Congestion control in building
automation networks: Considerations for KNX

Georg Neugschwandtner and Wolfgang Kastner
Automation Systems Group, Inst. of Computer Aided Automation, Vienna University of Technology
TreitlstraBe 1-3, 1040 Vienna, Austria
{gn,k} @auto.tuwien.ac.at

Abstract—Current standard network protocols for distributed
building automation were designed before the advent of the
cost efficient fast networking technologies that are popular
today. While these technologies are of great benefit for the
network backbone, the possibility of ‘“fast”” nodes on such media
overwhelming “slow” nodes or network segments increasingly
comes into focus. Besides discussing the issue on a generic level,
this paper closely examines the situation for the KNX protocol
standard and suggests possible ways of improvement.

I. INTRODUCTION

Building automation is concerned with automatic control
and central supervision of building services equipment (in
particular, equipment related to heating, ventilation and air
conditioning and lighting). It is characteristic to this field of
application that while throughput requirements on the automa-
tion network are low at the field level (sensors, actuators and
low-level human-machine interfaces and controllers), central
supervisory stations may need to handle considerable data
rates due to the size of the entire system.

Traditionally, distributed building automation systems were
implemented using a hierarchy of specialized, separate net-
works (field, automation and management level) to address
this issue. With processing and communication getting cheaper
over time, the possibility appeared to use a single network
protocol throughout the system. All open protocol standards
relevant for this purpose (BACnet [1], [2], CNP/LonMark
[31, [5] and KNX [6], [8]) support network segmentation and
routing, a necessity to cope with the potentially high device
count and large distances covered in an integrated system.

Still, requirements remain diverse, with demands on
throughput increasing (and opposing ones such as lowest cost
decreasing) towards the root of a usually tree shaped network
topology. This results in the ongoing trend of combining a high
speed network backbone with low speed fieldbus segments.
Ideally, protocols support various communication media to suit
these purposes. The above mentioned standards provide this
capability, with the choice of supported media reflecting their
intended deployment focus.

Some time after these standards were written, IP networking
(in particular over Ethernet) became pervasive and cheap.
With commercial grade components sufficiently supporting
the dependability and performance requirements of building
automation networks, this development was bound to have
considerable impact. To tap this source of cheap high band-

width backbone infrastructure (and of course, to enable remote
access via the Internet), tunnelling mechanisms were provided
(e.g., [4] and [9]) and quickly got popular.

Leaving the original network layer in place ensured back-
ward compatibility. However, this layer was designed without
the unprecedented performance disparity between network
segments in mind that exists today. Removing the backbone
bottleneck may thus have undesired side effects. Network
traffic does not only travel towards the root of the network
hierarchy. Devices placed on a high speed backbone can
quickly generate a high number of messages destined for
lower levels. For example, a SCADA server could want to
initialize its process image, resulting in status requests being
sent to each sensor and actuator. Likewise, a supervisory
controller may activate a complex scenario involving a large
number of actuators, or an engineering tool could attempt
downloading configuration data to multiple devices in parallel.
Without appropriate countermeasures, all this very soon can
be expected to result in network congestion and message loss
— problems that should have been removed by adding the fast
backbone medium in the first place.

Therefore, a closer look on the issue of congestion control
appears worthwile. This paper takes a generic approach that is
not limited to the restricted case of high speed backbones and
low speed fieldbus segments. First, general observations are
made. Then, the situation with respect to KNX is discussed as
a case in point. Since this protocol originally did not include a
communication medium with comparatively high bandwidth at
all and is a very light protocol in general, the issues mentioned
can be expected to be especially pronounced. Finally, a number
of possible remedies are suggested. Although they address the
shortcomings identified for KNX, many of them are applicable
in a broader context.

II. PRECONDITIONS AND REQUIREMENTS

Keeping a potentially faster sender from overrunning a
(slower) receiver has been a frequent requirement since the
classic days of computing; this task is usually referred to as
flow control. On the other hand, controlling traffic entry into a
communication network to avoid the condition that little or no
useful communication is happening due to the amount of lost
or dropped messages burdening the network (also known as
“congestive collapse”) is usually known as congestion control.
For the purposes of this paper, we shall follow this definition:

flow control throttles a sender according to the processing
speed of the receiver; congestion control does so with the goal
of avoiding oversubscription of network resources.

It is important to note that throttling the sender is, on
principle, only possible at all if the (application) semantics of
the data to be transmitted allow their rate to be adjusted. For
non-realtime data such as configuration messages or program
downloads or most kinds of diagnostic information, this is
the case; the allowable delay is only limited by economic
concerns. Realtime data however become obsolete after a
certain time that depends on the application. For some kinds
of data, especially absolute value reports or modifications (“set
valve position to 60%”, “the current room temperature is ...”),
this expiration time may not be static and a certain band
between a minimum and a desired update rate may exist. In
certain cases, higher delay and jitter are acceptable as long as
the timestamp of an event is preserved (e.g., for trending; this
obviously requires synchronized network time).

Besides timeliness, message delivery guarantees are another
parameter of interest that follows from the requirements made
by the application (error semantics). While some messages
will neither tolerate loss nor duplication (chiefly, this applies
to those containing value offsets, e.g., “increase meter count
by 10” or “toggle status”), duplication is not a problem with
idempotent commands and status reports (absolute value mod-
ification, value report). If these are sent periodically (instead
of solely in response to a value change), even message loss is
acceptable as long as the minimum update rate is met.

If the same message is sent to multiple receivers (e.g.,
a controller and a visualization panel), each one may have
different timeliness requirements. In this case, the slowest
receiver determines the maximum message rate if message
loss can not be tolerated and reliable transmission is required.

On its way from the sender to the receiver, a message may
be delayed or lost due to insufficient resources in several
places. First, the segment that the sender is connected to may
experience an overload condition. Second, another segment
along the route to the receiver may be congested, causing a
router queue to overflow (or the message to become stale while
still in the queue). Third, the receiver may be too busy to
process the message. While the sender is implicitly aware of
the first condition, adapting to the second and third requires
explicit feedback via the network to close the loop.

Overload conditions on a segment can occur no matter
what its throughput rating is (just as traffic jams are common
on highways). Fairness and relative prioritisation (at least of
realtime vs. non-realtime traffic) should be ensured at every
traffic entry point into a segment (i.e., end devices and routers).

Congestion on one segment should not needlessly impede
traffic on neighbouring segments that still have headroom ca-
pacity. Neither should a busy device. If application semantics
allow reducing the message transmission rate, such measures
should be limited to traffic inbound to the obstructed segment
or busy device.

Even the best congestion control cannot help if the network
is simply underprovisioned to handle the desired application.

In case of data with a limited time of validity (realtime
data), considerations should be made whether the network can
carry the worst case message load. If error-free transmission
is assumed, this is a straightforward calculation as long as
maximum data entry rates (and minimum intervals) are defined
for all end devices (obviously, without such limitations, no
guarantees can be made at all). Both time triggered and
event triggered designs are capable of adequate performance
if dimensioned properly. Event triggered designs may exhibit
more jitter and may be more difficult to analyze (more complex
queuing will usually be involved), but are more flexible in
allocating network capacity to where it is needed.

A network designed to withstand theoretical worst case
load conditions is seldom economical. Event triggered designs
allow designing for the average case; they will still deliver
loads that are above average provided that these are com-
pensated by below-average conditions somewhere close-by in
time or space. While this works reasonably often, it means
relying on stochastics and thus can also go wrong (especially
if the assumptions made during design were not reasonable or
no longer hold since conditions have changed). Therefore, it
should be possible to diagnose overload conditions. Without
support for such diagnostics, the presence of overload condi-
tions can only be guessed from external observation of system
malfunction. Ideally, it should also be reported if the message
loss was tolerable from a semantic point of view or if it was
compensated by retry mechanisms. Also, message travel and
expiration times would be of interest to judge the quality of
service or take measures improving network performance (e.g.,
by rearranging a router queue or eliminating stale messages
from it).

III. MESSAGE SEMANTICS AND CONGESTION HANDLING
IN KNX

KNX supports multiple communication media. While the
twisted pair medium (TP1, around 1990) and the 230 V pow-
erline communication option (PL110, around 1996) originate
from its EIB heritage, the radio frequency medium (RF) was
added more recently. Around 1997, “EIB.net” was specified
as a first fast backbone medium (based on IEEE 802.3
Ethernet, more specifically ISO/IEC 8802-2 LLC). However,
it did not meet with success and was withdrawn. Around
2004, EIBnet/IP (now KNXnet/IP) was introduced. KNXnet/IP
provides tunnelling over IP networks in various separate
modes, most importantly a point-to-point mode allowing flow
control (“KNXnet/IP Tunnelling”) and a point-to-multipoint
mode intended for connecting routers via a fast backbone
(“KNXnet/IP Routing”). Almost instantly, KNXnet/IP Routing
was suggested as a basis for supporting “native IP” devices as
well ([10]). In 2008, KNX Association officially announced
that communication over IP would be introduced in the near
future as a first class KNX medium, and that “KNX IP devices
will use the same [...] message format as KNXnet/IP Routing”
[11]. In the following, relevant aspects of the KNX protocol
will be introduced and discussed.

KNX application layer (AL) services fall into two dis-
tinct groups: device configuration/diagnosis and exchange of
process values/data. The services supported by a device are
specified in its system profile. Device configuration/diagnosis
services use either the connection oriented (reliable) or the
connectionless (unreliable) point-to-point communication ser-
vice provided by the transport layer (TL); again, the device
profile defines the valid choice. A special case within this first
group are the services for device disambiguation (“discovery”),
which use the TL broadcast service.

For process communication, KNX follows a producer-
consumer communication pattern. The communication end-
points of devices for this purpose are referred to as “group
object datapoints” or “group objects”. Every group object
represents a single input or output value (which may — but
most often does not — consist of multiple fields that are
transmitted simultaneously). Binding is done by assigning
identical “group addresses” to the group objects whose values
are to be kept in sync. However, multiple outputs can be bound
to a single input, replacing this model of coupled states with
generic message channels.

The AL services for process communication consist of an
unconfirmed service to announce the update of a shared value
(A_GroupValue_Write) and a confirmed service to ask for
the current state of a shared value (A_GroupValue_Read).
The former is the mainstay of KNX communication. It is
not only used for reporting that the value of a point has
changed, but also for all kinds of state change or action
requests. Although a mode of runtime communication (“LTE”,
Logical Tag Extended) has been introduced that provides
distinction between value change orders (“Write”) and reports
(“InfoReport”), this mode is entirely separate from standard
KNX runtime interworking (“S-Mode”) from which such a
distinction remains absent.

A_GroupValue_Write is used for messages associated with
any kind of error semantics. Although most messages contain
absolute point values, very often these messages (e.g., “Stop
sunblind movement”, “Adjust output level to 20 %FS”) are
sent upon a change of value (desired state) only. If multiple
output group objects are bound to the same input group
object — a popular and necessary practice, e.g., for “master
light switch” applications —, periodic retransmissions are not
possible at all. As for messages carrying value offsets, “toggle
state” commands and “meter impulse” reports are not unheard
of; with them, unlike with absolute values, inconsistencies
introduced by way of message loss or duplication will not
rectify themselves over time and cannot be tolerated.

The AL services for process communication exclusively rely
on the TL multicast service (which is never used by the AL
device configuration/diagnosis services). For all TL services,
the data link layer (DL) provides a first level of duplicate
removal (via flagging and filtering retransmissions, or via a 3-
bit sequence counter on RF). The connection oriented unicast
TL service adds an additional sequence count to compensate
for message loss and to improve duplicate removal; for all
other services, the TL takes no additional measures over what

is done by the DL. Neither do the network layer or the AL.

Thus, messages whose semantics do not tolerate loss use
an AL service that does not offer reliable delivery. If con-
firmations are required, they have to be obtained by the user
application. Actually, such “end-to-end” status feedback at the
application level has the advantage of being able to account for
messages that were delivered successfully, but ignored by the
application (e.g., due to an interlock, such as a wind alarm
blocking sunblind operation despite a command to move).
However, integrators often forego this option for performance
reasons. Also, the status feedback (itself delivered via an
unreliable service) may be lost. Thus, KNX systems more
often than not include communication relationships where the
loss of a single GroupValue_Write protocol data unit (PDU)
will lead to an inconsistent system state resulting in (light or
possibly severe) malfunction. Up to now, this has been masked
by the fact that messages hardly ever got lost.

A possible motivation for the absence of a reliable multicast
service might be that realtime data become obsolete after
some time anyway, rendering potential retransmission attempts
pointless (and the intention that the multicast service would
never be used for non-realtime data). However, as has been
detailed, not all messages become obsolete.

Compared to A_GroupValue_Write, A_GroupValue_Read
is only seldom used. It does not share the semantic ambiguities
of A_GroupValue_Write. However, as it is also sent via
multicast, multiple devices could answer a request, even with
different values (as a single group address can correspond with
multiple datapoints). Thus, the device to answer has to be
preselected at configuration time. Adding a further twist, the
remote confirmation (i.e., answer) to this service is considered
equivalent to a GroupValue_Write PDU by a significant share
of stack implementations in use.

No AL process communication service reflects timeliness
requirements. However, these can differ significantly. For
example, a GroupValue_Read request PDU may need to be
answered within seconds (for storing present light levels as
a scenario preset) or several minutes (when a visualization
software application initializes its process image).

Four message priority levels are supported at the data
link layer, which can be regarded as a way to express rela-
tive timeliness requirements. These levels appear as service
parameters to the application layer user; the standard only
loosely regulates their use (TL acknowledgment PDUs are to
be sent with the highest priority; in general, the priority of
configuration/management procedures is above process com-
munication). The standard engineering tool software (ETS)
allows the project engineer to choose one of the lower three
priority levels per group object.

Message ordering is not guaranteed to be preserved. How-
ever, before the advent of KNXnet/IP Routing, message or-
dering was always kept due to the acyclic network topology
(and routers operating in a strict FIFO manner). If KNXnet/IP
Routing is used, reordering may happen on the IP medium.

With connection-oriented TL services, a new message is
sent only after the remote TL acknowledgment PDU (ACK)

has been received. While this procedure already causes the
sender to slow down according to the network round trip delay,
delays in upper layers and the user application (management
server) are not (necessarily) factored in. However, most of
the device AL configuration/diagnosis services either expect
a reply or an end-to-end confirmation (readback) is obtained
by the management server. Since these are always waited for
(only for a few management procedures, static timeouts are
defined), end-to-end flow control is ensured. In high device
or traffic load situations, the conservatively, but statically
defined TL retransmission timeout (3 s) or connection timeout
(6 s) may expire while messages are still in transit or being
processed, causing unproductive traffic.

The TP1 data link layer also offers a kind of flow control
mechanism: “If the request frame received is correct but the
remote Data Link Layer doesn’t have resources to process it,
the remote Data Link Layer shall send a BUSY character” [6].
Since this mechanism is limited to the local segment (which
is appropriate for a data link layer mechanism), it cannot be
used for end-to-end flow control. The PL110 data link layer
specification does not include this mechanism.

As for congestion control, it is effectively impossible for
a sender to obtain feedback about the conditions on the path
to the receiver (except via end-to-end acknowledgments). The
data link layer BUSY acknowledgment being referred to as
BUSY/FULL in one place in the DL specification suggests
that a coupler (KNX router) could use it to announce that
its routing queue is full; the network layer specification
contains nothing in this regard. KNXnet/IP Routing provides
the ROUTING_LOST message, which is to be sent on the IP
network when messages are dropped from the routing queue.

Both of these mechanisms only provide information about
the next hop. Moreover, neither allows deducing which des-
tination is affected by congestion (‘“‘doesn’t have resources to
process it” can as well mean that the destination address check
could not be performed; ROUTING_LOST does not volunteer
information regarding the messages that were lost save a total
count). Thus, no selective reaction is possible; senders can
only blindly throttle their overall transmission rate.

Even if a sender knew that the path to a particular destina-
tion is congested, it would not be able to selectively relieve
this path from traffic, since an end device has no information
about the correlation between group addresses and network
topology — a message to a different group may take exactly
the same path. Even couplers only see part of this information:
the subset contained in their routing table.

The handling of load peaks on the local segment is medium
specific. On TP1, devices with a sufficiently high left-right
(MSB-LSB) swapped device address may experience star-
vation due to the bitwise arbitration mechanism used (for
messages within a group of priority levels). The TP1 data
link layer specification calls for measures that guarantee
access fairness by introducing an additional waiting period, but
without specifying any details. PL110 specifies a randomized
slotted offset mechanism (with devices picking one of seven
slots after the minimum waiting period at random, the choice

being influenced by the message priority) to reduce the risk of
collisions (which cannot be detected on this medium). On RF,
where the situation is similar, the interframe time is also to be
extended with a random delay; while time ranges are given,
no clear specifications are made. In particular, no correlation
between message priority and wait time is suggested (the
required interframe time for RF retransmitters, however, is
well below that of end devices). KNXnet/IP Routing does
not include any mechanisms to allow prioritisation or ensure
access fairness. This is hardly a problem when the IP segment
is populated only with IP/TP couplers; however, it may easily
become an issue when end devices use a form of EIBnet/IP
Routing as their native mode of communication, as buffers in
network switches may overflow.

Offline, configuration-time measures for preventing network
overload and/or congestion are rare. Load calculations are
usually performed by rule of thumb. Only HVAC function
blocks for LTE devices specify maximum and typical message
generation rates. The network load generated by these devices
can thus be roughly specified as a characteristic number and
serve as a guideline for network planning.

Virtually no standard mechanisms exist for diagnosing over-
load conditions. In addition to the ROUTING_LOST message,
KNXnet/IP Routing specifies two mandatory counters (diag-
nostic properties) that hold the number of packets dropped
from either routing queue. No such mechanism is specified for
couplers in general or for messages that an end device could
not place on its local segment in time. Also, no provisions
exist for associating time with message transmissions.

IV. SUGGESTIONS FOR IMPROVEMENT

A number of suggestions for KNX can be derived from these
observations. All of them can be implemented independently
of each other and in a backward compatible manner. Most
do not introduce new PDUs or traffic overhead; some do not
require touching the communication protocol at all.

As an “offline” measure towards congestion prevention,
function blocks should be amended to specify typical and min-
imum message generation intervals required by the application
they are a part of (as already done for the LTE HVAC function
blocks). These figures can then be used to estimate network
load (possibly even automatically as a feature in ETS).

At runtime (“online”), the likelihood of congestions (in
remote segments) can be reduced if devices that emit a burst
of messages to different destinations (e.g., parallel program
downloads, activating a complex scenario or initializing the
process image of a management application) randomize the
order of these outgoing messages.

To improve the robustness of the system in high load condi-
tions, communication endpoints should be bound and datapoint
types (DPTs) should be chosen to match the unreliable nature
of the process communication services. Absolute datapoint
values transmitted periodically (which does not preclude ad-
ditional transmissions on demand) will allow a more graceful
degradation of system performance and easier recovery. Where

appropriate, end-to-end status feedback should be included to
ensure consistency.

If message loss could be tolerated, interesting possibilities
would open up. For instance, TCP uses packet loss as a
congestion indicator and adapts accordingly. The same would
be possible on KNX not only for management connections,
but also for periodic process traffic that tolerates variations
of its period length. Sources could maintain and send along
a sequence count per destination address, and receivers could
monitor it to obtain information about the loss rate per source
— which they periodically report back to them. However, it is a
fact that EIB systems were and KNX S-Mode systems will be
designed according to the reliability one has come to expect
from the communication mechanisms in use, without virtually
any regard to the semantics that are actually guaranteed.
Therefore, from a purely pragmatic point of view, efforts
must be made to keep the probability of the connectionless,
unreliable TL services failing as low as possible.

Specifically for the use of IP as a first-class medium,
the handling of situations where a larger number of devices
attempt to access the medium at the same time should be
improved. In particular, such a situation can occur when a state
change of a group of devices is triggered by a single Group-
Value_Write PDU and these devices are configured to report
status updates. On IP over switched Ethernet, the network
switch takes the role of the common medium. Since KNX
medium definitions seek to emulate the inherent broadcast
nature of the original twisted-pair bus medium, IP traffic
patterns result that are unusual in the IT world. Although the
performance of many current network switches allows them
to route traffic between their ports at wirespeed, this becomes
increasingly impossible given the multicast pattern of KNX
traffic once enough KNX IP devices are connected. Once a
switch queue overflows, packets are dropped, resulting in what
amounts to a collision on the shared medium. It cannot be
assumed that devices can detect such a loss condition — which
resembles the situation on open media.

It may therefore be advisable to look at how such situations
are handled on other KNX media (not at least since adopting
similar procedures would have the added benefit of being
consistent with tradition). Actually, every KNX medium in
use to date (with the natural exception of RF in case of
unidirectional devices) specifies busy detection and random
wait times once the medium is free. Something similar could
easily be implemented for KNX IP, having the random waiting
period start with the last KNX IP frame received. Depending
on the operating system, precise timing of IP packets may not
be possible. Yet even then, such a procedure should reduce
the likelihood of “collisions” and improve access fairness. In
addition, message priorities can be allowed for by factoring
them into the calculation of the waiting period.

The algorithm for determining these wait times should be
very clearly specified to avoid the risk of a race between device
manufacturers for the most aggressive interpretation (in order
to make their devices perform better in peak load situations).
This does not only apply to IP, but also to other KNX media.

Quality of service information is important for allowing
graceful degradation and improving robustness in congestion
situations. Therefore, KNX message priorities need to be cho-
sen wisely. The KNX specification ties configuration/diagnosis
traffic to the highest priority levels. However, such traffic is
non-realtime and very often uses connection-oriented transport
that tolerates packet loss. From this perspective, one would
rather expect it to use the lowest priority level. Possible reasons
behind the surprising choice made in the KNX specification
may be the assumption that such traffic will not be present
during normal operation anyhow and the consideration that if
it is, it should be able to break its way through a congested
network to correct the overload issue by reconfiguration.

Setting message priorities only has an effect if mes-
sages with higher priority also receive privileged treatment.
Strangely, message priorities are entirely ignored on KNX RF.
Also, one would expect routers to insert messages into their
queues according to priority. However, this simple measure
apparently is not mentioned in the specification. Although it
would influence the delivery order of messages, KNXnet/IP
Routing can cause the same today. The KNX specification
should provide clarification on the topic of reordering to avoid
false assumptions by developers and integrators.

To address the issue of multicast destinations having dif-
ferent quality of service requirements (aside from simply
picking the higher priority for both), the destinations can be
assigned separate group addresses, each with different message
priorities. Of course, this is only useful if the path to the low
priority destinations is not a subset of the path to the high
priority destinations. Since the KNX standard only allows a
single TSAP (TL service access point, i.e., group address) to
be associated for outgoing traffic with any ASAP (AL SAP,
i.e., group object), this would require support by the device
application by providing additional (“shadow’) group objects.

Without doubt, the producer-consumer communication pat-
tern (which, per design, does not include feedback from the
consumer — or anywhere along the path between producer and
consumer, for that matter) and a great disparity in processing
and communication speeds do not go well together.

A solution to this problem has to introduce a means of
feedback. Basically, messages need to be defined that allow
devices and couplers to announce overload conditions. In
couplers, overload will usually caused be insufficient buffer
size (or a time threshold for placing messages in the routing
queue on the remote interface being exceeded) rather than
insufficient processing resources. Ideally, these messages will
include a suggested retry time when the overload condition
is expected to have disappeared. Preferably, they should be
sent before message loss has actually occurred. If messages
have already been lost, this should be announced differently to
enable the sender to react appropriately. These announcements
may have to be sent with elevated priority.

The announcements must specify traffic to which destina-
tions is to be held back by potential senders so the overload
condition can be reduced. For individually addressed traffic,
this is easy; the device address, or, for routers, the affected

GroupValue_Write to Group A l

Would sending
GroupValue_Write to
Group C be OK?

GroupValue_Write to Group B l

GroupValue_Write to Group D ‘

(0

,Hold off traffic bound
for Subnetwork 1.1!"

Should | forward
the hold-off
announcement?

Forward messages to
Group A
Group B
Group C

to Subnetwork 1.1

Forward messages to

to Subnetwork 1.2

Belongs to
Group D
Belongs to

Belongs to Groups C + D

Groups A +B

Subnetwork 1.1 Subnetwork 1.2

Fig. 1. Congestion avoidance: Issues

subnetwork (zone/line) number suffices. For group traffic, this
is only possible if senders know which devices are included
in any particular group (or, the other way round, which group
addresses will create traffic inbound to a particular device and
thus subnetwork). This information may be preloaded into the
devices during configuration via ETS; it may be included in
the overload announcement message; or it may be dynamically
obtained by reading out device address tables and coupler filter
tables at runtime.

While sending the information along with every announce-
ment would be less complex, transmitting the entire mapping
tables at startup (with low priority multicast) and on request
(for devices joining later) seems preferable as it would reduce
the traffic overhead to a negligible amount. Of course, holding
the tables in memory requires additional device resources.
Devices that cannot store the tables (or have not had a chance
to receive them yet) can still indiscriminately reduce traffic
generation upon receipt of an overload announcement.

Rules are required for the propagation of these announce-
ments to other segments. Broadcasting them would be the
easiest way to catch all potential traffic sources, but could
easily swamp low rate segments and low performance de-
vices, making matters worse. Rather, couplers should store
announcements for their validity period and only pass them on
when a frame with a held-off destination comes in via their
other interface during this period (possibly also if such frames
have come across in a certain time period before receiving
the overload announcement, to account for temporal locality).
Fig. 1 illustrates some of the issues discussed.

While mechanisms for performance optimization help to
increase efficiency and quality of service, they do not guaran-
tee a particular quality of service. Underprovisioning, legacy
devices that do not implement the new mechanisms or config-
uration errors may still lead to packet loss or unacceptable de-
lays of realtime messages. Therefore, diagnostic mechanisms

are required. At the very least, counts of messages dropped
by couplers and messages that could not be sent by end
devices in time due to congestion on the local segment should
be available in a standardized, medium independent fashion.
Timestamping of realtime traffic would be even more helpful.
Standard DPTs for time synchronization exist; the available
precision would be sufficient as long as synchronization is
performed during periods of minimal network load. However,
adding timestamps to process data in a backward compatible
way would incur a significant amount of additional traffic.

Management connection clients usually are PC based and
have ample free resources. To optimize network usage, they
could easily monitor round trip times (using a sliding window
approach) and adapt their transmission rate accordingly (as
it is done by the TCP flow control mechanism). Of course,
the KNX TL timeouts need to be taken into account; while
the client can easily adapt them too, the server will still use
the static standard values. They could however also be made
dynamic, possibly set by the client via new control messages
to relieve the server from the necessary calculations.

V. OUTLOOK

Clearly, the effectiveness of the proposed mechanisms re-
mains to be examined, possibly by way of simulation. Ap-
propriate protocol extensions need to be implemented. The
findings need to be set into the context of the relevant literature
with respect to flow and congestion control and shared medium
emulation (specifically, but not limited to Ethernet and IP
networks), delivery semantics, quality of service and queuing
theory in general. Also, the analysis should be extended to
other relevant protocol standards such as CNP and BACnet.

The strict hierarchic, depth-limited structure of KNX sys-
tems may allow additional assumptions and approaches (espe-
cially in the increasingly typical case of a two level topology
with a high-speed backbone and low-speed fieldbus segments).

After this paper had been written and reviewed, KNX
Association published version 2.0 of the KNX specifications,
including a draft proposal for IP as a first class KNX medium
(KNX IP, as previously announced). The findings in this paper
were forwarded to KNX Association for consideration.

REFERENCES

[1] ANSI/ASHRAE Std. 135, BACnet — A Data Communication Protocol
for Building Automation and Control Networks, 1995-2008.
[2] ISO 16484-5, Building automation and control systems (BACS) — Part
5: Data communication protocol, 2007.
[3] EN 14908, Open data communication in building automation, controls
and building management — Control network protocol, 2005.
[4] ANSI/EIA/CEA Std. 852, Tunneling Component Network Protocols
Over Internet Protocol Channels, 2002.
[5] LonMark International, http://www.lonmark.org
[6] Konnex Association, KNX Specifications, Version 1.1, 2004.
] Konnex Association, KNX Specifications, Version 2.0, 2009.
[8] EN 50090, Home and Building Electronic Systems (HBES), 1994-2007.
] EN 13321-2, Open data communication in building automation, controls
and building management — Home and building electronic systems — Part
2: KNXnet/IP Communication, 2005.
[10] F. Heiny et al., “Virtual KNX/EIB devices in IP networks”, KNX
Scientific Conference 2004, Deggendorf (available from www.knx.org).
[11] “KNX IP — a new class of KNX devices”, KNX Journal 1/2008, pp.
12-13 (available from www.knx.org).

