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Abstract— In the domain of mobile robotics, local maps of
environments represent a knowledge base for decisions to allow
reactive control, preventing collisions while following a global
trajectory. Such maps are normally discrete, updated with
relatively high frequency and no dynamic information. The
proposed framework uses a sparse description of clustered scan
points from a laser range scanner. Those features and the system
odometry are used to predict the agent ego motion as well as
the features motion, similar to a Simultaneous Localization and
Mapping (SLAM) algorithm but with low-constraint features.
The presented local Simultaneous Localization and Mapping
(LSLAM) approach creates a decision base, holding a dynamic
description which relaxes the requirement of high update rates.
Experimental results demonstrate environment classification
and tracking as well as self-pose correction in dynamic and
static environments.

I. INTRODUCTION
Local maps typically consist of close-vicinity representa-

tions of the environment. As they represent the closest layer
of perception in relation with agent dynamic tasks (path-
following, grasping etc.), they are required to be accurate,
online and descriptor-rich. The presented framework pro-
poses an alternative to local map-creation and environment
description for mobile agents in an online, fast-computing
manner. Thus, the environment is modelled and grouped
as rigid dynamic objects, treating object discovery, time-
out, merging, splitting and symmetries. Using the acquired
information regarding the objects dynamic state, agent self-
pose correction is performed, enchanting local map-building
to local Simultaneous Localization and Mapping (LSLAM).
In addition, the framework outputs the classified objects
and their dynamic descriptors for further usage in self-
localization, mapping, path-planning and other robotics tasks.

Grouping of data in higher level features–objects has been
widely studied in computer vision and robotics communities
and recently proposed in SLAM approaches [1]. However,
this work aims to include high-level features in a more
complex SLAM problem, where dynamic entities are present.
Dynamic object tracking has been addressed by Montessano
[3] in his PhD. thesis, analysing various filtering techniques.
MacLachlan [2] presents a segmentation approach for oc-
cluded areas based on agent movement, here generalized for
concave structures and used within the segmentation module.
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Fig. 1: Generated Local Map

II. APPROACH
As the agent R moves within an environment, the local

environment is classified and mapped. Due to sensor char-
acteristics and locality of the data association problem, the
mapped point-clouds are represented in polar coordinates in
the sensor frame, propagated in time with respect to the agent
motion. However, their clusters are represented within the
LSLAM estimator in a Cartesian space. Figure 2 presents
the overview of the framework, including its modules and
data-flow. In the following, the general characteristics and
approaches towards each of the modules is presented.

a) Preprocessing: As the sensor input points p̂raw
are modelled with noise in the range measurement, they
are filtered in polar space using a continuous Gaussian-
kernel. Given such sparse representation, reduced smoothing
and eventually neglection of points close to a feature edge
is achieved. Moreover, the module clusters the points in
segments Ŝ, bounded by discontinuity regions.

b) Homographic Segmentation: As the entire world is
assumed to be dynamic and of interest to the agent, the
necessity of segmentation could be questioned. Overall, the
purpose of segmentation in this framework is to reduce the
number of points without correspondences in the matched
point-clouds, increasing the robustness of Covariant ICP.
Given the agent states µR and µR when segments S̄
and Ŝ are acquired, points that would not satisfy the ray
assumption are segmented using occluded points removal,
constant angular re-sampling and outlier removal.
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Fig. 2: Framework overview

c) Correlation: Using the same inputs, the module
creates a sorted instruction list C(κŜ, κS̄) for the Covariant
ICP module. Segment correspondence is obtained using a
two-way nearest-neighbours approach, refined using search
masks according to agent and objects pose uncertainties Σx.

d) Covariant ICP: The module evaluates the segment
sorted pairs list and computes, if found, the according rigid
transformations. In comparison with other approaches, the
module identifies situations of symmetry (circular arc, per-
fect line, repetitive patterns) and includes this information by
computing transform uncertainty. Thus, false data association
is reduced and object merging/splitting can be evaluated.

e) LSLAM: The loop is being closed by an EKF type
estimator. The objects are initially modelled as constant-
acceleration dynamic with uncorrelated translation and rota-
tion, assuming small values of process noise. However, their
estimation convergence is evaluated and additional process
noise is added (e.g. in situations of objects undergoing high
accelerations). This way, objects that are in steady state
(static, constant velocity) have reduced relative uncertainty
and thus weight more in agent self-pose correction. In a
nutshell, the agent learns the dynamics of the environment
when its odometry is accurate. When odometry inconsistency
is detected (wheel slips, time delay), noise injection in the
agent state will automatically correct its pose in a proba-
bilistic manner, using the most certain landmarks state as
reference. However, if all objects are assumed to be dynamic,
agent noise injection implies degradation of the entire state
estimation, being feasible only for short-term inconsistencies.

III. EXPERIMENTAL RESULTS

Experiments have been conducted using the Gazebo simu-
lation environment under Robotics Operating System (ROS).
The agent is a Pioneer-P3DX mobile robot equipped with
a Hoyuko laser range sensor. The agent and sensor dy-
namics and noise are modelled and simulated accordingly:
constrained agent velocities (amax ∼ 0.4m/s2); Gaussian
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Fig. 3: Self-pose correction in dynamic (left) and static
(right) environments (m×m)

noise in sensor range (σφ ∼ 10−2m) and agent velocity
(σv ∼ |v| · 10−2m/s). As loop skips or low frequencies of
the filter will only increase the estimation uncertainty, the
framework frequency is set to 8Hz (ROS publishes laser
and odometry data unsynchronised at 10Hz). For all the
experiments, the agent is tele-operated.

Object correspondences: Even though the framework pro-
vides short-term memory differential mapping, higher-level
features such as object correspondences are being extracted.
Figure 1 illustrates capabilities of the framework to success-
fully track identified objects in non-trivial scenarios.

Self-pose correction: As described in Section 2, the pose
of the agent is expected to be corrected with high degrees
of accuracy as long as parts of the environment are in
steady state. Figure 3 (left) presents the filtered trajectory
of the agent in dynamic environments when it undergoes
short-term deviations from the motion model. Even though
the framework has been designed for agents with relatively
accurate odometry and a dynamic word assumption, it can
as well be operated assuming a static environment. Figure
3 (right) presents the filtered agent trajectory, assuming a
static world and feeding into the framework fixed angular
and linear velocity readings set to 0 (odometry impairment).

IV. CONCLUSIONS
Agent self-pose correction in dynamic environments is

still a weakly addressed problem within the robotics com-
munity. The presented framework has proven to extract
sufficient information from partially steady-state dynamic
environments, even though low constraint models of the en-
vironment and agent are assumed. Following such a general
approach, developments towards static objects detection (e.g.
using static map information) should improve the overall
estimation and tracking, providing a complete solution for
SLAM with dynamic descriptors and potentially broadening
the capabilities of robotics tasks that make use of local maps.
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