
Diplom-Studium:
Informatik

Diplomarbeitspräsentation der Fakultät Informatik

Free Development Environment for Bus Coupling
Units of the European Installation Bus

Martin Kögler <mkoegler@auto.tuwien.ac.at>

Technische Universität Wien
Institut für Rechnergestützte Automation
Arbeitsgruppe Automatisierungssysteme
Betreuer: ao. Univ.-Prof. Dr. Wolfgang Kastner
Betreuer: Dipl.-Ing. Georg Neugschwandtner

Abstract

The European Installation Bus (EIB) is a field bus for home and building automation. Bus
Coupling Units (BCUs) provide a standardized platform for embedded nodes based on the
M68HC05 microcontroller family.

A set of open source tools for developing and downloading BCU programs based on the
GNU tool chain is presented. Its RAD-like (Rapid Application Development) approach is
introduced.

The tool set supports the separation of application development and deployment and includes
a multi-user and network-capable Linux daemon for EIB access and network management.

The GCC port needed several creative measures to make GCC cope with the limitations of
the architecture.

Features of the BCU SDK

• based on the GNU utilities (GCC, Binutils)

• provides RAD like concept (instead of a plain assembler interface), requiring the program-
mer to specify properties and event handlers only

• C (with inline assembler) is used for programming event handlers

• includes an interface for integration tools (this will be parts of future projects)

– no ETS interface

– provides support for compilation at download time

• provides access to same management functions over different bus access devices

– provides an API to provide EIB access in other programs. Several utility programs, which
also illustrate the use of this API, are included.

– includes a standard bus monitor, which optionally can decode EIB frames.

– special monitor mode (called vBusmonitor) even allows some traffic to be traced without
switching to bus monitor mode.

• no GUI interface

The following limitations are present:

• generates larger code, than optimized, hand written assembler code

• not compatible with the original, commercial BCU SDK

• If the bus is accessed via a BCU 1 or BCU 2, this BCU is inaccessible to the BCU SDK.

Workflow

planning and installation

project engineer

BCU config
build.ai

configuration
descriptioninformation

application

build.img eibd

BCU bus interface
EIB network

BCU SDK Development BCU SDK Download

direct bus access

image

for development

Integration Tool

for development

C files

Dataflow

configuration
description

application

information

build.ai build.img

Integration Tool

processing

program text bypass for development

configuration description generator
for development

program text

meta data meta data

skeleton generator

Port of the GNU Utilities

• Binutils (assembler, linker and object file tools)

– uses a different syntax than Motorola, e.g. %X instead of X for the X register

• GCC (GNU C compiler)

• CPU core simulator

• GDB frontend for the simulator

• C runtime libraries for the simulator

Use of the simulator

• Simulator and C runtime libraries needed for GCC regression tests

• GDB for analyzing GCC generated code

•⇒ incomplete

Relaxation

As small code size is needed, relaxation is implemented (shrinking code sections at link time):

• Instruction formats with different length exist.

• The longest one has to be chosen at assembler runtime, if the precise requirements are
unknown.

• The linker replaces longer variants if possible.

• Expanded conditional jumps are converted back, if possible.

Section movement

• The BCU 2 has non contiguous RAM sections.

• GCC needs automated distribution of variables.

• GCC prefixes each variable with a special command
(.section command with name ending in !!!!!).

• The assembler creates a unique section (by replacing !!!!! with a unique number).

• The linker can be instructed to move sections from a full memory region into another
memory region.

GCC

Limitations of the M68HC05 family:

• Two hardware registers (accumulator and index register)

•Only a small call stack

•Only 8 bit index plus address addressing mode (besides a fixed 8 or 16 bit address).

GCC has different requirements:

•Many GPR (general purpose registers)

• A data stack

• Pointers, which can cover the entire address space

⇒ Emulation of missing features — available memory limits useable functions.

GCC internals

• 13 Bytes of RAM (RegB–RegN, reserved by BCU OS) are used as GPR.

• A byte of RAM is used as data stack pointer. Data stack starts at a 256 byte boundary.
Using a different initialization value, a smaller stack area can be used.

• 16 bit pointers are emulated with self modifying code.

•mul, div and floating point operations are handled by library functions.

• Support for 1 to 8 byte integer types

• Support for transparent eeprom access (named address spaces)

ISO/IEC TR 18037 m68hc05-gcc
named address spaces address spaces

#define eeprom attribute ((eeprom))
#define eepromt attribute ((eepromt))

eeprom char a; eeprom char a;
eeprom char* b; eepromt char*b;
eeprom int* eeprom c; eepromt int* eeprom c;

– The eeprom attribute enables transparent access.

– Pointers pointing to such an EEPROM location need the attribute eepromt instead.

– A write access to the EEPROM is replaced by a library call.

– Actually placing variables in the EEPROM is done with other attributes.

• Expensive operations like setjmp/longjmp are left out.

Compilation process

• GCC parses a function

• GCC performs target independent optimizations on a tree representation.

• GCC converts it to high level RTL (Register Transfer Language)

– uses only GPRs and memory locations as operands.

– uses pseudo instructions for the 8/16/24/32/.. bit operands

• some optimizations are done

• register allocator replaces pseudo registers with GPRs and stack locations.

• Each high level RTL instruction is split into multiple low level RTL instructions

– each instruction corresponds to an assembler instruction or library call.

– stack pointer is cached in X register

• some optimizations are redone.

• assembler code is generated

Current GCC status

• GCC is working

– 1335 of 36394 failed regression test cases

– large parts fail because of insufficient memory and stack overflows.

• No target specific optimizations (e.g. peephole optimizations) implemented.

• G++ frontend is partially working (e.g. no exceptions).

• Some limitations:

– no overflow detection

– overflows can occur in compare operations

– . . .

⇒ Lots of improvements are possible

Future work:

• Low level RTL generated at expand time

• Conditon code handled as register

Bus access with eibd

IP Router BCU 2 BCU 1

TCP/IP TPUART driver

2.6

TPUART
usermode

FT1.2 BCU1
usermode

BCU1
kernel

Unix Domain Socket Server

RAW Group Broadcast Individual
vBusmonitor

Client

TCP/IP Server

Client Connection

Connection

Layer 3

BCU1 driverserial driver

TPUART

Kernel

back end

core

front end

TPUART

2.4

EIBnet/IP

Management Management

Busmonitor

EIB network

Routing
Tunneling

• A network capable, multi user daemon (named eibd) was developed.

• Provides access to Layer 4 as well as complex management functions over a simple protocol.

• best effort, cooperative vBusmonitor mode, which do not prohibit sending activity

• runs under Linux (some backends even work on Windows using Cygwin)

• The bus access is hidden by the backends:

FT1.2 protocol of the serial interface of the BCU 2.

EIBnet/IP EIBnet/IP Routing and EIBnet/IP Tunneling client.

TPUART protocol of the TPUART IC. It uses the plain serial driver or a Linux kernel
driver.

PEI16 protocol of the serial interface of a BCU 1 using a kernel driver, which does the
time critical data exchange. An experimental version using the plain serial driver exists.

BCU SDK

The build process is done in two steps:

• The application information is created by the build.ai program. It contains all neccessary
information to build a real program including all meta data for use by an integration tool.
All errors which could occur in the second step should be detected by this program.

• In the second step, the final binary image is built using the configuration description.

Memory maps used by the BCU SDK:

BCU 1 memory map BCU 2 memory map

0x000

0x1FF

0x100

0x050

IO Space

ROM

EEPROM

RegB − RegN

.ram

.bss

.data

stack

call stack

Low RAM

0x0CE

0xE0

Header

Addresstable

Association

table

Group Objects

Init Code

Code

Timer

.loconst

read only

copy of .data

.eeprom

.parameter

checksum

reserved

0x000

0x100

0x050

IO Space

ROM

EEPROM

RegB − RegN

.ram

.bss

.data

stack

call stack

Low RAM

0x0CE

0xE0

Header

Addresstable

.eeprom

Timer

.loconst

Init Code

Group Objects

Properties

Code

read only
copy of .data

copy of .data.hi

Association

table

.parameter

.bss.hi

.data.hi

stack

0x900

0x9D0

0x4DF

High RAM

0x972

0x98A

<=0X1FF

reserved

Example program - A negation which can be disabled

The following program passes changes of the group object recv to the group object send,
while the cond group object is enabled. The transmitted values are negated. All group
objects are of type DPT Bool (1.002).

BCU configuration - cond.config

Dev ice {
PEIType 0 ; BCU bcu12 ; / / use bcu20 f o r a BCU 2 . 0
T i t l e ” Co n d i t i o n a l n ega t i o n ” ;

Fun c t i o n a lB l o c k {
T i t l e ” Co n d i t i o n a l n ega t i o n ” ; P r o f i l e I D 10000 ;
I n t e r f a c e {
Re f e r en c e { send } ; A bb r e v i a t i o n send ;
DPTType DPT Bool ; / / same as 1 . 0 02
} ;
I n t e r f a c e {
Re f e r en c e { r e c v } ; A bb r e v i a t i o n r e c v ;
DPTType DPT Bool ;
} ;
I n t e r f a c e {
Re f e r en c e { cond } ; A bb r e v i a t i o n cond ;
DPTType DPT Bool ;
} ;
} ;
GroupObject {
Name r e c v ; Type UINT1 ; on update s end upda te ;
T i t l e ” I npu t ” ; StateBased t r u e ;
} ;
GroupObject {
Name send ; Type UINT1 ;
Send ing t r u e ; T i t l e ” Output ” ;
StateBased t r u e ;
} ;
GroupObject {
Name cond ; Type UINT1 ;
R e c e i v i n g t r u e ; T i t l e ” Cond i t i o n ” ;
StateBased t r u e ;
} ;
} ;

C code fragment - cond.c

vo i d s end upda te () {
i f (cond)
{ send=r e c v +1; s e n d t r a n sm i t () ; }

}
Configuration description - cond.ci

<?xml v e r s i o n =”1.0”?>
<Dev i c eCon f i g >

<ProgramID>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx </ProgramID>
<Phy s i c a lAdd r e s s >1.3.1</ Phy s i c a lAdd r e s s >
<GroupObject i d=”i d0”>

<P r i o r i t y >low</P r i o r i t y >
<SendAddress >0/0/1</SendAddress>

</GroupObject>
<GroupObject i d=”i d2”>

<P r i o r i t y >low</P r i o r i t y >
<Rece i veAddre s s>

<GroupAddr>0/0/5</GroupAddr>
</Rece i veAddre s s>

</GroupObject>
<GroupObject i d=”i d4”>

<P r i o r i t y >low</P r i o r i t y >
<Rece i veAddre s s>

<GroupAddr>0/0/7</GroupAddr>
</Rece i veAddre s s>

</GroupObject>
</Dev i ceCon f i g>

Further details

Project homepage http://www.auto.tuwien.ac.at/~mkoegler/index.php/bcus

EIB/KNX projects of the group: http://www.auto.tuwien.ac.at/knx/

http://www.auto.tuwien.ac.at/~mkoegler/index.php/bcus
http://www.auto.tuwien.ac.at/knx/

