
Service Interfaces for Field-Level Home and Building Automation

W. Kastner and G. Neugschwandtner
Institute of Computer Aided Automation

Technische Universität Wien
{k,gneugsch}@auto.tuwien.ac.at

Abstract

Gateway functionality is a key point in leveraging
the potential of a home or building automation network.
High-level interfaces providing abstractions of field area
network (FAN) functionality significantly reduce the effort
involved in creating application-level solutions. Such in-
terfaces are presented on two different levels of abstrac-
tion. First, an interface corresponding to the Network
layer of a FAN used in building automation (European
Installation Bus, EIB) is shown, which unifies handling
of the various physical media and bus access hardware
available. Second, an approach with the goal of provid-
ing a generic representation of narrow-band building con-
trol functionality independent of a specific FAN technol-
ogy is proposed. The interfaces are designed to be used by
lightweight components of an OSGi (Open Services Gate-
way Initiative) platform, which is introduced as well.

1. Introduction

Field area networks(FANs) provide a way to signifi-
cantly enhance the functionality of electrical installations
in buildings. Here, most devices – like wall switches or
light dimmers – relatively infrequently exchange small
amounts of data only. Field bus technology is optimally
suited to enable the flexible exchange of thiscontrol in-
formation.

Even if considerable improvements can be achieved
through the use of a FAN alone, integrating it with other
networks offers further evident benefits. Especially in
the field of home automation, the additional possibilities
arising with the use of gateways may even be attractive
enough to tip the balance in favour of opting for “smart
wiring” in the first place. Once control data are present
in digital form, it seems natural to extend monitoring and
control beyond the doorstep. Beyond FAN/WAN (wide
area network) interaction, worthwhile integration perspec-
tives exist within the boundaries of the living area as well.

While numerous gateway solutions exist, most of those
suited for the residential application domain offer a fixed
set of capabilities only. The integration of novel func-
tionality frequently requires to start development from

Field Bus

Sensors

ActuatorsGeneric Remote
Control Component

WAN connection

Residential Gateway

with Component Software

Field Bus
Access

Component
WAN Con-

nection
Component

Figure 1. Residential gateway using soft-
ware components

scratch. A modular gateway design, proposed for exam-
ple in [13], can alleviate this problem. It reduces the effort
involved in creating new applications by allowing them to
make use of high-level abstractions of field and wide area
network functionality. The application of this concept to
a residential gateway is illustrated in Figure 1.

Re-use of modules can be furthered by designing them
assoftware components.This involves packaging them in
a way suitable for independent deployment and third-party
composition [2, 15]. Ideally, complete applications would
be assembled by customising and connecting components
without coding effort in the traditional sense. If supported
by the execution platform, this binding may even take
place at run-time. This opens the door onservice-based
software models,where services are flexibly configured to
meet a specific set of requirements and are discarded when
no longer needed [1].

Considering suitable component frameworks, theOpen
Services Gateway Initiative (OSGi)offers an interesting
platform specification. It defines a dynamic environment
for software components allowing the run-time configura-
tion of services. By including a powerful concept for re-
mote management, it goes a significant step towards sup-
portingremote services[9]. Although designed with gate-
way applications in mind, the framework design is generic
enough not to preclude other use. The OSGi framework is
based on Java, allowing components to be used on various
hardware platforms. Still, it has a small enough footprint
to be useful in embedded environments.

To allow prefabricated components to interact prop-
erly, they have to provide and use common interfaces.
The more components implement a specific interface, the

Hardware

Operating System

DriverDriver Driver

Java Runtime

Environment

Native

Methods

OSGi

Framework

Bundles

Figure 2. OSGi architectural overview

wider becomes the choice of modules available for mix-
ing and matching (within the context of gateway appli-
cations, for example, network interfaces and application
logic). Thus, such interfaces should cover a broad range
of applications.

A popular approach towards such an interface suit-
able for the representation of arbitrary field bus function-
ality is to break the latter down to the data point level.
One widespread component-based implementation utilis-
ing this concept is OPC (Open Process Control). Being
aimed at large-scale automation systems, however, OPC
is ill-suited for use in embedded environments like a resi-
dential gateway.

This paper proposes to use a hierarchy of interface ab-
stractions for accessing FAN devices from within the con-
text of an OSGi platform. EIB (European Installation
Bus) is considered as a specific example. After an intro-
duction to OSGi and EIB, an overview of the abstraction
layers considered useful is given. Of these, the low-level
interface chosen for EIB is covered in slightly more de-
tail. Finally, the proposed high-level data representation,
which aims to provide a technology independent view
of control functionality in homes and small buildings, is
treated in depth.

2. OSGi service platform

The Open Services Gateway Initiative is a non-profit
technology consortium formed in February 1999. The
open service platform specification maintained by OSGi
is now available in its third edition [11]. The platform is
designed to support a dynamic collection of services with
all management aspects available through a communica-
tion channel free of choice. Although able to handle the
complexity of an operator based network with multiple
independent, external service providers, OSGi-based so-
lutions are expressly not limited to this usage model. Ar-
bitrary applications are possible, including entirely local
ones where control rests with the end user and scenarios
where no IP-based network is involved.1

The core of the OSGi specifications is formed by
a service-oriented lightweight component framework,
which allows to manage multiple applications in a single

1The most striking example is the OSGi framework recently being
chosen as the plug-in environment for the Eclipse tool platform.

Surveillance

Bundle

<< use >>

SensorEvent

NotificationService

SMSService

Field Bus
Access
Bundle

Messaging
Bundle

Home
Theatre
Control
Bundle

LightingScene

RecallService

<< use >>

<< use >>

<< use >>

Figure 3. OSGi component interaction

Java virtual machine. These execute concurrently, pro-
viding their functionality both to one another and to the
outside environment. Service applications can be added,
removed and updated at run-time, allowing continuous op-
eration of the platform. The framework proper only pro-
vides the most basic management functionality, additional
capabilities are added as standard service APIs.

2.1. Framework architecture
Figure 2 illustrates the relationship of the elements

present within an OSGi service platform. Service appli-
cations, which are referred to asbundles,can access func-
tionality provided by the framework, the underlying Java
VM, and the operating system (by using native code li-
braries) as needed. Bundles represent the packaging and
delivery unit within the OSGi framework. Only a single
instance of a bundle exists at any given time. Bundles
also provide hooks for switching between an active (usu-
ally including the execution of independent threads) and
passive state. Consequently, they can be installed, started,
stopped, updated and uninstalled.

Bundles collaborate by mutually providing and using
services. A bundle can provide any number of services
(including none), and services can in turn be used by any
number of bundles. In Figure 32, the Surveillance bun-
dle uses the Sensor Event Notification service of the Field
Bus Access bundle to receive alerts from a motion sensor.
In case the surveillance system is armed, it will use the
Lighting Scene Recall service to turn on all the lights in
case an intruder is detected and notify the owner using the
SMS service provided by the Messaging bundle. Entirely
independent of these actions, the Home Theatre Control
bundle can recall the proper lighting scene for watching a
film if needed.

Within the context of OSGi, the term “service” in the
narrower sense refers to a Java interface definition with
agreed-upon semantics.3 A bundle using a service will
only import the interface class. An appropriate imple-
mentation (called aservice object) can be selected at run-

2It should be noted that although bundles are shown as UMLcom-
ponentsin Figure 3, OSGi services and bundles both contribute to the
aspects usually associated with a component. Functionality is discov-
ered and combined on the service level, while bundles represent the unit
of composition for the gateway operator. This issue is detailed in [2].

3This should not be confused with the general, more high-level notion
of a “service” as some added value presented to the end user.

time, potentially from multiple available choices. This ap-
proach de-couples specification and implementation of a
service and allows programmers to bind to its specifica-
tion only. It is important to note that the bindings between
bundles providing and using services are established (and
removed) entirely at run-time.

Service discoveryis provided through a registry main-
tained by the framework. Here, bundles can register any
number of services. Since in many cases, possibly differ-
ent bundles will register multiple service objects imple-
menting the same service, a set of descriptive properties
(key/value pairs) may also be recorded along with the reg-
istration. Other bundles interested in a specific service can
then look it up using the interface name and, if needed,
specifying filter criteria over these properties. Once a ref-
erence to a suitable service is found, the client bundle uses
it to obtain a Java reference to the service object. Bundles
may register and get as well as withdraw and release ser-
vices at any time. Since it is vital for bundles to react
to these changes in their environment (like registration,
withdrawal, or the change of properties of a service), the
framework provides an appropriateevent mechanism.

For remote administration, all administrative frame-
work functions (like bundle life cycle management and
configuration) are available through services. This
“policy-free” approach leaves gateway operators free to
choose a suitable communication channel for manage-
ment by selecting an appropriate interface bundle.

Security in the framework rests upon the Java 2 secu-
rity architecture. Though it is optional for a framework
vendor to implement, significant consideration is devoted
to it by the OSGi specifications. All parts of the API
which are considered security relevant require appropri-
ate permissions, which are granted on a per-bundle basis.
This specifically includes service registration and access.
Services can also define custom permissions.

2.2. Standard services
The OSGi specifications define a number of standard

services, of which an OSGi platform can contain any sub-
set (including none at all). Some serve to map exist-
ing Java standards to the dynamic nature of the platform,
while others are uniquely OSGi-related. [7] contains a
discussion of those included with the current specification
release. For example, standard services add capabilities
for role-based authorization of end users, provide a central
logging facility and allow bundles to provide both static
resources and dynamic content through a lightweight
WWW server adopting the existing Servlet API.

TheConfiguration Adminservice offers a uniform way
to provide bundles with a persistent set of parameters. Ad-
justments made this way affect the global behaviour of a
bundle, that is, all services it provides for client bundles.

TheWire Adminservice supports the “wiring” together
of services which register themselves as producers or con-
sumers of data. Producers and consumers will usually not
be aware of each other and do not need to hold each other’s

service object. They are, however, notified when a wire is
attached to or removed from them. Both pull and push
semantics are supported. To avoid flooding a consumer
with unnecessarily frequent updates, a wire may apply fil-
ter criteria based on time intervals or value thresholds.

The OSGiDevice Accessconcept assumes devices con-
nected to the gateway are to be represented as device ser-
vices, provided by appropriate driver bundles. Driver bun-
dles are expected to build a hierarchy of device abstrac-
tions (for example, a Camera service on top of a Generic
USB Device service). While these services and bundles
are not fundamentally different from others, the Device
Access service aims to automate thisrefinementprocess
through automatic selection, download and installation of
matching driver bundles. It should be noted that the OSGi
Device Access specification defines no service interfaces
for specific devices.

2.3. Specific challenges
The highly dynamic, multi-threaded nature of an OSGi

environment presents a number of challenges to the ser-
vice designer. First, and above all, one has to account for
services the own code depends on being able to leave –
and return – at any time. Therefore, their state has to be
tracked permanently.

When a service indicates that it is about to leave, clients
are required to release it promptly. Likewise, bundles are
obliged to do so for all services they hold when they are
being stopped. Releasing a service does not only mean
ceasing calling any methods of the service object, but also
releasing any further resources acquired by way of it, like
event listeners. Actually, no references to instances of
classes associated with the service should be kept unnec-
essarily. Failure to do so will result in effects highly un-
desirable for an “always-on” platform, like memory leaks
or bundles not being able to get updated.

Yet, service providing bundles need not depend entirely
on well-behaved clients. They can keep track of client
bundles and their service requests. This is especially ad-
visable when resources outside the Java runtime environ-
ment (like flash disk space) are held on their behalf. By
monitoring a client’s life cycle, these resources can be re-
claimed once it stops even if it did not properly release
them. Appropriate programming patterns can facilitate
this task. One of them is theWhiteboard approachpre-
sented in [4]: By having event listeners register with the
framework rather than the event source itself, the latter
can take advantage of the automatic clean-up done by the
framework to assist in releasing any allocated resources.

In a concurrent environment, possible race conditions
and deadlocks also require careful attention. It is prac-
tically impossible to discover these by black-box testing.
Yet – by the very nature of a component-based environ-
ment – most of the code a bundle interacts with will not be
available for source-level analysis, and the provided doc-
umentation seldom reaches the necessary level of detail.
Additionally, the bundle designer has little control over

which implementation is provided for a required service,
which introduces additional degrees of freedom. These is-
sues should not be taken lightly as expectations regarding
the stability of embedded platforms are usually high.

3. EIB

TheEuropean Installation Bus(EIB) is a field bus net-
work designed to enhance electrical installations in homes
and buildings. As such, it is clearly oriented towards
narrow-band control applications. EIB is based on an
open specification [5] maintained until recently by EIB
Association (EIBA), which was founded in 1990. In 2002,
EIB merged with other standards to form KNX [6] and
is now maintained by Konnex Association. Nevertheless,
“EIB” will definitely remain as a label for a specific KNX
subset for some time.

The dominating physical medium is twisted-pair ca-
bling. More recently, powerline communication and ra-
dio transmission were added (the latter already under the
KNX umbrella). All of them operate at a data rate of less
than 10 kBit/s.

The EIB network stack is conceptually aligned with the
OSI reference model, with the Session and Presentation
layers left empty. It adds a standardised application envi-
ronment (referred to as User layer or Application Interface
layer) to support nodes in using its application-level com-
munication model.

The specification also encompasses standard hardware
building blocks, the most important being theBus Cou-
pling Units (BCUs).BCUs provide an implementation of
the complete network stack and application environment
and can also host simple user applications. Since the pro-
cessing power of a BCU is limited, more complex user
applications will have to use a separate microprocessor.
Although the application may still use a BCU for high-
level access to the network stack in this case, light-weight
twisted-pair (TP) solutions can opt for the so-called TP-
UART IC. This IC also connects directly to the EIB but
handles the network stack up to the Data Link layer only,
with the further exception that the external microprocessor
must determine whether its node is addressed or not.

3.1. Addressing modes
EIB is a peer-to-peer network system where the map-

ping between sensor inputs and desired actuator actions is
also maintained in a decentralised way. Maintenance and
regular operation often have different communication pat-
terns. Especially in home and building automation, reg-
ular operation often involves addressing groups of com-
munications partners simultaneously. Modifying the be-
haviour of a node however requires the ability to specif-
ically address a single device. The design of EIB conse-
quently addresses these diverse needs by providing two
fundamentally different modes of addressing.

Group addressingis the preferred mode for regular op-
eration. It allows to pass a piece of information to an arbi-

trary number of receivers by way of a single message with
a fixed-length address field. This is achieved by making
use of apublisher-subscriber model.Here, the sender uses
a logical group address as destination address. Receiving
stations know which group (or groups) they belong to, and
accordingly either ignore or process incoming messages.

Thus, a sender does not require information which
nodes will actually be receivers of its message. Any node
can elect to “subscribe” to a group without the “publisher”
knowing. Actually, it is neither necessary nor possible for
a node to determine which other nodes will act as publish-
ers or subscribers to a specific group address. To deter-
mine which nodes participate in a certain group commu-
nication relationship, one would have to examine every
node in the system.

Thephysical addressof an EIB node is closely related
to its position within the topological structure of the net-
work. The basic building block of an EIB network is the
(sub-)line, which holds up to 254 devices in free topology.
Following a tree-like structure, sub-lines are connected by
main lines to form a zone, which can in turn be coupled by
a backbone line. Overall, the network can contain roughly
60.000 devices at maximum.

Physical addressing is used whenever it is neces-
sary to communicate with a single node specifically.
This mainly involves device configuration and manage-
ment tasks like downloading application software, setting
parameters concerning device behaviour or configuring
communication relationships.

3.2. Application level communication model
EIB uses a shared variable model to express the func-

tionality of individual nodes and combine them into a
working system. Although this model uses state-based se-
mantics, communication remains event-based.

Every device publishes several application related vari-
ables which expose specific aspects of its functionality.
They will usually either be data sources providing infor-
mation to other devices, or data sinks which carry out cer-
tain actions according to the information received. These
application related variables are referred to ascommuni-
cation objects.4

Communication objects of various devices are grouped
at set-up time to form network-wide shared variables. The
values of all communication objects of a group will be
held consistent by the nodes’ system software. Group
membership is defined individually for each communica-
tion object of a node, and communication objects can be-
long to multiple groups. No limitations exist concerning
the semantics associated with the individual communica-
tion objects of a group. This binding is entirely within the
local responsibility of a node application.

Every group of communication objects is assigned a
unique group address. This address is used to handle all
network traffic pertaining to the shared value. Usually,

4It should be noted that they are loosely related at best to the concepts
associated with an “object” in object-oriented programming.

data sources will actively publish new values, although
a query mechanism is provided as well. Since group
addressing is used for these notifications, the publisher-
subscriber model applies: The group address is all a node
needs to know about its communication partners. Its mul-
ticast nature also means, however, that no authentication
or authorization can take place this way.

User applications are not concerned by which groups
the node they reside on actually belongs to. The Applica-
tion Interface layer actually provides them with an imple-
mentation of communication objects which they can use
in a way similar to local variables.

For the EIB network stack, the contents of shared vari-
ables are opaque octet strings only. To assure that their
values will be interpreted in a consistent way, the EIB In-
terworking Standard (EIS) defines a standardised bit-level
syntax for various variable types. Unique identifiers are
defined for these types as well as for various physical units
which allow the configuration tool to ensure at set-up time
that only compatible types of communication objects are
combined. None of this typing information is ever trans-
ferred during EIB regular operation, however.

4. Abstraction hierarchy

When designing the interface of a field bus gateway to-
wards the outside world, one encounters two conflicting
demands. While most applications would profit from a
technology-independent presentation, the inevitable (and
actually desired) loss of detail incurred with such an ap-
proach will prohibit the use of specific features of the un-
derlying field bus design. Acknowledging the fact that a
single interface cannot serve every purpose, the obvious
approach is to provide multiple levels of abstraction.

This way, a low-level interface can give access to the
communication medium, offering only the most basic pro-
tocol support, but maximum flexibility. An intermediate,
still bus-technology specific abstraction then can add the
parts of the protocol stack needed for a particular applica-
tion. On top, a technology-independent interface tailored
to home and building control applications can reside. Fig-
ure 4 illustrates this hierarchy and its realisation for EIB.
All components shown represent OSGi services. No as-
sumption is made concerning their combination into bun-
dles for deployment.

While this concept builds upon the well-known idea
of layered protocols, it goes further by only loosely cou-
pling the individual parts. This way, elements can be
combined as needed at run-time by installing and linking
suitable components. It also allows for the vertical divi-
sion of concerns, as multiple components may contribute
to one logical abstraction layer. One interface may ser-
vice multiple higher-level components in parallel, as well
as an abstraction layer may combine information from
multiple components. This allows the resulting solution
to be as lightweight as possible, while leaving the op-
tion to add functionality later on. Since interactions be-

Top Level: Technology-Neutral Data Points

Intermediate Level:�
Selected Parts of Protocol Stack

Base Level: Hardware Independence

Single Variable
Mapper

Complex Device
Driver

EIB Group Communication Service

EIB Frame Service

Driver and
Support
Services
for other

FAN Tech-
nologies

Figure 4. Abstraction levels, components

tween OSGi services are effectively implemented as direct
method calls, a fine-grained component structure like this
should not incur inadequate overhead.

4.1. Base level
The interface at the low end of the abstraction hierar-

chy is to provide an abstraction for tasks which cannot be
addressed adequately from within Java, specifically tight
real-time requirements and hardware-dependent issues. In
all that, it should not restrict the applications which can be
built on top of it by offering maximum protocol detail.

For EIB, such a low-level interface is relatively
straightforward. The services of the EIB Data Link layer
do not place real-time requirements on clients5 and allow
uniform access to the physical media available. This in-
terface can for example immediately be used to implement
EIBnet/IP tunnelling.

4.2. Intermediate level
To gain high-level, yet technology specific access to

EIB devices, one might expect that services representing
individual EIB devices (possibly leveraging the OSGi De-
vice Access mechanism) would provide a suitable addi-
tional abstraction level. This is inappropriate for a number
of reasons, however.

The OSGi Device Access mechanism is designed to al-
low the platform to automatically adapt to changes in its
environment without operator intervention. To this end, it
is necessary that the networks it is connected to support
some kind of automatic device discovery mechanism and
provide a standard way for devices to provide enough in-
formation to allow the selection of a matching driver. Tra-
ditional EIB, however, being designed for a field of appli-
cation where change is expected to be infrequent, provides
neither. Without this basis, the automatic device refine-
ment process is pointless.

While these issues could be worked around (by manu-
ally registering the needed information, if necessary), one
encounters a more fundamental problem when attempt-
ing to expose functionality of a node as an OSGi service,
as suggested in most OSGi-related literature [4, 11]. This

5Higher layers may very well make such requirements, however.

approach contains the tacit assumption that a device driver
can “talk” to its target device without further ado to trigger
some action. But due to the publisher-subscriber concept,
access to application functionality of EIB devices in reg-
ular operation is associated with shared variables rather
than devices. This means one cannot specifically change
the state of a certain actuator, one can only do so through
changing the state of the group (or one of the groups) it
belongs to.

Thus, exposing EIB nodes as OSGi device services
seems the wrong approach as far as regular operation is
concerned. Since the service access points of an EIB
network are actually values shared via group addressing,
these are the entities to be exposed by an intermediate-
level EIB access service.

Also, group communication relationships within the
EIB network have to be designed taking into consideration
the functionality to be provided by the gateway (given the
state of the art, this will require a skilled individual). It
has to be ensured that group addresses exist which allow
it to address devices with precisely the required granular-
ity. Also, no nodes must be left with a stale assumption
regarding the state of another due to such an intervention.

Therefore, it does not make sense to provide special
support for EIB set-up tasks. An intermediate abstrac-
tion can confine itself to handling regular operation (i. e.
shared variables). The relevant EIB Application layer ser-
vices do not prescribe upper bounds on execution times
and are handed transparently through the Network and
Transport layer. They are mapped to Data Link layer
group communication services, but are restricted to mes-
sages which fit a single Data Link layer frame. Since
group communication is unconfirmed, no timing restric-
tions therefore exist regarding the EIB network protocol.

Although outside the EIB network stack, translating
transmitted values between the EIS bit-level syntax and
appropriate Java data types will be another important task
at this level. Besides transmitting updates of a shared
value to other group members, theGroup Communica-
tion service will also monitor any given group address,
maintaining a copy of the last value distributed using it on
the network for the use of client services. It can also au-
tomatically respond to read requests from the network if
required.

4.3. Top level

The top-level interface is to be used by OSGi services
presenting added value to the end user. Its task is to supply
them with status information of and accept control mes-
sages for FAN devices. It is explicitly not intended to pro-
vide a generic way of addressing set-up issues, as their in-
timate relation to the specifics of a field bus design would
make this a highly involved effort. The FAN (or possibly
multiple FANs or other automation systems) whose func-
tionality is exposed through this interface are assumed to
be properly pre-configured.

other EIB device

TP-UART

3 (non-router)

4 and up

OSI layer

EIB

OS Driver A

EIB Frame Service Impl. A

OSGi environment

2

1

other services

BCU

OS Driver B

EIB Frame Service Impl. B

OSGi environment

other services

2

(in
te

rfa
ce

 c
on

-

ve

rs
io

n
on

ly
) BCU-

specificTP-UART-

specific

Figure 5. Hardware-software collaboration

Therefore, adata point-oriented approachis adopted.
Its aim is to present the available control points in a uni-
form, technology-agnostic way centred around real-world
entities, so that client services need not deal with specifics
of a particular FAN. The binding of client services to these
data points is expected to be accomplished manually by
an operator or the end user him/herself. For this purpose,
a scheme for enriching data points withsemantic infor-
mationis proposed, which allows to present them clearly
arranged for easy identification.

Since the entities manipulated by this interface are ob-
jects relevant to the end user, his/her perception defines
the applicable timing restrictions. A considerable fraction
of a second seems allowable, although it would be desir-
able to stay below an end-to-end delay of 0.1 s. For EIB,
[12] suggests that this is possible in a Java environment.

Since the application level communication paradigm of
EIB is state-based as well, it will in many cases be suf-
ficient to maintain a 1-to-1 relationship between a data
point service and an EIB shared variable. A single compo-
nent will be sufficient to perform this translation for any
number of such values, like temperature sensor readings
or wall switches. Nevertheless, adriver component6 can
also perform arbitrary additional processing, like a mov-
ing average. It can also handle the additional effort nec-
essary for integrating more complex devices like dimmer
or drive actuators, which are controlled through multiple
group addresses and do not use entirely state-based se-
mantics.

5. EIB base level abstraction

TheEIB Frame service(EFS) provides the capability to
exchange EIB Data Link layer protocol frames with other
EIB devices. It also decodes the Network layer protocol
control information, which consists of a routing counter
only. Since end devices need not further process this
value, the EFS also entirely covers layer 3 functionality
when the node it resides on is not to act as a router. Still,
arbitrary routing functionality can be built on it.

As illustrated in Figure 5, an implementation of the
EIB Frame service will have to be specific to the EIB
hardware interface (which in turn depends on the physi-

6Note that the standard Device Access service is not involved.

cal medium) and the low-level device driver of the host
operating system. Yet, only a single common service in-
terface exists, which is designed to accommodate all these
variations. Implementations will provide an appropriate
subset of the features accessible through it. For example,
a TP-UART based solution can easily allow the dynamic
configuration of a node’s physical and group addresses,
while a BCU is not designed for this information to be
changed frequently.

To allow a client service to check on the actual capabili-
ties of the service object implementing this interface, these
are advertised as service properties together with its ser-
vice registration. Should the client service request unim-
plemented functionality nevertheless, an exception will be
raised. Global settings related to the underlying hardware,
like the physical address of a TP-UART based node, are
managed via the Configuration Admin service. This also
includes whether the EIB hardware interface is operating
in standard or bus monitor mode.

In order to allow different parts of the network stack
to be handled by separate components, the EIB Frame
service has to provide support for multiple client ser-
vices. This way, for example, one component can handle
group communication, while another is concerned with
tunnelling. Obviously, the gateway operator has to en-
sure that competences are clearly divided between such
components, either based upon the addresses they are pre-
pared to process or by means of handling non-intersecting
protocol aspects only. This is a significant extension with
respect to the standard EIB network stack.

Figure 6 shows how the EFS interacts with clients
and the environment. It is withdrawn when communica-
tion with the EIB is not possible for any reason and re-
registered as soon as connectivity returns. Such excep-
tional conditions, which may be of interest to an operator,
are passed to the standard Log service.

To transmit a frame, a client service simply calls the ap-
propriate method on the EFS service object. This method
will not return until an acknowledgement from the remote
Data Link layer was received or the local Data Link layer
gave up retrying. The result is passed as the method return
value. To satisfy special requirements like router imple-
mentation, one method allows to specify a maximum of
control information: priority class, routing counter value,
source address, destination address and user data. For
normal use, an overloaded method is provided where the
EIB Frame service will supply default values as config-
ured. Source and destination addresses are encapsulated
by an immutable utility class, which also provides high-
level methods for constructing and parsing them.

To receive incoming frames, clients register a specific
listener service, whose service properties contain the ad-
dresses they are prepared to process. The EFS uses this
information for two reasons: First, to relieve clients from
having to perform this filtering on their own; second, to be
able to fulfil the EIB layer 2 protocol, which requires an
immediate acknowledgment if a node has been addressed.

actual capabilities
(impl. dependent)

frameReceived(pri, rc, src, dest, data)

called on
registered
listeners

busmonFrameReceived(pri, src, dest, t_stamp, rpt, rc, data, ack)

byte transmitFrame(byte pri, byte rc, EIBAddress src, EA dest, byte[] data)

byte transmitFrame(byte pri, EIBAddress dest, byte[] data)

byte[] pollRequest(EIBAddress pg_addr, int num_slots)

method calls on service object
(synchronous confirmations)

EIB Frame Service

hardware, OS and
implementation

specific

via log
service

via listener
service

properties

via service
properties

via Configuration
Admin Service

network
access

exceptional
conditions

destination addresses to
accept/acknowledge (on incoming
frames) and poll responses

default physical
address, monitor
mode, ...

Figure 6. EFS information flow

When a client is stopped, these registrations are automati-
cally removed by the framework. This is an application of
the Whiteboard approach, allowing the EIB Frame service
to keep its list of addresses to acknowledge free from stale
entries without having to depend on well-behaved clients.
In bus monitor mode, a different method which allows to
pass the extra detail available in this mode is called. Lis-
teners need not implement this if not needed.

Additionally, the EIB Frame service supports the
polling mode specific to the TP medium which allows a
master to frequently monitor the state of a limited number
of slaves with minimum protocol overhead.

6. Technology-neutral data abstraction

The top-level abstraction is specifically targeted at the
residential application domain and smaller-sized func-
tional buildings. It confines itself to handling control in-
formation only. An important goal is to support the con-
struction of a clearly structured and immediately compre-
hensible user interface for monitoring and control pur-
poses as well as binding data points to client services.

The abstraction provided can be used by any OSGi ser-
vice. This may be an HTTP server which presents a con-
trol panel for local or remote use, a service which will
send an SMS when the washing machine is detected to be
spilling water or one implementing any of the technolo-
gies discussed in [14]. It should be noted that these ser-
vices need not be IP-based. As an example, consider an
SMS service which operates using a GSM modem con-
nected directly to the OSGi platform host.

A key benefit of a technology independent abstraction
is to ease the work of service providers and gateway op-
erators, who are spared of having to provide and adminis-
trate multiple versions of a service with otherwise identi-
cal value to the end user. Moreover, it also plays an impor-
tant role for local integration. Although one will initially
select a single FAN technology to cover all demands, one
may simply not have the choice for later additions. This
may be due to the fact that the chosen technology does
not support some new requirement, like device discovery,
which is indispensable for the integration of loose goods.
Such an abstraction also allows to cleanly integrate OSGi

services as data point providers. For instance, a single
“house mode” control may, for example, arm the alarm
system and activate presence simulation.

The approach chosen is astate-basedone, breaking
down system functionality into values of primitive type.
All these data points are represented in a uniform way.
Technology independence is achieved by using real-world
objects and properties as entities in the representation of
the process image. This high-level semantic information
is presented in textual form to the user only, however. Be-
havioural aspects are explicitly not addressed.

As a consequence, complex devices providing multi-
ple points of control are exposed as a set of unrelated data
points. This is not a problem regarding interaction with
other software components, but certainly one for human
users. To enable them to pick the right data point from this
pool, another main constituent of the approach proposed
is a concept for associating data points with additional se-
mantic information pertaining to their effect location and
purpose. This concept is not limited to data points belong-
ing to the same node, but has universal applicability.

6.1. Functional aspects
Every data point is registered as a separate service ob-

ject. In addition to a common service interface, a set of re-
quired property keys is specified, which enables client ser-
vices to query the Service Registry for data points meeting
specific criteria.

Although the state-based approach used may be rem-
iniscent of the EIB application-level communication
model, there are some major differences. First, the seman-
tic information associated with data points is available for
perusal by examining their service properties during reg-
ular operation. Secondly, this information is not related
to field bus nodes, but associated with real-world entities.
Third, the state-based paradigm is applied with full conse-
quence. In an EIB system, data sinks are explicitly free to
silently change application related status associated with
a group variable. For example, an actuator controlling a
stairway light usually switches off after a pre-set time-
out without announcing the state change on the network.
In contrast, data points are required to accurately reflect
the status of their associated real-world entity at any time.
This has to be ensured by the respective driver component,
by dead reckoning if necessary. That way, the entire state
of the system is always available.

Despite this obvious benefit, a purely state-based
model cannot accommodate actions like the sending of an
alarm message, which do not possess state by their very
nature. To be able to include such functionality in the data
point model as well – for example, to have a panic button
trigger it –, a special type of data point representing an
event is provided.

The properties of a data point are enumerated in Ta-
ble 1. ThePropertyproperty holds the aspect sensed or
controlled of the real-world entity described by theObject
property (e. g. “speed”). ThisObject is defined in a way

• Persistent unique identifier (PID)

• Object affected (air, door lock, glass, . . .)

• Property of object (temperature, state, integrity, . . .)

• Read/only (sensor) or read/write (actuator)

• Data type descriptor (constant with specified mapping)

– Boolean, long int, float, string, . . .
– Time stamp, day of week, time of day
– State Set
– Event (memory store/recall)

• Physical unit or state labels

• Minimum/maximum value

Table 1. Data point properties

independent of the specific use this information is put to
(i. e. “wind”, not “thunderstorm warning”). Both theOb-
ject and thePropertyproperties can hold free-form text.

In addition to the standard set of native Java data types,
a means of specifying a certain day of week or time of
day is included for the use with timer programmes. Also,
data points which can enter a number of discrete, mutually
exclusive states can be described properly.

Each of these types is associated with a specific con-
stant value, which allows a client component to automat-
ically generate appropriate user interface elements. For
the same purpose, Boolean and multi-state types are ac-
companied by a set of state labels. The physical unit of
numerical values can be provided as free text.

Concerning interaction with other services, it is obvi-
ous that multiple clients have to be supported. To ensure
consistency, no read accesses must occur during the value
being written. Implementing this requirement using the
Java programming language is straightforward by declar-
ing read and write access methods as synchronized.

For notification on update events, the Whiteboard ap-
proach again offers an elegant solution. By registering
a single listener service, an interested party can receive
update events from all data points. To identify the event
source, its persistent unique identifier (PID) will accom-
pany every notification.

The concept of apool of data pointsintegrates per-
fectly with the OSGi Wiring scheme. Given a suitable
user interface, being able to “wire” data points can of-
fer the end user a powerful, yet reasonably easy-to-handle
tool for customizing platform functionality. Also, log-
ging functionality based on time intervals as well as value
thresholds can be implemented in a straightforward fash-
ion. Yet, such criteria can only be associated with a single
data point.

Concerning security and privacy, the OSGi framework
already provides the necessary mechanisms to ensure that
only trusted bundles are able to use data point or even
low-level services unless they are given the proper per-
missions. Additionally, if a client bundle provides an en-
try point for user authentication (like the HTTP service),
this information can be passed to the data point service

Topology

Purpose

User Interface Bundle

Alarm Bundle

Label Tree
Services:

Installation-
Related
Information

Data Point
Services:

Device Ca-
pabilities

Operator
Selects
Binding

Using UI
Information

Figure 7. Data points: Semantics distribu-
tion and binding

addressed. Another extension would be to limit the fre-
quency of access for certain bundles or users as a privacy
measure by implementing a custom permission class. For
example, remote meter reading could be allowed once a
month only. All these approaches benefit from having data
points available as separate services for more fine-grained
control. Although all these efforts are void as soon as an
attacker gains access to the EIB physical medium, they
raise the barrier for attacks via a remote connection.

6.2. Presentation
Individual data points only hold information about the

kind of real-world entity they represent. Yet, this alone is
insufficient for the end user, who will probably have mul-
tiple (for example) air temperature sensors within his/her
living environment. Therefore, the concept proposed in-
cludes two persistenttree data structuresholding infor-
mation pertaining to the location of effect and purpose of
data points. Every tree node is labelled with a free-text
description and references a list of data points via their
PIDs. Client components still access functionality asso-
ciated with data points using the respective service inter-
faces of the latter. They will only be concerned with the
tree data when the need arises to identify a data point they
are dealing with towards human users. This concept is
illustrated in Figure 7.

Regarding the topological structure, storing theloca-
tion of effectwas chosen over referring to the physical
location of the associated node for the reason of three
specific characteristics of the envisioned field of appli-
cation. First, nodes are frequently installed in distribu-
tion panels, with passive cabling leading to the – often
drastically different – actual location of effect, which is
the one relevant to the end user. Secondly, an approach
strictly aligned with physical topology cannot easily ac-
commodate higher-level functions, such as one that allows
to switch off all power outlets on the ground floor reach-
able by small children. Last, but not least, EIB as a wide-
spread representative uses a communication model which
renders such an approach plainly impossible.

Therefore, an approach is adopted which from a tech-
nical point of view can be consideredfunction-oriented
(as opposed to structure-oriented) [8, 14] in that it en-

My Residence

House

Ground Floor

Living Room

Kitchen

First Floor

Garden

All

Lighting

Air Conditioning

Temperature

Humidity

Irrigation

1

B

2

A

Security

South Window

Patio Door

Patio Door

Blinds

Door

Glass

Position (down)

Lock

Integrity

30%

locked

undamaged

2

B

South Window

Patio Door

Heating/AC

Air

Blinds

Door

Temp. set point

Temperature

Position(down)

Lock

23.5 ˚C

22 ˚C

30%

locked

House - Ground
Floor - Living Room

House - Ground
Floor - Kitchen

House�

Garden - Front
Flower Bed

Air�

Dish-
washer

House�

Irrigation
Pump

Temperature�

Remaining
Time

Automation
Mode

Activity

22 ˚C�

50 min�

short-term
away

off

1

A

2

A

Figure 8. Data point presentation: Possible
user interface

tirely disregards the underlying FAN topology. Yet, far
from ignoring structure, it imposes it on the functional at-
tributes of data points. Maintaining them in tree structure
helps to ensure consistency better than having every data
point hold this information individually (consider convert-
ing the children’s room into a study).

While a data point will only appear once in the tree
structure describing the location of effect (so it is fully
qualified by its path plus its object and aspect), it may
appear multiple times in the one describing its purposes.
Window blinds, for example, keep out the sun as well as
potential intruders.

Although the actual design of the user interface is not
prescribed, Figure 8 shows a possible example. Part of the
available locations of effect and purpose are displayed on
the left-hand and right-hand sides respectively. The list of
data points is filtered according to the tree nodes selected.
No restrictions are made at first. Next, the selection is
narrowed to data points related to the living room. Finally,
the scope of view is further limited to security-related data
points within this room.

7. Conclusion and outlook

Undoubtedly, gateways have a central role in “smart”
homes and buildings by connecting control networks with
one another and the outside world. OSGi offers a powerful
framework to dynamically configure their functionality. It

allows the run-time combination of software components,
while still remaining suitable for resource-limited devices.
Its advantages, however, come at the price of subtle depen-
dencies providing pitfalls to the unwary software engineer.
Taking into account that a gateway platform should oper-
ate continuously, a highly defensive style of programming
seems definitely recommended.

For the technology-neutral representation of FAN func-
tionality, a consequently state-based, data point driven so-
lution was adopted. Data points are associated with exten-
sive meta information, allowing the automatic construc-
tion of user interfaces. The concept also includes update
notifications for clients and is designed for immediate in-
tegration with OSGi Wiring. In addition, basic directions
for ensuring security and privacy were given.

Regarding presentation, the drawbacks of an approach
oriented on the FAN physical topology were discussed.
Consequently, a function-oriented approach was taken,
which relates data point functionality to real-world enti-
ties meaningful to the end user. Nevertheless, it imposes a
clear structure on the functional properties of a data point,
replacing the physical topology by a tree of locations of
effect. To provide further orientation, data points can be
grouped according to their purpose.

Concerning the integration of EIB, it has become ap-
parent that EIB cannot fully exploit the dynamic capabil-
ities of an OSGi environment due to their static nature.
Moreover, their integration is not straightforward owing
to the fact that, concerning regular operation, devices can
only be accessed by addressing groups of nodes. Specif-
ically, it is necessary to consider the functionality to be
exposed by the gateway when configuring an EIB net-
work. As an additional obstacle, the state-based nature
of the EIB application-level communication model was
found not to be consequently implemented.

In spite of these difficulties, a solution was proposed
which provides the optimum support possible for device
driver components. In that, it surpasses solutions already
on the market, like the EIB driver bundle available for the
ProSyst “mBedded Server” [16]. This product only of-
fers very basic assistance for group communication (for
example, no translation of EIS types) and will not serve
multiple clients.

The implementation of the proposed architecture is
currently underway. For future directions, [10] outlines
an extension of the EIB access components supporting the
automatic reconfiguration of communication relationships
and device parameters. This task will be greatly simpli-
fied by new “plug-and-play”-related features introduced
by the KNX standard, which allow to exploit the dynamic
nature of an OSGi platform more fully when implemented
as well. In addition, the Internet remote service architec-
ture announced by EIBA and Konnex Association should
be examined for possible integration as soon as it is stan-
dardised.

Also, support for further FANs technologies needs to
be implemented. Here, LonWorks comes to mind specif-

ically as it is widely used in building automation and a
comprehensive solution for device access is readily avail-
able [3]. Finally, considering spontaneous networking
protocols, [11] proposes mechanisms for the integration
of OSGi platforms into Jini and UPnP-enabled networks
as well. A convenient mapping between these technolo-
gies and the approach presented here will further increase
its usefulness.

References

[1] K. Bennett, P. Layzell, D. Budgen, P. Brereton,
L. Macaulay, and M. Munro. Service-based software: The
future for flexible software. InProc. 7th Asia-Pacific Soft-
ware Engineering Conference, pages 214–221, 2000.

[2] H. Cervantes and J.-M. Favre. Comparing JavaBeans and
OSGi towards an integration of two complementary com-
ponent models. InProc. 28th Euromicro Conf. on Compo-
nent Based Software Engineering, pages 17–23, 2002.

[3] S. Chemishkian. Building smart services for smart home.
In Proc. IEEE 4th International Workshop on Networked
Appliances, pages 215–224, 2002.

[4] K. Chen and L. Gong.Programming Open Service Gate-
ways with Java Embedded Server Technology. Addison-
Wesley, 2001.

[5] EIB Association.EIB Handbook Series 3.0, 1999.
[6] Konnex Association.KNX Specifications, V. 1.1, 2004.
[7] C. Lee, D. Nordstedt, and S. Helal. Enabling smart spaces

with OSGi.IEEE Pervasive Computing, 2(3):89–94, 2003.
[8] M. Lobashov, G. Pratl, and T. Sauter. Applicability of In-

ternet protocols for fieldbus access. InProc. 4th IEEE
International Workshop on Factory Communication Sys-
tems, pages 205–213, 2002.

[9] D. Marples and P. Kriens. The Open Services Gateway Ini-
tiative: An introductory overview.IEEE Communications
Magazine, 39(12):110–114, 2001.

[10] G. Neugschwandtner and W. Kastner. EIB network access
and configuration services for OSGi environments. Proc.
KNX Sci. Conf.,http://www.konnex.org , 2003.

[11] OSGi Alliance.OSGi Service Platform Specification, Re-
lease 3. IOS Press, 2003.

[12] R. Ott and H. Reiter. Connecting EIB components to dis-
tributed Java applications. InProc. 7th IEEE International
Conference on Emerging Technologies and Factory Au-
tomation, volume 1, pages 23–26, 1999.

[13] G. Pratl, M. Lobachov, and T. Sauter. Highly modular
gateway architecture for fieldbus/Internet connections. In
Proc. 4th IFAC Conference on Fieldbus Systems and Their
Applications 2001, pages 293–299, 2002.

[14] T. Sauter, M. Lobashov, and G. Pratl. Lessons learnt from
Internet access to fieldbus gateways. InProc. 28th Annual
Conf. of the IEEE, volume 4, pages 2909–2914, 2002.

[15] C. Szyperski. Component Software – Beyond Object-
Oriented Programming. Addison-Wesley, 1998.

[16] D. Valtchev and I. Frankov. Service gateway architec-
ture for a smart home.IEEE Communications Magazine,
40(4):126–132, 2002.

	chapterStart:
	chapterStartFooter: 0-7803-8734-1/04/$20.00 ©2004 IEEE.

