application module is stored in the
EEPROM.

Currently, two major BCU variants referred to as
BCU 1 and BCU 2 exist for the TP medium, plus
another one for powerline. Their key differences lie in
the system software implementation and the amount
of available memory. While the BCU 1 is a standard
M68HC05B6, the BCU 2 is a special variant with
EIB/KNX-specific on-chip-peripherals.

For more complex user applications which use a sep-
arate microcontroller, BCUs offer high-level access to
the network stack via the PEI, using it as an asyn-
chronous serial interface. In such cases, however, the
TP-UART IC often is a more attractive alternative. It
only handles the physical and most of the data link
layer, instead of the entire EIB/KNX protocol stack as
BCUs do.

For Microsoft Windows based systems, a common
high-level API (“Falcon”) for accessing functionality
throughout the network stack by way of various in-
terfaces is available. For the Linux operating system,
which is of ever-increasing importance for embedded
platforms, kernel level drivers for BCU access as well
as TP-UART based serial interfaces have been imple-
mented (Kastner and Troger, 2003).

1.2 EIB/KNX software development and deployment

Obviously, writing all BCU application programs
from scratch is typically not a feasible approach to-

wards building an EIB/KNX system. Therefore, man-
ufacturers provide ready-made applications matching
their hardware. The behaviour of these applications
can be customized by the project engineer by modi-
fying manufacturer defined parameters. The final con-
figuration is then downloaded to the BCU. The work
flow of creating an EIB/KNX system is thus divided
into three steps:

(1) Development: A software developer writes a
BCU application program for a particular hard-
ware configuration. He documents its behaviour
and defines the parameters available to influence
it. The application is brought into a format suit-
able for distribution to EIB/KNX project engi-
neers. This format also includes the necessary
meta information to allow a software tool to
display the application parameters. Moreover, it
provides this tool with the necessary knowledge
on how to apply these changes to the program
code.

(2) Project planning: A project engineer selects ap-
propriate EIB/KNX devices to fulfil the require-
ments of a particular project. Using a (typically
PC-based) integration tool, he makes the neces-
sary adjustments to the application parameters of
the chosen devices. He also sets up their com-
munication relationships. While the software de-
veloper defines the behaviour (or set of possible
behaviours) of one single node, the project engi-
neer thus defines the behaviour of the entire sys-
tem. This step is entirely off-line, i.e., no target
devices are required yet.

(3) Installation and download: The BCUs are com-
bined with the appropriate application modules
(if not already delivered in a common housing
by the manufacturer) and installed to their final
location. This step is often carried out by a site
technician. Before or after installation, the con-
figuration is downloaded to the BCUs. This can
be done via the network. Targets are identified
via their Individual address (a configurable iden-
tifier which is unique within the installation) or
via a special button on the BCU if they have not
yet been assigned such an address.

The second and third step shall together be referred
as system integration, the software tool which assists
the work of the project engineer (and possibly site
technician) as integration tool. For EIB/KNX systems,
only one single integration tool software is necessary.
This tool, called ETS (EIBA s.c.r.l., n.d.), handles ev-
ery certified EIB/KNX device, no matter from which
manufacturer. This solution significantly lowers the
effort involved in setting up a multi-vendor system.

1.3 Project goals

In an effort to ensure that a project built with ETS
will always work as desired, ETS will not accept any

device application which has not passed compliance
certification. This creates an issue for projects which
want to explore new approaches to EIB/KNX node
software development and deployment.

The goal of the project presented was to remedy this
situation by creating an open-source framework for
developing BCU applications. The framework should
support the use of high-level languages, in particular
C. It should make obtaining the desired behaviour
as easy as possible, allowing to focus on the desired
functionality rather than how to achieve it. Applica-
tions which are easier to understand are also less error
prone. Still, the programming model should not be
overly restricted in its expressiveness regarding ac-
cess to the features of the BCU system software. The
framework should support both BCU 1 (TP version)
and BCU 2.

The separation of development and integration as out-
lined above was to be supported. For this purpose,
a suitable, open interface between the development
framework and an integration tool had to be defined.
The interface should be generic enough to accommo-
date hardware platforms other than BCUs. The format
should also describe the behaviour of the application,
which we believe to be necessary for any advanced
approach to configuration. Still, the RAD approach
in the context of the BCU SDK was to focus on the
development step. Although a suitable interface was
desired to support automating the system configura-
tion (project planning) process, the actual automation
of this step itself was out of scope.

2. BCU SDK OVERVIEW

Fig. 2 illustrates the approach the BCU SDK (soft-
ware development kit) developed during the present
project takes towards implementing the work flow dis-
cussed in Section 1.2. The software developer uses the
preparation build script to prepare the source code of
the new application for distribution to project engi-
neers. The build script controls the execution of the
necessary tools. First, the input files are run through
a custom preprocessor which implements the RAD
programming model. An example program illustrat-
ing this model is presented in Section 3. The code
is checked for errors and transformed into a format
suitable for distribution, which will in the following
be referred to as program text. Also, a description of
the customizable aspects of the application (and its
behaviour) is generated (application meta data).

The application meta data are collected in some form
of product data base. From this collection, the project
engineer retrieves the descriptions of the devices he
has decided to use in a new project. The exact design
of this database, which will also hold the matching
program texts, and its interfaces are not relevant for
the purposes of the BCU SDK. The project engineer
may base his choice on external documentation (as

it is the case with ETS now) or the integration tool
may assist him using the information provided in the
application meta data. Either way, he defines the cus-
tomization options and binding data (communication
relationships) for every device. The integration tool
generates the appropriate interchange data format for
these configuration meta data.

It does not, however, touch the contents of the program
text. The integration tool is merely responsible for
passing it to the finalization build script together with
the associated configuration meta data. The finaliza-
tion build script will then take all necessary actions to
make the necessary changes to the program text. How
this is done precisely is hidden from the integration
tool, which therefore has no need to interpret the pro-
gram text.

To match up program texts and their associated ap-
plication meta data, the meta data description con-
tains a reference attribute which uniquely identifies
the associated program text. Since it is not limited in
length, the current SDK implementation exploits the
fact that the most unique identifier is the program text
itself. It thus simply stores the (appropriately encoded)
program text as the attribute value.

The finalization build script generates a final binary
image, which is ready for download to the BCU. This
image can be stored in a project data base together
with the associated configuration meta data. Finally,
the loader downloads this image to the device with the
matching individual address. Again, the integration
tool controls the loader (and the address assignment
procedure), but is not required to have any knowledge
of the format of the binary image. For these online
steps, a bus daemon was implemented to provide the
necessary EIB/KNX network access. It is presented in
detail in Section 4.

The design of the project data base is again not rele-
vant to the BCU SDK. It would equally be possible to
have it store the program text and generate the final
image on the fly before download. This would, for
example, allow to change parameters later without the
need to keep the product data base. However, since
creating the final image is an offline step, it was in-
cluded in the middle column of Fig. 2.

Although the data formats for application and config-
uration meta data have been fully defined, no match-
ing integration tool is available yet. Therefore, the
BCU SDK contains a stub implementation. It creates
a configuration skeleton which has to be completed
manually.

Actually, a developer will always need a special in-
tegration tool, since he should not have to manually
reapply configuration information for every debug it-
eration of the program text. This is addressed in the
current version by allowing to specify the program
text to the finalization build script separately from the
configuration meta data.

Project engineer
(offline)

Software developer Project engineer / Site
technician (online)

Product
database

Project
database

Loader

param eters,
binding

Finalizat ion
build script

Source
code

Program text Binary
im age

Bus daem onCustom preprocessor + GNU tool chain

Preparat ion
build script

BCU SDK

Applicat ion
m eta data

Config.
m eta
data

Integrat ion Tool

Fig. 2. Work flow and data flow using the BCU SDK

In the BCU SDK, the program text is not a binary
image yet. Instead, it contains the preprocessed source
code and mapping information between its identifiers
and the ones used in the application meta data. The
final compiler run is made only when all configuration
settings are known to reduce image size.

Still, the preparation build script already builds a bi-
nary image for test purposes. This is done to check the
source code for syntax errors. It also gives an upper
limit on the code size, as no optimizations which could
be made in response to certain parameter settings are
applied.

This is in contrast to ETS, which modifies parameters
and binding information in the executable binary. This
approach supports only relatively minor modifications
in response to a parameter change (e.g., changing a
single byte). Nevertheless, such an approach would be
possible using the BCU SDK as well. Experimental
patching programs for the test image generated by the
preparation build script were implemented.

Code generation relies on the GNU tool chain, which
was ported to the Freescale/Motorola M68HC05 fam-
ily microcontroller architecture. Key features of this
port are presented in Section 5.

2.1 Meta data interchange formats

The application and configuration meta data formats
are XML based. XML Schema definitions are pro-
vided. Fig. 3 shows an example application descrip-
tion (only selected nodes are shown). At the top level,
it contains the program text identifier (which, as dis-
cussed, currently stores the program text itself). A
global description block describes aspects such as the

type of BCU the application is designed for. This is
necessary since BCU 1 and BCU 2 support differ-
ent system entities. Parameters can be numeric values
(both integers and floating point values are supported),
strings, or an enumeration of discrete choices. They
carry descriptive text (including the engineering unit
for numeric values) as well as tags constraining the
range of valid choices.

The communication endpoints of EIB/KNX nodes rel-
evant for process data exchange are referred to as
group objects. A group object can be regarded as an
application related variable exposing a particular as-
pect of the functionality of an EIB/KNX node. Group
objects can be data sources, which provide informa-
tion to other devices, or data sinks, which carry out
certain actions according to the information received.
XML nodes describing a group object include infor-
mation about the supported data flow direction.

The project engineer forms network-wide shared vari-
ables by assigning group objects of multiple nodes to a
common logical group. The values of all group objects
belonging to such a group will be held consistent with
the help of the BCU system software. As an exam-
ple, to have a wall switch control a relay, the project
engineer assigns the the group object representing the
switch position to the same group as the one the relay
node exposes as its control input. These groups are the
data points (cf. (Kastner et al., 2005)) of an EIB/KNX
installation.

Obviously, group objects forming a group need to
use a common encoding to ensure that the shared
value will be interpreted in a consistent way. The
KNX specification refers to these encodings as data
point types (DPT). For example, DPT 1.001 stands
for a Boolean value with the state labels “On” and

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DeviceDesc SYSTEM [...]>
<DeviceDesc xmlns:xsi="http://[...]>

<ProgramID>213C6172[...]</ProgramID>
<Description>
<MaskVersion>0012</MaskVersion>
<Title>Simple Timer Switch</Title>

</Description>
<FunctionalBlock id="id7">
<ProfileID>417</ProfileID>
<Title>Light Switching

Actuator Basic</Title>
<Interface id="id5">

<DPType>1.001</DPType>
<Abbreviation>SOO</Abbreviation>
<Reference idref="id2"/>

</Interface>
[...]
<Interface id="id4">

<DPType>7.005</DPType>
<Abbreviation>TOD</Abbreviation>
<Reference idref="id1"/>

</Interface>
</FunctionalBlock>
<GroupObject id="id2">
<Title>Switch Input</Title>
<Receiving>true</Receiving>
[...]

</GroupObject>
[...]
<Parameter>
<IntParameter id="id1">

<Title>Time-on duration</Title>
<Unit>seconds</Unit>
<Default>180</Default>
[...]

</IntParameter>
</Parameter>

</DeviceDesc>

Fig. 3. Application meta data format example

“Off”. Yet, the expressiveness of DPTs with regard
to describing processing rules (i.e., how the change
of one data point affects others) is limited. For this
reason, the functionality of the application is described
by declaring one or more functional blocks. The KNX
specification already defines several functional blocks,
but they are not yet being applied to EIB/KNX. Every
XML node describing a functional block contains
an external reference to the precise definition of its
behaviour. In the example, the Interface Object type
of a functional block from the KNX specification was
chosen as reference. However, this reference could as
well be a URL pointing to a custom description.

Display rules can be defined for all entities depending
on selected parameter values to allow revealing the
complexity of a particular application to the project
engineer step by step. The configuration meta data
format looks similar. For every configurable entity
from the application information, it contains the value
selected by the project engineer. The relationship is
established via the id attributes. This allows the easy
translation of the descriptive texts contained in the ap-
plication information. An example configuration de-
scription is shown in Fig. 4.

<?xml version="1.0"?>
<DeviceConfig xmlns:ns1="http://[...]>

<ProgramID>213C6172[...]</ProgramID>
<IndividualAddr>1.3.3</IndividualAddr>
<GroupObject id="id3">
<Priority>low</Priority>
<SendAddress>1/1/2</SendAddress>
<ReadAddress>

<GroupAddr>1/1/2</GroupAddr>
</ReadAddress>

</GroupObject>
<GroupObject id="id2">
<Priority>low</Priority>
<ReceiveAddress>

<GroupAddr>1/1/1</GroupAddr>
</ReceiveAddress>

</GroupObject>
<Parameter>
<IntParameter id="id1">

<Value>120</Value>
</IntParameter>

</Parameter>
</DeviceConfig>

Fig. 4. Configuration meta data format example

In EIB/KNX, group membership is managed us-
ing what is described in (Thomesse, 1999) as the
producer-consumer mechanism. Thus, every node is
provided with the information which logical groups
each of its group objects belongs to. Groups are iden-
tified using group addresses. In the configuration in-
formation, this assignment is made separately for the
different service types of transmitting and receiving a
shared value update as well as requesting and receiv-
ing its current value. Group objects can also belong to
multiple groups. In addition, a transmission priority is
assigned to every data source group object.

The meta data interchange formats are designed to
be open for EIB/KNX node architectures other than
BCU 1 and BCU 2 as they are aligned with the
wire protocol. They also support the EIB/KNX client-
server communication scheme for node management
(referred to as interface objects and properties) and
TP1 polling groups.

3. PROGRAMMING MODEL

For interacting with the BCU system software, the
BCU SDK offers an increased level of abstraction. In-
stead of accessing configuration data and library func-
tions at specific memory addresses, the developer uses
a simple specification language to define which BCU
system entities he would like to use and how he would
like to refer to them in his C code. The specification
file is plain text. Its syntax is inspired by modern RAD
environments, where objects are instantiated from a
range of available classes and customized by changing
properties and assigning event handlers.

An example is shown in Fig. 5. Here, a standard
functional block from the KNX specification is imple-
mented. The functional block describes a light switch-
ing actuator. Basically, it just closes and opens a relay

timer.config
Device {

BCU bcu12;
PEIType 4;
Title "Simple timer switch";
include { "timer.c" };

FunctionalBlock {
Title "Light Switching

Actuator Basic";
ProfileID 417;

Interface {
Reference { IN };
Abbreviation SOO;

// Switch On Off
DPType 1.001; // DPT_Switch

};

Interface {
Reference { OUT };
Abbreviation IOO;

// Info On Off
DPType DPT_Switch; // 1.001

};

Interface {
Reference { DELAY };
Abbreviation TOD;

// Timed On Duration
DPType TimePeriodSec; // 7.005

};
};

GroupObject {
Title "Switch input";
Name IN; Type UINT1;
StateBased false;
on_update input_changed;

};

GroupObject {
Title "Status output";
Name OUT; Type UINT1;
Sending true;
StateBased true;

};

Timer {
Name TIMER1;
Type EnhUserTimer;
Resolution RES_4266ms;
on_expire switch_off;

};

IntParameter {
Title "Time-on duration";
Name DELAY;
Unit "seconds";
Default 180; Precision 4;
MinValue 4; MaxValue 544;

};
};

timer.c
#define PEI3_ON 0x11
#define PEI3_OFF 0x10

void switch_on() {
_U_ioAST(PEI3_ON);
OUT = 1;
OUT_transmit();

}

void switch_off() {
_U_ioAST(PEI3_OFF);
OUT = 0;
OUT_transmit();

}

void input_changed() {
if (IN == 1)
{

TIMER1_set
(DELAY*10/43);

switch_on();
}
else
{

TIMER1_cancel();
switch_off();

}
}

Fig. 5. Source code example

by switching a PEI output on and off in response to the
change of state of a group object. Two optional func-
tions are added. First, the actuator shall autonomously
switch off after a certain duration (e.g., for use as
stairway or hallway lighting). Second, a status output
is added which reflects the current state of the relay.

The desired behaviour is as follows. The relay shall
be closed when an “On” message is received on
the Switch input group object. The length of
this message is one bit. This length is assigned the
type name UINT1 (Siemens AG, 1996; Siemens AG,
2004). It shall open again when an “Off” message is
received on the same group object or after a spec-
ified timeout period. Whenever the state of the re-
lay changes, its current state shall be transmitted via
a second group object (Status output, again of
type UINT1). The status output shall be readable from
the network. Finally, the time-on duration shall be
customizable via the integration tool.

The definition of the group objects in the RAD spec-
ification (timer.conf) is straightforward. The Title
is what will appear in the respective meta data de-
scription XML tag. The group objects are assigned
the internal names of OUT and IN. OUT has the
Sending attribute set. This makes the function
OUT transmit available in the C code, which is
used to transmit new values via the SendAddress
associated with this group object. OUT is also State
Based, which tells the BCU to answer read requests.

Since IN contains no useful data for reading, its
StateBased attribute is set to false. When a new
value is received for IN, the input changed()
function will be called.

The time-on duration is specified as an integer pa-
rameter together with its useful range and unit. To
autonomously switch off after a certain time interval,
a timer is used. Specifying a Timer block sets up the
necessary framework. It is of type EnhUserTimer
(which provides additional functionality over the stan-
dard BCU user timers). One timer tick corresponds to
4.266 s. This resolution is reflected in the precision
attribute of the DELAY parameter. When the timer
expires, the handler switch off() will be called.

The corresponding C code is located in timer.c. The
group object values are available as global variables
which will always contain the last value received
for the associated group address. The UINT1 type is
mapped to an unsigned 8 bit integer. Note the automat-
ically generated functions for transmitting the current
value of OUT, starting the timer with a specified time-
out period, and canceling a runnning timer. The timer
interval is scaled to its resolution (it must not exceed
127). The relay output is controlled using the BCU
API function for accessing the PEI U ioAST(). C
wrappers like this one are provided for all BCU API
calls.

Back in timer.config, the target BCU is defined using
its system software version (mask version) 1.2, which
corresponds to a BCU 1. The desired PEI configura-
tion type for this application is 4 (parallel I/O with 2
inputs and 3 outputs). The program contains a single
functional block. The reference code (as discussed in
the previous section) is taken out of the KNX speci-
fication, as are the interfaces of the functional block
(i.e., their Abbreviation code and DPT). Refer-
ences are made to the appropriate system entities. The
preparation build script will automatically transform
this information into the application meta data format
as shown in Fig. 3.

Other relevant BCU system functionality such as ini-
tialization and power-failure handlers and interface
objects and their properties can be used in the same
way. As far as the RAD specification is concerned, all
differences between the BCU 1 and BCU 2 low-level
APIs are hidden by the SDK.

In the C code, signed and unsigned integer types
are available in any byte width from 1 to 8 to op-
timize RAM usage. As a special feature, transpar-
ent EEPROM access is conveniently available by
declaring a variable with the appropriate storage
class and attribute, e.g., int x EEPROM_SECTION
EEPROM_ATTRIB;. Support for interface object pa-
rameters located in EEPROM is provided as well.

4. NETWORK ACCESS AND MANAGEMENT

For access to the EIB/KNX TP1 network, the BCU
SDK includes a Unix daemon (called eibd, Fig. 6). It
allows multiple clients to connect simultaneously via
IP or Unix domain sockets. Clients can invoke various
services of the EIB/KNX protocol stack. This includes
sending and receiving unicast, multicast and broadcast
telegrams. Also, eibd handles the protocol state ma-
chine for the client endpoint of a reliable connection.
Based upon this, eibd can also autonomously execute
various device and network management procedures,
such as assigning individual addresses. Also, a bus
monitor can be opened, which optionally can decode
EIB frames. A “Raw” interface is available for clients
that wish to implement the server endpoint for uni-
cast communication, including reliable connections.
This allows the host eibd resides on to be managed
remotely via EIB/KNX management procedures.

The method of access to the EIB/KNX network is
entirely hidden by the backends. The BCU 1 supports
a protocol with RTS/CTS handshake (“PEI 16”) which
is best handled via a kernel driver. The FT1.2 based
protocol of the BCU 2 (“PEI 10”) can be implemented
using the plain serial driver. Moreover, the respective
backends have to adapt the message formats (EMI).
For lab use, the TP-UART serial protocol is supported
as well. EIBnet/IP Tunnelling and Routing can also
be used for network access. Implementation of USB
interfacing is currently being added.

Client

Client Connection Manager

Frame Dispatcher

R
aw

 (
S

rv
.)

B
us

 M
on

ito
r

Socket Server

G
ro

up
 (

C
L)

Management

EIBnet/IP TP-UART PEI16/EMI1 PEI10/EMI2

UDP

Sockets

TP-UART

Driver

PEI16

Driver

ttySx

Driver

E
IB

 D
ae

m
on

 (
ei

bd
)

K
er

ne
l

BCU1/BCU2
EIBnet/IP

Router
BCU2

Custom

Interface H
W

 I/
F

Broadcast

and

connection oriented/-less unicast

Fig. 6. Network access/management daemon

Higher-level tasks within eibd register with the frame
dispatcher and state which frames (based upon ad-
dressing mode and destination address) they are pre-
pared to process. To be able to serve multiple clients
simultaneously, backends should deliver as many in-
coming frames as possible and leave filtering to the
frame dispatcher.

In principle, this allows one client to maintain a point-
to-point connection – where only frames from one
single source are relevant – and another to operate in
bus monitor mode. Yet, since bus monitor operation
entails switching the hardware into a read-only mode,
a special “best-effort” monitor mode was introduced
which builds upon the fact that telegram filtering is
not performed in the access hardware, but in the frame
dispatcher. It forwards all frames the backend will
provide in normal operation mode. For the BCU SDK,
it will also act as a loader for writing applications into
the BCU.

5. IMPLEMENTATION

To avoid duplicating work already done in various
other places, it was decided to port an existing C com-
piler to the M68HC05 architecture. GCC (GNU Com-
piler Collection) was selected for its proven front end
and optimizer. GCC is in wide-spread use as it is the
standard compiler on most free operating systems. Its
core parts are maintained by a large community. The
GNU tool chain (Free Software Foundation, n.d.b)
is supplemented by the GNU binutils (assembler and
linker).

Several creative measures had to be taken to make
GCC cope with the resource limitations of BCUs
(� 1 kb EEPROM, � 100 bytes RAM). This con-
stituted a key point of the porting activities. Full de-
tails are available in (Kögler, 2005). SDCC (SDCC

Project, n.d.) was considered as an alternative can-
didate. It supports different architectures and imple-
ments some optimizations. Compared to GCC, SDCC
is much simpler and has less features. If SDCC had
been the first choice, the structure would have been
much simpler. Yet, some parts, like the automatic re-
moval of unused static variables, would have had to be
implemented from scratch.

The port can be used for any member of the M68HC05
microcontroller family. For automated regression tests,
a CPU core simulator for the M68HC05 architecture
was developed. It is based on its counterpart in the
M68HC11 port of the GNU tool chain (Free Software
Foundation, n.d.a). It is also accessible via a limited
interactive GNU debugger frontend.

Since GCC is designed to work with a considerably
different hardware architecture, certain missing fea-
tures need to be emulated. This includes providing
a larger number of general purpose registers (using
RAM), multiplication and division operations, a data
stack, and pointers which can cover the entire address
space. The GCC floating point simulator for single and
double precision values is available. However, many
of its functions need too much memory, which causes
them to fail on a BCU. Some functions even need a
larger stack than the M68HC05 GCC port supports.
The tight memory constraints also affect the expres-
siveness of the standard regression test suite. Approx-
imately five per cent of the test cases yield unexpected
outcomes, but we believe these cases to be unsuitable
for the target. Due to the huge overall number of test
cases, a detailed assessment was not possible yet.

The port had to make special provisions to allow
GCC to automatically distribute variables over the
non contiguous RAM segments of a BCU 2. Ad-
ditionally, transparent access to the EEPROM was
added. Special effort was directed towards obtaining
small sized output. Still, the compiler output will in
most cases be larger than well optimized, hand writ-
ten assembler code. For the exceptionally resource-
constrained BCU 1 environment, this considerably
limits the amount of functionality which can be real-
ized.

The interplay of an assembler-level operating system
API and an optimizing compiler can bring about in-
teresting effects which prove to be a challenge when
implementing the compiler. For example, the BCU
API provides optimized functions for multiplication,
division, shift and bit operations. Yet, their use may in
certain cases prevent M68HC05-GCC from applying
optimizations and thus actually result in larger code.

6. CONCLUSION

A set of software development tools for EIB/KNX
nodes was presented. It adopts a RAD like program-
ming model, which we believe to be a novel approach

for field devices. The separation of development and
deployment is supported via an integration tool in-
terface. Its implementation involved porting GCC to
the MC68HC05 microcontroller family and the de-
velopment of an API for EIB/KNX access from PC-
based programs. All relevant parts of the SDK are
fully implemented, albeit partially still in the testing
phase. The entire SDK is placed under the GPL (GNU
General Public License) and can be downloaded to-
gether with further documentation from http://
www.auto.tuwien.ac.at/projects/hba/.

Numerous improvements are still possible. Specifi-
cally, target specific optimizations within GCC pro-
vide ample possibilities for further work. Also, the
handling of the build process should be improved.
This includes adding a graphical interface (e.g., using
Eclipse or KDevelop) for the developer. For system
integration, we intend to enhance the open BAsys tool
(BASys Project, n.d.) to enable interaction with the
BCU SDK.

REFERENCES

BASys Project (n.d.). BASys 2003. http://www.
basys2003.org.

EIBA s.c.r.l. (n.d.). The ETS 3 Software Family.
http://www.eiba.com/ets.

Free EibIDE Project (n.d.). Free EibIDE for Linux.
http://sourceforge.net/projects/
freeeibide/.

Free Software Foundation (n.d.a). GNU development
chain for 68HC11 & 68HC12. http://www.
gnu.org/software/m68hc11/.

Free Software Foundation (n.d.b). GNU tool chain
documentation. Distributed with the respective
program sources, also available from http://
ftp.gnu.org/gnu/.

Kastner, Wolfgang and Christian Troger (2003). In-
terfacing with the EIB/KNX: A RTLinux device
driver for the TPUART. In: 5th IFAC Intl. Conf.
on Fieldbus Syst. and Appl. (FeT’2003).

Kastner, Wolfgang, Georg Neugschwandtner, Stefan
Soucek and H. Michael Newman (2005). Com-
munication systems for building automation and
control. Proceedings of the IEEE 93(6), 1178–
1203.

Kögler, Martin (2005). Free development environment
for Bus Coupling Units of the European Installa-
tion Bus. Master’s thesis. TU Wien.

Konnex Association (2004). KNX Specifications,
Ver. 1.1.

SDCC Project (n.d.). SDCC – Small device C com-
piler. http://sdcc.sourceforge.net/.

Siemens AG (1996). BCU 1 Online Help.
Siemens AG (2004). BCU 2 Online Help, Version 1.1.
Thomesse, Jean Pierre (1999). Fieldbuses and interop-

erability. Control Engineering Practice 7(1), 81–
94.

