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Abstract. In the domain of mobile robots local maps of environments are used 

as knowledge base for decisions to allow reactive control in order to prevent 

collisions by following a global trajectory. These maps are normally discrete 

and updated with a relatively high frequency, but with no dynamic information. 

The proposed framework uses a sparse description of clustered scan points from 

a laser range scanner. These features and the system odometry are used to pre-

dict the agent ego motion as well as feature motion using an Extended Kalman 

Filter. This approach is similar to a Simultaneous Localization and Mapping 

(SLAM) algorithm but with low-constraint features. The presented local Simul-

taneous Localization and Mapping (LSLAM) approach creates a decision base, 

holding a dynamic description which relaxes the requirement of high update 

rates. Simulated results demonstrate environment classification and tracking as 

well as self-pose correction in static and in dynamic environments. 
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1 Introduction 

Despite the fact that a lot of research has been conducted on environment mapping, 

most of the approaches still assume it to be static. As a consequence, tasks assigned to 

mobile agents have been generally solved constraining the underlying algorithms and 

approaches to such an assumption. Thus, classical approaches to Simultaneous Local-

ization and Mapping (SLAM) such as FastSLAM [5] or ICP-based [6] encounter 

difficulties and often-times lead to divergence in dynamic unstructured environments. 

Regarding map based localization-tasks, considerable modification of the layout im-

poses offline re-mapping. Even in local path-planning, common approaches treat 

sensor data at each iteration as static obstacles, relying on relatively high control fre-

quencies to deal with dynamic environments. 

Local maps typically consist of close-vicinity representations of the environment. 

As they represent the closest layer of perception in relation with the agent dynamic 

tasks (path-following, grasping etc.) [7], they are required to be accurate, online and 



descriptor-rich. However, traditional approaches generate local-maps without any 

dynamic descriptors of the local environment. 

The presented framework proposes an alternative to local map-creation and envi-

ronment description for mobile agents in an online, fast-computing manner. Thus, the 

environment is modelled and grouped as rigid dynamic objects, treating object dis-

covery, time-out, merging, splitting and symmetries. Using the acquired information 

regarding the objects dynamic state, agent self-pose correction is performed, enchant-

ing local map-building to local SLAM (LSLAM).  In addition, the framework outputs 

the classified objects and their dynamic descriptors for further usage in self-

localization, mapping, path-planning, sensor-fusion and other robotics tasks.  

Grouping of data in higher level features--objects has been widely studied in com-

puter vision and robotics communities and recently proposed in SLAM approaches 

[1]. However, this work aims to include high-level features in a more complex SLAM 

problem, where dynamic entities are present. Dynamic object tracking has been ad-

dressed by Montessano [2] in his PhD. thesis, analyzing various filtering techniques. 

Bar-Shalom et al [4] analyses dynamic object tracking as well and presents a process 

noise for velocity-bound and acceleration-bound models assuming a Wiener-process. 

This paper is organized as follows: Section 2 presents in detail the approach of the 

LSLAM EKF estimator, followed by simulated results for pose-correction and data 

association, presented in Section 3. Conclusions are drawn in Section 4. 

2 Approach 

Fig. 1 presents the overview of the framework, including its modules and their in-

put-output data. The laser sensor data undergoes a three-layered abstraction, from 

points ( ) to segments ( ) and finally objects (𝒪). 

 

Fig. 1. Generated local map showcasing various non-trivial scenarios (left),                    

Framework overview (right) 



The input point-cloud  is segmented under homography constraints and its 

constituting segments are associated. Pose displacements corresponding to each seg-

ment pair along with uncertainty is computed by the Covariant ICP module. The loop 

is being closed an Extended Kalman Filter (EKF) type estimator implemented in the 

LSLAM module. Based on the agent predicted state , correlated segments infor-

mation and objects observations , the estimator updates the state of the world. In the 

following, the underlying approach of the LSLAM module is presented. 

Prediction 

Agent prediction. Given the mapped state of the agent including its velocities and 

accelerations, assuming a constant acceleration model, its state is being predicted.  

The noise covariance matrix is being modelled as parameterized dt-proportional, us-

ing 2 parameters ( ).  The Jacobian of the agent's motion model with respect to the 

noise parameters V (1) maps the noise covariance matrix in the agent's state space (2). 
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Agent pseudo-observation .In many situations, odometry information is subject to 

inconsistent noise (time delay, drifts, encoder errors, wheel slips, deviation from line-

arization point) and furthermore impose a refinement of the agent prediction method. 

Thus, at the end of the prediction step, the mapped system is being pseudo-updated 

with the agent's control input. The noise of the observation is modelled as having a 

base value and a state-velocity-proportional value (3). 
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Object prediction. Assuming a constant-acceleration model, the objects are being 

predicted. The object's pose prediction has no real use but pose covariance is being 

predicted and propagated over time. However, point--clouds that are belonging to an 

object are being predicted based on its dynamic state and propagated accordingly to 

ensure robust segment-correspondences. The object process noise  is being 

modelled as described by Bar-Shalom [4] under the assumption of continuous-time 

white noise (Wiener process). 

𝝁
𝒪𝑖

= 𝐠𝒪𝑖
(𝝁𝒪𝑖
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Merging/Splitting analysis 

In situations when object merging or splitting is proposed (object merge/split is 

flagged when observing multiple segments corresponding to one or vice-versa) the 

strength of computing transforms covariance is exploited. The means and covariances 

of the proposed-to-merge segments/objects are being pair-wise combined forming a 



new mean 𝝁𝑖𝑗
1. The cost function of the two transforms "neighboring level" is mod-

elled as the product of the two initial distributions, evaluated in 𝝁𝑖𝑗. The pair-wise 

merging happens if the cost function is bigger than a threshold. In case a flagged 

merge or split is evaluated as valid, the state vector is resized and segments are asso-

ciated to the new object configurations. 

 

Fig. 2. Object merging/splitting scenarios 

Update 

The general object observation function uses the computed translational and rota-

tional deviation of corresponding segments along with its uncertainty, as computed by 

the Covariant ICP module. As the center of mass of the matched point-clouds chang-

es over time, the predicted pose state of each object has to be initialized before update 

(5), according to its new center of mass (computed by the Covariant ICP module). 
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Adaptive filtering 

As the observed environment assumes a general low-constraint model, with no cor-

relation between objects, agent pose-correction is desired to happen only when suffi-

cient observed objects are in steady-state. Thus, additional uncertainty of the tracked 

objects is being injected as a scaled entry of their base prediction noise (6). The scale 

factor is proportional to the Mahalanobis distance of the object residual  in the 

velocity probability distribution2 . The object adaptive noise provides better 

object state estimation in situations of under-scaled base prediction noise in highly-

dynamic tracked motions (e.g. circular trajectory with small radius at high velocity). 
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1  Merging uncertainty computed through Gaussian distributions multiplication 
2  Evaluating the Mahalanobis distance ensures scalability and behaves equally for various 

pose uncertainties of the system 



The agent state convergence is evaluated in a similar fashion to Congwei Hu et al 

[3]. However, instead of using only the predicted residuals, the total Mahalanobis 

distances of all the objects residuals at time t and the same metric for the last N time 

steps is being evaluated (9). This way, large additional agent noise will not be trig-

gered when the observed system is closer to unsteady state. In practice, the additive 

noise is triggered if . The additive noise  injected in this phase (8) 

can have various forms depending on the expected drifts of the agent from the model 

(time skew, slips, short distance kidnappings, frame-rate drop etc.). 
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It is worth noting that during a cycle of the filter, the agent adaptive noise injection 

process is evaluated first. After the agent noise injection and all object updates, the 

object residuals are recomputed (using the updated agent information) for the object 

noise injection. This way, erroneously high values of object injected noise due to pre-

update agent state divergence is avoided. 

Initialization and point-cloud propagation 

As more objects get discovered, they are appended and initialized according to the 

agent's uncertainty and their initial observation. Especially for moving objects, keep-

ing their state when they are out of view is not required, their uncertainty becoming so 

big that correct data association is not feasible. Thus, each object is being discarded 

when its velocity uncertainty ellipse surface exceeds certain thresholds (static out-of-

view objects are remembered and potentially used for loop closures). 

In the current stage, object reconstruction is not implemented, thus for short-term 

mapping the "longest" point-cloud from a match is being propagated, given that it 

provides enough up-to-date information about the current observed segment.  

3 Simulated results 

All the experiments are being conducted using the Gazebo simulation environment 

under Robotics Operating System (ROS). The agent is a Pioneer-P3DX mobile robot 

equipped with a Hoyuko laser range sensor and its angular and linear velocities are 

constrained to certain measured acceleration limits ( ). As ROS pub-

lishes laser and odometry data unsynchronized at a frequency of 10Hz, a message-

filter is used for message synchronization. Thus, the frequency of the framework is set 

to 8Hz, ensuring input data synchronization without loop-skips. The input data from 

the simulator is being noised, with fixed Gaussian noise for the laser sensor range 

readings ( ) and proportional Gaussian noise for the observed agent veloc-

ities ( ). The framework provides three visualization tools, one for 

ICP results, transforms and error metric and other two for agent local view and world 



view. Within the viewers, 3𝜎 pose uncertainty is depicted in yellow while the velocity 

mean and uncertainty in green. For all experiments, the agent is tele-operated. 

Object correspondences 

Even though the framework provides short-term memory differential mapping, 

higher-level features such as object correspondences are being extracted. The follow-

ing set of experiments illustrates the capabilities of the framework to successfully 

track identified objects in non-trivial scenarios.  

 

Fig. 3. Semantic memory in various scenarios 

Merging/splitting. Given finite and relatively small sensor range with respect to the 

environment size as well as occluded areas of environments, the agent is supposed to 

map segment correspondences to their true state. Thus, the experiment presents object 

discovery and merging with segment splitting. At time t1, the agent observes 3 seg-

ments, assumed to be different objects. As more information is acquired, the objects 

get merged so that at t2, all observed segments are evaluated as the same object. 

 

Fig. 4. Occluded tracking 



Swipe-occlusion detection. Most of the scenarios that involve dynamic objects and 

static objects in the background will undergo "swiped-occlusion" situations, in which 

the dynamic object will partially occlude from one end to the other the static back-

ground. In such situations, propagating the last observed point-cloud will fail to re-

identify the background object after the "swipe". However, as presented in 2.5, this 

approach achieves such semantic memory. 

Occluded tracking. Short-term occlusion of objects are often present scenarios in 

dynamic environments. Especially for path-planning tasks, trajectory optimization 

and even collision avoidance can be achieved in case of short-term occluded memory, 

the trajectory of the object being remembered. In this experiment, the agent is under-

going a circular motion and observes a moving object, which becomes fully occluded. 

However, when the object reappears in the field-of-view, it is correctly matched. 

Self-pose correction 

The following experiments present agent self-pose correction assuming dynamic as 

well as static environment. The encoder drifts have been achieved by pausing the 

simulation at certain time-steps and manually modifying the agent pose. 

 

Fig. 5. Self-pose correction in dynamic environments 

As described in Section 2, the pose of the agent is expected to be corrected with 

high degrees of accuracy as long as parts of the environment are in steady state. Fig. 5 

presents the filtered trajectory of the robot when it undergoes short-term deviations 

from the motion model in various scenarios (m:m). 

Even though the framework has been designed for agents with relatively accurate 

odometry values and a dynamic word assumption, it can as well be operated assuming 

a static environment. The following tests have been conducted feeding into the 

framework a fix measured angular and linear velocity set to 0 (odometry impairment). 

Fig. 6 presents estimated trajectories of the agent (left, m:m) and the estimated lin-

ear and angular agent velocities(right, m/s:s).  

 

Fig. 6. Self-pose correction (left) and agent angular velocity (right) in static environments 



4 Conclusions and future work 

Agent self-pose correction in dynamic environments is still a weakly addressed 

problem within the robotics community. The presented framework has proven to ex-

tract sufficient information from partially steady-state dynamic environments, even 

though low constraint models of the environment and agent are assumed. By limiting 

environment perception to 2D, complexity of the problem is low enough for fast-

online computation. However, especially in structured environments, the reduced 

dimensionality makes data association difficult given high probability of symmetries. 

Thus, image processing techniques such as Homographic Segmentation and Covari-

ant ICP have been developed and used to increase robustness of data association. 

As laser range sensors represent a norm in mobile agents nowadays, their accuracy 

is assumed by the framework to extract higher-level features from the environment: 

Objects. Such an approach proves to simplify EKF SLAM, reducing drastically the 

state vector size and thus computation time, even with detailed assumed models. 

The focus of the presented work is on short-term memory reasoning of state point-

clouds. Thus, long-term mapping and symmetry-robust loop-closures have not been 

addressed. However, simulated results prove that problems such as occluded tracking, 

gradual total occlusion and semantic memory are addressed and solved even with the 

above mentioned limitations. Shifting the focus towards long-term memory tasks, 

incorporating offline maps as constrained static objects will improve results. 

 Research could be focused on higher-level tasks such as local path-planning, using 

approaches such as Model Predictive Control (MPC) or Dynamic Window Approach 

(DWA), generalized for dynamic obstacle states. Such approaches should provide 

complex behaviors such as avoidance maneuvers due to external dynamic objects. 

Last but not least, when high robustness and maturity of the framework is 

achieved, open-source publication of the code as a ROS node is desired, inviting the 

robotics community to take advantage of a package that provides pose-correction and 

dynamic descriptors of the environment for future research in various related fields. 
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