
Free Development Environment for
Bus Coupling Units of the European

Installation Bus
BCU SDK Edition

Martin Kögler (mkoegler@auto.tuwien.ac.at)

December 18, 2008

Copyright

BCU SDK Documentation
Copyright (C) 2005-2008 Martin Kögler <mkoegler@auto.tuwien.ac.at>

You can redistribute and/or modify this document under the terms of the GNU Gen-
eral Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with this
document; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA

Where the GNU General Public License mentions ”source code”, these LaTeX files or
another editable file format, if it became the preferred format of modification, shall be
referred to. Any not ”source code” form derived from this ”source code” are regarded
as ”binary form”.

Modified versions, if the modification is beyond correcting errors or reformatting, must
be marked as such.

Acknowledgments

This text is based on my diploma thesis.
Wolfgang Kastner and Georg Neugschwandtner, Automations Systems Group, Tech-

nical University Vienna, have helped me a lot.
Georg Neugschwandtner is contributing to this document by proofreading and revising

changes.

3

4

Abstract

The European Installation Bus (EIB) is a field bus system for home and building au-
tomation. Bus Coupling Units (BCUs) provide a standardized platform for embedded
bus devices. They can be programmed and configured via the bus. BCUs are based
on the Freescale (Motorola) M68HC05 microcontroller family and provide a few tens
of bytes of RAM and less than 1 KB of EEPROM. A common integration tool (called
ETS) is used for the planning and installation of EIB systems.

Several problems exist for non commercial development projects. Although a free
SDK for the BCU 1 is available, there is no free C compiler. Additionally, only certified
programs can be processed by ETS. ETS as well as standard libraries for PC based bus
access are only available for Windows.

During the course of the present project, a set of free tools for developing programs
for BCU 1 and BCU 2 (twisted pair version) as well as loading them into the respective
BCU were created. A RAD (Rapid Application Development) like approach is used for
programming. Properties and event handlers of the used objects are described using a
special specification language. Necessary code elements are written in C (inline assembler
is also supported). An interface to an integration tool is also available.

A multi-user and network-capable Linux daemon to access the EIB was developed,
which provides access to the transport layer as well as complex device management
functions. Different interfaces for bus access are supported (PEI 16, FT 1.2, EIBnet/IP
Routing + Tunneling and TPUART).

The tool chain is based on the GNU tool chain. The hardware limitations of the target
system were a key point of the porting activities. It is described how GCC was ported
to an accumulator architecture with only two 8 bit registers – but with 16 bit address
space – and only one call stack.

Small code size is a primary requirement. Therefore, integers of 3, 5, 6 and 7 bytes are
supported for situations, where a two byte integer is too small, but 4 or 8 byte integer
types would be unnecessarily large. As the architecture uses variable length instruction
formats, a mechanism which selects the smallest variant was implemented into the linker.

A mechanism is shown which makes GCC distribute variables over non contiguous
segments automatically. This feature is required by the BCU 2 architecture. Addition-
ally, transparent access to the EEPROM was added. Its concept is related to ISO/IEC
TR 18037 named address spaces.

5

6

Kurzfassung

Der European Installation Bus (EIB) ist ein Feldbus für die Heim- und Gebäudeauto-
mation. Die Standardplattform für Embedded-Teilnehmer bilden Bus Coupling Units
(BCUs). Diese können über den Bus mit Anwendungen und Konfiguration versehen
werden. BCUs basieren auf der Freescale (Motorola) M68HC05 Mikrocontroller-Familie.
Sie bieten einige dutzend Bytes RAM und weniger als 1 KB EEPROM an. Für die
Planung und Installation von EIB-Systemen steht eine einheitliche Integrationssoftware
(ETS) zur Verfügung.

Für nicht-kommerzielle Entwicklungen stellen sich mehrere Probleme. Zwar existiert
für die BCU 1 ein freies SDK, es steht aber kein freier C-Compiler zur Verfügung. Au-
ßerdem können standardmäßig verfügbare ETS-Versionen nur zertifizierte Anwendungen
verarbeiten. Darüber hinaus sind ETS und Standardbibliotheken für den PC-basierten
Buszugriff nur für Windows verfügbar.

Im Rahmen der vorliegenden Arbeit wurde ein Set von frei verfügbaren Tools geschaf-
fen, das sowohl die Entwicklung von Programmen für BCU 1 und BCU 2 (Twisted-
Pair-Version) als auch deren Übertragung auf die entsprechende BCU ermöglicht. Für
die Programmierung wird eine RAD (Rapid Application Development)-ähnliche Vorge-
hensweise unterstützt. Eigenschaften und Eventhandler der benutzten Objekte werden
mittels einer eigenen Spezifikationssprache festgelegt. Nötige Codeelemente werden in C
(mit Unterstützung für Inline Assembler) ergänzt. Eine Schnittstelle für ein Integrati-
onswerkzeug wird ebenfalls bereitgestellt.

Für den Zugriff auf EIB wurde ein Multi-User- und netzwerk-fähiger Linux-Daemon
entwickelt, der einerseits direkten Zugriff auf die Transportschicht, andererseits auch
komplexe Gerätemanagementfunktionen anbietet. Für den Buszugriff werden verschie-
dene Schnittstellen unterstützt (PEI 16, FT 1.2, EIBnet/IP Routing + Tunneling und
TPUART).

Das Entwicklungswerkzeug basiert auf der GNU Toolchain. Bei der Portierung standen
die Hardwarebeschränkungen der Zielplattform im Mittelpunkt. Es wird gezeigt, wie
GCC auf eine Akkumulator-Architektur mit nur zwei 8-Bit Registern – aber 16 Bit
Addressraum – und reinem Call-Stack portiert werden kann.

Geringe Codegröße ist eine zentrale Anforderung. Daher werden Integervariablen mit
Größen von 3, 5, und 7 Bytes für Situationen unterstützt, in denen der Wertebereich
eines 2-Byte-Integer nicht ausreicht, 4- oder 8-Byte-Typen aber zu groß sind. Da die
Architektur verschieden lange Instruktionsformate bereitstellt, wurde auch in den Linker
ein Mechanismus implementiert, der das kleinstmögliche Format wählt.

Es wird ein Mechanismus gezeigt, der es erlaubt, mit GCC automatisch Variablen
auf nicht zusammenhängende Segmente zu verteilen. Diese Möglichkeit ist aufgrund
der speziellen Anforderungen der BCU 2 notwendig. Weiters wird transparenter Zugriff
auf das EEPROM bereitgestellt. Der dabei gewählte Mechanismus orientiert sich am
Konzept der “named address spaces” aus ISO/IEC TR 18037.

7

8

Contents

1. Introduction 19
1.1. The European Installation Bus . 19

1.2. The GNU project . 20

1.3. Goal of the present project . 20

1.4. Features and limitations . 20

1.4.1. Licence . 21

1.5. Place of the BCU SDK in the development and deployment work flow . . 22

1.5.1. Development work flow . 22

1.5.2. Deployment work flow . 25

1.6. Course of the project . 25

1.7. Future work . 26

1.8. Structure of the document . 26

I. M68HC05 27

2. M68HC05 architecture 29
2.1. Register . 29

2.2. Addressing modes . 30

2.3. Instruction set . 31

3. GNU utilities 35
3.1. Overview of the GNU utilities . 35

3.2. Configuration . 36

3.3. Opcode library . 37

3.4. Bfd library . 37

3.4.1. Relaxation . 39

3.5. Binutils . 40

3.6. GNU assembler . 40

3.6.1. Assembler syntax . 41

3.7. GNU linker . 42

3.8. Sim . 43

3.9. GNU debugger . 44

3.10. Newlib . 45

3.11. Libgloss . 45

9

Contents

4. GCC 47
4.1. Structure of GCC . 47
4.2. RTL . 48
4.3. Machine description . 51

4.3.1. Normal named instruction . 51
4.3.2. Normal anonymous instruction 52
4.3.3. Definition of an expander . 52
4.3.4. Definition of constants . 53
4.3.5. Definition of attributes . 54
4.3.6. Definition of a combination of instruction and splitter 54
4.3.7. Peephole optimization . 55

4.4. Libgcc . 55
4.5. Target description . 55
4.6. Overview of the M68HC05 port . 56
4.7. Details . 58

4.7.1. Type layout . 58
4.7.2. Register . 58
4.7.3. Register classes . 59
4.7.4. Pointer . 59
4.7.5. Calling convention . 60
4.7.6. Stack frame . 60
4.7.7. Frame pointer elimination . 60
4.7.8. Sections . 60
4.7.9. Constraints . 61
4.7.10. Operands . 61
4.7.11. RTL split helper functions . 63
4.7.12. RTL patterns . 64
4.7.13. Predicates . 65
4.7.14. Cost functions . 66
4.7.15. The eeprom attribute . 66
4.7.16. The loram attribute . 67

II. BCU/EIB 69

5. BCU operating system 71
5.1. Modes of communication . 71
5.2. BCU 1 . 71

5.2.1. Accessing the PEI . 73
5.2.2. Timer Subsystem . 73
5.2.3. BCU 1 API . 74

5.3. BCU2 . 79
5.3.1. BCU 2 API . 80

10

Contents

6. BCU SDK 83
6.1. Common files . 83
6.2. XML related programs . 83
6.3. Build system . 84
6.4. Configuration file parser . 88
6.5. Bcugen1 and bcugen2 . 89
6.6. Overview of the generated code . 90
6.7. Memory layout . 91

7. EIB bus access 95
7.1. Overview . 95
7.2. Architecture . 96
7.3. Back ends . 98

7.3.1. EMI2 . 98
7.3.2. EMI1 . 98
7.3.3. KNX USB interface . 99
7.3.4. EIBnet/IP Routing . 100
7.3.5. EIBnet/IP Tunneling . 100
7.3.6. TPUART kernel driver . 101
7.3.7. TPUART user mode driver . 101

7.4. Core . 102
7.4.1. Layer 3 . 102
7.4.2. Layer 4 . 102

7.5. Layer 7 . 103
7.6. EIBnet/IP server front end . 104
7.7. EIBD front end . 104

7.7.1. Protocol . 105
7.7.2. EIBD client library - C version 111
7.7.3. EIBD client library - PHP version 114
7.7.4. EIBD client library - Java version 115
7.7.5. EIBD client library - other languages 116
7.7.6. Using the EIBD client library . 116

III. Using the BCU SDK 119

8. Input format 121
8.1. BCU configuration . 121

8.1.1. Device block . 122
8.1.2. FunctionalBlock block . 125
8.1.3. Interface block . 125
8.1.4. IntParameter block . 127
8.1.5. FloatParameter block . 128
8.1.6. ListParameter block . 128

11

Contents

8.1.7. StringParameter block . 129
8.1.8. GroupObject block . 129
8.1.9. Object block . 131
8.1.10. Property block . 133
8.1.11. Debounce block . 134
8.1.12. Timer block . 134
8.1.13. PollingMaster block . 136
8.1.14. PollingSlave block . 137

8.2. C files . 137
8.3. API functions . 139

9. File format for data exchange with integration tools 141
9.1. Configuration process . 142
9.2. Basic definitions . 143
9.3. Application information . 143

9.3.1. Functional block . 144
9.3.2. Interface . 144
9.3.3. Group objects . 146
9.3.4. Properties . 147
9.3.5. Polling master . 147
9.3.6. Polling slave . 147
9.3.7. Parameter . 148

9.4. Configuration description . 149
9.4.1. Group objects . 150
9.4.2. Property . 150
9.4.3. Polling master . 151
9.4.4. Polling slave . 151
9.4.5. Parameter . 151

9.5. Limitations . 151

10.Usage/Examples 153
10.1. Installation . 153

10.1.1. Installation in a home directory 153
10.1.2. Prerequisites . 153
10.1.3. Getting the source . 154
10.1.4. Installing GCC . 154
10.1.5. Installing pthsem . 154
10.1.6. Installing the BCU SDK . 155
10.1.7. Granting EIB access to normal users 155
10.1.8. Development version . 156
10.1.9. Building install packages . 157

10.2. Using eibd . 157
10.2.1. Command line interface . 157
10.2.2. EIBnet/IP Tunneling via NAT . 159

12

Contents

10.2.3. USB backend . 159
10.2.4. Group Cache . 160
10.2.5. EIBnet/IP server . 161
10.2.6. Example programs . 162
10.2.7. Usage examples . 163
10.2.8. eibd utilities . 164

10.3. Recovering from errors . 165
10.4. Developing BCU applications . 165

10.4.1. Development build . 166
10.5. Generating BCU applications . 166
10.6. Example program . 167

10.6.1. A negation which can be disabled 167
10.6.2. Cyclic switching . 169

IV. Appendix 173

A. Image format 175
A.1. Streams . 175

A.1.1. L BCU TYPE . 175
A.1.2. L CODE . 175
A.1.3. L STRING PAR . 176
A.1.4. L INT PAR . 176
A.1.5. L FLOAT PAR . 176
A.1.6. L LIST PAR . 176
A.1.7. L GROUP OBJECT . 176
A.1.8. L BCU1 SIZE . 176
A.1.9. L BCU2 SIZE . 177
A.1.10.L BCU2 INIT . 177
A.1.11.L BCU2 KEY . 178

A.2. Valid images . 178

B. Tables 179
B.1. Available DP Types . 179
B.2. Available property IDs . 187

C. Source documentation 191
C.1. eibclient.h File Reference . 191

C.1.1. Typedef Documentation . 200
C.1.2. Function Documentation . 200

13

Contents

14

List of Figures

1.1. BCU SDK work flow . 23
1.2. BCU SDK data flow . 24

4.1. Comparison of ISO/IEC TR 18037 named address spaces with m68hc05-
gcc address spaces . 66

6.1. build.ai operational sequence and data flow 85
6.2. build.img operational sequence and data flow 86
6.3. build.dev operational sequence and data flow 87
6.4. Memory map of a BCU 1 . 92
6.5. Memory map of a BCU 2 . 93

7.1. Structure of eibd . 97

10.1. Example NAT setup . 159

15

List of Figures

16

List of Tables

4.1. Type sizes . 58
4.2. Register classes . 59
4.3. Constraints . 62

5.1. PEI types . 72

8.1. Group object types . 130
8.2. Property types . 132
8.3. Timer resolutions . 135

17

List of Tables

18

1. Introduction

1.1. The European Installation Bus

The European Installation Bus EIB is a home and building automation bus system. It
is optimized for low-speed control applications like lighting and blinds control.

EIB devices can be configured remotely via the network. The EIB protocol follows a
collapsed OSI architecture with layers 1, 2, 3, 4 and 7 implemented. Different transmis-
sion media are available.

EIB was absorbed in the KNX specification ([KNX]), which is maintained by Konnex
Association. References to the KNX Specification ([KNX]) in this document will be of
the form [KNX] Document number -section number.

For planning an EIB installation and configuring the individual devices, a special MS
Windows based software, called ETS, is used. This software is maintained by EIBA (EIB
Association). It will handle every device which has passed compliance certification. For
PC based EIB nodes, a Windows library for EIB access is available, which is also used
by ETS.

BCUs (Bus Coupling Units) are standardized, generic platforms for embedded EIB
devices. They include the entire physical layer network interface, power supply and a
microcontroller with an implementation of the EIB protocol stack stored in the ROM. As
processor core, the Freescale (Motorola) M68HC05 architecture is used.1 The application
program can be downloaded into the EEPROM via the bus.

Currently, two BCU families exist: the older BCU 1 and the new BCU 2 family. Within
both, there are different revisions which can be distinguished by the mask version. For
this project, only the mask versions 1.2 and 2.0 have been used.

BCUs are available for EIB twisted-pair (TP) and power-line (PL) media. Within
KNX, these are referred to as TP1 and PL110. In this project, only the twisted pair
medium (KNX TP1) is supported. This medium consists of two dedicated low voltage
wires and supports bus powered devices.

Every BCU includes an asynchronous serial interface which provides access to the EIB
protocol stack. The BCU 1 supports a protocol with RTS/CTS handshake (“PEI 16”),
the BCU 2 additionally a FT1.2 based protocol (for details, see [KNX] 3/6/2-6.3 and
3/6/2-6.4).

An alternate way to access an EIB TP network is the Siemens TPUART IC. This IC
implements OSI layer 1 and parts of layer 2 only, instead of the entire stack as BCUs
do.

1One rare variant uses the M68HC11. It is however only available without housing and thus referred
to as BIM (Bus Interface Module).

19

1. Introduction

Finally, EIBnet/IP allows to access EIB via IP based networks (see [KNX] 3/8). It
provides tunneling of EIB frames in both a point-to-point mode (referred to as Tunnel-
ing) and a point-to-multipoint mode (referred to as Routing).

1.2. The GNU project

The GNU project was founded by Richard Stallman. It has the goal to produce a
complete, free operating system. It includes, for example, the GNU Compiler Collection
(GCC), the GNU Debugger (GDB) and Emacs.

Most GNU projects are available under the GNU General Public License, which guar-
antees free access to the source code. As a legal organization, the Free Software Foun-
dation (FSF) was founded. It holds the copyright for most projects.

1.3. Goal of the present project

The Automation Systems Group at the Institute of Computer Aided Automation has
home and building automation as one research topic. Partly based on work carried out
at the Fachhochschule Deggendorf, different tools for EIB, like bus access drivers and
installation tools, were created.

For programming the BCU 1, the Fachhochschule Deggendorf released the Free EIB
IDE [EIBIDE], which is a free clone of the normal SDK for the BCUs. It basically
consists of a syntax compatible assembler, compatible header files and a simple GUI,
where all functions can be accessed. The Free EIB IDE includes a loader which allows
downloading of images via the bus. For bus access, it uses the FT1.2 protocol and thus
requires a BCU 2. Additionally, it includes a bus monitor, which supports a TPUART
based interface as well as the FT1.2 protocol. This bus monitor will not decode the
frame contents.

The primary requirement of the present project was to create a programming envi-
ronment which supports the next generation of BCUs, the BCU 2. During the course
of the project, a complete set of development tools for both BCU 1 and BCU 2 has
been developed. The entire set will in the following be referred to as BCU SDK. The
programming tools are based on GNU utilities like GCC and Binutils.

1.4. Features and limitations

The BCU SDK has the following features:

• It includes its own specification language to describe the configuration of the BCU
environment. Its concept is RAD-like, requiring the programmer to specify prop-
erties and event handlers only.

• It uses C for the code fragments (inline assembler is supported).

20

1.4. Features and limitations

• To access the bus, FT1.2, the BCU 1 kernel driver, the KNX USB protocol (ac-
cording to [KNX] AN037, only EMI1 and EMI2), the TPUART kernel and user
mode driver and EIBnet/IP Routing + Tunneling are supported. Additionally
(more or less working) experimental access to a BCU 1 without a kernel driver
is supported. Either way, all management tasks are supported as well. Further
details (including a description of these interfaces) can be found in Chapter 7.

• It can act as a limited EIBnet/IP server.

• It provides an API to provide EIB access in other programs. Several utility pro-
grams, which also illustrate the use of this API, are included.

• It includes a standard bus monitor, which optionally can decode EIB frames. Ad-
ditionally, a special monitor mode (called vBusmonitor) even allows some traffic
to be traced without switching to bus monitor mode.

• The programs are compiled after all configuration settings are known to reduce
image size.

The following limitations are present:

• No data exchange with the ETS is possible.

• No graphical interface has been written. Input files can be edited with any text
editor. The BCU SDK programs can be invoked from the command line or from
a makefile.

• The compiler output will in most cases be larger than well optimized, hand written
assembler code.

• It is not compatible with the original, commercial BCU SDK.

• Only C code (with inline assembler) is supported.

• If the bus is accessed via a BCU 1 or BCU 2, this BCU is inaccessible to the BCU
SDK (using the local mode is not supported).

1.4.1. Licence

As the used tool chain is released under open source licences, the new parts of the SDK
should also be freely available as open source.

As there are many definitions of free and open source software, the Debian definition of
freedom, which is described in the Debian Free Software Guidelines (DFSG) ([DFSG]),
was used. According to these guidelines, a BSD style licence ([BSD]) or the GPL ([GPL])
are reasonable choices.

Finally, the whole project was released under the GPL. The eibd client library (see
Chapter 7) and the libraries for the BCU contain a linkage exception (like libgcc) so that
they may be used for non-open source software. Modified versions of a XML Schema
definition and XML DTDs must use a different namespace and version number.

21

1. Introduction

1.5. Place of the BCU SDK in the development and
deployment work flow

The part the BCU SDK has in the complete work flow of developing BCU applications
and deploying them in installations is shown in Figure 1.1. At the bottom, the EIB
network with the BCUs to be programmed is shown. A bus interface which is supported
by the BCU SDK is connected to the network.

The entire development process is hidden from the project engineer by the integration
tool. This tool assists the selection and download of application programs, parameters
and communication relationships to build a working installation. The design of such a
tool is not within the scope of the present project.

1.5.1. Development work flow

The developer writes the BCU configuration file (see Section 8.1) and the necessary
C code fragments. Then he runs the build.ai program, which creates the application
information (see Section 9.3). This file contains the program text2 as well as meta
information, like parameters.

With the help of a program, a skeleton for the configuration description (see Sec-
tion 9.4) can be generated out of the application information. This skeleton has to be
edited manually to reflect the required configuration (e.g. group addresses). This step
only affects the meta data, the program text is not touched. Informally, the applica-
tion information could be considered a questionnaire which has to be answered by the
configuration description (see Figure 1.2).

Then the build.img program is invoked which creates a binary image from the program
text and meta data contained in the configuration description. This image can be down-
loaded to the BCU using eibd. Additionally, eibd allows some management functions to
be invoked directly.

When running build.ai, the program text can also be stored in an extra file. This
file can be used by build.img instead of the program text contained in the configuration
description. This is useful during development, as it avoids having to recreate the
configuration description for code changes which do not affect the BCU configuration.
In Figure 1.1, this path is marked by the dashed arrows.

The dotted arrows show a further simplied workflow during development. Starting
with BCU SDK version 0.0.2, it is possible to provide the information contained in the
configuration description via CI blocks in the BCU config. These blocks are interpreted
by build.dev which directly creates a BCU image. They are ignored by build.ai. However,
it is recommended to remove them for the sake of clarity after development is finished.

2This can be either a binary image or preprocessed code. In the BCU SDK, it contains a slightly
modified collection of all program sources.

22

1.5. Place of the BCU SDK in the development and deployment work flow

pl
an

ni
ng

 a
nd

 in
st

al
la

tio
n

pr
oj

ec
t e

ng
in

ee
r

B
C

U
 c

on
fi

g

co
nf

ig
ur

at
io

n
de

sc
ri

pt
io

n
in

fo
rm

at
io

n
ap

pl
ic

at
io

n

bu
ild

.im
g

ei
bd

B
C

U
bu

s
in

te
rf

ac
e

E
IB

 n
et

w
or

k

B
C

U
 S

D
K

 D
ev

el
op

m
en

t
B

C
U

 S
D

K
 D

ow
nl

oa
d

di
re

ct
 b

us
 a

cc
es

s

im
ag

e

fo
r

de
ve

lo
pm

en
t

In
te

gr
at

io
n

T
oo

l

fo
r

de
ve

lo
pm

en
t

C
 f

ile
s

fo
r

de
ve

lo
pm

en
t (

di
re

ct
 b

ui
ld

)
bu

ild
.d

ev

bu
ild

.a
i

Figure 1.1.: BCU SDK work flow

23

1. Introduction

co
nf

ig
ur

at
io

n
de

sc
rip

tio
n

ap
pl

ic
at

io
n

in
fo

rm
at

io
n

bu
ild

.a
i

bu
ild

.im
g

In
te

gr
at

io
n

T
oo

l

pr
oc

es
si

ng

pr
og

ra
m

 te
xt

 b
yp

as
s

fo
r

de
ve

lo
pm

en
t

co
nf

ig
ur

at
io

n
de

sc
rip

tio
n

ge
ne

ra
to

r
fo

r
de

ve
lo

pm
en

t

pr
og

ra
m

 te
xt

m
et

a
da

ta
m

et
a

da
ta

sk
el

et
on

 g
en

er
at

or

Figure 1.2.: BCU SDK data flow

24

1.6. Course of the project

1.5.2. Deployment work flow

When the development process is finished, the final application information is passed
to the integration tool. Such a tool can group and store many of these files in product
databases.

Then the project engineer develops the structure and configuration of an EIB instal-
lation. In this process, the integration tool generates the configuration description meta
data based on the application information meta data. The way this is done is entirely
open to the integration tool. Again, the program text is not touched.

Finally, the project engineer starts the download process within the integration tool.
To create the image to be loaded, the configuration description for each BCU is passed
through the build.img program. The resulting image is passed to eibd for download.
If necessary, the integration tool can perform physical address assignment beforehand
using the management functions of eibd.

1.6. Course of the project

The project started with porting the binutils (and later, GCC). Additionally, device
management using the FT1.2 protocol was explored. Later on, accessing the EIB bus
via the BCU 1 driver and TPUART driver were added to a first prototype of a EIB bus
access utility. The BCU 1 driver proved to work not very reliably on the test systems.

A first prototype of a BCU downloader and a BCU 1 image building tool was written.
It supported the use of a BCU 1 to create new group telegrams based on the values of
other group objects. Here all information (including all addresses) was specified in the
input files and no support for interaction with an integration tool was considered.

As the BCU 1 kernel driver was not available on every development machine, exper-
imental access to the BCU 1 without such a driver was implemented. When the new
user mode driver was run on a Linux 2.6 system the first time, the system stopped
responding. After several tries, a deadlock in the low latency mode of the serial driver
was found. A workaround for this problem was finally included in Linux 2.6.11.

Later, an EIBnet/IP router became available, for which an EIBnet/IP Tunneling mode
was added to the program. This access mechanism did not work well, as the IP router
stopped responding after about one second for yet unknown reasons. The same program
worked without any problem, when it was retried a few month later. Next, preliminary
Linux 2.6 versions of the EIB kernel drivers became available. To make them usable,
some bugs had to be fixed.

The old structure of the EIB bus access utility, which was single threaded and ex-
pected the data from the bus to come in a strict request/reply form, proved to be
unreliable. Also, this concept was not suited for handling bus access devices where the
communication process as well as the timing is not entirely controlled by the host.

As now the limitations and problems were known, the a complete redesign was made
and development was started from scratch. As a replacement for the EIB bus access
utility, eibd was written. It is based on GNU pth ([PTH]), a non preemptive multi

25

1. Introduction

threading library. Because the existing synchronization primitives did not provide the
features needed, semaphore support was added. A patched version is distributed under
the name pthsem ([PTHSEM]). Finally, the image building utility was rewritten as well
to support most features of the BCU 2.

1.7. Future work

• The most important future work will be an integration tool.

• Another useful project would be the creation of a graphical front end for the BCU
SDK.

• There are still some features missing, which could be added to the BCU SDK (e.g.
user PEI handler or user application callbacks).

• The BCU SDK could be ported to the power line BCUs.

• Additionally, the BCU kernel drivers need to be improved, especially the timing
behavior of the BCU 1 driver.

• The GCC offers lots of optimization possibilities. Also, the automatic generation
of bit operations is still missing.

• The back ends of eibd for BCU 1 and BCU 2 do not yet support all features the
BCU provides (e.g. additional group addresses).

• The TPUART kernel driver and back end could be extended to deliver more tele-
grams in the vBusmonitor mode.3

• Based on the current GDB release, a BCU simulator could be created which sup-
ports the debugging of BCU applications.

1.8. Structure of the document

This document is divided into three parts:

M68HC05 This part describes the M68HC05 architecture and covers key issues con-
cerning the porting process of the GNU utilities.

EIB/BCU This part gives an overview of the internals of the BCU SDK.

Using the BCU SDK This part contains information concerning the use of the BCU
SDK, including installation, operation and file formats.

3This extension has already been included in the TPUART user mode driver.

26

Part I.

M68HC05

27

2. M68HC05 architecture

The Freescale (formerly Motorola) M68HC05 is a family of 8 bit, low cost microcon-
trollers. They are based on an accumulator architecture with their IO registers mapped
at the start of the memory. The members of the family differ in the amount of RAM,
ROM and EEPROM as well as the different IO interfaces available.

The models MC68HC05B6 and MC68HC705BE12 are used in BCU 1 and
BCU 2, respectively. While the MC68HC05B6 is a generally available model, the
MC68HC705BE12 contains KNX specific on-chip peripherals and is only used in KNX.
As the peripherals are managed by the BCU operating system, only the processor core
is described.

The processor core is a von Neumann architecture with a linear 16 bit address space.
The different memory types are mapped at different addresses. For read accesses, there
is no difference for all memory types.

The opcodes have a length of one byte with null to two bytes of address information.
There are no alignment constraints for instructions as well as for data.

2.1. Register

A The 8 bit accumulator, which is used in nearly every arithmetic operation. It is used
as a source operand as well as the destination.

X The 8 bit index register. It can be used as temporary storage, as operand for the
multiplication, as well as the only way to access data at memory locations which
are not fixed.

PC The 16 bit instruction pointer. Internally, some models fix the three high order bits
to 0.

SP The stack pointer. Its value cannot be retrieved or set by any instruction. Only a
reset of its value to the startup value is available. The high order bits are fixed,
so that it can only store values between 0xC0 and 0xFF. An interrupt allocates 5
bytes, a normal subroutine call uses 2 bytes on the stack.

CCR The condition code register. It has five flags:

H Half carry, which can be used for BCD arithmetic.

I Interrupt mask, which controls the generation of external interrupts.

Z Zero, which is set, when the result is zero.

29

2. M68HC05 architecture

C Carry, which is set in case of an overflow of an arithmetic operation or is used
in shift and rotate operations.

N Negative, which is set if the result has the sign bit (bit 7) set.

The flags can be only checked by conditional jump operations. Nearly all opera-
tions change the condition code register.

2.2. Addressing modes

INH, implicit For some operations like TAX (transfer A to X), the operators are fixed.
Such an operation only stores the opcode.

DIR, 8 bit address All logic and arithmetic operations, which support memory ad-
dresses, support this addressing mode. Here, after the opcode, a memory address
within the first 256 bytes follows.

EXT, 16 bit address A limited set of operations also supports 16 bit addresses. Here,
the opcode is followed by the 16 bit address in big endian format.

IX, indexed without offset The content of the X register is used as memory address
within the first 256 bytes. Here only the opcode is present. In the Motorola
assembler, such an addressing mode is written as ,X.

IX1, indexed with 8 bit offset All logic and arithmetic operations which support mem-
ory addresses support this addressing mode. After the opcode, an 8 bit offset
follows. As address, the content of the X register plus the offset is used. In the
Motorola assembler, such an addressing mode is written as offset, X.

IX2, indexed with 16 bit offset A limited set of operations also supports a 16 bit offset
as well as this addressing mode. As address, the content of the X register plus the
offset is used. In memory, after the opcode, the 16 bit offset is stored in big endian
format. In the Motorola assembler, such an addressing mode is written as offset,
X.

IMM, immediate The 8 bit parameter of the operation is stored directly after the
opcode. In the Motorola assembler syntax, an immediate value is prefixed by a #.

REL, PC relative This addressing mode is used for conditional jumps. Here, a signed
offset relative to the end of the jump instruction is stored as an 8 bit value after
the opcode.

8 bit address + PC relative Some jumps need a data address as well as a target ad-
dress. Here, the data address and then the 8 bit PC relative address are stored
after the opcode.

30

2.3. Instruction set

2.3. Instruction set

The opcodes of the instruction set are organized in a way that for most operations the
first 4 bits determine the used addressing mode and the second 4 bits the operation.

The following instructions are supported:

• Instructions which support IMM, DIR, EXT, IX, IX1 and IX2:

LDA loads an 8 bit operand into the A register.

STA stores the content of the A register, has no IMM mode.

LDX loads an 8 bit operand into the X register.

STX stores the content of the X register, has no IMM mode.

ADD adds the operand to A and stores the result in A.

ADC adds the operand plus C to A and stores the result in A.

SUB subtracts the operand from A and stores the result in A.

SBC subtracts the operand plus C from A and stores the result in A.

CMP sets the flags N, Z and C according to the result of A - operand.

CPX sets the flags N, Z and C according to the result of X - operand.

BIT sets the flags N and Z according to the result of A XOR operand.

AND A = A AND operand

ORA A = A OR operand

EOR A = A XOR operand

JMP jumps to the address pointed to by the operand, has no IMM mode.

JSR pushes the address of the next instruction on the stack and jumps to the ad-
dress pointed to by the operand. Instead of the IMM operation, the operation
is called BSR and uses REL mode.

• The following operations use one operand as source and destination. They support
the modes DIR, IX1 and IX. Additionally, there is one variant which uses the A
register, whose name has an A appended, as well as a variant for the X register,
with an X appended.

CLR stores 0.

INC increments the operand.

DEC decrements the operand.

NEG performs binary negation.

COM calculates the two’s complement.

ROL rotates left through carry.

31

2. M68HC05 architecture

ROR rotates right through carry.

ASL / LSL shifts left (with carry as 9 bit).

LSR logic shift right (with carry as 9 bit), which replaces the sign bit with 0.

ASR arithmetic shift right (with carry as 9 bit), which keeps the sign bit.

TST set N and Z according to the operand.

• Operations, which only support the DIR mode:

BCLR clear a bit of the operand. In the Motorola assembler syntax, the bit
number is written as the first parameter.

BSET set a bit of the operand. In the Motorola assembler syntax, the bit number
is written as the first parameter.

BRCLR branch if a bit is cleared. In the Motorola assembler syntax, the bit
number is written as the first parameter. As a third parameter, the PC
relative target address follows.

BRSET branch if a bit is set. In the Motorola assembler syntax, the bit number
is written as the first parameter. As a third parameter, the PC relative target
address follows.

• The following conditional branches with the REL addressing mode are supported:

BRA branch always

BRN branch never

BHI branch if higher (C or Z =0)

BLS branch if lower same (C or Z =1)

BCC / BHS branch if carry is clear, branch higher same (C=0)

BCS / BLO branch if carry set, branch lower (C=1)

BNE branch if not equal (Z=0)

BEQ branch if equal (Z=1)

BHCC branch if half carry clear (H=0)

BHCS branch half carry set (H=1)

BPL branch if plus (N=0)

BMI branch if minus (N=1)

BMC branch if interrupt mask clear (I=0)

BMS branch if interrupt mask set (I=1)

BIL branch if IRQ pin is low

BIH branch if IRQ pin is high

32

2.3. Instruction set

• The following operations have no parameter:

TAX stores the content of A in X.

TXA stores the content of X in A.

CLC clears the carry flag (C).

SEC sets the carry flag (C).

SEI sets the interrupt mask bit (I).

CLI clears the interrupt mask bit (I).

MUL stores the result of the unsigned multiplication of A and X in X (high byte)
and A (low byte).

RTI returns from interrupt, restores the processor state to the state before the
interrupt.

RTS returns from subroutine, pops the return address from the stack and sets the
PC to it.

SWI triggers a software interrupt.

RSP resets the stack pointer to 0xFF.

NOP does nothing.

STOP enables interrupts and stop oscillator.

WAIT enables interrupts and stop CPU clock.

The following operations modify the flags as side effect:

• AND, CLR, DEC, EOR, INC, LDA, LDX, ORA, STA and STX modify N and Z

• ASL, ASR, COM, LSL, LSR, NEG, ROL, ROR, SUB and SBC modify N, Z and
C

• ADD and ADC modify H, N, Z and C

• BRCLR and BRSET modify C

• MUL modifies C and H

33

2. M68HC05 architecture

34

3. GNU utilities

For the BCU SDK an assembler, compiler and linker were needed. As there was no free
tool chain available, a new one needed to be created.

First ideas of writing a compiler which directly generates binary code from scratch
were abandoned, because writing a complete C parser with type checking would have
been too much work for the scope of this project.

Therefore, the decision was to port an existing C compiler to the M68HC05 architec-
ture. In addition to GCC, other free compilers were searched for. Possible candidates
were anyc ([ANYC]) (for the compiler front end) or SDCC ([SDCC]), which supports
different architectures and has some optimizations. Compared to GCC, SDCC is much
simpler and has less features.

Finally, GCC was selected, because the front end and optimizations part has definitely
proven to work, as it is the standard compiler on most free operating systems. In addition
the core parts of GCC are maintained by a large community. As GCC was selected, it
was clear to use the binutils as assembler and linker.

Porting GCC to the MC68HC05 architecture caused some problems, which were solved
with various tricks. At the moment, the GCC port generates usable code, but there is
much room left for target specific optimizations. If SDCC had been the first choice, the
structure would have been much simpler, but some parts, like the automatic removal of
unused static variables, would have had to be implemented from scratch.

Large parts of the porting activity consists of finding the right code in other archi-
tectures and copying it into the new one. In many situations, the code needs small
adaptations, but only a very small part is totally new code.

3.1. Overview of the GNU utilities

The FSF (Free Software Foundation) distributes a wide range of software. The following
list covers the parts relevant to the present project (as names, the names of the directory
in the main building directory are used):

libiberty A common library, which is used in many GNU programs.

intl The GNU translation library, which provides gettext.

bfd The bfd library is used to create, read and write executables and object files in
various formats.

opcode The opcode library implements a disassembler for various architectures.

35

3. GNU utilities

gas The GNU assembler, which can support a wide range of architectures.

ld The GNU linker.

binutils Various tools to work with executables and object files, like strip, ar and ranlib.
The distribution package binutils also includes gas and ld.

sim Normally distributed as a part of gdb. It contains a simulator for some architectures.

gdb The GNU debugger. It also supports remote debugging as well as debugging of
programs running in the simulator.

GCC The GNU C compiler (or GNU compiler collection). It is presented in detail in
Chapter 4.

libstdc++ The GNU C++ runtime library. As it is too big, it is not used here.

dejagnu A regression testing framework.

newlib Used as a C runtime library on smaller platforms (not a GNU project).

libgloss Part of newlib. It should contain the platform specific interfaces to an operating
system for newlib.

For this project bfd, opcode, gas, ld, binutils and GCC were ported to the M68HC05
architecture. Since finding all errors in GCC only by reviewing the output is impossible,
a simulator for the M68HC05 architecture based on the M68HC11 version of sim was
created.

Because the regression tests for GCC need dejagnu and a C runtime library, dejagnu,
libgloss and newlib were also ported. As finding bugs in the GCC output without a
debugger turned out to be very difficult, a working gdb based on the simulator was
created. Functions which were too difficult to implement and are not really needed were
left out (see section 3.9).

The rest of this chapter covers the important points of the port of the GNU utilities
(except GCC).

3.2. Configuration

GNU programs as well as other software use autoconf to adapt the software for a specific
target. If a software has to be compiled, first configure must be run, which determines
what kind of operating system is installed, which header files, libraries and compilers
are present, to which location the program should be installed, and other settings.

configure describes machines by a triplet, e.g. i686-pc-linux-gnu. Its first part is the
processor, then the machine type follows and finally comes the operating system.

Up to three triplets are used:

build The machine, on which the build process is executed.

36

3.3. Opcode library

host The machine, on which the built program should run.

target The machine, for which libraries should be built or for which the program should
generate output.

Under normal conditions, the correct values are guessed automatically. In the case of
a cross tool chain, as the m68hc05 port, the target has to be specified.

As the name of the processor m68hc05 was chosen, so that running configure with
the parameter –target=m68hc05 creates the correct Makefile for the m68hc05 port.

Internally, the triplet m68hc05-unknown-bcu is used. As the operating system, bcu is
used because the whole port was designed with the features and limits of the BCU in
mind.

3.3. Opcode library

The new architecture was added to the disassembler library.
As a first step, an instruction list in a generally usable format was created. An example

entry looks as follows:

M68HC05_INS("adc",M68HC05_IMM,0xa9)

Every instruction is represented by the definition M68HC05 INS. The application pro-
gram, which uses this list, can convert it to the needed form by defining M68HC05 INS
and including the list after that. The first parameter contains the opcode name as a
string, the second the supported addressing mode and the third the opcode number.

The only change to the original instruction set is that for bit operations (BSET,
BCLR, BRSET, BRCLR), the bit number is appended after a period. Therefore such
instructions have the syntax bset.1 test instead of bset 1,test. All names are written in
lower case.

Then the files for the m68hc05 architecture were added and hooked into the general
code. Finally, a small function, which reads one byte, searches the opcode in a table,
determines its addressing mode, reads the parameters and prints everything in a human
readable format, was written.

3.4. Bfd library

The bfd library [BFD, BFDINT] provides an abstract layer to access different object
formats in the same way. Additionally, it contains a part of the linker functions.

For the port of the bfd library, ELF was chosen as the default object and executable
format, because all new bfd ports use it and it provides all necessary features.

References to symbols which are not resolved yet are stored as relocations in ELF. A
relocation states that at a specific location in the code, the address of a symbol should
be stored in a specific way. Each architecture defines its own set of relocations. For the

37

3. GNU utilities

M68HC05 architecture, there was only the definition of the architecture number, but
not for relocations. So they had to be defined from scratch.

The implemented set includes:

R M68HC05 NONE A relocation, which does nothing. This is needed to turn a relo-
cation off.

R M68HC05 8 stores the address as 8 bit value.

R M68HC05 16 stores the address as 16 bit value.

R M68HC05 32 stores the address as 32 bit value.

R M68HC05 HI8 stores bits 8–15 of the address.

R M68HC05 LO8 stores bits 0–7 of the address.

R M68HC05 HLO8 stores bits 16–23 of the address.

R M68HC05 HHI8 stores bits 24–31 of the address.

R M68HC05 HI16 stores bits 16–31 of the address.

R M68HC05 LO16 stores bits 0–15 of the address.

R M68HC05 PCREL 8 stores a PC relative address as 8 bit value, as used for relative
branches.

R M68HC05 PCREL 16 stores a PC relative address as 16 bit value, this relocation is
currently unused.

R M68HC05 PCREL 32 stores a PC relative address as 16 bit value, this relocation is
currently unused.

R M68HC05 RELAX 8 stores the address as 8 bit value. Additionally it marks a
relaxable instruction (see section 3.4.1).

R M68HC05 RELAX 16 stores the address as 16 bit value. Additionally it marks a
relaxable instruction.

R M68HC05 RELAX GROUP this relocation does not change the code. It only marks,
that an expanded branch starts.

R M68HC05 SECTION OFFSET8 stores the offset in the current section of the ad-
dress as 8 bit value.

R M68HC05 SECTION OFFSET16 stores the offset in the current section of the ad-
dress as 16 bit value.

38

3.4. Bfd library

As the 16 bit addresses are stored in big endian format, big endian is used as default
format.

Bfd uses other names for the relocations for internal purposes. Commonly used re-
locations have default names, architecture specific relocations must be added to this
list. For managing this, a clever way is used: A file contains a list of their names and
their documentation. Out of this list, the C definitions are generated by running make
headers in the bfd directory.

In addition to the list of relocations, bfd keeps a list of the architectures and target
vectors. An architecture describes the name, byte and word size as well as subtypes. As
an example, for i386, a CPU with 64 bit extension is represented as a subtype.

The target vector contains the list of concrete functions to handle object files. For
most parts, the default values are used. Only a few are overwritten.

The important parts are:

• a function to map between ELF and bfd relocations

• a function to process architecture specific relocations

• a function to get the relocated section content1

• functions to relax a section

3.4.1. Relaxation

Relaxation (in the context of bfd) means that the size of code sections is shrunk at link
time by replacing instructions with other instructions.

For various instructions, the M68HC05 architecture offers multiple variants with dif-
ferent instruction lengths, but otherwise same function. Often, the final value of a
symbol is still unknown at assembler time, so the largest variant must be chosen. If the
address of the jump target is unknown or too far away, relative jumps are automatically
negated and an absolute jump to the final location is added. As the generation of small
code is a key requirement for the tool chain, relaxation is really needed.

For the relaxation, three relocations have been defined. The code is based on the
M68HC11 port ([GNU11]). It checks every relocation, if it is one of these three special
relocations.

The location of the opcode is known from the relocation type. If the parameter of the
instruction can fit in a smaller variant, the opcode and the type of the relaxation are
changed and the free bytes are deleted. For expanded jumps, the process is reversed, if
possible. This is repeated, until no more conversions are possible.

The code which is processing the opcodes takes advantage of their schema, so only
a few rules are needed. For example, every opcode whose upper 4 bits are 0xC can be
converted to 0xB if the address fits in 1 byte.

1This is the same function as bfd normally performs, but uses the relocation function for this archi-
tecture.

39

3. GNU utilities

There are two special rules: JMP is turned into BRA and JSR into BSR, if possible.
In assembler code, only JMP and JSR should be used, because BRA will be expanded
as a conditional jump and BSR will not be expanded. The relaxation will generate the
optimal code.

The delete byte routine is simpler than the M68HC11 variant, because everything
which uses a symbol or a PC relative address is stored as a relocation. So it is only
necessary to adjust the values of the relocations. Bfd ensures that the correct value will
be stored. For the M68HC11, the routine needs to check every relative jump and adjust
it manually.

The heavy use of this technique (typically about 1
3

of the assembler code size can
be eliminated for GCC code) causes the stabs debugging line symbols to lose their
synchronization with the code. This makes source level debugging nearly impossible.

So a routine which adjusts the stab information was written. As it turned out that
using DWARF2 was better suited as debugging information, DWARF2 become the de-
fault debugging information for GCC. Therefore the stabs adjustment code is not tested
very well. It is kept, because stabs is kept as an alternative for objdump and similar
utilities which do not support DWARF2.

3.5. Binutils

The binutils directory contains various programs to process object files such as ar, strip
and strings. As they use bfd, no porting activity was needed. Only within the readelf
program, which can decode elf headers, the new relocations were added.

3.6. GNU assembler

The GNU assembler (gas) [GAS, GASINT] is a collection of different assemblers for
different architectures. Most of them use the bfd library to write object files. For
outdated ports, which do not use bfd, there was recently a call to remove them ([BIN01]).

The target specific part of the assembler is kept in a header and a C file. The header
file contains some common definitions, like the architecture name, and various hooks for
architecture specific functions. The C file contains the code.

gas processes a file the following way:

1. Each line is parsed and the temporary assembler code is stored in a fragment. If
the length of an opcode cannot be determined at this time, the free space for the
longest possible code is left and the next opcode is stored in a new fragment.

For references to symbols, a fixup is created. This is the same as a relocation, only
that it can store a complex assembler expression.

2. The assembler asks the back end for the size of each variable fragment and adjusts
the symbols according to it.

40

3.6. GNU assembler

3. The assembler asks the back end if the size of a fragment has changed because of
the new symbol values. This is repeated until no further change occurs.

4. With the complete symbol information, the back end converts the variable frag-
ments to fixed length and creates more fixups, if necessary.

5. In the output pass, fixups with constant values are embedded in the code. Then
the code is stored. For the remaining fixups, relocations are stored in the object
file.

The back end code consists of:

• An expression parser wrapper, which can also parse the target specific functions,
like lo8.

• A function which divides the assembler instruction into its parts, finds the corre-
sponding opcodes, parses the parameters, checks everything and emits the corre-
sponding fragment and fixups.

• A size estimation function, which returns the worst case size of a fragment.

• A conversion function, which converts a variable fragment into a fixed length frag-
ment.

• A fixup patcher, which stores resolved values in the output segments.

• Two functions to support the target specific functions, like lo8, for data storage
pseudo operations.

• A function to replace parts of section names with unique values.

3.6.1. Assembler syntax

For the pseudo operations, the normal gas syntax is used. Additionally it supports the
following functions as top level functions in expressions:

lo8 stores bits 0–7 of the expression result.

hi8 stores bits 8–15 of the expression result.

hlo8 stores bits 16–23 of the expression result.

hhi8 stores bits 24–31 of the expression result.

lo16 stores bits 0–15 of the expression result.

hi16 stores bits 16–31 of the expression result.

offset8 stores the offset of the expression result relatively to its section start.

41

3. GNU utilities

offset16 stores the offset of the expression result relatively to its section start.

Functions ending with 8 produce an 8 bit result and may only be used in places where
8 bit values can be stored; 16 bit functions may only be used at places where a 16 bit
value can be stored. It is not possible to store a lo8 in a 16 bit word.

The syntax of the assembler operations is not the Motorola syntax:

• The name of the instruction must be written in lower case.

• For bit operations, the bit number is appended after a period to the instruction
name.

• The X register is written as %X to avoid confusion with a symbol called X.

• The %X is written in front of the offset, instead of behind.

• An immediate value is indicated by a $.

• Hexadecimal numbers are written as 0xABCD, as usual in gas.

Conditional jumps are automatically expanded if they do not fit a PC relative reloca-
tion or the target is unknown.

BSR, BRA and BRN should not be used (use JSR, JMP and NOP instead).
In section names ending in !!!!!, this part is replaced by a unique number for the

assembler run. This is used to put symbols in different sections to aid the section
movement code of the linker.

Some examples:

.section test.!!!!!

test:

lda %X,2

lda %X

sta test

lda $2

lda $0x10

brset.0 test1, test

add $offset8(test)

.byte lo8(test)

.hword offset16(test)

3.7. GNU linker

The GNU linker (ld) [LD, LDINT] is based on bfd, which is used to process all executa-
bles. Normally, no or very little architecture specific code is needed.

The linker is controlled by a linker script, which determines in which order and at
which addresses the various parts of the object files should be placed.

42

3.8. Sim

For the M68HC05 target, a generic linker script is not possible. The default script
works for the simulator. BCU specific scripts were not placed in the ld distribution
because they depend closely on the BCU runtime environment.

The script is basically a default elf linker script. It creates an additional section named
.data.lo for storing the pseudo register of GCC at an address lower than 0x100.

The only C code added to ld is the one necessary for section movement. This code
can be easily dropped. It is needed for the BCU SDK to support the distribution of
variables over different data segments.

The section movement code is activated by the ––move-sections command line switch
of ld. Its operation is controlled by a number of SYSLIB directives.

A clean solution would have been to introduce a new syntax for it in the parser.
However, this would have the disadvantage that merging the patches from upstream
would become more complicated.

Therefore an unused hook, named SYSLIB, was used. A command has the following
syntax:

SYSLIB([from-section]:[to-section]:[current-symbol]:[maximum-symbol])

For each SYSLIB directive, the section movement code performs the following (before
the relaxation):

• The values of the current and maximum size symbols are evaluated.

• If the current size is smaller than the maximum size, the processing of this directive
is finished.

• If the from-section is empty, the processing is finished.

• A section of the from-section is selected (at the moment the biggest section is
selected).

• The section is moved to the to-section and the process is repeated.

A better implementation of this code, which examines all directives at the same time,
would generate better results. As the typical variable size used in BCU programs will
probably be around 2 bytes and therefore mostly 1–2 byte sections will be created, the
results should not be too bad.

3.8. Sim

GDB contains a collection of simulators for different architectures, which can be either
used as stand alone programs or inside gdb.

They consist of a common core and target specific supplements. The core provides a
framework to load programs, register and access virtual devices as well as some virtual
devices like RAM. Additionally, it is possible to configure the number and parameters
of virtual devices with special command line parameters.

43

3. GNU utilities

m68hc05-sim is based on the m68hc11 port. Because it is intended for regression tests,
the simulation is not complete:

• All opcodes, except STOP, WAIT, SWI, RTI, BIH, BIL are simulated. The cycles
counter is also implemented.

• The interrupt subsystem is not implemented (only the stubs exist).

• The CPU device only supports the reset command.

• If an ELF executable is loaded, the simulator starts at the entry point of the ELF
file, otherwise at 0xFFFE.

• The unused opcode 0xA7 is used as breakpoint.

• No IO device and IO port of the m68hc05 processor is implemented.

• The default memory configuration consists of 64k of RAM.

By default, a minimal operating system is active, which uses the SWI instruction as
entry point. If a SWI is executed, the content of the X register determines the action:

0 halts the simulator using the content of register A as exit code.

1 writes the content of register A to stdout.

2 reads a byte from stdin and stores it in register A. If an error occurs, the C flag is not
set, otherwise it is set.

The core new part is the instruction interpreter. It uses the opcode list and generates
the interpretation function. This function is a huge switch statement. For each opcode
a case is generated. For each case, all addresses are generated and the parameters are
fetched, according to the addressing mode. Then, the C statements to execute the
instruction are generated according to the instruction name.

3.9. GNU debugger

The GNU debugger (GDB) [GDB, GDBINT] port is intended to step through programs
for the simulator. As such, not all functionality is available.

The real registers can be accessed as $a, $x, $pc, $ccr and $hwsp. The virtual registers
used by GCC are accessible as $RegB to $RegN, $SP and $FP.2

To find a virtual register, gdb needs the symbol table of the program. For $SP and
$FP the complete address of the stack location instead of the actual 1 byte value.

The largest part of the gdb port is the stack frame handling. In gdb each stack frame
on the call stack has an identification, created from two numbers: stack pointer and
program counter.

2See Chapter 4 for details about virtual registers.

44

3.10. Newlib

For each stack frame, a data structure is created which contains the value or address
of all saved registers. With this information, it is possible to evaluate expressions in the
context of one of the callers of the current function.

Most ports extract the necessary information by scanning the prologue of the function.
For the m68hc05 this is not done because the prologue generated by GCC is generated
as high level RTL code, which is converted into low level RTL code and passed to
an optimizer. This makes the recognition of the prologue code very difficult and the
determining the actions of the code is even more complicated. Because the prologue is
not analyzed, evaluations in non-top stack frames might give wrong results.

There is no easy solution for this problem, since future optimizations might move the
prologue code to another location. For example, the save of a callee save register can
be moved just before its first usage. Likewise, the content of the SP register needs no
change, if no called function uses the stack.

As the calling convention of GCC is supposed to be specific to a certain compiler
version and therefore maybe incompatible between different versions, calling functions
out of gdb is not supported.

A usage example:

m68hc05-gdb testprog

(gdb) target sim

(gdb) load testprog

(gdb) break main

(gdb) run

Note that the bss-section is not cleared and the data-section is not reloaded if run is
executed a second time in a gdb process.

3.10. Newlib

The portable C runtime library newlib needs no big changes. Only the endianess of the
m68hc05 architecture is declared in a header file and the compiler options are adjusted
for the generation of small sized code.

3.11. Libgloss

Libgloss is a library which contains the glue code between newlib and the target operating
system. An advantage of this concept is that for a slightly modified target (e.g. another
syscall entry), only a small part has to be changed.

For the m68hc05 port, libgloss allocates the virtual register for GCC, contains the
startup code and wraps the call to the emulated operating system of the simulator (read,
write, exit). For other POSIX compatible functions, which are expected by newlib, a
dummy implementation is included.

If a program for the simulator is linked, the command line options -lsim -lc -lsim must
be added because of the circular dependencies between libgloss and newlib.

45

3. GNU utilities

46

4. GCC

Porting GCC [GCC, GCCINT] to the M68HC05 architecture turned out to be a com-
plicated task. GCC is designed to work with architectures with many registers, stack
and unrestricted memory access. The M68HC05 has only two registers, the stack is
unusable for user programs and has no 16 bit pointer. Thus, the missing features need
to be emulated.

While designing the GCC port, the constraints of a BCU were used as the design
driver. It can be used for any member of the M68HC05 microcontroller family, if enough
memory for the stack and virtual registers is available in appropriate memory regions.

4.1. Structure of GCC

GCC consists of several target independent language front ends, a language and target
independent optimizer and a code generation back end.

At the moment, GCC uses three different internal representations:

GENERIC For representation, GCC defines the C type tree. It is generated by the
front end and passed to the new RTL independent optimizer. The details of this
representation are only relevant for the creation of a front end.

GIMPLE This is a subset of the GENERIC representation. Using this representation,
different optimizations are made. This is a new representation which was added
for GCC 4.0.

RTL (Register Transfer Language) This representation is used to store the program in
a more target specific form. For representation, GCC defines the C type rtx. The
syntax used to display RTL statements is similar to LISP. RTL uses registers (and
memory, if necessary) to store values.

If a file is compiled, the following happens:

1. The file is parsed by the language front end, the syntax and semantics are checked
and a GENERIC representation is created.

2. The GENERIC tree is converted into a GIMPLE tree.

3. Some optimizations are done on the GIMPLE tree.

4. The GIMPLE tree is converted to RTL.

47

4. GCC

5. Some optimizations are done on the RTL.

6. The register allocator/reload pass runs on the RTL.

7. More optimizations and machine dependent passes are done on the RTL.

8. The RTL is converted to an assembler file.

The assembler file is run through an assembler and eventually linked, but these steps
are done only by the GCC front end program.

The compilation normally is done separately for each global element, such as a function
or global variable. If global optimizations are turned on, the global optimization at tree
level collects the tree representation of the whole file, does its work and then runs the
remaining compilation process for each element separately.

In the following, issues which are not relevant for the present project, such as general
optimizations or language front ends, are not discussed. Details about them can be
found in the GCC documentation [GCCINT] and in the source files. [ASU86] provides
an introduction to compilers.

4.2. RTL

A function is represented as a list of RTL instructions. Examples are:

insn A normal instruction

jump insn An instruction, which can be a jump or a conditional jump

call insn A call to a function

code label A label

Each instruction contains a description of the effect and some additional information.
The effect is described by the following patterns:

(set LVAL VAL) sets LVAL to the content of VAL.

(clobber X) indicates that the content of X is destroyed.

(use X) indicates that X is used. Related calculations must not be removed by opti-
mization.

(parallel list) states that each instruction in the list is calculated at the same time.

(call function args) represents a function call. If the return value is used, it is used as
VAL in a set pattern.

(return) represents a return statement.

(unspec ...) is used to represent target specific patterns.

48

4.2. RTL

Each expression has a mode, which describes the size and type of the expression.
Important ones are:

QI A 1 byte integer

HI A 2 byte integer

AI A 3 byte integer (port specific)

SI A 4 byte integer

FI A 5 byte integer (port specific)

CI A 6 byte integer (port specific)

EI A 7 byte integer (port specific)

DI A 8 byte integer

SF A 4 byte floating point value

DF A 8 byte floating point value

Expressions can be:

(const int N) The integer constant N.

(const double:MODE ...) Depending on the mode, this is either a floating point con-
stant or a very long integer constant.

(symbol ref:MODE SYMBOL) Used to represent the address of SYMBOL.

(label ref LABEL) Reference to a code label.

(reg:MODE N) Represents a register. If N is smaller than FIRST PSEUDO REGISTER,
a real register is described, else a pseudo register, which needs to be changed to a
real register or to a stack location.

(subreg:MODE expr byte) Extracts a part of size MODE of expr starting at byte.

(cc0) Used to reference to condition codes.

(pc) Used to reference to the program counter.

(mem:MODE addr) Refers to the memory location addr.

(if then else COND THEN ELSE) returns depending on COND THEN or ELSE.
COND can be e.g. ne, ltu and eq, which takes two expressions.

(sign extend:MODE expr) Extends expr to the size of MODE, keeping the sign bit.

49

4. GCC

(zero extend:MODE expr) Extends expr to the size of MODE by filling up the high
order bits with 0.

Additionally there are arithmetic and logic operations like plus, minus, mult, ior, and,
compare and ashift, which take two expressions. Unary operations like neg or not also
exist.

Examples of RTL statements are1:

• Compare the content of register 42 with 0 and set the condition code register.

(insn 27 68 28 2 (set (cc0)

(compare (reg:QI 42)

(const_int 0 [0x0]))) -1 (nil)

(nil))

• Jump to label 33, if the condition code register fulfills the condition lower or equal.

(jump_insn 28 27 69 2 (set (pc)

(if_then_else (le (cc0)

(const_int 0 [0x0]))

(label_ref 33)

(pc))) -1 (nil)

(nil))

• Jump to label 26

(jump_insn 31 30 32 3 (set (pc)

(label_ref 26)) -1 (nil)

(nil))

• Extract the low byte of register 32 and store it in register 42.

The [r.5] states the high level variable whose value is stored in the register (register
32). In this case, r.5 is a variable generated by an optimizer, whose value is based
on r.

(insn 25 24 26 1 (set (reg:QI 42)

(subreg:QI (reg:HI 32 [r.5]) 1)) -1 (nil)

(nil))

• Store the content of the memory location at symbol r in register 32.

(insn 23 22 24 1 (set (reg:HI 32 [r.5])

(mem/i:HI (symbol_ref:HI ("r") <var_decl 0xb7e9c288 r>)

[0 r+0 S2 A8])) -1 (nil)

(nil))

1Details are not represented here. For the precise meaning of the various elements refer to [GCCINT]

50

4.3. Machine description

• Add the constant 20 to register 28 and store the result in register 27.

(insn 52 51 53 4 (set (reg:HI 27 [D.1137])

(plus:HI (reg:HI 28 [y.7])

(const_int 20 [0x14]))) -1 (nil)

(nil))

• State that the content of register 9 (which is called RegB and in this case not a
pseudo register) is no longer valid.

(insn 61 67 62 5 (clobber (reg/i:HI 9 RegB)) -1 (nil)

(nil))

• Call the function eestore HI. As a side effect the contents of register 12 and 10 are
used.

(call_insn 15 14 17 1 (call (mem:HI (symbol_ref:HI ("eestore_HI")

[flags 0x41]) [0 S2 A8])

(const_int 0 [0x0])) -1 (nil)

(expr_list:REG_EH_REGION (const_int 0 [0x0])

(nil))

(expr_list:REG_DEP_TRUE (use (reg:HI 12 RegE))

(expr_list:REG_DEP_TRUE (use (reg:HI 10 RegC))

(nil))))

4.3. Machine description

Most of the work done with the RTL is done by pattern matching. The patterns and
actions used are described in the machine description. This file uses also a LISP like
syntax.

Many patterns have names. Unofficial names start with * and are only used when an
RTL statement is printed. They are intended for debugging. Other names, like movqi
are expected by GCC and must perform a certain function.

The most relevant patterns are described in the following.

4.3.1. Normal named instruction

(define_insn "jump"

[(set (pc)

(label_ref (match_operand 0 "" "")))]

"is_lowlevel()"

"jmp %0")

51

4. GCC

Define an instruction pattern named jump. The first element is the RTL pattern. The
match operand indicates a variable part. In most cases, it has a mode appended which
must match the mode of the variable part. Then the number of the operand follows,
which is used for referencing. The next element can contain the name of a predicate
which the operand must match as a string. The last element contains constraints for the
reload pass. If an operand must be exactly the same as another operand, match dup is
used instead of match operand. If the pattern of the insn matches, the second element of
the insn is evaluated. If it is true, the pattern matches. This expression can be empty.
Then the output follows. This can either be a string or some C statements enclosed in {
and }. In the output string, %modifiernumber (e.g. %o0 or %0) stands for the textual
representation of the operand with the specified number. The modifier is passed to the
output function for operands. %% turns into %.

As a last optional part, the attributes of the instruction can be modified. Because the
name does not start with *, an expander is also generated.

4.3.2. Normal anonymous instruction

(define_insn "*cmpa"

[(set (cc0)

(compare (reg:QI REG_A)

(match_operand:QI 0 "regmemimmst_operand" "rB,Y,i")))

]

"is_lowlevel()"

"@

cmp %0

cmp %%X,(%o0+SPBASE)

cmp $%0"

[(set_attr "cc" "compare")])

In this example, the attribute cc is set to compare. The instruction specifies three
alternatives in the match operand part. The @ at the output string states that each of
the following lines is the output pattern for an alternative.

4.3.3. Definition of an expander

(define_expand "movhi"

[(set (match_operand:HI 0 "nonimmediate_operand" "")

(match_operand:HI 1 "general_operand" ""))]

"!is_lowlevel()"

{

if(eeprom_operand(operand0,HImode))

{

rtx tmp=gen_reg_rtx(HImode);

emit_insn(gen_movhi(tmp,operands[1]));

52

4.3. Machine description

emit_insn(gen_eestoreHI(operands[0],tmp));

DONE;

}

if (memaddr_operand(operand0, HImode)

&& memaddr_operand(operand1, HImode))

{

rtx tmp=gen_reg_rtx(Pmode);

emit_insn(gen_movhi(tmp,operands[1]));

operands[1] = tmp;

}

}

)

This defines an expander for movhi. An expander generates a function (in that case called
gen movhi), which takes all operands and returns the RTL. With that approach, each
target has the possibility to return non standard RTL expressions for specific situations.

As for define insn, the first element is the RTL pattern, then a condition can follow.
The match operand has the last element empty, because an expander cannot match an
instruction and therefore is not used in the reload pass.

Then some C code (either as string or in enclosed in { }) follows, which can alter the
RTL. In the array operands the matched operands are stored. Additionally they are
accessible as operandnumber.

This example (out of the M68HC05 port) was chosen because it shows some ways to
alter the result:

• If operand0 matches the predicate eeprom operand, a new temporary register is
created. Then the expanders of movhi and eestoreHI are called and their result is
appended to the output with emit insn. Finally DONE says that we are finished
and the default pattern may not be appended.

• If operand0 and operand1 match the predicate memaddr operand, the content of
operand1 is moved to a temporary register and operand 1 is replaced with it. In
this case the default pattern will be appended, but with a different operand.

• In any other case, the default pattern is appended.

4.3.4. Definition of constants

(define_constants [

(REG_A 0)

(REG_X 1)

(REG_AG 5)

(REG_SP 7)

(REG_FP 8)

])

53

4. GCC

Define constants does what one would expect. It defines that e.g. REG A can be used
instead of 0.

4.3.5. Definition of attributes

(define_attr "cc" "none,set_czn,set_zn,set_n,compare,clobber"

(const_string "none"))

Defines an attribute named cc, which can be one of the values listed in the second
argument.

4.3.6. Definition of a combination of instruction and splitter

(define_insn_and_split "cmpqi"

[(set (cc0)

(compare (match_operand:QI 0 "regmempt_operand" "rAQT")

(match_operand:QI 1 "regmemimmst_operand" "rRBUi")))

]

"!is_lowlevel()"

"error"

"is_lowlevel()&&(!is_rega_rtx(operands[0]))"

[

(match_dup 2)

(set (reg:QI REG_A) (match_dup 3))

(match_dup 4)

(match_dup 5)

(set (cc0) (compare (reg:QI REG_A) (match_dup 6)))

]

{

operands[2]=genXLoad(operands[0],QImode,0);

operands[3]=genSUBREG(operands[0],QImode,0,QImode);

operands[4]=genXClobber(operands[0],QImode,0);

operands[5]=genXLoad(operands[1],QImode,0);

operands[6]=genSUBREG(operands[1],QImode,0,QImode);

}

[(set_attr "cc" "compare")])

This pattern is a combination of a define insn and a split pattern. The first, second,
third and last argument are the same as for a define insn.

The fourth argument specifies a condition which must be fulfilled before the instruction
can be split into other instructions. A split is only done at certain passes of the compiler.

The next argument specifies the output pattern of the split. match dup indicates the
places where an operand should be inserted. Then a preparation statement follows,
which can modify existing operands or calculate new ones.

54

4.4. Libgcc

4.3.7. Peephole optimization

define peephole2 is used to describe a peephole optimization. It basically does the same
as a split pattern, but is called at a different time and for a different purpose and it
works on multiple instructions.

4.4. Libgcc

For functions which GCC needs, but the target does not support directly, functions in the
GCC library must be created. The default set consists of, among others, a floating point
emulator, functions to calculate with 64 bit integers and exception handling functions.
This library is automatically linked to a program when it is linked by GCC.

4.5. Target description

This part contains the rest of all definitions and functions to make GCC work. It consists
of a header file and a C file. The header file almost exclusively consists of various define
statements related to the target. The C file contains all functions which are used in
the header file. It also contains target specific predicates. Additionally, the GCC core
exposes hooks for certain functions, which are also set and implemented in the C file.

The target description includes:

• target specific compiler options

• defines for the compiler and flags to pass to the linker and assembler

• storage layout and type sizes

• available registers, usage restrictions as well as their assignment to register classes

• stack layout, handling and the usage of stack related registers

• calling convention

• output of data structures and assembler operands

• handling of trampolines (memory structures for calling nested functions via point-
ers)

• supported memory addressing modes

• handling of the condition code register

• instruction costs

55

4. GCC

4.6. Overview of the M68HC05 port

Porting GCC to the M68HC05 architecture was not a trivial task. A lot of different
approaches were tried until the current solution was found.

First experiments started with GCC 3.3.3, later GCC 3.4.3 was used. Finally the
whole code was adapted to the latest development (CVS) version. Maintaining the old
branches was stopped, because the CVS version proved to be bug free enough. Thus, it
was planned to release the final version of this port based on a working CVS version.
Besides, keeping up with the old versions was too much work.

The C++ language front end of GCC for this port is compilable. It can be used to
compile C programs with the better type checking of C++ (but with C++ features like
exceptions and RTTI disabled). If used this way, it should work without any problems.
The C++ runtime library is too big and therefore not available.

In addition to the physical register, RegB and RegN are added as virtual (or soft)
registers. The frame and stack pointer are also defined as virtual registers. Because
GCC expects its internal frame and argument pointer to point to specific positions
in the stack frame, a virtual argument and frame pointer are also defined. They are
replaced with the real stack and frame pointer as soon as possible. The locations of
these registers must be allocated by the user. If multi-byte values are stored in registers,
GCC allocates some contiguous 8 bit registers.

As the call stack is too small and the call stack pointer is inaccessible, a data stack
is simulated by GCC. The segment where the data stack is located is described by the
symbol SPBASE. This must be defined by the user. As the stack pointer for this stack is
one byte large, SPBASE to SPBASE+0xFE are used for the stack. The initial value of
the stack pointer determines the start of the stack. Theoretically, the stack could start
at every location. This has the disadvantage that every conversion of the stack pointer
into a normal pointer (and also the other way round) needs a 16 bit addition, which
needs about 6 instructions. To avoid this, SPBASE must start at a 256 byte boundary.
The stack grows downwards.

The first stack slot used can have any address in it, but if it is not 0xff, only a smaller
stack is available. As a contiguous RAM section of the BCU is less than 128 bytes, this
is no limitation. If a stack location is referenced, the stack pointer is loaded into the
X register. Then the memory at (SPBASE+constant offset) is accessed, using X as the
index register.

In the first versions, all RTL instructions directly output assembler code. To support
all addressing modes for two operand expressions, often more than 30 alternatives were
needed to support all combinations of operands. A second disadvantage of the concept
was that e.g. an addition of two 4 byte values needed about 12 instructions in one
output template. If the stack was used, the X register was used to temporarily hold the
stack pointer. Because the output statement has no knowledge of the content of the X
register, the stack pointer was reloaded too often. This is in contrast to the need for
small code size.

So a different solution was developed. Initially, a high level RTL is generated, which
only works on pseudo registers and virtual registers. Additionally, the addressing for the

56

4.6. Overview of the M68HC05 port

stack is done relative to the stack pointer. After the register allocation/reload pass in
the machine specific reorganization pass, the RTL is converted into the low level RTL.

In this representation, each RTL insn represents a real instruction. An addition of
two 4 byte values is converted into the 12 statements needed plus all necessary reloads
and clobber statements of the X register. Over this representation the optimizer is run
again, which eliminates all unnecessary load and store operations.

GCC expects pointers which can cover the whole address space. With the M68HC05
architecture, the problem occurs that only an 8 bit index register is available. So the
store, load and call operations with 16 bit pointers have to be emulated. The first
solution was to use a table. The upper 8 bits of the pointer were used to jump to a
statement in this table which loads the lower 8 bits into the X register. The statement
then executes the operation with the hard coded pointer, which equals the upper part
of the pointer. An advantage of this approach is that none (if the load operation is
duplicated for each possible pointer location) or only up to three bytes of RAM are
used. The disadvantage is that a lot of code is needed.

The current solution works with self modifying code. In the RAM, four bytes (plus
one to save data for the store operation) are reserved. If a pointer operation happens,
the opcode of the corresponding instruction with the IX2 addressing mode is stored at
the first byte, then the content of the pointer and finally a RTS. A jump to the RAM
region starts the operation.

If multi byte values are accessed with a pointer, the offset relative to the pointer is
stored in the X register, so that no extra address calculations are needed.

The GCC floating point simulator for single and double precision values is compiled
into libgcc. However, many of its functions need too much memory, which causes them
to fail on a BCU. Some functions even need more stack size than the M68HC05 GCC
port supports.

Multiplications and divisions not supported by the hardware are also emulated. In
some situations GCC will expand an unsupported multiplication to a combination of
supported instructions.

A feature that was completely left out is setjmp/longjmp, as it cannot be implemented
in an efficient way. Already saving the virtual registers would need a lot of memory. The
main problem however is the call stack, for which the stack pointer is inaccessible. An
implementation of the setjmp function would need to issue a call (or a sequence of calls)
from known locations and then search these values in the call stack area. The address
of the first known address plus 2 would be the call stack pointer value before the call.

longjmp would need to save the used stack location (either the current stack pointer
could be determined by the previous method or the whole possible stack would have to
be saved), then the stack pointer needs to be reset. After that recursive calls are made
until the saved stack pointer value is reached. Finally the content of the stack can be
restored.

As a consequence, an exception handling system is also impossible to implement,
because it requires mechanisms similar to setjmp/longjmp.

Another known limitation is that ignored overflows are possible even for signed com-
pares. This is because internally a subtraction is made. As the M68HC05 has no overflow

57

4. GCC

type size in bit

char 8
short 16
int 16
long 32
long long 64
single 32
double 64
void* 16

Table 4.1.: Type sizes

detection mechanism and its simulation would enlarge the code, it was decided to ignore
such overflows. If GCC optimizes the compare in another way, a correct behavior is
possible.

As an experimental option, –mint8 is present. It changes the size of the type int to
8 bits, but keeps the size of the type short of 16 bit length. This is a clear violation of
the C standard and may cause faults in GCC. It is a workaround to stop the automatic
promotion of 8 bit values to 16 bit values.

The main problem, where the promotion cannot be prevented, are 8 bit return values.
As this promotion is not done for library functions automatically, it would be impossible
to write some of them in C. To solve the problem, the register normally holding the low
byte of the return value is used instead of the normal return register if an 8 bit value is
returned by a library function. A better solution would be to disable the promotion of
the return value in start function, which makes GCC incompatible with the C standard.

To use the non-standard integer sizes, define a new type with the specific mode:

typedef signed int sint7 __attribute__ ((mode (EI)));

typedef unsigned int uint3 __attribute__ ((mode (AI)));

which defines a 7 byte integer type named sint7 and a 3 byte unsigned integer type
named uint3.

4.7. Details

4.7.1. Type layout

All types are stored in big endian format. All values are stored packed with no additional
alignment bytes. For the type sizes see Table 4.1.

4.7.2. Register

The general virtual general purpose 8 bit registers are called RegB, RegC, RegD, RegE,
RegF, RegG, RegH, RegI, RegJ, RegK, RegL, RegM and RegN.

58

4.7. Details

name purpose content constraint

NO REGS required by GCC no register -
A REGS A a
X REGS X x
STACK REGS stack pointer FP, SP w
GENERAL REGS general purpose register RegB – RegN r
POINTER REGS usable pointer RegB – RegN, FP, SP b
REGS B RegB z
REGS C RegC c
REGS D RegD d
REGS E RegE e
REGS F RegF f
REGS H RegH h
REGS BC RegB, RegC q
REGS DE RegD, RegE t
REGS FG RegF, RegG u
REGS HI RegH, RegI v
REGS KLMN RegK – RegN y
ALL REGS required by GCC all register -

Table 4.2.: Register classes

The name of the hardware registers are A and X. They (and therefore their register
classes) should never be used as input or output registers in any user assembler state-
ment. This is because the compiler does not know that these registers are implicitly
used by the high level RTL while the register allocator runs. If a value is needed in one
of these registers, tell the compiler to put the value in a general purpose register, and
do the load/store from/to them in the user assembler code. All hardware registers may
be clobbered by a function call.

The data stack pointer is called SP, the frame pointer FP. Besides QI mode, these
registers can also be accessed in HI mode, although only one byte is reserved in memory
for them. The HI references are eliminated in the low level RTL.

4.7.3. Register classes

GCC groups registers which have a common purpose in register classes. For a list of the
available register classes see Table 4.2.

4.7.4. Pointer

For pointers, only addresses in a register in the register class POINTER REGS are
supported. Internally, they are implemented as GCC base registers. The GCC index

59

4. GCC

registers are not used.

A legitimate pointer expression is either a pointer register or a constant plus a pointer
register. If a non-stack register is used as base, the offset must be 0 for the high level
RTL and between 0 and 7 for the low level RTL. The offset in the low level RTL is used
to access sub-bytes of multi byte values. As the largest supported type is 8 bytes large,
the offset is limited to 7.

4.7.5. Calling convention

The return value starts at RegB. The first argument is stored in RegB and all small
values are stored in the following registers. The last usable register for that purpose is
RegK. Larger values are passed on the stack or by pointer.

RegM – RegN are used as static chain register, if it is needed. As this chain register is
not implemented as a stack register, normal pointer operations are used, which results
in bigger code size.

RegB – RegE are callee saved registers, RegF – RegN are caller saved registers.

A function with the nosave attribute does not save any register in its prologue.

Note: The calling convention may be changed in future versions of this
GCC port.

4.7.6. Stack frame

When a function call is made, a stack frame contains the argument on its top. If the
frame pointer is used by the function, it is saved at the next location. Then all used
callee saved registers follow.

4.7.7. Frame pointer elimination

The port provides all necessary information to replace the use of the frame pointer with
the stack pointer, if it is possible. The functions initial elimination offset calculates the
needed offset.

4.7.8. Sections

Code is placed in the .text section, read-only data in the .rodata section.

Each global or static variable is placed in a section which starts with .bss. (initialized
with 0) or .data. and ends with a unique number. Internally the section name ends with
!!!!!, which is replaced with a unique number by the assembler.

For common symbols, the ELF COMMON section is not used, because multiple COM-
MON sections are not possible. Instead they are allocated as normal variables in a bss
section.

60

4.7. Details

4.7.9. Constraints

All supported constraints are listed in Table 4.3.
Constraints are used by the reload pass to determine if a variable fits a certain location.

If an operand in the RTL is specified, it contains a constraint string, possibly with
multiple alternatives, separated by a comma.

Each constraint can include some modifiers. The important ones are:

& for early clobber, which means that this operand will be (partially) written before all
source operands are read. Therefore it may not overlap with another operand.

? means that this alternative is more expensive and should be avoided.

= means that a value is written to this operand.

If an instruction has multiple operands, they must have the same number of alterna-
tives. The reload pass examines the first alternative of all operands, then the second,
and so on. Finally, the cheapest one is selected and pseudo registers are either bound to
a real register or to a stack location. This process is repeated until a sufficient solution
is found.

A GCC port can define its own constraints. Apart from a general constraint, which is
either fulfilled or not, address and memory constraints are possible. A memory constraint
will also match, if the operand can be placed in memory.

For the M68HC05 port, some constraints exist as normal constraints as well as memory
constraints (e.g. A and B). This is caused by the fact that a general memory operand
is not supported in many situations. In these situations, the normal constraint is used.

If the stack is also supported, the U constraint is added. The R constraint is also
added, because otherwise GCC will fail in some situations. The problem is that GCC
keeps open the decision whether a pseudo register should be put on the stack in some
cases. Therefore the stack constraint does not match. As the other constraints do not
allow a value to be put on the stack (they are not memory constraints), GCC concludes
that the value must be in a register. If it runs out of registers, the compilation fails.

The R constraint causes that, in such a case, the constraint matches if the value can
be put on the stack only while the reload is in progress. At the end of the reload, the
value is either put in a register, which causes another constraint to match, or is put on
the stack, which causes the U constraint to match.

In situations, where pointers are possible (Q constraint), memory constraints are used,
as this is a cleaner solution.

4.7.10. Operands

Operands in the assembler templates are specified as %modifiernumber (e.g. %o0),
where number stands for the number of the operand.

This port defines two modifiers:

o Print only the offset for a memory location at x+offset or x (where x can be register
SP, FP or X).

61

4. GCC

co
n
st

ra
in

t
p
u
rp

os
e

0,
1,

2,
3,

4,
5,

6,
7,

8,
9

th
e

sa
m

e
as

op
er

an
d

w
it

h
th

e
th

is
n
u
m

b
er

a,
b
,
c,

d
,
e,

f,
h
,
q
,
t,

u
,
v
,
w

,
x
,
y,

z
re

gi
st

er
cl

as
se

s,
se

e
T
ab

le
4.

2
i

im
m

ed
ia

te
va

lu
e

m
an

y
m

em
or

y
op

er
an

d
r

re
gi

st
er

of
G

E
N

E
R

A
L

R
E

G
S

A
fi
x
ed

m
em

or
y

lo
ca

ti
on

(m
em

or
y

co
n
st

ra
in

t)
B

fi
x
ed

m
em

or
y

lo
ca

ti
on

C
lo

ra
m

m
em

or
y

lo
ca

ti
on

D
lo

w
le

ve
l
lo

ra
m

p
oi

n
te

r
(X

or
X

+
co

n
st

an
t)

F
im

m
ed

ia
te

fl
oa

ti
n
g

p
oi

n
t

va
lu

e
G

im
m

ed
ia

te
d
ou

b
le

w
it

h
va

lu
e

0
M

im
m

ed
ia

te
b
et

w
ee

n
0

an
d

0x
ff

N
im

m
ed

ia
te

va
lu

e
1

Q
va

li
d

b
as

e
p
oi

n
te

r
ex

p
re

ss
io

n
(m

em
or

y
co

n
st

ra
in

t)
R

ac
ce

p
t

re
gi

st
er

s
w

h
ic

h
ca

n
b
e

re
lo

ad
ed

on
th

e
st

ac
k

in
th

e
re

lo
ad

p
ro

ce
ss

S
st

ac
k

p
oi

n
te

r
T

m
em

or
y

on
th

e
st

ac
k

(m
em

or
y

co
n
st

ra
in

t)
U

m
em

or
y

on
th

e
st

ac
k

W
m

em
or

y
on

th
e

st
ac

k
u
si

n
g

th
e

fr
am

e
p
oi

n
te

r
Y

m
em

or
y

at
re

gi
st

er
X

p
lu

s
co

n
st

an
t

off
se

t
X

an
y
th

in
g

Z
fr

am
e

p
oi

n
te

r
<

,
>

,
g,

n
,
o,

p
,
s,

E
,
H

,
I,

J
,
K

,
L
,
O

,
P
,
V

n
ot

of
in

te
re

st
or

re
se

rv
ed

b
y

G
C

C

Table 4.3.: Constraints

62

4.7. Details

A Print the second part of a double as a hexadecimal number.

The function is implemented in print operand, which supports the following constructs:

• offset of memory at x+offset or x with code o (where x can be register SP, FP or
X)

• a register as its name

• an integer constant

• a single floating point value, encoded as a hexadecimal number

• the upper or lower part of a double floating point value, encoded as a hexadecimal
number

• a specific byte of a floating point constant

• an address

If an address is a register, its name is printed. If it is a register plus an offset, the
register name is printed, appended with ’ ’ and the offset. If a byte of an address is
requested, the address is wrapped in a call of the corresponding byte access function of
the assembler. The rest is printed in the normal GCC way.

4.7.11. RTL split helper functions

Three functions are used to split the high level RTL in low level RTL:

• genXLoad takes an operand and determines if it makes use of the stack. If this is
true, a load of the X register with the stack (or frame) pointer is returned, else a
NOP.

• genXClobber returns a clobber of register X, if the operand needs to call a library
function which destroys the content of the X register, else it returns a NOP.

• genSUBREG takes an operand and returns an operand which corresponds to a
selected byte of the operand. For constant addresses, special RTL code is returned,
which is turned into a lo8, hi8, hlo8 or hhi8 function by the print operand function.

If the stack is referenced, the use of the stack pointer or frame pointer is replaced
with the X register.

How an addition of a long value is split is shown in the following. For each byte
(processing from the low to the high byte), the following output is produced:

• genXLoad(operand[1],byte)

• LDA of genSUBREG(operand[1],byte)

63

4. GCC

• genXClobber(operand[1],byte)

• genXLoad(operand[2],byte)

• ADD/ADC of genSUBREG(operand[2],byte)

• genXClobber(operand[2],byte)

• genXLoad(operand[0],byte)

• STA of genSUBREG(operand[0],byte)

• genXClobber(operand[0],byte)

The NOPs are eliminated immediately after the split. The resulting code may contain
redundant reloads of the X register. They are eliminated by a GCC optimization pass,
if optimizations are turned on.

4.7.12. RTL patterns

The machine description, as well as the source file for a part of libgcc, are generated
by a PHP script. Every script language could have been used, PHP was chosen out of
personal preference. For a normal GCC build, the generated files are present, so PHP
is not needed. It is only needed if changes are made to the generation code.

The reason why a script language is used is that each pattern exists in many variants,
which only differ in the supported mode and the number of instructions created in split
definitions. They are also highly repetitive, so using a scripting language simplified their
maintenance.

The following functions are defined:

genexpandshift generates an expander for a shift operation. It outputs a for -loop,
which performs a one-bit shift for shift count times.

If the shift is a logic shift, and the shift count is a constant which is a multiple of
8, the shift will be turned into a sequence of move operations.

gensplit move defines a splitter, which turns a move operation into a sequence of move
operations for each byte.

gensplit binop nocc defines a splitter which performs a binary operation on each byte
of the operands. It is intended for operations which do not need to pass information
in the carry flag.

gensplit binop cc defines a splitter which performs a binary operation on each byte of
the operands. It is intended for operations which must pass information in the
carry flag.

gensplit shift splits a shift/rotate operation in byte-wise shift and rotate operations.

64

4.7. Details

asm op outputs the definition of a low level instruction which uses A as a source and
the destination operand.

asm shift outputs the definition of a low level shift/rotate operation.

expand neg outputs a splitter which turns a negation into byte-wise operations.

expand zeroextend outputs a splitter for zero extension.

expand extend outputs a splitter for a sign extension.

asm jmp outputs an instruction pattern for a conditional jump.

expand eestore outputs an expander which creates a library call to store a value in the
EEPROM.

expand move creates an expander which checks if the destination operand is in the
EEPROM (eeprom attribute present). If this is true, an EEPROM store operation
is created. Otherwise a normal move pattern is generated.

4.7.13. Predicates

The port specific predicates match:

regmem operand A register or memory at a fixed location, which can be determined
at least at link time.

regmemne operand A register or memory at a fixed location, which can be determined
at least at link time. This predicate rejects memory references if the pointer
contains the eeprom attribute.

regmemimm operand A register, an immediate value or a memory at a fixed location,
which can be determined at least at link time.

regmempt operand a register or memory reference supported by the back end.

regmemptne operand A register or a memory reference supported by the back end.
This predicate rejects memory references if the pointer contains the eeprom at-
tribute.

regmemimmpt operand A register, an immediate value or memory reference supported
by the back end.

regmemimmst operand A register, an immediate value or stack reference supported
by the back end.

65

4. GCC

4.7.14. Cost functions

For the cost calculation of addresses, fixed addresses have no real cost. References to
the stack are a little bit more expensive and the use of pointers has a significant higher
cost. This causes that the use of pointers in addresses is avoided whenever possible.

For normal RTL expressions, the cost calculation is similar to the one for addresses:
constants, registers and fixed memory locations have no costs. Stack locations are more
expensive and the use of pointer registers is significantly more expensive. This cost is
further multiplied by the size of the accessed value to represent that e.g. a move in HI
mode needs more instructions than in QI mode.

4.7.15. The eeprom attribute

As a new experimental feature, the eeprom attribute was added. This attribute is
intended to access memory in the EEPROM in a transparent way. If an pointer points
to such an EEPROM location, it has the attribute eepromt added.

This attribute can be added to a variable declaration. If a value is stored to a memory
location which has the eeprom attribute or the pointer type has the attribute eepromt
(which means that the pointer target is in the EEPROM), a routine named eestore mode
is called. Here, mode can be QI, HI, SI, DI, CI, EI, FI, AI, SF or DF depending on the
size of the value. As the first parameter, the pointer to the EEPROM location is passed
and as the second the value to be written.

ISO/IEC TR 18037 m68hc05-gcc
named address spaces address spaces

#define eeprom attribute ((eeprom))
#define eepromt attribute ((eepromt))

eeprom char a; eeprom char a;
eeprom char* b; eepromt char*b;
eeprom int* eeprom c; eepromt int* eeprom c;

Figure 4.1.: Comparison of ISO/IEC TR 18037 named address spaces with m68hc05-gcc
address spaces

The semantic is similar to the named address spaces of [CEXT], but uses two GCC
attributes instead of one directive for each named address space. Using define statements
for attributes, it can be used like in [CEXT], with the difference that the user must select
if the variant for the target of a pointer or for a variable is to be used. This attribute
does not care if a variable is actually allocated in an EEPROM section nor does it check
if a pointer actually points to the EEPROM.

Implementing this function was not trivial. The first attempt was to make minimal
changes to the GCC core. Only the eeprom attribute was used for all purposes. Mak-

66

4.7. Details

ing the attribute known to GCC was simple, in fact it only has to be added to the
attribute list. Then all internal GCC code infers the correct type for many tree based
representations, keeping the eeprom attribute, if it is necessary.

A drawback was that this approach was not sufficient for structures (in conjunction
with pointers). The attribute needed to be propagated to all elements of a type. Imple-
menting this propagation was not trivial and caused a lot of problems.

Because GCC by default offers no way to implement back end functions on tree level,
this must be done at RTL level. If the type points to a fixed location, GCC stores the
type in the memory reference. In that case, a MEM-expression has only to be checked
for the eeprom attribute. If this is present, the store operation is replaced by a function
call. All other functions except the move instructions reject eeprom types, so only the
move expanders have to be updated.

The problem was the pointer arithmetic. In such a case it is possible that GCC splits
a pointer expression in many RTL statements while generating the RTL. Finally, the
pointer is stored in a pseudo register, but without any type information. Therefore such
references were missed. Thus, the code which stored the expression in some memory
references was changed to always store the expression. After a regression test, this
change seems to be compatible with the GCC core. Yet, it caused some assertions in
the debug print functions to fail. This was fixed by printing the root node of the tree in
these cases.

After presenting this solution on the GCC mailing list and some discussion, a new
solution was written. Instead of storing the type (or the expression) in the RTL,
MEM REF FLAGS were introduced. If a tree expression is associated with a MEM
RTL expression, the back end calculates the flags in a target hook. The eeprom operand
predicate only needs to check if a bit is set in the MEM REF FLAGS.

Instead of propagating the eeprom attribute, a named address space attribute
(MEM AREA) was added to the tree type. For pointers, it stores the address space of
the pointer target. For variables, it stores the address space where they are located.
This attribute is propagated in expressions which can potentially refer to memory.
Much of the propagation is done automatically, while a tree expression is created. Only
for dereferencing pointers more work is necessary.

Additional target hooks for named address space compatibility checking as well as
address space merging were added. In the back end code, the two C attributes were
introduced, because GCC does not support to use one attribute for both purposes.

Named address spaces are also of interest for other targets, like the AVR microcon-
troller family.

4.7.16. The loram attribute

For accessing the low RAM section, a second named address space is used. It uses the
attributes loram and loramt (similar to eeprom and eepromt). The use of this attribute
results in smaller code in many situations, as normal load/store operations can be used
instead of the self modifying load/store. In this case, the X register is used to cache the
pointer.

67

4. GCC

Pointers to the low RAM are automatically converted into normal pointers, if neces-
sary. A normal pointer may only be converted to a low RAM pointer (with an explicit
conversion), if it really points to the appropriate memory region (0x000 – 0x0FF).

This attribute does not yet produce optimal code.

68

Part II.

BCU/EIB

69

5. BCU operating system

A BCU is a standardized device which is connected to the EIB bus and can load an
application program. It contains the physical external interface (PEI), where application
modules can be connected to.

As a second variant, BIMs exist, which only contain all electronic parts on a small cir-
cuit board (without housing). They offer the same possibilities as a BCU, but necessary
elements like the programming button have to be connected separately. Concerning the
software interface, a BIM is identical to a BCU with the same mask version. The main
difference is that since BIMs are integrated into the housing of the final product, the
PEI interface is typically not accessible. In the remainder of the text, the term BCU
will also refer to compatible BIMs.

Although a BIM based on a M68HC11 is available, most BCUs (and BIMs) use the
M68HC05 processor core. They have some RAM and EEPROM integrated. The EIB
system software is contained in the ROM. In the EEPROM, the application program is
loaded.

Each EIB device has two elements (apart from the bus connector): A programming
mode button to turn programming mode on and off and a LED, which shows if the
device currently is in programming mode.

5.1. Modes of communication

EIB supports both point-to-point and multicast communication. The respective ad-
dressing modes are referred to as individual or physical and group addressing. Individual
addressing is only used for management and installation tasks. For this purpose, the
protocol stack provides reliable connections as well as connectionless communication.

The exchange of process data is almost exclusively done via group addressing. Each
group communication endpoint in a BCU is called group object or communication object.
It can send and/or receive values on a certain set of group addresses. If a device sends
a new value in a A GroupValue Write telegram, all other group objects which listen to
this address update their state and may trigger some action.

In BCUs, all addresses are stored in an address table. It contains the single individual
address and all group addresses used by this device.

5.2. BCU 1

Different mask versions of the BCU 1 exist. This section will cover the version 1.2.
Other mask versions share the same principles, but offer more or less features. This

71

5. BCU operating system

PEI type description

0 No PEI module expected
2 4 inputs, 1 output (LED)
4 2 inputs, 2 output + 1 output (LED)
6 3 inputs, 1 output + 1 output (LED)
8 5 inputs

12 serial synchronous interface message protocol
14 serial synchronous interface data block protocol
16 serial asynchronous interface message protocol
17 programmable I/O
19 4 output + 1 output (LED)
20 Download (reserved, may not be used in application programs)

Table 5.1.: PEI types

section will in most cases cover the BCU SDK interface rather than the plain assembler
view of the interface.

The RAM and memory mapped IO is located between 0x000 and 0x100. For a user
program, a block of 18 bytes is available. Additionally, the RAM contains the registers
RegB – RegN and the system state at 0x060. If the application program is running, this
location should contain a value of 0x2E. If a problem occurs (e.g. a checksum error), it
can contain a different value. A stopped application program can be started by writing
0x2E to this location.

For the BCU SDK, there is no need to access any RAM location directly. If port A
or port C are accessed directly, bit set/clear operations must be done using an inline
assembler statement at the location 0x00 and 0x02. If only the standard PEI interface
is used in a program, no direct port access is necessary.

The EEPROM has a size of 256 bytes and starts at 0x100. The first 22 bytes contain
a header which describes the program and contains all entry points. Parts of the BCU
EEPROM can be protected by a checksum. If a checksum error is detected, the user
program is halted. This is controlled via the header.

A header byte of particular interest for the developer is 0x10D, the RunError. This
value can be read during runtime. If an error condition happens, a bit is set to 0.
Interpreting this value, some error conditions (e.g. a stack overflow, see [BCU1, BCU2])
can be detected. Another important value of the header is the expected PEI type.
The user program only runs when the expected PEI type matches the PEI type of the
currently connected application module. At the moment, 20 PEI types are defined (only
useful values are listed in Table 5.1).

The header also describes:

• The manufacturer and version of a program

• The DDR settings for port A and C

72

5.2. BCU 1

• The routing count

• Retransmission limits

• Enabling of U DELMSG, which causes that some messages are removed from the
message queues of the operating system. Either this function is called by the
application program or the flag has to be enabled; otherwise a BCU may stop
responding. The BCU SDK selects a reasonable default, so that the user does not
have to care about this.

• Settings for the serial synchronous interface

• The telegram rate limit

The header is followed by the address table. Internally, a BCU only maps each used
EIB address to its number in the address table. The number of a group address is
mapped to a set of corresponding group objects using the association table.

The group objects are stored in the communication object table. Each group object
consists of a RAM or EEPROM location, which contains its value and a 4 bit set of flags
(RAM flags). These flags store the current transmission/update status. In the table,
a group object is described by three bytes. Of these, the first byte is the offset of the
value location relative to the start of the EEPROM or RAM. The second byte describes
which receive or send operations should be performed by the operating system on this
group object. The third byte determines its size.

The processing of the application program is done inside a routine which is called
periodically by the BCU. Additionally, an initialization routine and a save routine, which
is called in case of a power failure, must be present inside the application program. For
handling group objects as well as these three routines, the BCU SDK provides a high
level interface.

5.2.1. Accessing the PEI

How the PEI is accessed depends on the used PEI type. For PEI Type 17, the value
of PortCDDR is used for the DDR setting of Port C. The data port of port C is at
the address 0x002. Beware that if you only want to set one bit, you must use inline
assembler with bit set/clear operations, because GCC currently only writes whole bytes.
Try to use the BCU API instead of direct port access, if possible.

For the PEI Types 2, 4, 6, 8 and 19 direct access to Port C is possible. The suggested
API function for that is U ioAST. If an analogue value should be read, U readAD can
be used. For the serial PEI types, U SerialShift, U AstShift and U LAstShift can be
used.

5.2.2. Timer Subsystem

The BCU 1 provides two kinds of timers: user timers and system timers. The count of
user timers is only limited by the available memory. For each user timer, a byte in the

73

5. BCU operating system

RAM is allocated. Additionally, the resolution is stored in the EEPROM. As resolution,
values ranging from 133 ms to 72 minutes are supported. This timers can be loaded
with a value between 0 and 127 and provide functions to check if they have expired.

Additionally, the BCU 1 provides up to two system timers. They can be used as count
down timers (like a user timer) or as difference counters, where they return the elapsed
time units since the last check. As resolution, they only provide a range between 0.5 ms
and 33 seconds.

5.2.3. BCU 1 API

The BCU 1 provides a set of API functions. The original names are used to refer to
the entry point of a function. The C wrapper functions have the same name, with as
prefix. For nearly all functions a wrapper exists, but the usage of some functions may
produce longer code than necessary because of the necessary glue code.

The wrapper functions are written as C inline functions and use the GCC assembler
statement. They are written in a way that for most cases, the smallest solution is chosen
by GCC. As a general rule, do not use an API function directly, if the BCU SDK provides
an other interface for it.

The following documentation provides only an overview of the available functions.
Details are available in the BCU documentation ([BCU1] and [BCU2]).

• extern const uchar OR_TAB[8];

contains a bit mask, which can be used to set a bit.

• extern const uchar AND_TAB[8];

contains a bit mask, which can be used to clear a bit.

• uchar _U_flagsGet (uchar no);

returns the RAM flags of the group object no.

• void _U_flagsSet (uchar no, uchar flag);

sets the RAM flags of the group object no to flag.

• uchar _U_testObj (uchar no);

returns the RAM flags of group object no and resets the update flag. This function
should not be used for group objects, which use the on update function, because
it may clear the update flag before the BCU SDK has processed it.

• void _U_transRequest (uchar no);

instructs the BCU to transmit the content of group object no.

• void _EEwrite (uchar offset, uchar value);

writes value to the EEPROM at location 0x100+offset.

74

5.2. BCU 1

• void _EEsetChecksum ();

updates the EEPROM checksum. A call of this function should not be necessary,
because all variables are allocated in a way that changeable EEPROM locations
are not covered by the checksum.

• uchar _U_debounce (uchar value, uchar time);

uchar _U_deb10 (uchar value);

uchar _U_deb30 (uchar value);

U debounce debounces a value with a time of time in 0.5 ms units. U deb10
and U deb30 do the same, but with a fixed time of 10 or 30 ms. These functions
should not be used directly, because they use resources which can be used by the
BCU SDK for another purpose.

• void _U_delMsgs ();

removes any message for the user program.

• short _U_readAD (uchar channel, uchar count);

reads the AD channel channel count times and returns the sum of all read values.

• typedef struct

{

signed short value;

bool error;

} U_map_Result;

U_map_Result _U_map (signed short value, uchar ptr);

signed short inline _U_map_NE (signed short value, uchar ptr);

performs the map operation, as described in the KNX specification. If no error
detection is needed, U map NE can be used, which produces smaller code. ptr is
the offset of the conversion table relative to the EEPROM start at 0x100.

• uchar _U_ioAST (uchar val);

handles binary IO on the PEI port. The upper 4 bits of val determine if a read
(0) or a write (1) operation has to be done on a specific pin of the PEI. If a bit is
written, its new value is stored in the lower 4 bits, e.g. bit 0 and 4 are used for IO
bit 0.

The old state of the pins is stored in the upper 4 bits of the result. If a bit is read,
its value is stored in the lower 4 bits. Here again, e.g. bit 0 and 4 correspond to
IO bit 0.

• typedef struct

{

uchar pointer;

75

5. BCU operating system

bool error;

} S_xxShift_Result;

S_xxShift_Result _S_AstShift (uchar ptr);

uchar _S_AstShift_NE (uchar ptr);

S_xxShift_Result _S_LastShift (uchar ptr);

uchar _S_LastShift_NE (uchar ptr);

performs a data exchange over the SPI PEI interface (type 14). If no error detection
is needed, the NE variant creates smaller code.

• typedef struct

{

uchar octet;

bool error;

} U_SerialShift_Result;

U_SerialShift_Result _U_SerialShift (uchar octet);

uchar _U_SerialShift_NE (uchar octet);

exchanges a byte over the serial PEI interface. If no error detection is needed, the
NE variant creates smaller code.

• void _TM_Load (uchar setup, uchar runtime);

initializes a system timer.

• typedef struct

{

bool expired;

uchar time;

} TM_GetFlg_Result;

TM_GetFlg_Result _TM_GetFlg (uchar timer);

bool _TM_GetFlg_M0 (uchar timer);

uchar _TM_GetFlg_M1 (uchar timer);

returns the status of a system timer. If the timer is in mode 0 (count down timer),
the M0 variant should be used, in mode 1 (difference timer) the M1 variant.

• void _U_SetTM (uchar timer, uchar pointer, uchar time);

void _U_SetTMx (uchar timer, uchar time);

initializes a user timer.

• bool _U_GetTM (uchar timer, uchar pointer);

bool _U_GetTMx (uchar timer);

updates a user timer and returns, if it is expired.

76

5.2. BCU 1

• void _U_Delay (uchar delay);

wait delay (in 0.5 ms)

• typedef struct

{

uchar_loptr pointer;

bool valid;

} AllocBuf_Result;

AllocBuf_Result _AllocBuf (bool longbuf);

uchar_loptr _AllocBuf_NE (bool longbuf);

allocates a buffer. If longbuf is true, a long buffer is allocated, else a short. Use
the NE variant, if you do not check the valid bit of the return value.

uchar loptr is a pointer to an unsigned character with the loram attribute. It
can be used like any normal pointer. If the pointer is assigned to other pointer
variables, try to keep the loram attribute, as it allows the generation of smaller
load and store operations.

• void _FreeBuf (uchar_loptr pointer);

frees a buffer.

• typedef struct

{

uchar_loptr pointer;

bool found;

} PopBuf_Result;

PopBuf_Result _PopBuf (uchar msg);

uchar_loptr _PopBuf_NE (uchar msg);

searches for a message of a certain type. Use the NE variant, if you do not check
the returned found value.

• typedef struct

{

unsigned short product;

bool overflow;

} U_Mul_Result;

U_Mul_Result _multDE_FG (unsigned short v1,

unsigned short v2);

unsigned short _multDE_FG_NE (unsigned short v1,

unsigned short v2);

77

5. BCU operating system

multiplies two unsigned 16 bit values. If you do not check for an overflow, use the
NE variant. Do not expect that using this function has a specific effect on the
resulting code size compared to a normal implementation in C.

• typedef struct

{

unsigned short quotient;

unsigned short remainder;

bool error;

} U_Div_Result;

U_Div_Result _divDE_BC (unsigned short dividend,

unsigned short divisor);

unsigned short _divDE_BC_quotient (unsigned short dividend,

unsigned short divisor);

unsigned short _divDE_BC_remainder (unsigned short dividend,

unsigned short divisor);

divides 16 bit unsigned values. If you do not check for an overflow and only need
the quotient or remainder, use the quotient or remainder variant. Do not expect
that using these functions has a specific effect on the resulting code size compared
to a normal implementation in C.

• uchar _shlA4(uchar val)

uchar _shlA5(uchar val)

uchar _shlA6(uchar val)

uchar _shlA7(uchar val)

uchar _shrA4(uchar val)

uchar _shrA5(uchar val)

uchar _shrA6(uchar val)

uchar _shrA7(uchar val)

uchar _rolA1(uchar val)

uchar _rolA2(uchar val)

uchar _rolA3(uchar val)

uchar _rolA4(uchar val)

uchar _rolA7(uchar val)

shifts or rotates a 8 bit value. Do not expect that using these functions has a
specific effect on the resulting code size compared to a normal implementation in
C.

• uchar _U_SetBit (uchar octet, uchar bit, bool set);

sets the bit bit to set of octet and returns the value. Do not expect that using
this function has a specific effect on the resulting code size compared to a normal
implementation in C.

78

5.3. BCU2

• bool _U_GetBit (uchar octet, uchar bit);

returns the value of bit bit in octet. Do not expect that using this function has a
specific effect on the resulting code size compared to a normal implementation in
C.

5.3. BCU2

A BCU 2 provides the same features as the BCU 1. Therefore, the content of Section
5.2 is also valid for the BCU 2 if not otherwise noted.

The main new features are:

• More EEPROM and RAM

• Access Control

• Support for properties

• A new message system, which provides queues to send messages to specific layers

• New timer types

• Support for the FT1.2 Protocol and the PEI type 10, which supports a user PEI
handler

• Support for own EIB telegram handlers

The BCU 2 has over 850 bytes of EEPROM available for the user application. Addi-
tionally a new RAM section is added, where 24 bytes are available for the user applica-
tion.

The BCU 2 provides 4 protection levels. Properties as well as memory regions have
access levels. An access is only permitted if the current access level is lower or same as
the access level of the object. Connections which are not authenticated use access level
3.

The memory management of the BCU 2 has changed. A downloading tool must
allocate a section of memory before it can be read or written. During allocation, the
access levels as well as the presence of a checksum are specified.

Properties provide a clean interface to access internals of an EIB device. They are
used in a BCU 2 for two purposes:

• They are used for the loading of applications as well as to query information about
a BCU and change its state.

• An application program can also create its own properties to provide access to its
state. Either a variable or an array can be exported by a property. Otherwise a
handler function can be used.

79

5. BCU operating system

In that case, the handler function is called every time when the property is read
or written. The handler must do the processing of the incoming EIB message and
return the response message.

The BCU 2 offers 4 builtin objects. When loading an application, the address table,
association table and application program object are unloaded. Then, for each object
a memory region is allocated and filled with data. More allocation of memory regions
may follow. Then the pointers for this object are set and its state is changed to loaded.

As many pointers are now set using properties, they can store 16 bit values. Therefore
many things need no longer be in the region between 0x100 and 0x1FF, while other
values, like the telegram rate limit, must still be in these memory locations.

In a BCU 2, each OSI layer is a task, which has its own message queue. Using the
BCU 2 API functions, it is possible to send messages to specific tasks.

In a BCU 2, a system timer can also be used to send a message when it expires.
Additionally, it can be used as a periodic message timer, which periodically sends a
message to the user application.

The PEI Type 10 is added. For this PEI Type, the user can write his own PEI handler.

The BCU 2 provides an application call back, where the application can provide its
own mechanisms to handle EIB telegrams. The default handler can be called from the
application call back, so that only specific cases must be handled by the application.

5.3.1. BCU 2 API

• void _U_EE_WriteBlock (void *ptr, long data);

writes data to an address aligned at a 4 byte boundary in the EEPROM.

• uchar _U_GetAccess ();

returns the current access level.

• void _U_SetPollingRsp (uchar val);

sets the result for the polling slave.

• void _U_Char_Out (uchar val);

sends a byte over the PEI interface using the SCI or SPI protocol.

• void _U_TS_Set (uchar timer, uchar mode, uchar scale,

uchar value, uchar param);

sets a BCU 2 timer.

• void _U_TS_Del (uchar val);

stops a BCU 2 timer.

80

5.3. BCU2

• void _U_MS_Post (uchar msgid, uchar_ptr pointer);

sends a message to a message queue. The first byte of the message pointed to by
pointer is the length, the second the service code. The memory are pointed to by
pointer has to be allocated by the BCU OS, eg. with AllocBuf. msgid is a Task
ID (TASK * ID).

• void _U_MS_Switch (uchar msgid, uchar destination);

moves a message to a different message queue.

• short _FP_Flt2Int (uchar ptr, uchar exponent);

converts a floating point value to an integer.

• void _FP_Int2Flt (short val, uchar ptr, uchar exponent);

converts an integer into a floating point value.

• void _U_FT12_Reset (uchar baudrate);

resets the FT1.2 protocol.

• typedef struct

{

bool newstate;

uchar stateok;

} FT12_GetStatus_Result;

FT12_GetStatus_Result _U_FT12_GetStatus (bool force_reset);

gets the FT1.2 protocol state.

• void _U_SCI_Init (uchar baudrate);

initializes the SCI protocol.

• void _U_SPI_Init ();

initializes the SPI protocol.

• constants for PEI events

#define PM_INIT 0xF3

#define PM_MESSAGE 0xF1

#define PM_CYCLE 0xF2

#define PM_rc_even 0x03

#define PM_rc_odd 0x13

#define PM_rc_tc 0x14

#define PM_tdre 0x05

#define PM_sci_idle 0x06

#define PM_spif 0x08

81

5. BCU operating system

#define PM_OCA 0x10

#define PM_OCB 0x20

#define PM_ICA 0x30

#define PM_ICB 0x40

• PEI memory regions

uchar PEI_Interface;

uchar PEI_Info;

uchar PEI_RecBuf[25];

uchar PEI_SndBuf[25];

• Task IDs

#define TASK_LL_ID 1

#define TASK_NL_ID 2

#define TASK_TL_ID 3

#define TASK_TC_ID 4

#define TASK_LC_ID 5

#define TASK_AL_ID 6

#define TASK_MG_ID 7

#define TASK_PM_ID 8

#define TASK_US_ID 9

82

6. BCU SDK

The BCU SDK consists of the XML1 DTD2 and Schema files for the data exchange
(in the xml directory), which are covered in Chapter 9; helper programs to extract and
embed the program ID in XML files; eibd (in the eibd directory, see Chapter 7); BCU
headers and libraries; a generation tool for all necessary glue code and tables; and some
build scripts.

To access a XML file, the BCU SDK uses the libxml2 tree interface. With it, the
content of a XML file can be loaded into a tree like structure. An XML tree can also be
written to a file.

6.1. Common files

The common directory contains a collection of different files, which are used in different
places. Besides the definition of commonly used types as well as classes for array, string
and stack handling, it includes all functions to process images for the BCU SDK.

In the files image.cpp and image.h, the class Image for loading a BCU image is defined.
It provides easy access to the different streams (see Appendix A for details about the
image format). Additionally, such an image can be modified and turned into a byte
stream again.

The file loadimage.cpp contains functions to check if an image is really loadable. Ad-
ditionally, it extracts the important things and stores them in the class BCUImage. For
the BCU 1, it stores the individual address of the destination BCU and the EEPROM
content. For the BCU 2, it additionally stores all needed keys and a list of instructions
of A PropertyValue Write and A Memory Write requests, which are needed to load the
program. The real loading part only has to issue the commands as they are in the list,
and check the results.

6.2. XML related programs

The archive directory contains the embedprogid and extractprogid programs. Both read
an XML file and check if they are really an application information or a configuration
description, respectively.

Depending on the program, either the hex dump in the ProgramID element is decoded
and saved as a file, or the content of a file is encoded as a hexadecimal string and stored

1Extensible Markup Language
2Document Type Description

83

6. BCU SDK

as ProgramID in the XML file.

6.3. Build system

The build directory contain the scripts which control the build process of images and
the application information.

The build.ai shell script first calls the bcugen1 program to create the application
information, all headers, assembler and C files (see Figure 6.1).

Besides the XML file, it also builds an image. This is done for the following reasons:

• It should find every syntax error in the source program, which could happen during
the execution of the build.img script.

• The image gives an upper limit of the needed code size, as by default all features
are compiled in.

• The image could be used for an ETS like approach of image handling, where the
parameters and address tables are changed in the executable.

The list of included files is run through the preprocessor, so that all source files of the
user are in one C file. The original line numbers are kept in the #line directive, so that
GCC will still use the original file names. This is stored in the file c.inc.

Together with the generated header file c.h, this is compiled into the object file c.o.
The allocation of parameters, which are stored in the file p.c, is also compiled. The
parameters are kept in an extra file to make it impossible for GCC to optimize them
away.

The assembler header and glue code (in p1.s) is assembled. All files are linked with the
necessary libraries and the linker script for the selected BCU into an ELF executable.
The base name of the linker script and libraries is determined by the bcugen1 program.
It outputs the name of a variant (which includes the mask version as well as an user
specified subtype). Then the linker is run again with another linker script to convert
the ELF file into an image file.

Finally, all files which are needed for the build.img part, are packed into an archive,
which is stored as ProgramID of the XML file. It should be noted that the ProgramID
tag thus stores the program text as discussed in the introduction.

The image building shell script build.img takes a configuration description and extracts
the ProgramID, unless a file was passed as a parameter explicitly for this purpose (see
Figure 6.2). It extracts the parts of the archive and runs the bcugen2 program. Then
the image build process is run, similar as it is done by the build.ai script. However, the
parameter C file is not used, because it is not needed in this step.

The image build shell script build.dev is a combination of build.ai and build.img. It
reads a BCU configuration and verifies it in the same way as build.ai would do. Then
it adds the configuration information of the CI blocks and verifies it against the same
rules build.img uses. The build process is similar to build.img. The main difference is
that c.inc is generated directly from the C files and c.i, as it is done by build.ai.

84

6.3. Build system

BCU configuration

bcugen1

c.i

c.inc

cpp

p.c p1.s

asgcc

p1.op.o

ld

config

gcc

c.o

elf

c.hai

ar

embedprogid

ai.xml

c.c

ld

load

application information

test image

BCU Header
Libraries

linker script

linker script

(program text)

conf

C files

Figure 6.1.: build.ai operational sequence and data flow

85

6. BCU SDK

p1.s

as

p1.o

ld

gcc

c.o

elf

c.h

c.c

ld

load

BCU Header
Libraries

linker script

linker script

bcugen2

ar

extractprogid

c.inc

other program id

image

configuration description

config

Figure 6.2.: build.img operational sequence and data flow

86

6.3. Build system

BCU configuration

c.i

c.inc

cpp

p1.s

as

p1.o

ld

gcc

c.o

elf

c.h

c.c

ld

load

BCU Header
Libraries

linker script

linker script

C files

bcugen3

image

Figure 6.3.: build.dev operational sequence and data flow

87

6. BCU SDK

The gencitemplate transforms an application information into a configuration descrip-
tion skeleton using an XSLT transformation.

6.4. Configuration file parser

The configuration file parser is one of the core parts of the BCU SDK. It is used for the
BCU configuration (see Section 8.1) as well as for the temporary data exchange format
between the runs of build.ai and build.img.

A supported IO format is described by a list of objects and their attributes. Each
object is mapped to a block in the configuration file, each attribute to an entry. Out of
this description, all relevant classes as well as a configuration file writer are generated.

A definition for an object looks like this:

OBJECT(Debounce)

ATTRIB_IDENT(Name)

ATTRIB_FLOAT(Time)

CI_OBJECT(Debounce)

END_OBJECT

The declaration of an object starts with OBJECT and ends with END OBJECT.
Between these, all attributes are listed:

PRIVATE VAR adds a normal variable to the object.

ATTRIB STRING defines an attribute which stores a string.

ATTRIB IDENT defines an attribute which stores an identifier.

ATTRIB INT defines an attribute which stores an integer.

ATTRIB BOOL defines an attribute which stores a boolean.

ATTRIB FLOAT defines an attribute which stores a float.

ATTRIB ARRAY OBJECT defines an attribute, which can store many objects of the
specified type. The object must be declared using this specification before it can
be used in this directive.

ATTRIB ENUM defines an attribute which stores its value as an enumeration. In
the configuration file, an identifier is used. To map between these, two mapping
functions must be provided.

ATTRIB INT MAP defines an attribute which stores an integer. In the configuration
file, an identifier may be used besides an integer. This identifier is converted using
a mapping function.

88

6.5. Bcugen1 and bcugen2

ATTRIB FLOAT MAP defines an attribute which stores a floating point value. In the
configuration file, an identifier may be used besides a floating point value. This
identifier is converted using a mapping function.

ATTRIB ENUM MAP defines an attribute which stores an array of name/value pairs.

ATTRIB IDENT ARRAY defines an attribute which stores an array of identifiers.

ATTRIB STRING ARRAY defines an attribute which stores an array of strings.

ATTRIB EXPR defines an attribute which stores an expression suitable for InvisibleIf.

CI OBJECT marks the start of the attributes belonging to the device configuration.
These are used in the CI blocks as well as in the configuration description.

Using different defines, the list of objects and attributes is included at different loca-
tions. Using this mechanism, the parsers, scanner, class definitions, initialization code
and output code are generated out of a single list.

For mapping lists, the name/value pairs of one type are stored in one file. Each
pair is written as MAP(Value,Name). They are included with different definitions of
MAP to generate all mapping functions for one type out of one list (sometimes even the
definitions of an enumeration).

All attributes, except the object array, include a line number variable. This is au-
tomatically set when a value is read by the parser. The writer only exports variables
which have the line number set. Using this mechanism, no reserved values for the at-
tribute variable itself are needed. Identifiers and strings are stored in the class String.
For arrays, the template class Array is used.

As the BCU SDK uses two formats (BCU information and the data exchange format
between build.ai and build.img) which are very similar but have small differences, all
attributes which are not appropriate in one of the two parsers are hidden using prepro-
cessor commands.

6.5. Bcugen1 and bcugen2

The core work is done by the bcugen1, bcugen2 and bcugen3 programs. They share
nearly all code, but use different parsers, different checks and code output functions.

bcugen1 reads the BCU configuration into a Device object. After that extensive checks
are done, which set missing attributes to default values. Additionally, some values, like
the XML Ids, are calculated.

The necessary parts of the Device object for bcugen2 are written into a configuration
file. Additionally, the application information is generated from it. As the last part,
all code needed to compile a BCU image is exported (also using the information in the
Device object).

bcugen2 reads the output of bcugen1 into a Device object and merges the content of
the configuration description with it. Then a slightly modified check routine is run, after
which all needed code is exported.

89

6. BCU SDK

The differences for the generated code are:

• In the output of bcugen1 nothing is deactivated, so this is the worst case for the
size estimation.

• bcugen1 outputs only empty address and association tables of a selectable size.

• bcugen1 puts parameters in a different file and adds the location of the parameters
to the image.

The image created from the output of bcugen1 is more like a BCU program as it is
used by the ETS. As a proof of concept program, imageedit was written (included in the
BCU SDK), which takes the output image of build.ai and a configuration description.
It then stores the selected values into the image.

This program only supports group objects, parameters (except FloatParameter) and
the access control keys. As the images of bcugen2 provide better optimization possibili-
ties, its development was not continued.

bcugen3 compared to bcugen2 and bcugen1 :

1. The checks of bcugen1 are applied.

2. The device configuration is read from the CI blocks instead of the XML file.

3. The checks of bcugen2 are applied.

4. The image is created in the same way as by bcugen2.

6.6. Overview of the generated code

The assembler code part only calls C stub routines without any parameters. If values
must be passed, special memory locations are used. The stub function contains the
nosave attribute, so that no register values of RegB – RegN are preserved.

Then the stub loads the parameters into local variables and calls the user function.
The user function is declared as static, so that it can be integrated by GCC into the stub
if this results in smaller code. Thereby the overhead of one function call is removed.
Finally the stub stores the result in special memory locations. The assembler part passes
the values to the BCU operating system.

For parameters, a static constant variable is defined. In many situations, GCC can
propagate its value into the code and thereby remove it.

The three BCU entry functions (init, save, run) initialize the stack and then execute
their stub. Before the stub is executed for run, all group objects and timers are checked
for events. If an event has occurred, the event handler stub is called.

The generated code tries to move every element into a different section, so that the
layout of the final image can be selected by the linker script.

The linker script for the BCU 2 also moves variables between the two RAM segments
by using the move section feature of the linker.

90

6.7. Memory layout

6.7. Memory layout

The memory layout of a BCU 1 application is given in Figure 6.4. The .ram section
is intended for variables, which must have an address below 0x100. Then the .bss and
.data sections follow. At startup, the .bss section is cleared. In the .data section, the
initializers are copied from the EEPROM. The user stack starts at the highest byte of
the RAM area which is available to the user program. If too much stack is used, the
stack grows into the .data or .bss segment, which will cause strange errors in most cases.

In the EEPROM, the application header is followed by the address and association
tables. In a build.img image, all tables have exactly the required size with no space
between them.

After that, the definitions of the group objects, the startup code, and the remaining
code follow. Then the EEPROM structure of user timers is placed, if they are used.
The .loconst section is intended for constants which must be located between 0x100 and
0x1FF. After that, normal constants follow. The next part is a copy of the .data segment
for initialization. After this, the checksum protected EEPROM area ends.

The .eeprom section is intended for variables which may be changed during runtime
but must be located in the EEPROM. The current version of the BCU SDK guarantees
that this section is between 0x100 and 0x1FF, even for a BCU 2.

The .parameter section is unused for build.img images. It is intended for parameters,
like they are used by the ETS. The BCU SDK build.ai script places the parameters in
this section.

The memory layout of a BCU 2 application is given in Figure 6.5. The order of the
sections differ from the normal order, because some sections must be below 0x1ff (or
0xff). Therefore, these sections are located before the others.

As the image format (see Section A) supports only a limited number of sections, it is
impossible to split the text segment into parts to allow the association table to be placed
before the program code. Because this order is not important for the BCU operating
system, the association table is placed after the text segment.

The main difference to a BCU 1 image is that a second RAM region is available. This
region contains a data and bss segment called .data.hi and .bss.hi. Using the section
movement code, parts of the normal variables are moved to this location.

The default variant allocates the stack in the low RAM, the histack variant in the high
RAM. The default variant as well as the histack variant use this high memory region only
as an overflow location. As other variants may use totally different placement strategies,
an application must not expect a normal variable to be placed at a specific location. If a
variable is needed at a location lower than 0x100, place it in the .ram section. All other
variables can be placed in the default data section.

A constraint of the BCU 2 image, is that address table, .eeprom section, user timers
as well as the .loconst section together must be smaller than 0x100 bytes, so that they fit
the memory region between 0x100 and 0x1FF. With the viewimage program, the used
memory size as well as the free stack size can be displayed.

91

6. BCU SDK

0x000

0x1FF

0x100

0x050

IO Space

ROM

EEPROM

RegB − RegN

.ram

.bss

.data

stack

call stack

Low RAM

0x0CE

0xE0

Header

Addresstable

Association

table

Group Objects

Init Code

Code

Timer

.loconst

read only

copy of .data

.eeprom

.parameter

checksum

reserved

Figure 6.4.: Memory map of a BCU 1

92

6.7. Memory layout

0x000

0x100

0x050

IO Space

ROM

EEPROM

RegB − RegN

.ram

.bss

.data

stack

call stack

Low RAM

0x0CE

0xE0

Header

Addresstable

.eeprom

Timer

.loconst

Init Code

Group Objects

Properties

Code

read only
copy of .data

copy of .data.hi

Association

table

.parameter

.bss.hi

.data.hi

stack

0x900

0x9D0

0x4DF

High RAM

0x972

0x98A

<=0X1FF

reserved

Figure 6.5.: Memory map of a BCU 2

93

6. BCU SDK

94

7. EIB bus access

7.1. Overview

To access the EIB bus, a daemon (called eibd) for Linux systems was developed. It
provides a simple EIB protocol stack as well as some management functions. A big
advantage of using a daemon is, that the applications can use a high level API. Another is
that multiple clients, even on different computers, can connect to the bus simultaneously.
A disadvantage of this concept is that some future extensions will need a modification
of the daemon.

The daemon supports different ways to access the EIB bus:

• PEI10 protocol (FT1.2 protocol subset)

• PEI16 protocol (using the BCU 1 kernel driver)

• TPUART (using the TPUART kernel driver)

• EIBnet/IP Routing

• EIBnet/IP Tunneling

• TPUART user mode driver

• PEI16 user mode driver (not really usable)

• KNX USB protocol (only EMI1 and EMI2)

The daemon consists of a front end which accepts connections from applications over
TCP/IP or Unix domain sockets, a protocol and management core and some back ends,
which are the interface to the medium access devices.

The daemon is intended for the TP1 medium and uses the TP1 frame format as its
internal representation. It does not support TP1 polling. Support for the extended
frame format is present, but it requires support in the back end part for the selected
bus access mechanism. Of the EMI based back ends, only CEMI frames support data
areas which are large enough (therefore, only EIBnet/IP is possible). Both TPUART
back ends support sending extended data frames. The kernel level driver based back end
supports decoding such data frames, if they are delivered by the kernel driver (which
does not support them at the moment). In the user mode TPUART back end, the
decoding of extended data frames is unimplemented.

Because using the bus monitor mode prevents the sending of frames, a best effort bus
monitor, called vBusmonitor, was introduced. This feature can be activated at any time.

95

7. EIB bus access

If eibd runs in bus monitor mode, a vBusmonitor client will get the normal bus monitor
services. Otherwise all telegrams which eibd receives will be delivered. Theoretically,
there need not be a difference in the services between the two modes. For the current
back ends, at least all ACKs are lost. Most back ends also only deliver frames to or from
the bus access device.

eibd has no security mechanisms. If the operating system allows a connection, eibd
will provide its services. Because dynamic buffer management is used, buffer overflows
are not very likely to happen. The best security level can be achieved, if the daemon
only listens on the Unix domain socket and the access to this socket is restricted to a
certain group. Additionally, it should not be run as root. The user account which runs
eibd then needs access privileges for the appropriate device node. For EIBnet/IP, no
privileges are needed.

7.2. Architecture

The whole of eibd is based on the GNU pth user mode threading library ([PTH]).

GNU pth only supports non preemptive threading. Also, only one thread is running
at a time. This makes locking superfluous in many situations and therefore the program
code is simpler. However, it may be a performance problem for some application tasks.
For eibd, this is not an issue, because nearly all the time, the tasks are waiting for an
event.

Additionally, it provides a powerful event management, which supports waiting until
one of a set of different events has occurred. For system calls which can block, pth
provides wrappers which will switch to another task if the system call blocks. As an
additional parameter, the pth versions of the system calls accept a list of events which
will abort the system call if they occur before the system call is completed.

For inter-thread communication FIFO queues and semaphores are used. The
semaphore support for pth was written as part of eibd and is available as a patch
([PTHSEM]).

Using pthreads was also considered, but the need for more locking to avoid race
conditions as well as the missing support of a waiting construct for multiple events
discouraged its use.

For storing arrays, the template class Array was written; for the use of strings, the
class String. For the packing and unpacking of frames of the different layers, the classes
APDU (Layer 7), TPDU (Layer 4) and LPDU (Layer 2) were introduced. Each subclass
of them represents a specific type and implements associated functions.

The back end to be used can be selected over an URL. The first part selects the back
end, then a colon and back end specific data follow.

96

7.2. Architecture

E
IB

ne
t/I

P
R

ou
tin

g
T

un
ne

lin
g

T
P

U
A

R
T

us
er

m
od

e

B
C

U
1

us
er

m
od

e
B

C
U

1
ke

rn
el

K
N

X
U

S
B

In
te

rf
ac

e
IP

 R
ou

te
r

U
ni

x
D

om
ai

n
S

oc
ke

t S
er

ve
r

R
A

W
G

ro
up

B
ro

ad
ca

st
In

di
vi

du
al

vB
us

m
on

ito
r

C
lie

nt

T
C

P
/IP

 S
er

ve
r

C
lie

nt
 C

on
ne

ct
io

n

C
on

ne
ct

io
n

La
ye

r
3

K
er

ne
l

ba
ck

 e
nd

co
refr

on
t e

nd

M
an

ag
em

en
t

M
an

ag
em

en
t

B
us

m
on

ito
r

E
IB

 n
et

w
or

k

T
C

P
/IP

T
P

U
A

R
T

 d
riv

er

2.
4

2.
6

T
P

U
A

R
T

T
P

U
A

R
T

F
T

1.
2

se
ria

l d
riv

er

B
C

U
 2

B
C

U
1

dr
iv

er

B
C

U
 1

U
S

B

U
S

B
dr

iv
er

Figure 7.1.: Structure of eibd

97

7. EIB bus access

7.3. Back ends

The back ends provide an interface to the EIB bus. A back end is an implementation of
the Layer2Interface class.

The EMI1 or EMI2 based back ends only provide generic frame encapsulation and un-
packing of EIB frames. The EMI frames are passed to an instance of the LowLevelDriver-
Interface class, which provides the means to send and receive frames. Because of this,
different interfaces, like the BCU1 user mode driver and the BCU1 kernel driver, can be
supported by the same class.

7.3.1. EMI2

The EMI2 interface is implemented in the EMI2Layer2Interface class. It supports the
bus monitor mode. In vBusmonitor mode, all outgoing frames are delivered. Incoming
frames are filtered as described below. For normal communication, the same restrictions
apply.

At the moment, this back end accepts listen requests for any group address. To
actually receive telegrams on a group address, it must be in the BCU address table, or
the address table length needs to be set to 0 before eibd is started (using the bcuaddrtab
command). Telegrams with an individual address as destination are delivered only when
this address matches the individual address of the BCU 2.

Changing the address table length involves changing a byte in the BCU EEPROM.
The problem with this solution is, that an EEPROM has a limited number of write
cycles and that in the case of a crash of eibd the original value would not be restored.
Therefore, this change is not made automatically within eibd.

FT1.2

The interface to a BCU 2 over FT1.2 is implemented in the class FT12LowLevelDriver.
It only requires access to a serial port. The URL for this back end is ft12:/dev/ttySx,
where /dev/ttySx has to be replaced with the correct serial interface. This back end
works reliably.

7.3.2. EMI1

The EMI1 interface is implemented in the class EMI1Layer2Interface. Regarding bus
monitor mode and frame filtering, it has the same features and limitations as the EMI2
back end described above.

The PEI16 protocol used to transmit EMI1 messages from and to the BCU 1 is highly
timing sensitive. RTS/CTS handshaking is done for every character and a message must
be transmitted within 130 ms. This complicates implementation on the PC side.

98

7.3. Back ends

BCU1 kernel driver

An interface for the BCU1 kernel driver is implemented in the class
BCU1DriverLowLevelDriver. The URL for this back end is bcu1:/dev/eib,
where /dev/eib has to be replaced with the correct device node of the kernel driver.

As of version 0.2.6.2, the kernel driver is working. Under certain circumstances how-
ever (which could not yet be identified precisely), communication with the BCU 1 is
lost. Sometimes even incorrect information is delivered by the driver. These problems
appear to be due to PEI16 timing issues. Thus, this back end should only be used when
no other way of bus access than a BCU 1 is available.

BCU1 user mode driver

This interface is implemented in the class BCU1SerialLowLevelDriver. It suffers even
more from timing problems than the kernel driver. This back end is more a technical
test. It should only be used for testing or demonstration purposes, although longer tasks
like a property scan successfully worked.

The critical point is that an EMI frame must be transmitted within 130 ms. Each
exchange needs to change the RTS line, do busy waiting until a CTS line changes, send
a character, wait for a character, change the RTS line, and do busy waiting until a CTS
line changes again. The danger is that the daemon loses the processor too long while a
transfer is in progress.

During development, a first version with debugging output was created. Removing
the debugging output and replacing it with sleep or a nop loop increased the timing
problems. So the delay was left over to the debugging output. Therefore the back
end must be run with a trace level of 1023 in a terminal in the foreground. Not every
terminal emulation works equally well, e.g. on an old Linux 2.4 systems, a GNOME
terminal supports transmitting longer frames than a KDE terminal.

Additionally, it requires the low latency mode. On Linux 2.6, be sure to use Linux
2.6.11 or later. Previous versions contain a deadlock which will freeze the computer after
the first byte is transferred over the serial line.

The URL for this back end is bcu1s:/dev/ttySx, where /dev/ttySx has to be replaced
with the appropriate serial interface.

7.3.3. KNX USB interface

The USB backend consists of several layers. The low level interface is implemented in the
class USBLowLevelDriver, which is responsible for sending and receiving USB messages.
It uses a customized version of a development snapshot of libusb, modified to fit in the
eibd framework. It accesses the USB interface directly without any special kernel level
driver (like the Linux HID driver).

The class USBConverterInterface is used to translate between EMI frames and USB
messages. The high level interface is implemented in the class USBLayer2Interface. It
determines the EMI version and creates a Layer 2 interface of the corresponding EMI

99

7. EIB bus access

version. Therefore all limitations of the EMI1 and EMI2 backends hold depending on
the EMI version used.

The URL of this backend is usb:[bus[:device[:config[:interface]]]]. The values of bus,
device, config and interface can be determined using findknxusb.

Currently only EMI1 and EMI2 are supported. cEMI is not implemented, as no device
supporting this feature is available for testing.

7.3.4. EIBnet/IP Routing

EIBnet/IP Routing was implemented in the class EIBNetIPRouter. It has the disadvan-
tage that there is no bus monitor support. So the vBusmonitor mode is used instead,
which delivers every packet that is transmitted over the IP multicast port.

This back end can use arbitrary EIB addresses. The individual address, from which
all management connections originate, must be set with a parameter. The main factor
to make a connection work is the setup of the IP router. If some necessary packets are
filtered by the router, the communication will not work.

If the routing table is correct, the back end works reliably. The URL of the back end
is ip:multicast address :port. If the default settings are used only ip: is sufficient. If only
another multicast address is needed, ip:multicast address can be used. It is possible to
connect many instances of eibd to an IP router.

7.3.5. EIBnet/IP Tunneling

In a first test with EIBnet/IP Tunneling mode, the embedded EIBnet/IP server (Siemens
IP Router) used stopped serving the connection after one second. This problem disap-
peared after some months (without any change in the program, but some resets of the
IP router) and so support for Tunneling mode was added in the class EIBNetIPTunnel.

As the embedded server does not support bus monitor mode, bus monitor mode is
implemented as a vBusmonitor mode, which can deliver all group communication as
well as as well as telegrams directed to the individual address which was assigned to
this tunneling endpoint by the IP router. For normal communication, the same applies.
Incoming telegrams with any other destination individual address than the one of this
tunneling endpoint will be filtered. In addition, telegrams to certain destination group
addresses may be filtered by the IP router.

The back end is working. Eibd tries to connect periodically, until a positive response
is received. After a disconnect message is received, it periodically attempts to reconnect.
It does not detect broken connections (e.g. different views of sequence numbers on both
sides or a server which died without sending a disconnect request). In this case, eibd
does not abort, but no further communication with the IP router will occur. The URL
of the back end is ipt:router-ip-name:dst-dport :src-port. Source and/or destination port
can be omitted (including the colon), if the default values are sufficient.

100

7.3. Back ends

7.3.6. TPUART kernel driver

The driver is implemented in the class TPUARTLayer2Driver. Two different versions of
the TPUART kernel driver exist: for the 2.4 kernel and the 2.6 kernel. Because the API
changed (the checksum byte may not be added when a frame is sent), different URLs
are needed.

For the 2.4 driver, use tpuart24:/dev/tpuartX as URL, where /dev/tpuartX has to be
replaced by the device node. For the 2.6 version, tpuart:/dev/tpuartX has to be used.
The primary EIB management address must be set as a command line parameter.

The back end supports the use of arbitrary addresses. In vBusmonitor mode, only
frames for addresses to which eibd has subscribed are delivered. A “deliver all” option
would be possible, but is not implemented in the kernel driver. This back end works
reliably.

7.3.7. TPUART user mode driver

In the class TPUARTSerialLayer2Driver, a complete user mode driver for the TPUART
is implemented. It has the same addressing capabilities as the kernel driver, but the
vBusmonitor mode delivers all frames. Although a kernel module is naturally in a better
position to handle the timing requirements of the TPUART communication protocol
properly, the user-mode solution is attractive due to its higher flexibility and reduced
installation hassle. In tests, the user mode driver performed satisfactorily on a rather
heavily loaded Pentium-4/1.8 GHz.

When a frame is received from the TPUART, an acknowledgement request has to be
returned within a short time after the destination address has been received. When it is
not returned in time, the remote station will repeat its transmission on the EIB network
up to three times. On a reasonably recent workstation PC, it is possible to acknowledge
at least one of these transmit attempts by using low latency mode. Due to a bug in the
low latency mode implementation, running this back end on a Linux 2.6 kernel with a
version lower than 2.6.11 will crash the computer (see section 7.3.2).

Because no history of recently received frames is kept, all repeated frames are dis-
carded. With this strategy, it is possible to lose a frame if the first send attempt is
corrupted.

For recognizing frame starts, a dual strategy is implemented. It assumes that a frame
starts at the first byte received. If the byte sequence starting at this byte is not a correct
frame, or if an expected byte is not received after an expected timeout, the head of the
receive buffer is discarded and a new receive attempt is made with the new head.

There is no problem regarding the transmission of frames. The URL for this back
end is tpuarts:/dev/ttySx, where /dev/ttySx has to be replaced with the correct serial
interface.

101

7. EIB bus access

7.4. Core

The core of the driver is organized in layers. The definition of the layers is inspired by
their definitions in the KNX specification ([KNX]), but adapted to fulfill all requirements.

7.4.1. Layer 3

The class Layer3 is the main dispatcher and the interface to the back end. It decides
when to enter bus monitor mode.

Each higher layer task registers at the Layer 3 and states what kind of packets and
addresses it is interested in. The group address 0/0/0 and the individual address 0.0.0
have a special meaning. Listening on group address 0/0/0 means that all group com-
munication packets from the back end should be delivered. For getting the broadcast
packets, which use this address on the bus, a special call back is implemented.

Listening for frames with the source address 0.0.0 means, that all packets to a specific
individual address of the back end should be delivered. Listening for frames with the
destination address 0.0.0 means, that all packets to the default individual address of the
back end should be delivered. The mapping of the address 0.0.0 to the default address is
done transparently in both directions. In fact, higher layers cannot even ever determine
the real EIB address of the back end.

7.4.2. Layer 4

This layer provides a communication endpoint to applications for one specific Layer 4
service. The services are:

• The class T Broadcast implements an endpoint for broadcast communication. For
sending, an APDU is passed (as a character array). The APDU as well as the
source of a received broadcast will be returned.

• The class T Group implements an endpoint for group communication with a spe-
cific group address. For sending, an APDU is passed (as a character array). Of a
received group telegram, the APDU as well as the source will be returned.

• The class GroupSocket implements an endpoint for group communication which is
not bound to a particular address. Unlike a T Group instance, a single GroupSocket
can be used to communicate using the whole range of group addresses.

T Group registers the group address it is bound to with the backend, so that
Layer 2 ACKs can be generated (if supported by the backend). GroupSocket does
not register any addresses, so that the generation of ACKs must be controlled by
other means.1 Currently, only the TPUART backends support generating Layer 2
ACKs.

1E.g., ensure that another device or coupler on the same line will generate these ACKs if required.

102

7.5. Layer 7

• The class T Individual implements a T Data Individual communication relation
between two devices. Sent APDUs will be automatically transmitted to the right
communication partner and only the APDUs of T Data Individual frames of the
communication partner will be delivered to the higher layers.

• The class T Connection implements the client of a connection between two de-
vices. It implements the necessary state engine and opens the connection when
instantiated.

The connection will be closed when the class gets destroyed. If the connection gets
closed by the remote device, an empty APDU will be transmitted to the higher
layers. The higher layers must take care, that the connection is not idle too long.
This will cause the remote device to close the connection.

It is possible to use multiple connections if they have different remote targets.
This fact is not checked by eibd. If multiple connections are made to one device,
they will interfere and in most cases all these connections will get closed. Such a
race condition can also happen if a connection is closed and immediately reopened,
because the T Disconnect may not have been sent on the EIB bus yet when the
new connection is opened.

In normal operation, APDUs are exchanged with the higher layers.

• The class T TPDU provides raw access to TPDUs to unicast TPDUs2. It is
intended for the implementation of a server endpoint of a T Connection in an
application which is not supported in eibd at the moment.

7.5. Layer 7

The call of management relevant Layer 7 functions is implemented in the classes
Layer7 Connection and Layer7 Broadcast.

Layer7 Broadcast can send a A IndividualAddress Write or can collect all correspond-
ing responses after sending a A IndividualAddress Read.

Layer7 Connection provides functions to send a connection oriented request and
parse the result. Functions are, for example, A Memory Read, A Memory Write,
A ADC Read Additionally there are some functions prefixed with X , which do
more complicated tasks:

X Property Write writes a property and verifies it.

X Memory Write writes to memory and verifies it.

X Memory Write Block writes a block of memory (no size limit) and verifies it.

X Memory Read Block reads a block of memory (no size limit).

2No group/broadcast telegrams will be delivered.

103

7. EIB bus access

High level management procedures are implemented in the class Manage-
ment Connection:

X Progmode On switches the device to programming mode.

X Progmode Off turns the programming mode off.

X Progmode Toggle toggles the programming mode flag.

X Progmode Status gets the state of the programming mode.

X Get PEIType gets the PEI type of the application module connected to a device.

X PropertyScan returns a list of all properties of a device.

7.6. EIBnet/IP server front end

Eibd provides access to the back end device over the EIBnet/IP Routing and Tunneling
protocols. This is implemented in the class EIBnetServer. Routing, Tunneling and the
discovery functions (SEARCH, DESCRIPTION) can be enabled separately.

Enabling this server prohibits the normal bus monitor mode (vBusmonitor is still
working). All other eibd functions are not affected. Eibd does not provide the ability to
use filter tables for routing. This means that telegram loops can easily occur when it is
used in parallel with another EIBnet/IP router on the same line.

The EIBnet/IP server front end of eibd performs a kind of network address translation
on individual addresses. In outgoing frames, 0.0.0 is replaced with the individual address
of the bus access device. Likewise, incoming frames with the individual address of the
bus access device as destination have this destination address replaced with 0.0.0.3 Also,
0.0.0 is returned as the KNX individual address assigned to the Tunnelling connection
in the connection response data block.

Source addresses other than 0.0.0 can be used for outgoing frames, but incoming
frames addressed to individual addresses other than that of the bus access device are
suppressed.4 Therefore, 0.0.0 should be used as the local individual address by eibd-
EIBnet/IP client applications. Tunneling clients which use the address returned in the
connection response will do so automatically.

7.7. EIBD front end

The EIBD front end5 accepts connections on a TCP/IP port or on a Unix domain
socket, receives requests, unmarshals requests, processes them and marshals and sends

3For outgoing frames, this translation is consistent with [KNX] AN033, 2.5.3.3 (cEMI L Data.req).
Applying this concept to incoming frames is an extension to the KNX specification.

4Note that this restriction, which is due to the limitations of the bus access devices and/or drivers
used, significantly limits the use of the Routing protocol with eibd.

5This frontend speaks a simple protocol, which is different to the EIBnet/IP protol suite, also supported
by EIBD.

104

7.7. EIBD front end

the results. Its implementation is distributed over various classes.
As a counter part, a simple client library was written, which does all marshaling and

unmarshaling at the client side. The protocol and the corresponding stub functions will
be described in the following sections. There are also small example programs for nearly
all management functions.

7.7.1. Protocol

The protocol is quite simple. The client connects to the eibd daemon over TCP/IP or
Unix domain sockets. Then it sends its requests and receives all responses. To free the
connection, the connection is simply closed using the means provided by the operating
system.

The relevant functions in the library are:

EIBSocketURL opens a connection to eibd. The connection target is passed as a string.
The format is:

• local:path to Unix socket connects to a Unix socket.

• ip:hostname[:port] connects to eibd listening on a TCP port.

EIBSocketLocal connects to eibd over the Unix socket passed in the parameter.

EIBSocketRemote connects to eibd over a TCP port.

EIBClose closes the connection and frees all resources.

Normally a connection is switched to a certain mode and after that only certain types
of requests can be processed. Multi byte values are passed in the big-endian format.

Every packet starts with a two byte length field of the data, counting from after the
second byte of the packet. Then two bytes determine the purpose of the packet (this
will be called the type in the following). The possible values of this field are defined in
eibtypes.h.

If a request is unsuccessful, a packet with the type EIB INVALID REQUEST or a
more specific response is returned by eibd. Therefore, if the result type is not in the
range of the expected types, an error should be returned.

Bus monitor mode

To use the bus monitor services, a packet with a type of EIB OPEN BUSMONITOR,
EIB OPEN BUSMONITOR TEXT, EIB OPEN VBUSMONITOR or
EIB OPEN VBUSMONITOR TEXT has to be sent to the server. If the re-
quest is successful, a packet with the same type is sent back. Then, each received
packet is transmitted with the type EIB BUSMONITOR PACKET.

A bus monitor mode with the addition of TEXT means, that a human readable
decoded version as string is passed rather than the raw content of the EIB frame. This
service can be used for simple bus monitors. If filtering and displaying of parts of the

105

7. EIB bus access

content is needed, an application can use the normal services and decode the packets
itself.

The relevant functions are:

EIBOpenBusmonitor opens a normal binary bus monitor.

EIBOpenBusmonitorText opens a decoded, normal bus monitor.

EIBOpenVBusmonitor opens a binary vBusmonitor.

EIBOpenVBusmonitorText opens a decoded vBusmonitor.

EIBGetBusmonitorPacket receives a bus monitor packet.

Layer 4 connections

A layer 4 connection is opened by a packet of 5 bytes with one of the following types:

• EIB OPEN T CONNECTION opens a T Connection, the destination address is
transmitted in bytes 2–3.

• EIB OPEN T INDIVIDUAL opens a T Data Individual connection, the destina-
tion address is transmitted in bytes 2–3. Byte 4 is 0, if the connection is only used
to send data, else it is 0xff.

• EIB OPEN T GROUP opens a T Data Group connection, the group address is
transmitted in bytes 2–3. Byte 4 is 0, if the connection is only used to send data,
else it is 0xff.

• EIB OPEN T BROADCAST opens a T Data Broadcast connection. Byte 4 is 0,
if the connection is only used to send data, else it is 0xff.

• EIB OPEN T TPDU opens a raw Layer 4 connection. The local address is trans-
mitted in bytes 2–3 (0 means the default address).

• EIB OPEN GROUPCON opens a group socket, which can be used to send and
receive group telegrams for any group address. Receiving telegrams over this mech-
anism does not generate Layer 2 ACKs6. Byte 4 is 0, if the connection is only used
to send data, else it is 0xff.

The data are exchanged in packets of the type EIB APDU PACKET. For some types,
two bytes with the EIB address are inserted before the data. A raw connection transmits
an EIB address in both directions, group and broadcast connections transmit addresses
only from the EIB daemon.

A group socket transmits packets of the type EIB GROUP PACKET. For sending
group telegrams, the destination address is put in bytes 2–3 followed by the APDU. For

6see Section 7.4.2, class GroupSocket for details

106

7.7. EIBD front end

received telegrams, bytes 2–3 contain the source address, followed by the destination
address in bytes 4–5 and the APDU.

Note that a T Connection is automatically closed if there is no traffic for some seconds.
The close event is indicated by receiving an empty APDU. The relevant functions are:

EIBOpenT Connection opens a T Connection.

EIBOpenT Individual opens a T Data Individual connection.

EIBOpenT Group opens a T Data Group connection.

EIBOpenT Broadcast opens a T Data Broadcast connection.

EIBOpenT TPDU opens a raw connection.

EIBOpen GroupSocket opens a group socket.

EIBSendAPDU sends an APDU over a T Connection, T Data Broadcast,
T Data Group or T Data Individual connection.

EIBGetAPDU receives an APDU over a T Connection or T Data Individual connec-
tion.

EIBGetAPDU Src receives an APDU with source address over a T Data Broadcast or
T Data Group connection.

EIBSendTPDU sends a TPDU to destination address over a raw connection.

EIBGetTPDU receives a TPDU and a source address over a raw connection.

EIBSendGroup sends an APDU and a destination address over a group socket.

EIBGetGroup Src receives a TPDU and a source and destination address over a group
socket.

Connectionless functions

There are some management functions which can only be executed on connections where
no mode switch has been executed. After that, the connection remains in the same state.
The functions are:

• Switch programming mode: a 5 byte packet of the type EIB PROG MODE is
sent to the daemon. Bytes 2–3 contain the address of the EIB device, byte 5 the
function code:

0 turns the programming mode on (implemented in EIB M Progmode Off).

1 turns the programming mode on (implemented in EIB M Progmode On).

2 toggles the programming mode (implemented in EIB M Progmode Toggle).

107

7. EIB bus access

3 gets the status of the programming mode (implemented in
EIB M Progmode Status).

If the request is successful, a packet of the same type is returned. If the state of
the programming mode flag is requested, it is returned in the third byte.

• To list devices in programming mode, a packet of the type
EIB M INDIVIDUAL ADDRESS READ is sent to the daemon. If the
request is successful, the result has the same type and at every even
address starting with 2 an EIB address is returned. It is implemented in
EIB M ReadIndividualAddresses.

• To write the address in a device with activated programming mode, a packet of
the type EIB M INDIVIDUAL ADDRESS WRITE with the new address in bytes
2–3 is sent. If the write is successful, a packet of the same type is returned. Other
error codes are:

EIB ERROR ADDR EXISTS Address already in use.

EIB ERROR MORE DEVICE More than one device is in programming mode.

EIB ERROR TIMEOUT No device is in programming mode.

EIB PROCESSING ERROR An unspecified processing error occurred.

This function is implemented in EIB M WriteIndividualAddress.

• To read the mask version, a packet of the type EIB MASK VERSION, with
the address in bytes 2–3, is sent. If successful, a packet of the same type with
the mask version in bytes 2–3 is returned. This function is implemented in
EIB M GetMaskVersion.

• EIB LOAD IMAGE loads an image into a BCU. The request consists of an image
in the BCU SDK image format stored in a packet of the type EIB LOAD IMAGE.
As a result a packet of the same type will be returned. In the bytes 2–3,
the load result is returned. The list of possible values is defined in the type
BCU LOAD RESULT. The function is implemented in EIB LoadImage.

• To reset a connection to prestine state (the same, as after opening the connection),
you can send anytime an empty packet of the type EIB RESET CONNECTION.
If a packet of the same type is returned, the call was successful. This function is
implemented in EIBReset.

Group cache

The group cache stores the last A GroupValue Response or A GroupValue Write tele-
gram for each group address. It has the following functions:

108

7.7. EIBD front end

EIB CACHE ENABLE An empty packet of this type is sent to enable the group
cache. If it can be enabled successfully, a packet of the same type is returned. If
the KNX/EIB network connection is not open for outgoing transmissions because
a busmonitor is running, the group cache cannot be enabled. In this case, a
packet of the type EIB CONNECTION INUSE is returned. Implemented in
EIB Cache Enable.

EIB CACHE DISABLE An empty packet of this type is sent to disable and clear the
group cache. If this operation is successful, a packet of the same type is returned.
Implemented in EIB Cache Disable.

EIB CACHE CLEAR An empty packet of this type is sent to clear the group cache
(entirely). If the operation is successful, a packet of the same type is returned.
Implemented in EIB Cache Clear.

EIB CACHE REMOVE A packet of this type with a group address in bytes 2–3 is sent
to clear the cached value for this group address. If the operation is successful, a
packet of the same type is returned. Implemented in EIB Cache Remove.

EIB CACHE READ NOWAIT A packet of this type with a group address in bytes 2–3
is sent to retrieve the last group telegram sent to this address from the cache. If
the operation is successful, a packet of the same type is returned: bytes 2–3 contain
the source address of the packet, bytes 4–5 the destination group address, the rest
the APDU. If the ADPU is empty, no entry for the given group address exists in
the cache. If the destination address is zero, the group cache is disabled globally.
Implemented in EIB Cache Read.

EIB CACHE READ A packet of this type with a group address in bytes 2–3 is sent to
retrieve the last group telegram sent to this address from the cache. Bytes 4–5 con-
tain the ”age” values. The function looks first the address in the group cache up. If
an entry is found and age is zero, it will return the entry. If age is non zero, an entry
is only returned, if it younger than ”age” seconds. If no suiteable entry is found,
this function sends an A GroupValue Read request and waits for a response before
returning the cache content (the wait timeout is fixed at about one second). If no
response is received, the group address is cached as not present. A future request
will only send a A GroupValue Read requests, if EIB CACHE REMOVE is called
for this address or is older than a non zero age parameter. Return packet identical
to EIB CACHE READ NOWAIT. Implemented in EIB Cache Read Sync.

Management connection

A management connection is opened by sending a packet of the type
EIB MC CONNECTION with the address of the EIB device in bytes 2–3 to
the daemon. If the request is successful, a packet of the same type is returned. This
function is implemented in EIB MC Connect.

109

7. EIB bus access

After opening, various management functions can be called. If a management con-
nection is idle for some seconds, it is automatically closed. This has the result that all
future calls will fail. The different functions are:

EIB MC PROG MODE This basically does the same as EIB PROG MODE, only the
request packet is different. Here the address of the device is not transmitted.
Instead, the function code is transmitted at byte 3 (instead of byte 5). The return
packet has the same structure, but the type is EIB MC PROG MODE.

The functions are implemented in EIB MC Progmode Toggle,
EIB MC Progmode On, EIB MC Progmode Off and EIB MC Progmode Status.

EIB MC MASK VERSION An empty packet of this type is sent to the daemon and
a packet of the same type with the mask version in bytes 2–3 is returned. It is
implemented in EIB MC GetMaskVersion.

EIB MC PEI TYPE to read the PEI type, a packet with this type is sent. If the request
is successful, a packet of the same type with the PEI type in bytes 2–3 is returned.
It is implemented in EIB MC GetPEIType.

EIB MC ADC READ A packet with the ADC channel in byte 2 and the count in byte
3 is sent. A successful result has the same type and the ADC value in bytes 2–3.
It is implemented in EIB MC ReadADC.

EIB MC PROP READ Byte 2 of the request contains the object index, byte 3 the
property ID, bytes 4–5 the start offset and byte 6 the element count. A success-
ful result has the same type and contains the data read. It is implemented in
EIB MC PropertyRead.

EIB MC READ A packet of this type with the address in bytes 2–3 and the length
in bytes 4–5 is sent. The result is contained in a packet of the same type. It is
implemented in EIB MC Read.

EIB MC PROP WRITE Byte 2 of the request contains the object index, byte 3 the
property ID, bytes 4–5 the start offset and byte 6 the element count. Then the
data to be written follows. A successful write is acknowledged by a packet of
the same type with the content of the response packet. It is implemented in
EIB MC PropertyWrite.

EIB MC WRITE Bytes 2–3 contain the address, bytes 4–5 the length. The data to be
written follows. A successful write is acknowledged by a packet of the same type.
It is implemented in EIB MC Write. Other error codes are:

EIB ERROR VERIFY After sending the write request, a read request for the
same memory address is sent for verification purposes. If this error code is
returned, the response differs from the data in the write request.

EIB PROCESSING ERROR An unspecified processing error occurred.

110

7.7. EIBD front end

EIB MC WRITE NOVERIFY Bytes 2–3 contain the address, bytes 4–5 the length.
The data to be written follows. Write requests are generated for all these data. In
contrast to EIB MC WRITE, no optimization is performed. It is implemented in
EIB MC Write Plain.

EIB MC PROP DESC A packet of this type with the object index in byte 2 and the
property ID in byte 3 is sent to the server. The property type is returned in byte
2, the element count in bytes 3–4 and the access level in byte 5. It is implemented
in EIB MC PropertyDesc.

EIB MC AUTHORIZE A packet of this type with the key in bytes 2–5 is sent to the
server. The level returned by the device is delivered in byte 3 of a packet of the
same type. It is implemented in EIB MC Authorize.

EIB MC KEY WRITE Bytes 2–5 contain the key and byte 6 the level of the key write
request. A successful request is acknowledged by a request of the same type. It is
implemented in EIB MC SetKey.

EIB MC PROP SCAN A request of this type is sent to eibd to get a list of all prop-
erties. If the request is successful, a packet of the same type is returned. For each
property, 6 bytes are returned. Byte 0 contains the object index, byte 1 the prop-
erty ID, byte 2 the property type. Bytes 3–4 contain the object type if the property
ID is 1 and the property type is 4. Otherwise, they contain the element count.
Byte 5 contains the access level. It is implemented in EIB MC PropertyScan.

EIB MC RESTART to restart the BAU, a packet with this type is sent. If the request
is successful, a packet of the same type is returned. After that, the management
connection will be broken. It is implemented in EIB MC Restart.

7.7.2. EIBD client library - C version

EIBD includes a library holding a simple C implementation of its client protocol. It
supports synchronous as well as asynchronous function calls. To use it, include eibclient.h
and link with libeibclient.a. The C type of a connection is EIBConnection*.7 The
implementation is licensed under the GPL with a linkage exception (the same as for
libgcc).

An EIBConnection may be shared between different threads, but only one EIBD
library function may use it at a time. If a connection is bidirectional (eg. T *, Group-
Socket), one read and one write function may be concurrently in progress. If your system
does not support gethostbyname r (every current Linux system does), you must not open
EIBD connections from different threads concurrently.

7Note that this is only the connection between client and eibd (think of it as a session). It should not
be confused with T Connection, which encapsulates a reliable connection between devices on the
EIB network.

111

7. EIB bus access

For asynchronous calls, the function is finished when EIBComplete completes. Until
that, only EIB Poll FD and EIB Poll Complete may be used.

If a function returns -1 (an error), the connection can be considered broken in most
cases, especially if the value of errno (see errno.h) is ECONNRESET or ENOMEM. In
such cases, the connection should be closed with EIBClose.

The following grammar8 shows in which order the client library functions may be
called:

• Connection := Open Modes Close

• Close := EIBClose | EIBClose sync
closes an EIBD connection

• Open := EIBSocketURL | EIBSocketLocal | EIBSocketRemote
opens a EIBD connection (either with a URL ip:host[:port] or local:/path/to/socket
or directly using the host/port or socket path).

• Modes := | Mode | Modes EIBReset Modes

• Mode := Busmonitor | Broadcast | Group | Individual | TPDU | Connection |
GroupSocket | ManagementConnection | StatelessFuncs

• StatelessFuncs := StatelessFunc *

• StatelessFunc := ReadIndividual | WriteIndividual | LoadImage | MaskVersion |
ProgMode | GroupCache

• ReadIndividual := EIB M ReadIndividualAddresses | EIB M ReadIndividualAddresses async
Complete

• WriteIndividual := EIB M WriteIndividualAddress | EIB M WriteIndividualAddress async
Complete

• LoadImage := EIB LoadImage | EIB LoadImage async Complete

• MaskVersion := EIB M GetMaskVersion | EIB M GetMaskVersion async Com-
plete

• ProgMode = EIB M Progmode On | EIB M Progmode On async Com-
plete | EIB M Progmode Off | EIB M Progmode Off async Complete |
EIB M Progmode Toggle | EIB M Progmode Toggle async Complete |
EIB M Progmode Status | EIB M Progmode Status async Complete

8| means or and has the highest precedence. * means any count of occurences. Function calls are set
emphasized.

112

7.7. EIBD front end

• GroupCache = EIB Cache Enable | EIB Cache Disable | EIB Cache Clear
| EIB Cache Remove | EIB Cache Read Sync | EIB Cache Read |
EIB Cache Enable async Complete | EIB Cache Disable async Complete |
EIB Cache Clear async Complete | EIB Cache Remove async Complete |
EIB Cache Read Sync async Complete | EIB Cache Read async Complete

• Busmonitor := OpenBusmonitor ReadBusmonitor*

• OpenBusmonitor := EIBOpenBusmonitor | EIBOpenBusmonitor async
Complete | EIBOpenBusmonitorText | EIBOpenBusmonitorText async
Complete | EIBVOpenBusmonitor | EIBVOpenBusmonitor async Complete |
EIBVOpenBusmonitorText | EIBVOpenBusmonitorText async Complete

• ReadBusmonitor := WaitComplete EIBGetBusmonitorPacket

• ManagementConnection := OpenManagement ManagementFunction *

• OpenManagement := EIB MC Connect | EIB MC Connect async Complete

• ManagementFunction := MemoryFunction | MgmtProgmode | PropertyFunction
| MgmtOther

• MemoryFunction := EIB MC Read | EIB MC Read async Complete |
EIB MC Write | EIB MC Write async Complete | EIB MC Write Plain |
EIB MC Write Plain async Complete

• MgmtProgmode := EIB MC Progmode On | EIB MC Progmode On async
Complete | EIB MC Progmode Off | EIB MC Progmode Off async Complete
| EIB MC Progmode Toggle | EIB MC Progmode Toggle async Complete |
EIB MC Progmode Status | EIB MC Progmode Status async Complete

• PropertyFunction := EIB MC PropertyRead | EIB MC PropertyRead async
Complete | EIB MC PropertyWrite | EIB MC PropertyWrite async Com-
plete | EIB MC PropertyDesc | EIB MC PropertyDesc async Complete |
EIB MC PropertyScan | EIB MC PropertyScan async Complete

• MgmtOther := EIB MC GetMaskVersion | EIB MC GetMaskVersion async
Complete | EIB MC GetPEIType | EIB MC GetPEIType async Complete |
EIB MC ReadADC | EIB MC ReadADC async Complete | EIB MC Authorize |
EIB MC Authorize async Complete | EIB MC SetKey | EIB MC SetKey async
Complete | EIB MC Restart | EIB MC Restart async Complete

• Broadcast := OpenBroadcast BroadcastOp *

• Group := OpenGroup GroupOp *

• Individual := OpenIndividual IndividualOp *

113

7. EIB bus access

• TPDU := OpenTPDU TPDUOp *

• Connection := OpenConnection ConnectionOp *

• BroadcastOp := WaitComplete EIBGetAPDU Src | EIBSendAPDU

• GroupOp := WaitComplete EIBGetAPDU Src | EIBSendAPDU

• IndividualOp := WaitComplete EIBGetAPDU | EIBSendAPDU

• ConnectionOp := WaitComplete EIBGetAPDU | EIBSendAPDU

• TPDUOp := EIBSendTPDU | WaitComplete EIBGetTPDU

• OpenConnection := EIBOpenT Connection | EIBOpenT Connection async Com-
plete

• OpenIndividual := EIBOpenT Individual | EIBOpenT Individual async Complete

• OpenGroup := EIBOpenT Group | EIBOpenT Group async Complete

• OpenBroadcast := EIBOpenT Broadcast | EIBOpenT Broadcast async Complete

• OpenTDPU := EIBOpenT TPDU | EIBOpenT TPDU async Complete

• GroupSocket := OpenGroupSocket GroupSocketOp *

• OpenGroupSocket := EIBOpen GroupSocket | EIBOpen GroupSocket async Com-
plete

• GroupSocketOp := EIBSendGroup | WaitComplete EIBGetGroup Src

• Complete := WaitComplete EIBComplete

• WaitComplete := | Select * EIB Poll Complete WaitComplete

• Select := EIB Poll FD select(2)
get the FD with EIB Poll FD and pass it as read-FD to the system call select(2).

7.7.3. EIBD client library - PHP version

This API is still under development and therefore experimental
The PHP version of the EIBD client library is very similar to the C version. This

section will only cover difference and how to map the description of the C function (see
appendix C.1) to the PHP version.

To use it, you need to include eibclient.php. This file is installed to prefix/share/bcusdk
by default. PHP has a very weak type system. Take care that you pass the correct type
for each parameter, as else the auto conversions could create strange results.

114

7.7. EIBD front end

The biggest difference to the C version is, that EIBConnection is an class. Instead
of the EIBSocket functions, you call the constructor of the object. Currently, it only
supports the TCP based protocol. The constructor takes only the hostname or IP
address and optionally the port. If the connect failed, it throws an Exception. The rest
of the functions are called for a specifc connection object, so there is no EIBConnection
parameter.

In the case of an error, the functions return -1 and set an error code. Instead of
errno, you need to call getLastError() of the EIBConnection object. The relevant error
constants (with names equal to C errors) and load results are defined in EIBConnection.

Output parameters are created with the following classes:

EIBBuffer return binary data in data. The corresponding max length parameter is
missing, as PHP dynamical allocates a return buffer of sufficiant size.

EIBAddr returns an EIB address in addr

EIBInt8 return a one byte integer in val

EIBInt16 return a two byte integers in val

If you want to get a value back, pass a new instance of one of these classes to a function.
After the function finished, it will contain the result.

A key is passed as an (binary) string of 4 bytes. Integer values and EIB addresses,
which are represented as integer values, are passed as normal integer. If they are out
of the supported range, only the lower bits are used. Binary data as input parameter
is passed as (binary) string. As a PHP string has an implicit length, most associated
length parameter are missing.

7.7.4. EIBD client library - Java version

This API is still under development and therefore experimental
The Java version of the EIBD client library is very similar to the C version. This

section will only cover difference and how to map the description of the C function (see
appendix C.1) to the Java version.

To use it, you need use eibclient.jar. This file is installed to prefix/share/java. The
build of this file must be explicitly enable at configure time.

The biggest difference to the C version is, that EIBConnection is an class. Instead of
the EIBSocket functions, you call the constructor of the object. It only supports the TCP
based protocol. The constructor takes only the hostname or IP address and optionally
the port. If the connect failed, it throws an Exception. The rest of the functions are
called for a specifc connection object, so there is no EIBConnection parameter.

In the case of an error, the functions return -1 and set an error code. Instead of errno,
you need to call getLastError() of the EIBConnection object. Communication errors are
reported via IOException. The relevant error constants (with names equal to C errors)
and load results are defined in EIBConnection.

Output parameters are created with the following classes:

115

7. EIB bus access

Buffer return binary data in data as array of byte. The corresponding max length
parameter is missing, as it will allocate a return buffer of sufficiant size.

EIBAddr returns an EIB address in addr

Int8 return a one byte integer in data

Int16 return a two byte integer in data

If you want to get a value back, pass a new instance of one of these classes to a function.
After the function finished, it will contain the result.

A key is passed as an array of 4 bytes. Integer values and EIB addresses, which are
represented as integer values, are passed as normal integer. In most cases, the signed
byte and short types are used, where an unsigned type would be needed, as Java lacks
apropriate unsigned types. You have to interpret them as unsigned in these cases.

Binary data as input parameter is passed as array of byte. As an array has an implicit
length, most associated length parameter are missing.

7.7.5. EIBD client library - other languages

A swig wrapper for python exists. It is not built by default. You need to take extra care,
as calling the wrapped function in the wrong order could result in unexpected effects.

For mono or .NET, a prelimiary implementation of the EIBD client library in C#
exists.

7.7.6. Using the EIBD client library

EIBD implements for all control traffic only up to layer 4. To interact with your EIB
devices, each application needs to implement the following things:

1. Converting numeric EIB address from/to strings

EIB has two different address type, which are both 16 bit long: individual and
group addresses. Each device has an individual address. This address is mainly
used for managment purposes and is inserted as from address in each telegrams. All
control traffic is sent to a group address, for which different devices are listening.

For individual addresses, the standard display format is a.b.c. a contains the upper
4 bits, b the follwing 4 bits and c the lower 8 bits (all values are unsigned).

For group addresses, the most common format is a/b/c. a contains the upper 5
bits, b the following 3 bits and c the lower 8 bits. An other format is a/b. In this
case a contains the upper 5 bits and b the lower 11 bits.

2. Decoding/Encoding of APDUs

For control traffic, there are 3 important APDUs:

116

7.7. EIBD front end

A GroupValue Write This APDU is used to update a group object (ie. switch a
light on). The format is XXXX XX00 10VV VVVV (2 bytes). If the datatype
to transmit is between 1 and 6 bit longs, the lower 6 bits (V) contain the
value. If the value is 1 (or more) bytes long, all V s are zero and the value is
appended after the two bytes.

A GroupValue Read This APDU is sent, to tell a device, that it should send the
current values of the group object in a A GroupValue Response. The format
it XXXX XX00 00XX XXXX (2 bytes).

A GroupValue Response This APDU is used to answer a A GroupValue Read
request. The format is XXXX XX00 01VV VVVV (2 bytes). If the datatype
to transmit is between 1 and 6 bit longs, the lower 6 bits (V) contain the
value. If the value is 1 (or more) bytes long, all V s are zero and the value is
appended after the two bytes.

All bits marked with X should be ignored, when decoding a APDU and set to
zero, when generating a APDU.

There are different ways to use a EIBD connection. The rule is, that you can use one
connection only for one of the listed purposes:

• Query/poll the status of group addresses

In this case, you call EIB Cache Read Sync any time you need a value. The
caching must be enabled in eibd. This can either be done by the -c command line
switch or by calling EIB Cache Enable at least once. You must serialize all calls
to EIB Cache Read Sync on one connection.

This method only works for status based group objects. To get correct results, the
group address should be readable and some device should sent an update telegram
on status changes.

• Send(receive) for one group address

In this case, you must first call EIBOpenT Group to associate the connection with
the group address. The parameter write only must be set to true, if you don’t
want to receive telegrams.

You can call any time EIBSendAPDU (even not serialized) on the connection to
send an APDU.

To receive telegrams, you must call EIBGetAPDU Src. You must serialize all calls
to EIBGetAPDU Src on one connection.

• Send(receive) for all group addresses

In this case, you must first call EIBOpen GroupSocket. The parameter write only
must be set to true, if you don’t want to receive telegrams.

You can call any time EIBSendGroup (even not serialized) on the connection to
send an APDU.

117

7. EIB bus access

To receive telegrams (APDU), you must call EIBGetGroup Src. You must serialize
all calls to EIBGetGroup Src on one connection.

Each call has an corresponding asynchronous version. These functions split the call
in two parts: The name async function starts the processing. EIBComplete waits, until
the call has finished. Depending on the language there are different ways to poll for the
completion.

118

Part III.

Using the BCU SDK

119

8. Input format

8.1. BCU configuration

The BCU configuration is defined in a text file:

• As comments, C style comments as well as line comments starting with # are
supported.

• Different tokens are separated by white space (space, newline and tabulator). In
some situations, white space is not necessary (e.g. between an identifier and a
semicolon).

• Strings are used as in C. They can even consist of different parts, which are auto-
matically concatenated. C escape sequences are supported.

• Identifiers start with a letter or an underscore. Any number of letters, numbers or
underscores can follow. All identifiers are case sensitive.

• Numbers can be floating point numbers (in C format) or integer numbers, either
decimal or hexadecimal. A hexadecimal number is prefixed with 0x.

• Instead of integer or floating point constants, a subset of C expressions can be
used. Such an expression may only contain constant expressions. All arithmetic
and logic operands can be used for integer values. For floating point values, only
arithmetic operations are supported.

• Boolean values can be set to the values true or false.

• Each entry consists of a keyword and its value. The entry is ended with a semicolon.

• If an entry is a block, it contains a list of entries enclosed in { and } as its value.

• If an entry contains a mapping, it contains a list of IDENT = STRING ; enclosed
in { and } as its value.

• If an entry contains an array, it contains a list of array elements separated by
commas and enclosed in { and } as its value.

The root element is a block called Device. All other blocks are nested within this
block.

121

8. Input format

Some blocks may contain a block named CI. This block is optional. During a devel-
opment build (via build.dev), it can be used to supply the values which are normally
specified in the configuration description (see Section 9.4). They must meet the lim-
itations listed in Section 9.5. All rules for a normal build apply; e.g. a unreferenced
Property is disabled even if Disabled is not set to true in the associated CI block.

During a normal build, the contents of the CI block are ignored. However, it is still
checked for syntax errors. Attributes containing syntax errors must thus be deleted or
corrected before the build can succeed.

8.1.1. Device block

This block can have the following attributes:1

BCU Mandatory, selects the used BCU. Supported values are bcu12, bcu20 and bcu21.

Model Optional identifier to select a different feature set. Available choices are:

histack Only for BCU2; allocates the stack in high memory.

PEIType Mandatory integer, the PEI type used.

ManufacturerCode Optional integer.

InternalManufacturerCode Optional integer.

DeviceType Optional integer.

Version Optional integer.

SyncRate Optional integer, contains the raw value as specified in [BCU1] and [BCU2].

PortADDR Optional integer, DDR setting of Port A.

PortCDDR Optional integer, DDR setting of Port C.

on run Optional function name, is executed every cycle.

on init Optional function name, is executed at power on.

on save Optional function name, is executed in the case of a power failure.

Title Mandatory string, contains the short description of the application program.

AddInfo Optional string, contains additional information text about the application.

OrderNo Optional string, contains the order number of the product.

1Some of these attributes provide access to a specific system setting. Under normal conditions, usable
defaults are selected. For details about such settings, refer to [BCU1, BCU2].

122

8.1. BCU configuration

Manufacturer Optional string, contains the manufacturer of the product.

Category Optional string, contains the hierarchical function class, e.g. Application
Modules / Push Button Sensor / Two Fold.

Author Optional string, contains the author.

Copyright Optional string, contains copyright information.

Test Addr Count Optional integer, number of group addresses used in the test compile
(for size estimation in build.ai).

Test Assoc Count Optional integer, number of associations used in the test compile
(for size estimation in build.ai).

include An array of strings which contains the name of all used C files.

RouteCount Optional integer, start value for the routing counter.

BusyLimit Optional integer, BUSY retransmission limit.

INAKLimit Optional integer, INAK retransmission limit.

RateLimit Optional integer, set telegram rate limit (default: none).

CPOL Optional boolean, set CPOL (clock phase for serial synchronous interface).

CPHA Optional boolean, set CPHA (clock phase for serial synchronous interface).

AutoPLMA Optional boolean, enable automatic PLMA clear.

A Event Optional boolean, enable A Event generation.

BCU1 SEC Optional boolean, set M68HC05 SEC flag.

BCU1 PROTECT Optional boolean, enable BCU 1 EEPROM protection.

BCU2 PROTECT Optional boolean, enable BCU 2 EEPROM protection.

BCU2 WATCHDOG Optional boolean, enable BCU 2 watchdog (default: true). You
should not change this value, as disabling the watchdog will cause the BCU to
stop responding when processing an restart request (part of each load procedure).

PLM FAST Optional boolean, select PLM frequency for BCU 2.

U DELMSG Optional boolean, enables/disables the automatic call to U DELMSG.

on pei init Optional function name, is executed at PEI init event.

on pei message Optional function name, is executed at PEI message event.

123

8. Input format

on pei cycle Optional function name, is executed at PEI cycle event.

on pei user Optional function name (parameter uchar event), is executed at every PEI
event.

on pei rc even Optional function name, is executed at sci rdrf event (even parity).

on pei rc odd Optional function name, is executed at sci rdrf event (odd/none parity).

on pei tc Optional function name, is executed at sci tc event.

on pei tdre Optional function name, is executed at sci trde event.

on pei sci idle Optional function name, is executed at sci idle event.

on pei spif Optional function name, is executed at spi spif set event.

on pei oca Optional function name, is executed at output compare A event.

on pei ocb Optional function name, is executed at output compare B event.

on pei ica Optional function name, is executed at input compare A event.

on pei icb Optional function name, is executed at input compare B event.

The CI block has the following attributes:

Key Optional, contains a list of Name-Value pairs (e.g. 1 = 0xFFFF) which contain
the access keys for specific access levels.

InstallKey Optional, device key of the device before downloading (e.g. 0xFFFF).

PhysicalAddress Mandatory, contains the individual address of the device to which the
program is to be downloaded. 2 The format is $x.y.z. Additionally a 16 bit hex
value must be also understood (e.g. 0xFFFF).

Additionally, blocks of the following types can be present:

• FunctionalBlock

• IntParameter

• FloatParameter

• ListParameter

• StringParameter

• GroupObject

2The assignment of individual addresses has to be done separately from the download process.

124

8.1. BCU configuration

• Object

• Debounce

• Timer

• PollingMaster

• PollingSlave

8.1.2. FunctionalBlock block

A functional block contains Interface blocks as well as the following attributes:

ProfileID Mandatory, contains the unsigned integer number describing the object type
of the functional block as specified in [KNX] 3/7/3-2.2.

Title Mandatory, short description of the functional block as a string.

AddInfo Optional, additional textual information about the functional block as a string.

A functional block without any interfaces or only containing interfaces which do not
reference anything is left out of the application information.

8.1.3. Interface block

This block has the following attributes:

DPType Mandatory, contains the DP Type ([KNX] 3/7/3-5) of the interface as floating
point value. The DP Types, which can be accessed by name, are listed in Section
B.1.

Title Optional, short description of the interface as a string.

AddInfo Optional, additional textual information about the interface as a string.

GroupTitle Optional, specifies the title of the group to which the interface belongs as
string. This attribute is intended to provide the name of a property page, on which
an integration tool should display the interface if the functional block is unknown
to the integration tool.

Abbreviation Mandatory, the abbreviation of the interface as an identifier.

InvisibleIf Optional, contains an expression which indicates if it is appropriate to display
this interface (in the context of the settings of other parameters). If the expression
is not null, the interface should not be displayed in the integration tool.

The root expression must be a boolean expression (exprb). A valid expression
conforms to the following grammar:

125

8. Input format

• exprb := expri
is true, if the integer value is not 0.

• exprb := ’(’ exprb ’)’

• exprb := ’ !’ exprb
NOT

• exprb := exprb ’&&’ exprb
AND

• exprb := exprb ’||’ exprb
OR

• exprb := ident ’IN’ ’(’ ident [’,’ ident] * ’)’
The first ident must be the name of a ListParameter. All following idents
must be the name of an element of the ListParameter. The expression is
true, if the name of the current selected value of the ListParameter is in the
ident list.

• exprb := exprs ’==’ exprs | exprs ’! =’ exprs | exprs ’<’ exprs | exprs ’<=’
exprs | exprs ’>=’ exprs | exprs ’>’ exprs
returns true, if the a bytewise compare of the two strings fulfils the conditions.

• exprb := expri ’==’ expri | expri ’! =’ expri | expri ’<’ expri | expri ’<=’
expri | expri ’>=’ expri | expri ’>’ expri
returns true, if the a byte wise compare of the two integer values fulfils the
conditions.

• exprb := exprf ’==’ exprf | exprf ’! =’ exprf | exprf ’<’ exprf | exprf ’<=’
exprf | exprf ’>=’ exprf | exprf ’>’ exprf
returns true, if the a bytewise compare of the two floating point values fulfils
the conditions.

• exprs := ’(’ exprs ’)’

• exprs := C-style string

• exprs := ident
returns the current value of the StringParameter with the name ident.

• expri := any valid integer constant or constant integer expression

• expri := ident
returns the current value of the IntParameter with the name ident.

• expri := expri ’+’ expri | expri ’-’ expri | expri ’%’ expri | expri ’*’ expri |
expri ’/’ expri | ’-’ expri

• exprf := ’(’ exprf ’)’

• exprf := any valid constant floating point expression

• exprf := ident
returns the current value of the FloatParameter with the name ident.

126

8.1. BCU configuration

• exprf := exprf ’+’ exprf | exprf ’-’ exprf | exprf ’*’ exprf | exprf ’/’ exprf | ’-’
exprf

• exprf := expri

• exprf := ’(’ exprf ’)’

The precedence and meaning of operators are the same as in C.

Reference An array of identifiers, which are the names of a GroupObject, PollingMaster,
PollingSlave, Property or a kind of parameter. If one of these objects is not
referenced by an interface, it is left out of the application information. Additionally,
most functions of these objects are removed, so that they consume less space. Their
interface is not changed.

8.1.4. IntParameter block

This block defines a parameter of an integer type. The mandatory attribute Name
contains the name of the constant which can be used to access the selected value in the
program. The size and signedness are selected automatically, so that minimal space is
used.

The other attributes are:

Title Mandatory, short description of the parameter as a string.

AddInfo Optional, additional textual information about the parameter as a string.

MinValue Mandatory, contains the lower bound as integer number.

MaxValue Mandatory, contains the upper bound as integer number.

Default Mandatory, contains the integer number which the integration tool should pre-
select.

Unit Optional, contains a string which represents the unit in which the value is mea-
sured.

Precision Optional, contains an integer value which describes the size of the smallest
interval whose bounds the final BCU application will consider as separate values.

Increment Optional, contains an integer value which is the default increment value
which the integration tool should offer if up/down buttons are shown.

The CI block has the attributes:

Value Mandatory, contains the parameter value to use for the compile process.

127

8. Input format

8.1.5. FloatParameter block

This block defines a parameter of a floating point type. The mandatory attribute Name
contains the name of the constant which can be used to access the selected value in the
program.

The other attributes are:

Title Mandatory, short description of the parameter as a string.

AddInfo Optional, additional textual information about the parameter as a string.

MinValue Mandatory, contains the lower bound as a floating point number.

MaxValue Mandatory, contains the upper bound as a floating point number.

Default Mandatory, contains the floating point number which the integration tool
should preselect.

Unit Optional, contains a string which represents the unit in which the value is mea-
sured.

Precision Optional, contains a floating point value which describes the size of the small-
est interval whose bounds the final BCU application will consider as separate val-
ues.

Increment Optional, contains a floating point value which is the default increment value
which the integration should offer if up/down buttons are shown.

The CI block has the following attribute:

Value Mandatory, contains the parameter value to use for the compile process.

8.1.6. ListParameter block

This block defines a parameter which provides a selection of one element out of a list. The
mandatory attribute Name contains the name of the constant which can be used to access
the selected value in the program. Internally, this parameter creates an enumeration.
The enumeration type is called Name t. The names of the enumeration entries are the
identifiers of a mapping called Elements. As its values, this mapping contains the strings
which should be shown in an integration tool.

The other attributes are:

Title Mandatory, short description of the parameter as a string.

AddInfo Optional, additional textual information about the parameter as a string.

Default Mandatory, contains the name of the preselected entry.

128

8.1. BCU configuration

Unit Optional, contains a string which represents the unit in which the value is mea-
sured.

The CI block has the following attribute:

Value Mandatory, contains the name of the selected entry to use for the compile process.

8.1.7. StringParameter block

This block defines a parameter of string type. The mandatory attribute Name contains
the name of the constant which can be used to access the selected value in the program.
The space allocated for the constant depends on the stored content.

The other attributes are:

Title Mandatory, short description of the parameter as a string.

AddInfo Optional, additional textual information about the parameter as a string.

MaxLength Mandatory integer, contains the maximum string length the application
supports.

RegExp Optional string, regular expression which the string must match. The format
of the regular expression is the same as used in XML Schema ([XML2], Appendix
F).

Default Mandatory, contains the value as a string which the integration tool should
preselect.

Unit Optional, contains a string which represents the unit in which the value is mea-
sured.

The CI block has the following attribute:

Value Mandatory, contains the parameter value to use for the compile process.

8.1.8. GroupObject block

The attribute Name contains the name of the variable under which the group object
value will be available. The number of the group object will be available under the name
Name no.

Other attributes are:

Title Mandatory, short description of the group object as string.

AddInfo Optional, additional textual information about the group object as a string.

Type Mandatory, contains the type. The supported types are listed in Table 8.1.

129

8. Input format

BCU SDK type name C type

UINT1 uint1
UINT2 uint1
UINT3 uint1
UINT4 uint1
UINT5 uint1
UINT6 uint1
UINT7 uint1
UINT8 uint1
UINT16 uint2
UINT32 uint4
UINT64 uint8
TIME DATE uint3
FLOAT float
DATA6 uint6
DOUBLE double
DATA10 uint1[10]
MAXDATA uint1[14]

Table 8.1.: Group object types

Sending Optional boolean value, which is true if the application can transmit values
via this group object. Generates the function Name transmit(), which initiates the
transmission of the group object value.

Receiving Optional boolean value, which is true if the application can receive values
via this group object.

Reading Optional boolean value, which is true, if the application can send
A GroupValue Read telegrams via this group object. Generates the function
Name readrequest(), which sends a read request. If the answer is received, the
on update handler is called, if present.

If both Reading and Sending are enabled, the function Name clear() is generated.
It is not possible to call Name transmit() before the answer of an outstanding
Name readrequest() is received. Therefore Name clear() is available to cancel an
open read request, so that a normal transmit is possible again.

StateBased Mandatory boolean value, which is true if the group object contains state
information (which means that a A GroupValue Read operation will return a
meaningful value).

on update Optional, contains the name of the functions which will be called when the
value of the group object changes. It automatically activates Receiving.

130

8.1. BCU configuration

eeprom Optional boolean value, which is true if the value of the group object should
be allocated in the EEPROM. Transparent EEPROM access is automatically ac-
tivated. The default is false.

The CI block has the following attributes:

Priority Optional, contains one of the values low, normal, urgent or system specifying
the priority of the messages transmitted via this group object.

SendAddress Optional, contains the group address to send A GroupValue Write tele-
grams to (format $x/y/z or $x/y or 0xFFFF). May only be present if Sending is
true. If not present, sending is disabled.

ReadRequestAddress Optional, contains the group address to send
A GroupValue Read telegrams to (format $x/y/z or $x/y or 0xFFFF).
May only be present if Reading is true. Note that processing the answer must
be enabled separately (via ReceiveAddress for a BCU 1 or UpdateAddress for a
BCU 2).

ReceiveAddress Optional, contains a list of group addresses (format $x/y/z or $x/y or
0xFFFF). A GroupValue Write telegrams with these destination addresses will be
processed by the group object. May only be present if Receiving is true. If not
present, receiving is disabled.

ReadAddress Optional, contains a list of group addresses (format $x/y/z or $x/y or
0xFFFF)). A GroupValue Read request with these destination addresses will be
answered with the value of the group object. If not present, no A GroupValue Read
will be processed.

UpdateAddress Optional, contains a list of group addresses (format $x/y/z or $x/y or
0xFFFF). A GroupValue Response frames with these destination addresses will
update the value of the group object. If not present, no A GroupValue Response
frame will be processed.

8.1.9. Object block

This block describes an EIB user object (interface object). Apart from Property blocks,
which describe the properties of the object, it has the following attributes:

Name Mandatory identifier, contains the internal name of the object.

ObjectType Object type as integer, as listed in [KNX] 3/7/3-2.

Title Optional string, unused.

AddInfo Optional string, unused.

131

8. Input format

BCU SDK type name C type

PDT CHAR sint1
PDT UNSIGNED CHAR uint1
PDT INT sint2
PDT UNSIGNED INT uint2
PDT KNX FLOAT uint2
PDT DATE uint3
PDT TIME uint3
PDT LONG sint4
PDT UNSIGNED LONG uint4
PDT FLOAT float
PDT DOUBLE double
PDT CHAR BLOCK uint1[10]
PDT POLL GROUP SETTINGS uint3
PDT SHORT CHAR BLOCK uint5
PDT GENERIC 01 uint1
PDT GENERIC 02 uint2
PDT GENERIC 03 uint3
PDT GENERIC 04 uint4
PDT GENERIC 05 uint5
PDT GENERIC 06 uint6
PDT GENERIC 07 uint7
PDT GENERIC 08 uint8
PDT GENERIC 09 uint1[9]
PDT GENERIC 10 uint1[10]

Table 8.2.: Property types

132

8.1. BCU configuration

8.1.10. Property block

The Property block contains the following attributes:

Name The name the property variable is accessible under.

Title Mandatory, short description of the property as a string.

AddInfo Optional, additional textual information about the property as a string.

Type Mandatory, contains the type as listed in Table 8.2.

PropertyID Mandatory, contains the ID of the property as specified in [KNX] 3/7/3-3.
Some property IDs can also be referred to using textual names. They are listed in
Section B.2.

Writeable Mandatory boolean value, which is true if the property is writable.

MaxArrayLength Optional, contains the maximum number of elements of the property
as integer.

eeprom Operation boolean, which is true if the variable should be located in the EEP-
ROM. Transparent EEPROM access is activated.

handler The name of a function which is used to handle a custom property type.

The CI block has the following attributes:

Disable Optional boolean value; if it is true, the property should be deactivated. The
default value is false.

ReadOnly Optional boolean value; if it is true, the property should be set read only.
The default value is false. This option only makes sense if Writeable is true.

ReadAccess Optional; contains the read access level of the property. The default value
is set to no access restriction.

WriteAccess Optional; contains the write access level of the property. The default value
is set to no access restriction.

If the handler is set, no variable will be allocated.

typedef struct

{

bool write;

uint1 ptr;

} PropertyRequest;

typedef struct

{

133

8. Input format

bool error;

uint1 ptr;

uint1 length;

} PropertyResult;

The handler function takes a variable of the type PropertyRequest as its only parameter
and returns a variable of the type PropertyResult.

If no handler is set, but MaxArrayLength is greater than one, a structure is allocated
under the name given in Name. It contains the element count, which is the number
of used elements. The other element is named elements, which is an array of MaxAr-
rayLength elements of the type selected by Type.

In any other case, a normal variable with the type selected by Type is allocated under
the name given in Name.

8.1.11. Debounce block

This block is used to allocate a debouncer. The mandatory entry Name contains the
name of the debounce function. As it only implements an interface to the BCU functions
(with correct reservation of all resources used), it only works for 8 bit values.

The second optional entry has the name Time and can contain the debouncing time
in ms. If it is present, the defined function takes only an 8 bit value as parameter and
returns the debounced value.

If no time is given, the debouncer function takes a second argument, which is the
debouncing time in 0.5 ms steps.

For BCU 1 and BCU 2, only one debouncer is supported.

8.1.12. Timer block

Each timer has the mandatory identifier Name. It is used as the base for the names of
the interface to the timer. Each timer stores its number in the constant Name no.

The attribute Type can be one of the following:

UserTimer allocates a user timer. Resolution must contain a value for the user timers
from Table 8.3. on expire can contain the name of a function which is called
periodically while the timer is expired.

Under the value of Name, an 8 bit variable is available which contains the current
value. Name get() returns true if the timer is expired. Name set(uint1 value) loads
the timer with the new value (between 0 and 127).

EnableUserTimer provides the same interface as a UserTimer. The difference is, that
the on expire function is only called once, if the time expires (and needs more
memory). Name del() cancels a running timer. If the timer is running, can be
check by Name enable, which is true as long as the timer is running.

134

8.1. BCU configuration

timer type name resolution

user timer RES 133ms 133 ms
user timer RES 266ms 266 ms
user timer RES 533ms 533 ms
user timer RES 1066ms 1066 ms
user timer RES 2133ms 2133 ms
user timer RES 4266ms 4266 ms
user timer RES 8533ms 8533 ms
user timer RES 17067ms 17.067 s
user timer RES 34133ms 34.133 s
user timer RES 68267ms 68.267 s
user timer RES 2min16s 2 min 33 s
user timer RES 4min33s 4 min 6 s
user timer RES 9min6s 9 min 6 s
user timer RES 18min12s 18 min 12 s
user timer RES 36min24s 36 min 24 s
user timer RES 72min48s 72 min 48 s
BCU 1 timer RES 0 5ms 0,5 ms
BCU 1 timer RES 8ms 8 ms
BCU 1 timer RES 130ms 130 ms
BCU 1 timer RES 2100ms 2.1 s
BCU 1 timer RES 33s 33 s
BCU 2 message timer RES 0 4ms 0.4 ms
BCU 2 message timer RES 7ms 7 ms
BCU 2 message timer RES 107ms 107 ms
BCU 2 message timer RES 27s 27 s
BCU 2 cyclic message timer RES 100ms 100 ms
BCU 2 cyclic message timer RES 1s 1 s
BCU 2 cyclic message timer RES 1min 1 min

Table 8.3.: Timer resolutions

135

8. Input format

SystemTimer only allocates a system timer. This timer can only be accessed by the
BCU API.

CountDownTimer allocates a system timer in count down mode. Resolution must
contain a value for the BCU 1 timers from Table 8.3. on expire can contain the
name of a function which is called periodically while the timer is expired.

Name get() returns true if the timer is expired. Name set(uint1 value) loads the
timer with the new value.

DifferenceCounter allocates a system timer in difference counter mode. Resolution
must contain a value for the BCU 1 timers from Table 8.3.

Name get() returns the time difference to the last call. Name set(uint1 value)
loads the timer with the new value.

MessageTimer only works on a BCU 2. Resolution must contain a value for the BCU
2 message timer out of Table 8.3.

Name del() stops the timer. Name set(uint1 value) loads the timer with the new
value.

MessageCyclicTimer only works on a BCU 2. Resolution must contain a value for the
BCU 2 cyclic message timer out of Table 8.3.

Name del() stops the timer. Name set(uint1 param) starts the timer (param is
put into the periodic message).

The count of user timers is only limited by the memory available. For the user, two
system timers are available. If the debouncer is used, only one of them is available.

8.1.13. PollingMaster block

It has the attributes:

Name The name which is used as the base name for all functions which are related to
the polling master interface.

Title Mandatory, short description of the polling master interface as string.

AddInfo Optional, additional textual information about the polling master interface as
a string.

The CI block has the following attributes:

PollingAddress Mandatory, contains the polling address which the master uses, e.g.
0x1232.

PollingCount Mandatory, contains the number of the highest polling slot used for this
address (numbering starts with 1).3

This block needs a BCU 2. It is not implemented at the moment.

3PollingCount and PollingAddress may only be present if both attributes are set.

136

8.2. C files

8.1.14. PollingSlave block

It has the attributes:

Name The name which is used as the base name for all functions which are related to
the polling slave interface.

Title Mandatory, short description of the polling slave interface as string.

AddInfo Optional, additional textual information about the polling slave interface as a
string.

The CI block has the following attributes:

PollingAddress Optional, contains the polling address which the slave listens to, e.g.
0x1232.

PollingSlot Optional, Contains the number of the polling slot to send the polling result
(numbering starts with 0).4

This block needs a BCU 2. It is not implemented at the moment.

8.2. C files

The C files can contain any C code which is allowed by GCC. To avoid problems and
create the smallest code, follow these guidelines:

• The preprocessor is run over all C sources in an extra pass to combine them into
one file. At this time, the BCU header files are not included. Therefore you can
only refer to your own defines.

Some functions of the BCU SDK may be implemented as defines. Since they are
handled specially and may be implemented differently in future versions, they only
should be used in the specified way.

• Make all your functions and global variables static. This allows GCC to optimize
the code better or even remove variables and functions.

For event handlers, do not specify static, as this is already done in the header
files if necessary. Adding the static attribute to an event handler may cause the
program to break.

• The GCC floating point emulator is linked if necessary. However, try to avoid the
use of floating point values, as it needs lots of memory. The floating point types
have the standard names float and double.

4PollingSlot and PollingAddress may only be present if both attributes are set.

137

8. Input format

• The BCU SDK includes newlib as runtime library by default. Operating system
independent functions like strcpy should work, but need a lot of space. They are
used by including the header file, as in any C program.

Functions which perform I/O, need an operating system call, or do dynamic mem-
ory management (except alloca), are not supported. Newlib functions are docu-
mented in [NEW2, NEW3].

• Integer types from 1 to 8 bytes are available. A bigger type needs more code to
handle and uses more RAM. The unsigned types are called uint1 to uint8, the
signed types sint1 to sint8.

• Normal variables are placed in a section where enough free space is available. If
the variable must be in a certain memory region (e.g. because the BCU operating
system expects it there), the following modifiers can be added to the variable
declaration:

RAM SECTION place it in low RAM at an address lower than 0x100. Such a
variable is initialized with zero, even if an initializer is added.

LOW CONST SECTION place a constant in the EEPROM between 0x100 and
0x1ff. You may not change the value of such a variable, as this will cause a
checksum mismatch which will stop the application program. If possible, add
the const qualifier.

EEPROM SECTION place it in the EEPROM between 0x100 and 0x1ff. The
value of such a variable may be changed.

An example:

int x EEPROM_SECTION;

• To guarantee that variables are allocated in a certain order, place them in a struc-
ture.

• Avoid recursion, as the call stack is very limited.

• The present version of the GCC port only accesses byte blocks, as it does not uses
bit operations. If you need to access only a single bit, this must be done with
inline assembler statements.

• In some cases, the use of local variables results in larger code, because stack han-
dling code is needed. Otherwise the memory locations of global variables cannot
be reused for different functions.

• The BCU SDK supports transparent access to the EEPROM, even using pointers.
EEPROM write access is only supported for variables which are allocated with
the EEPROM SECTION modifier. If the address of any other memory location is

138

8.3. API functions

loaded into a transparent EEPROM access pointer and the pointer is dereferenced,
anything can happen (even the EEPROM content may be changed in a way that
the program will be destroyed).

To use this feature, add EEPROM ATTRIB to the variable declaration (e.g. int
x EEPROM SECTION EEPROM ATTRIB;). If you use a pointer to an EEP-
ROM variable, add EEPROM PTR ATTRIB to the pointer definition (int EEP-
ROM PTR ATTRIB* ptr;). If the pointer variable itself is located in the EEP-
ROM, EEPROM ATTRIB is necessary.

Be sure to use the right attribute. If an attribute cannot be added, GCC issues a
warning. It cannot give any feedback for a wrong attribute of a pointer variable.

Mixing the use of pointers to the EEPROM and normal memory can produce
errors and warnings.

• Similar to the transparent EEPROM access attributes, LORAM ATTRIB and
LORAM PTR ATTRIB are available for memory locations between 0x000 and
0x0FF. The use of these attributes allows the generation of smaller code for memory
access operations using pointers. If any other pointer is assigned to such a pointer,
the user must take care that the other pointer really points into this low memory
region.

• If you are doing multiplications or divisions, cast the operands to unsigned, as the
signed functions are larger.

On the BCU 1, the use of the API functions for multiplication and division can
be beneficial in some situations, as it avoids the additional code for the GCC
multiplication and division functions.

8.3. API functions

The following functions, which are not covered elsewhere, are provided by the BCU
SDK:

• void reset_watchdog();

Resets the watchdog counter in longer calculations.

• void __U_transRequest (uchar no);

Instructs the BCU to transmit the content of group object no. It results in smaller
code than the BCU API function U transRequest().

• void __U_flag_Set(uchar no, uchar bit);

Sets bit bit of the RAM flags of group object no.

• void __U_flag_Clear(uchar no, uchar bit);

Clears bit bit of the RAM flags of group object no.

139

8. Input format

140

9. File format for data exchange with
integration tools

Configuring an EIB system can be a complex task. Different, more or less intelligent,
tools for solving this problem have been implemented. To aid the interworking between
the BCU SDK and these tools, a clear interface is needed.

The most important existing solution is the ETS format, which is not publicly docu-
mented (and uses ZIP files encrypted with a password unknown to the public). Projects
like [BASYS] have found workarounds to read this file and have partially decoded the
file format.

As the password of the ETS format is unknown, writing such files is impossible.
Using a similar file format (e.g. the same as the ETS format, but not encrypted) was
not considered useful, because defining a new format gives the possibility to include new
features. The primary goals of the new format are:

• Fully specified and freely available, so that it is easy to integrate into applications

• Easy to read and write

• Support for the current and upcoming features of EIB

• No direct image patching, so that it is suited for compile time parameterization,
too

• Provide high level information to aid automatic configuration.

The format is based on XML and provides means to create custom formats based on
it. The format provides support for nearly all constructs which can be implemented on
a BCU, even in finer detail than supported by the current BCU system software.

An important point is that the format hides how an image is finalized and by which
means this is done. The ETS uses image patching, which supports only small modifica-
tions (e.g. change of a byte). Because modern compilers create better code when they
have more information, compiling the image at download time with all settings from the
integration tool leads to smaller images in some cases.1

The format groups everything into functional blocks, which are a kind of high level
description of the application. The organizational process of how functional blocks and
their interfaces are defined is beyond the scope of this document. Some are defined in

1This is especially important because the GCC port produces larger code than a good assembler
programmer.

141

9. File format for data exchange with integration tools

the KNX standard [KNX]. If no appropriate functional block exists, the application
programmer may (and will have to) create his own.

The interfaces of the functional blocks contain all necessary information concerning
the format of the data types and how to interpret them. The objects which actually
implement the interface only contain a basic type, which in most cases does not represent
more than the size of the data type.

9.1. Configuration process

The process from the creation of a BCU application program to its download is as
follows:

1. The developer writes an application program.

2. It is turned into an application description.

3. Some application descriptions are collected, their meta data are unified and turned
into a product catalog for an integration tool. Additionally, language translations
are included in this step.

4. The product catalog is imported into an integration tool.

5. The configuration of an EIB installation is planned based on the imported data.

6. The integration tool sends the necessary configuration for each device to the down-
load part as a configuration description.

7. The download part of the BCU SDK creates a downloadable image and writes it
into the BCU memory.

The format and creation of the product catalog, as well as how the integration tool
works, are out of scope of this document.

For the translations, two alternatives exist:

• After an application description has been created by the BCU SDK, translations
into other languages are put in XML tags using the lang attribute.

The big disadvantage is that, for new translations, the whole file has to be changed.

• Use the GNU gettext system. After creating the application information, all texts
are extracted. The resulting file is passed to a translator, who creates the transla-
tions. Then the translations for one language are bundled in catalogs, which are
used by integration tools to replace the text.

This system is used by nearly all Linux applications and has proven to work.
Additionally, the automatic reuse of translations is possible and there is no need
for releasing translations and applications at the same time.

142

9.2. Basic definitions

How the code is passed between the BCU SDK and the download tool is not important
for the integration tool. Two alternatives are possible:

• The code is stored in another file (using an internal file format) and imported in
the download tool.

• The code is embedded as a large text block in the application description (again,
using an internal format).

9.2. Basic definitions

The exchange format is based on XML. For the two exchange directions, different formats
are described using XML Schema as well as a DTD. As the DTD is not as powerful, the
XML Schema should be used for validation, if possible.

To reference nodes in the XML tree, unique IDs are used. The structure of them may
be freely chosen as long as they are compatible with XML.

Each exchange format has a version attribute, which allows the application to recog-
nize when it is receiving data in an older or newer exchange format. If an older format is
received, it should be readable without any problems because the structure is known to
the programmer. If a newer format is received, a warning should be issued. All known
elements should be read, the rest ignored. In this case, the document structure should
not be checked, because the check will fail.

The current version is 0.0.0. All text fields should contain English text in UTF-8.
All group addresses and polling addresses are stored as a hexadecimal number. For
group addresses, additionally the formats x/y/z (5/3/8 bit) and x/y (5/11 bit) must be
understood.

Each document should contain a reference to the corresponding schema or DTD.
Representation details which are covered by the Schema definition (e.g. how to represent
a boolean, ordering implied by the DTD, . . .) are left out in the following description.

9.3. Application information

The root node is called DeviceDesc and stores the version in the attribute version.

The first mandatory element is called ProgramID. This node contains some text, which
may not be interpreted by the integration tool. A node with the same content has to be
written to the configuration description to indicate on which application description it
is based. There are no limitations concerning the size or the structure of the text. This
attribute can be used to pass a globally unique identifier or a text encoded intermediate
format of the code.

The next mandatory node is called Description, which contains meta information
about the program. It can have the following nodes:

143

9. File format for data exchange with integration tools

MaskVersion Mandatory, contains the mask version of the device the application is
designed for as a hexadecimal number string. Additionally, this can be used by
the integration tool to determine if certain features are available in the target BCU.

Title Mandatory, contains the short description of the application program.

AddInfo Optional, contains additional information text about the application.

OrderNo Optional, contains the order number of the product as a string.

Manufacturer Optional, contains the manufacturer of the product as a string.

Category Optional, contains the hierarchical function class, e.g.: Application Modules
/ Push Button Sensor / Two Fold as a string.

Author Optional, contains the author as a string.

Copyright Optional, contains copyright information as a string.

9.3.1. Functional block

One or more functional blocks follow the Description node. For each functional block, a
node with the name FunctionalBlock is present. It has the attribute id, which contains
a unique ID. It contains the following nodes:

ProfileID Mandatory, contains the unsigned integer number describing the object type
of the functional block as specified in [KNX] 3/7/3-2.2.

Title Mandatory, short description of the functional block as a string.

AddInfo Optional, additional textual information about the functional block.

9.3.2. Interface

For each interface, the functional block contains a node with the name Interface. This
node also has a unique ID in the attribute id. It contains the following nodes:

DPType Mandatory, contains the DP-Type ([KNX] 3/7/3-5) of the interface.

Title Optional, short description of the interface as a string.

AddInfo Optional, additional textual information about the interface.

Abbreviation Mandatory, the abbreviation of the interface as a string.

GroupTitle Optional, specifies the title of the group to which the interface belongs.
This attribute is intended to provide the name of a property page on which an
integration tool should display the interface, if the functional block is unknown to
the integration tool.

144

9.3. Application information

InvisibleIf Optional, contains an expression which indicates if it is appropriate to display
this interface (in the context of the settings of other parameters). If the expression
is not empty, the interface should not be displayed in the integration tool.

The root expression must be a boolean expression (exprb). A valid expression
conforms to the following grammar:

• exprb := ’(’ exprb ’)’

• exprb := ’ !’ exprb
NOT

• exprb := exprb ’&&’ exprb
AND

• exprb := exprb ’||’ exprb
OR

• exprb := ident ’IN’ ’(’ ident [’,’ ident] * ’)’
The first ident must be the ID of a ListParameter. All following idents must
be the IDs of an element of the ListParameter. The expression is true, if the
ID of the current selected value of the ListParameter is in the ident list.

• exprb := exprs ’==’ exprs | exprs ’! =’ exprs | exprs ’<’ exprs | exprs ’<=’
exprs | exprs ’>=’ exprs | exprs ’>’ exprs
returns true, if the a byte wise compare of the two strings fulfils the conditions.

• exprb := expri ’==’ expri | expri ’! =’ expri | expri ’<’ expri | expri ’<=’
expri | expri ’>=’ expri | expri ’>’ expri
returns true, if the a byte wise compare of the two integer values fulfils the
conditions.

• exprb := exprf ’==’ exprf | exprf ’! =’ exprf | exprf ’<’ exprf | exprf ’<=’
exprf | exprf ’>=’ exprf | exprf ’>’ exprf
returns true, if the a byte wise compare of the two floating point values fulfils
the conditions.

• exprs := ’(’ exprs ’)’

• exprs := C-style string

• exprs := ident
returns the current value of the StringParameter with the ID ident.

• expri := [0 − 9]+ decimal integer expression

• expri := ident
returns the current value of the IntParameter with the ID ident.

• expri := expri ’+’ expri | expri ’-’ expri | expri ’%’ expri | expri ’*’ expri |
expri ’/’ expri | ’-’ expri

• exprf := ’(’ exprf ’)’

• exprf := C-style floating point number

145

9. File format for data exchange with integration tools

• exprf := ident
returns the current value of the FloatParameter with the ID ident.

• exprf := exprf ’+’ exprf | exprf ’-’ exprf | exprf ’*’ exprf | exprf ’/’ exprf | ’-’
exprf

• exprf := expri

• exprf := ’(’ exprf ’)’

The precedence and meaning of operators is the same as in C.

The link to the actual objects is made by one or more references with the element
Reference. It has no content, only the attribute idref. idref contains the ID of a group
object, property, polling object or parameter, which the interface represents.

Then the definitions of the properties, parameters, polling objects and group objects
follow.

9.3.3. Group objects

A group object is defined by the node GroupObject and contains a unique ID in the
attribute id. It contains the following elements:

Title Mandatory, short description of the group object as a string.

AddInfo Optional, additional textual information about the group object.

GroupType Mandatory, contains the basic type number of the group object as specified
in [KNX] 3/5/1-4.3.2.1.2.1.

Sending Mandatory boolean value, which is true, if the application can send values (i.e.,
transmit A GroupValue Write requests) via this group object.

Receiving Mandatory boolean value, which is true, if the application can receive values
via this group object. This includes both A GroupValue Write indications and
A GroupValue Read responses.

Reading Mandatory boolean value, which is true, if the application can send
A GroupValue Read requests via this group object.2

StateBased Mandatory boolean value, which is true if the group object contains state
information, i.e., if an A GroupValue Read request will return a useful answer (cf.
the StateBased keyword in the BCU configuration, Section 8.1).

2Although it will usually be reasonable that Receiving is enabled together with this option, it is not
mandatory.

146

9.3. Application information

9.3.4. Properties

A group object is defined by the node Property and contains a unique ID in the attribute
id. It contains the following elements:

Title Mandatory, short description of the property as a string.

AddInfo Optional, additional textual information about the property.

PropertyType Mandatory, contains the property type as specified in [KNX] 3/7/3-4.

ObjectIndex Mandatory, contains the index at which the property is available.

PropertyId Mandatory, contains the ID of the property as specified in [KNX] 3/7/3-3.

Writeable Mandatory boolean value, which is true if the property is writable.

MaxArrayLength Mandatory, contains the maximum number of elements of the prop-
erty.

9.3.5. Polling master

A group object is defined by the node PollingMaster and contains a unique ID in the
attribute id. It has the following elements:

Title Mandatory, short description of the polling master interface as a string.

AddInfo Optional, additional textual information about the polling master interface.

Here, no type information is given because the basic type is only one byte. The actual
interpretation is defined by the DPType in the interface.3

9.3.6. Polling slave

A group object is defined by the node PollingSlave and contains a unique ID in the
attribute id. It contains the following elements:

Title Mandatory, short description of the polling slave interface as a string.

AddInfo Optional, additional textual information about the polling slave interface.

3At the moment, there is no DPType for this. When functional blocks with polling will be introduced,
a DPT needs to be allocated.

147

9. File format for data exchange with integration tools

9.3.7. Parameter

All parameters are grouped together in the node Parameter. For each parameter, there
is a child node which carries its unique ID in the attribute id.

Possible parameters are:

ListParameter Represents a selection of one element out of a list. It has the following
elements:

Title Mandatory, short description of the parameter as a string.

AddInfo Optional, additional textual information about the parameter.

ListDefault Mandatory, an empty node which contains the ID of the preselected
list element in the attribute idref.

ListElement For each list element, there is one node. It contains the element text
as a string and has a unique ID stored in the attribute id.

Unit Optional, contains some text which represents the unit the value is measured
in.

IntParameter This parameter represents an integer value. It has the following elements:

Title Mandatory, short description of the parameter as a string.

AddInfo Optional, additional textual information about the parameter.

MinValue Mandatory, contains the lower bound as integer number.

MaxValue Mandatory, contains the upper bound as integer number.

Default Mandatory, contains the value which the integration tool should preselect.

Unit Optional, contains some text which represents the unit for measuring the
value.

Precision Optional, contains an integer value which describes the size of the small-
est interval whose bounds the final BCU application will consider as separate
values.

Increment Optional, contains an integer value which is the default increment value
the integration tool should offer if up/down buttons are shown.

FloatParamter This parameter represents a floating point value. It has the following
elements:

Title Mandatory, short description of the parameter as a string.

AddInfo Optional, additional textual information about the parameter.

MinValue Mandatory, contains the lower bound as a floating point number.

MaxValue Mandatory, contains the upper bound as a floating point number.

Default Mandatory, contains the value which the integration tool should preselect.

148

9.4. Configuration description

Unit Optional, contains some text which represents the unit for measuring the
value.

Precision Optional, contains a floating point value which describes the size of the
smallest interval whose bounds the final BCU application will consider as
separate values.

Increment Optional, contains a floating point value which is the default increment
value the integration tool should offer if up/down buttons are shown.

StringParameter Asks for a string. It has the following elements:

Title Mandatory, short description of the parameter as a string.

AddInfo Optional, additional textual information about the parameter.

MaxLength Mandatory, contains the maximum string length which the applica-
tion supports.

RegExp Optional, regular expression the string must match. The format of the
regular expression is the same as used in XML Schema ([XML2], Appendix
F).

Default Mandatory, contains the value which the integration tool should preselect.

Unit Optional, contains some text which represents the unit for measuring the
value.

9.4. Configuration description

The root node is called DeviceConfig and stores the version in the attribute version.
The first mandatory attribute is called ProgramID and contains the same value as in
the associated application information.

All IDs have the same values as in the application information, if they refer to the
same element. Also, every parameter of the application information must be represented
by the corresponding node in this exchange format.

The next mandatory node is PhysicalAddress, which contains the individual address
of the device to which the program is to be downloaded.4 The format is “x.y.z”. Addi-
tionally a 16 bit hex value must be also understood.

If the device is already locked by a key at download time, this key is stored as a
hexadecimal number in the optional node InstallKey. For each key, which should be
stored in the device after download, a Key node is present. It contains the key as
hexadecimal number and the level in the attribute id.

Then the settings of the properties, parameters, polling objects and group objects
follow.

4The assignment of individual addresses has to be done separately from the download process.

149

9. File format for data exchange with integration tools

9.4.1. Group objects

A group object is configured with the node GroupObject and contains the unique ID
this group object has in the application information in the attribute id. It contains the
following elements:

Priority Optional, contains one of the values low, normal, urgent or system specifying
the priority of the messages transmitted via this group object.

SendAddress Optional, contains the group address to send A GroupValue Write tele-
grams to. May only be present if Sending is true. If not present, sending is
disabled.

ReadRequestAddress Optional, contains the group address to send
A GroupValue Read telegrams to. May only be present if Reading is
true. Note that processing the answer must be enabled separately (via
ReceiveAddress for a BCU 1 or UpdateAddress for a BCU 2).

ReceiveAddress Optional, contains a list of group addresses (each in a GroupAddr
node). A GroupValue Write telegrams with these destination addresses will be
processed by the group object. May only be present if Receiving is true. If not
present, receiving is disabled.

ReadAddress Optional, contains a list of group addresses (each in a GroupAddr node).
A GroupValue Read request with these destination addresses will be answered
with the value of the group object. If not present, no A GroupValue Read will be
processed.

UpdateAddress Optional, contains a list of group addresses (each in a GroupAddr
node). A GroupValue Response frames with these destination addresses will up-
date the value of the group object. If not present, no A GroupValue Response
frame will be processed.

9.4.2. Property

A property is configured with the node Property and contains the unique ID in the
attribute id. It contains the following elements:

Disable Optional boolean value; if it is true, the property should be deactivated. The
default value is false.

ReadOnly Optional boolean value; if it is true, the property should be set read only.
The default value is false. This option only makes sense if Writeable is true.

ReadAccess Optional; contains the read access level of the property. The default value
is set to no access restriction.

WriteAccess Optional; contains the write access level of the property. The default value
is set to no access restriction.

150

9.5. Limitations

9.4.3. Polling master

A polling master is configured with the node PollingMaster and contains the unique ID
in the attribute id. If present, it contains the following elements:

PollingAddress Mandatory, contains the polling address which the master uses.

PollingCount Mandatory, contains the number of the highest polling slot used for this
address (numbering starts with 1).

9.4.4. Polling slave

A polling slave is configured with the node PollingSlave and contains the unique ID in
the attribute id. If present, it contains the following elements:

PollingAddress Mandatory, contains the polling address which the slave listens to.

PollingSlot Contains the number of the polling slot to send the polling result (number-
ing starts with 0).

9.4.5. Parameter

All parameters are grouped together in the node Parameter. For each parameter, there
is a child node, which has its unique ID stored in the attribute id (with the same id as
in the application information).

Possible parameters are:

ListParameter Contains the ID of the selected list element in the node Value.

IntParameter contains the selected integer value in the node Value. It must meet all
constraints defined in the application information.

FloatParameter contains the selected floating point value in the node Value. It must
meet all constraints defined in the application information.

StringParameter contains the selected string value in the node Value. It must meet all
constraints defined in the application information.

9.5. Limitations

As a BCU has only limited capabilities, an integration tool must know that the following
limitations exist:

• All access control features will not work for the BCU 1.

• If different access levels are specified for properties with the same object index,
the highest one will be used for the BCU 2.

151

9. File format for data exchange with integration tools

• The sending address for group objects is implicitly added to the other address lists
used, if it is not present there (for BCU 1 and BCU 2).

• The union of the different listening addresses for a group object will be used, if
they are not the same (for BCU 1 and BCU 2).

• The UpdateAddress is not supported for the BCU 1.

• For BCU 1 and BCU 2, SendAddress and ReadRequestAddress must have the same
value, if both are set.

If such a situation is configured, a warning will be issued by the downloader.
BCU 1 have the mask versions (hexadecimal) 0010, 0011 and 0012. BCU 2 have the

mask versions 0020 and 0021.

152

10. Usage/Examples

10.1. Installation

The BCU SDK can either be installed as root in a global location, or in the home
directory of a user. In the latter case, no root access is needed. Loading the EIB kernel
drivers requires root access. The rights to use all eibd back ends can be granted to a
normal user. Up to 2 GB of disk space will be used during compilation.

10.1.1. Installation in a home directory

In the following, it will be assumed that the home directory is /home/user.
First, add /home/user/install/bin to the PATH and /home/user/install/lib to

LD LIBRARY PATH. The simplest way to achieve this is to add

export PATH=/home/user/install/bin:$PATH

export LD_LIBRARY_PATH=/home/user/install/lib:$LD_LIBRARY_PATH

to the user’s .bashrc and .bash profile files. After logging out and logging in again, the
environment should contain the changes.

For each run of configure, add –prefix=/home/user/install to the command line.

10.1.2. Prerequisites

The BCU SDK needs the following software to be installed:

• A reasonably recent Linux system (e.g. Fedora Core 2 or Debian Sarge)

• GCC and G++ in version 3.3 or higher

• libxml2 (plus development files) 2.6.16 or higher

• flex (Debian users must install flex-old, if it is present, instead of flex)

• bison

• GNU make

• xsltproc (part of libxslt)

• xmllint (part of libxml2 sources)

153

10. Usage/Examples

• indent (if you want a readable source code for the PHP and Java clients)

• A java compiler and a jar tool, if you want to build the Java library.

If a tool is too old, it is possible to install a newer version in the home directory of
the user.

10.1.3. Getting the source

Download the following from http: // www. auto. tuwien. ac. at/ ∼mkoegler/

index. php/ bcus :

• BCU SDK sources

• pthsem sources

• all parts of a snapshot of the GNU utilities1

10.1.4. Installing GCC

All parts of the snapshot have to be extracted in the same, empty directory. Then enter
this directory and run

./configure --target=m68hc05 --enable-gdbtk=no --disable-newlib-io-float

make

make install

After the process has finished, m68hc05-gcc should be available for execution.

10.1.5. Installing pthsem

For installing pthsem, either a RPM or deb file can be built and installed as root. As
another alternative, extract the pthsem sources into a directory, enter this directory and
run

./configure

make

make install

Note: If pthsem is installed as root, the above puts the libraries in /usr/local/lib. In
some distributions, /usr/local/lib is not part of the library path. In that case, you have
to take one of the following measures to allow the BCU SDK installation to continue:

1. Copy (or link) libpthsem* to /usr/lib:

cp /usr/local/lib/libpthsem* /usr/lib

1Starting with version 0.0.1, only one big tarball exists.

154

http://www.auto.tuwien.ac.at/~mkoegler/index.php/bcus
http://www.auto.tuwien.ac.at/~mkoegler/index.php/bcus

10.1. Installation

2. Add /usr/local/lib to LD LIBRARY PATH in each shell instance you use to build
(or run) programs depending on pthsem:

export LD_LIBARY_PATH=/usr/local/lib

3. Add /usr/local/lib to the library path (/etc/ld.so.conf) of the system linker:2

echo /usr/local/lib >> /etc/ld.so.conf

ldconfig

4. Build and install pthsem as a rpm/deb package (see Section 10.1.9)

10.1.6. Installing the BCU SDK

Extract the BCU SDK sources, run ./configure –help and decide which back ends are
necessary. Then run ./configure with the appropriate parameters. Finally, run make
install. By default, all back ends are disabled, but it is no problem to enable them all
at the same time.

10.1.7. Granting EIB access to normal users

To allow all local users to use eibd back ends, which use the serial driver, run as root:

chmod 666 /dev/ttyS0

chmod 666 /dev/ttyS1

If the TPUART or bcu1 driver is used, load the driver as root and run

#for TPUART driver

chmod 666 /dev/tpuart0

chmod 666 /dev/tpuart1

#for BCU1 driver

chmod 666 /dev/eib

to grant access to all users.
If you are loading a driver, unload the serial driver or detach the serial driver from

the port (as root):

setserial /dev/ttySx uart none

The interface file used by the USB backend is generated dynamically. It changes its
name with every reconnect of the USB cable or reboot. To determine the name for the
current session, use findknxusb (as discussed in Section 10.2.3) to determine the USB
bus number and device number of the KNX interface. The interface file has the name
/proc/bus/usb/bus-number/device-number. Both numbers have to be expanded to 3
digits with leading zeros. Issue chmod 666 filename to grant access to all users.

2Be aware that corrupting /etc/ld.so.conf can break programs, especially desktop environments.

155

10. Usage/Examples

10.1.8. Development version

The development versions are only available as GIT repositories. All repositories are
located at http://www.auto.tuwien.ac.at/∼mkoegler/git. To access these versions,
install GIT3, which is available at http://www.kernel.org/pub/scm/git.

To get a copy of a repository, issue

git-clone http://www.auto.tuwien.ac.at/~mkoegler/git/REPOSITORY-NAME.git/

To update a copy, issue

git-pull

A gzipped tar file can be created by

git archive --format=tar HEAD | gzip > bcusdk.tar.gz

It is possible to use a pre-version 1.5 GIT. In this case, I recommend to additionally
install Cogito, as it provides a better frontend4.

To get a copy of a repository with Cogito, issue

cg-clone http://www.auto.tuwien.ac.at/~mkoegler/git/REPOSITORY-NAME.git/

To update a copy, issue

cg-update

A tar file can be created by

cg-export TARFILE

Before the bcusdk repository can be built, the following commands must be issued:5
6

aclocal -I m4

autoheader

automake -a --foreign

autoconf

To build a tar file of the bcusdk, you must issue a configure command followed by

make dist

3At the time of writing, the most recent version of GIT is 1.5.2.
4Cogito is not maintained any more and not fully compatible with newer GIT versions.
5If multiple automake or autoconf versions are installed, use the corresponding command of the lastest

version.
6If you installed libxml or pthsem in a non standard location (normally any prefix other than /usr),

aclocal will probably not find the autoconf macros. In this case, you must instruct aclocal to search
additional macro directories via the -I directory parameter.

156

http://www.auto.tuwien.ac.at/~mkoegler/git
http://www.kernel.org/pub/scm/git

10.2. Using eibd

10.1.9. Building install packages

Starting with the release of BCU SDK 0.0.1, all files to build a native package for rpm
and deb based distributions are included. To build a rpm package, issue (as root)

rpmbuild -ta TARFILE

For the build process, the same order must be followed as for a normal installation (first
pthsem build and install, then m68hc05-gnu and finally the bcusdk).

To build a Debian package, first extract the tar file and then issue:

chmod a+x debian/rules

dpkg-buildpackage -rfakeroot

10.2. Using eibd

It is possible to run eibd as daemon. However, this is not recommended for security
reasons. Do not use the bcu1s and tpuarts back ends on Linux 2.6.X systems where X
is lower than 11. In general, Linux 2.4 works more reliably, as it was noticed that a 2.6
kernel will in some situations delay a program for several seconds, so that deadlines in
the bus communication will be missed.

10.2.1. Command line interface

The usage of eibd is:

eibd [OPTION...] URL

Possible URLs are:

ft12:/dev/ttySx connects to a BCU 2 over a serial line

bcu1:/dev/eib connects to a BCU 1 via the BCU1 kernel driver

tpuart24:/dev/tpuartX connects to a TPUART using the kernel driver on a Linux 2.4
kernel

tpuart:/dev/tpuartX connects to a TPUART using the kernel driver on a Linux 2.6
kernel

ip:[multicast addr[:port]] connects via an EIBnet/IP router using the EIBnet/IP Rout-
ing protocol (its routing tables must be set up correctly)

ipt:router-ip[:dest-port[:src-port[:nat-ip[:data-port]]]] connects via an EIBnet/IP
router using the EIBnet/IP Tunneling protocol (the router must be set up
correctly)

157

10. Usage/Examples

bcu1s:/dev/ttySx connects to a BCU 1 over the experimental user mode driver. For
more details, see 7.3.2.

tpuarts:/dev/ttySx connects to a TPUART using the user mode driver.

usb:[bus[:device[:config[:interface]]]] connects over a KNX USB interface

The options are:

-d, –daemon[=FILE] Start the program as daemon. The output will be written to
FILE, if the argument is present.

-e, –eibaddr=EIBADDR Set our own EIB-address to EIBADDR (default 0.0.1) for
drivers which need such an address.

-i,–listen-tcp[=PORT] Listen at TCP port PORT (default 6720).

-p, –pid-file=FILE Write the PID of the process to FILE.

-t, –trace=LEVEL Set the trace level.

-u, –listen-local[=FILE] Listen at Unix domain socket FILE (default /tmp/eib).

The TPUART and EIBnet/IP Routing back ends need an EIB address, which must
be specified by the -e option. For better security, only pass the -u option and avoid
using -i.

If you are using eibd with the ft12 back end using /dev/ttyS0, run the following in a
terminal:

eibd -u ft12:/dev/ttyS0

If you experience any problems, pass -t1023 as option, which will print all debugging
information. The program can be ended by pressing Ctrl+C.

YOU SHOULD NOT RUN EIBD AS ROOT

The only special privileges, which eibd needs, are access to the bus interface. For the
BCU 1, you only need to grant read and write access on the device node (/dev/eibX) to
the user running eibd. For all other eibd backends based on the serial driver, you need
to grant only read and write access on /dev/ttySx. The EIBnet/IP backends require no
privilege. The USB backend requires read and write access to the file representing the
device in usbfs (normaly mounted at /proc/bus/usb).

KNXLive! (http://www.auto.tuwien.ac.at/knx/knxlive.html) contains since
version 0.2 a EIBD setup wizard. The shell script is also part of knxconfig 0.0.2.tar.gz
(available at http://www.auto.tuwien.ac.at/∼mkoegler/index.php/knxlive),
filename knxconfig-0.2/setup/setup-eibd.sh. It can be used as reference, how to start
eibd for the various supported interfaces and how to run eibd as normal user.

158

http://www.auto.tuwien.ac.at/knx/knxlive.html
http://www.auto.tuwien.ac.at/~mkoegler/index.php/knxlive

10.2. Using eibd

EIBnet/IP
Server

EIBnet/IP
Client

NAT NA NAT NB

Site A Site B

IA: 10.0.0.1

EA: 1.1.1.1 EB: 1.1.1.2

IB: 10.1.0.0.1
PA: 3671 PB: 3672

EIBD

Figure 10.1.: Example NAT setup

10.2.2. EIBnet/IP Tunneling via NAT

EIBnet/IP has no security features, so its easy to spoof traffic. If you are transmitting
EIBnet/IP traffic through an untrusted network like the Internet, the whole network
cannot be prevented from accessing your EIB installation, even in the case of IP address
filters. The only secure way to access a remote EIB installation via EIBnet/IP is to
setup a VPN, eg. with OpenVPN.

EIBD supports to connect to a EIBnet/IP Tunnling server via some NAT devices.
The following section covers a setup with NAT devices in front of the server and client.
If your setup is missing one, remove it from the picture and assume the internal IP
address (and port) be the same as the external IP address (and port) (see Figure 10.1).

On site A, you have an EIBnet/IP Tunneling server [EIBnet/IP interface, EIBnet/IP
server of EIBD] with IP address IA, which is behind a NAT device NA with the public
IP address EA. You assign PA as port on the public interface (default: 3671).

On site B, you have EIBD running as EIBnet/IP Tunneling client on a computer with
IP address IB, which is behind a NAT device NB with the public IP address EB. You
assign PB as port on the public interface (default: 3672).

NA must be configured to forward UDP traffic from IA:3671 to EA:PA and back.
NB must be configured to forward UDP traffic from IB :PB to EB :PB and back.
As url for EIBD, you use: ipt:EA:PA:PB :EB :PA

10.2.3. USB backend

USB devices have no fixed name. The command findknxusb lists the addresses and
endpoints of all USB devices connected which match the interface properties of a KNX
USB interface (HID device class with 64 byte interrupt endpoints for input and output).
If the access rights for the current user are correct, the manufacturer and product name
are printed, else Unreadable. If the name can not be displayed, it does not make sense
to run eibd on this interface, as communication with the device is not possible for the
current user7.

Its output is one or more lines like the following:

device 4:17:1:0 (<Unreadable>:<Unreadable>)

7eibd uses usbfs to access the USB devices, so take care, that it is mounted.

159

10. Usage/Examples

The first part is the bus number, the second the device number. Beware that this list
may contain devices which are not KNX interfaces. Please use the product name to
verify that the correct device is used by eibd. If eibd interacts with another USB device,
it could harm the device.

The address of an USB device consists of four parts separated by colons. This address
is passed with the prefix usb: as URL to eibd. The last parts can be omitted if only one
device matches the specified first parts. Otherwise, eibd will randomly select one of the
matching devices. If only one device is found at all, the address can be left empty.

10.2.4. Group Cache

Eibd has an optional module to cache the last value sent to a group address. Enabling
this function disables bus monitor mode (standard bus monitor only, vbusmonitor is not
affected). Only A GroupValue Response or A GroupValue Write telegrams are cached,
others are ignored. It it the responsibility of the application to ensure that caching is
used only for group communication which is for this purpose (i.e., telegrams representing
application states rather than commands).

It has one option:

-c, –GroupCache enable caching of group communication network state

To use it, eibd must be compiled with the –enable-groupcache option. Then, the group
cache can be enabled either with the -c option or over the eibd network protocol.

The group cache has the following functions (eibd client library function, eibd example
program name):

EIB Cache Enable, groupcacheenable Enable the group cache, if not already enabled.
This operations fails if a busmonitor is currently active.

EIB Cache Disable, groupcachedisable Disable and clear the group cache.

EIB Cache Clear, groupcacheclear Clear all cached data

EIB Cache Remove, groupcacheremove Clear cached data for a specific group ad-
dress

EIB Cache Read, groupcacheread Return the last telegram for a specific group ad-
dress

EIB Cache Read Sync, groupcachereadsync Return the last telegram for a specific
group address. If it is not found in the cache, a A GroupValue Read telegram is
sent. If an answer is received within one second, it it cached and returned. If not,
no further A GroupValue Read requests will be sent if this function is called again,
until the cache is cleared for this address. This is done to prevent the application
from being blocked unnecessarily.

160

10.2. Using eibd

If your device is not sending updates correctly, you pass a non zero age parameter.
If the cached value is older than age seconds, eibd will proceed for this request, as
if no cache entry exists.

Example usage:

groupcacheenable local:/tmp/eib # or use -c command line option for eibd

groupcachereadsync local:/tmp/eib 0/2/1 # Non existent group address

Read failed: No such file or directory

groupcachereadsync local:/tmp/eib 0/2/2 # Group address w/ 1 byte object

Write from 3.2.3: C1

10.2.5. EIBnet/IP server

Eibd can also act as a simple EIBnet/IP server, which provides access to the specified
back end.8 This function is enabled with the -S switch. If no multicast address is given,
the default value is used. Note that any character following the -S is interpreted as
IP address (or DNS name). The supported service protocols are enabled using other
options (e.g. pass the parameter -TRDS to eibd to enable all functions).

The options are:

-D, –Discovery enable the EIBnet/IP server to answer discovery and description re-
quests(SEARCH, DESCRIPTION).

-R, –Routing enable EIBnet/IP Routing in the EIBnet/IP server

-S, –Server[=ip[:port]] starts the EIBnet/IP server part

-T, –Tunnelling enable EIBnet/IP Tunneling in the EIBnet/IP server

Enabling this server prohibits the normal bus monitor mode (vBusmonitor is still
working). All other eibd functions are not affected. Eibd does not provide the ability to
use filter tables for routing. This means that telegram loops can easily occur when it is
used in parallel with another EIBnet/IP router on the same line.

The EIBnet/IP server front end of eibd performs a kind of network address translation
on individual addresses. In outgoing frames, 0.0.0 is replaced with the individual address
of the bus access device. Likewise, incoming frames with the individual address of the
bus access device as destination have this destination address replaced with 0.0.0.9 Also,
0.0.0 is returned as the KNX individual address assigned to the Tunnelling connection
in the connection response data block.

Source addresses other than 0.0.0 can be used for outgoing frames, but incoming
frames addressed to individual addresses other than that of the bus access device are

8Note that EIBnet/IP and the eibd protocol are two different protocols. Eibd client programs such as
groupwrite only support the eibd protocol.

9For outgoing frames, this translation is consistent with [KNX] AN033, 2.5.3.3 (cEMI L Data.req).
Applying this concept to incoming frames is an extension to the KNX specification.

161

10. Usage/Examples

suppressed.10 Therefore, 0.0.0 should be used as the local individual address by eibd-
EIBnet/IP client applications. Tunneling clients which use the address returned in the
connection response will do so automatically.

10.2.6. Example programs

If eibd is started as described above, use local:/tmp/eib as URL.
The following useful example programs are installed:

busmonitor1 Decoding bus monitor

busmonitor2 Raw bus monitor

vbusmonitor1 Decoding vBusmonitor11

vbusmonitor2 Raw vBusmonitor

progmodeon Turn programming mode of a device on

progmodeoff Turn programming mode of a device off

progmodestatus Return the state of the programming mode flag

progmodetoggle Toggle programming mode of a device

readindividual List all devices in programming mode

writeaddress Write an individual address to a device in programming mode

groupwrite Send a group write telegram to a group address (for values with more than
6 bit width)

groupswrite Send a group write telegram to a group address (for values with less than
6 bit width)

groupresponse Send a GroupValue Response response message to a group address (for
values with more than 6 bit width)

groupsresponse Send a GroupValue Response response message to a group address (for
values with less than 6 bit width)

groupread Send a group read telegram to a group address. The result is not captured
by this tool. It has to be monitored by a bus monitor. Can be used to refresh
group cache.

10Note that this restriction, which is due to the limitations of the bus access devices and/or drivers
used, significantly limits the use of the Routing protocol with eibd.

11for receving in programs, you should normaly use groupsocketlisten

162

10.2. Using eibd

groupreadresponses Send a group read telegram to a group address and display all
response messages received within one second.

grouplisten Displays all received frames with a particular (destination) group address.

groupsocketlisten Displays all received frames for all (destination) group address.

mmaskver Read the mask version of a device

mpropscan Return a list of all properties of a device

mpropdesc Return information about a property

mpeitype Return the current PEI type of a device

madcread Read an ADC channel

mread Read program memory of a device

mwrite Write program memory of a device

mpropwrite Write a property of a device

mpropread Read a property of a device

msetkey Set key for an access level

mprogmodeon Turn programming mode of a device on

mprogmodeoff Turn programming mode of a device off

mprogmodestatus Return the state of the programming mode flag

mprogmodetoggle Toggle programming mode of a device

All connection oriented management programs (i.e. programs with a m as prefix in the
name) accept a optional key which will be used for authentication before the respective
management procedure is executed. This key is passed as -k KEY before the URL of
the eibd connection.

10.2.7. Usage examples

#turn the programming mode on on 1.3.1

progmodeon local:/tmp/eib 1.3.1

#get the mask version of of 1.3.1

mmaskver local:/tmp/eib 1.3.1

#write the address 1.3.1 to the device in programming mode

writeaddress local:/tmp/eib 1.3.1

#run a bus monitor

163

10. Usage/Examples

busmonitor1 local:/tmp/eib

#run a vBusmonitor

vbusmonitor1 local:/tmp/eib

#send a group write telegram with value 1 to 0/1/1

groupswrite local:/tmp/eib 0/1/1 1

#send group write for values > 6 bits, here 0x01 0x02

groupwrite local:/tmp/eib 0/1/1 1 2

#read memory 0x100 (16 bytes) on 1.3.1

mread local:/tmp/eib 1.3.1 100 16

#write 0x11 0x12 to 0x105 on 1.3.1

mwrite local:/tmp/eib 1.3.1 105 11 12

10.2.8. eibd utilities

The following helper programs are distributed with eibd:

eibnetsearch discovers all EIBnet/IP server listening on a particular multicast address.
For the default address, pass only – as parameter. A list of all EIBnet/IP servers
that answered the search request, together with their IP addresses and ports will
be returned.

If an EIBnet/IP server supports service type 4, it supports the EIBnet/IP Tun-
neling mode of eibd. If an EIBnet/IP server supports service type 5, it supports
the EIBnet/IP Routing mode of eibd. The returned multicast address can be used
to construct a EIBnet/IP Routing URL, the returned individual IP address to
construct a EIBnet/IP Tunneling URL.

eibnetdescribe expects the IP address of a IP router and returns its capabilities (similar
to eibnetsearch, but only for a specific device).

findknxusb lists the addresses of the available KNX USB interfaces.

bcuaddrtab expects a URL of a BCU back end (FT1.2, USB or BCU 1) and displays
the address table size of the interface BCU. Using the –w parameter, it can be
changed to an other value.

If a BCU is used as EIB bus interface, this value should be changed to 0 to allow all
incoming group telegrams to be received by eibd. While this setting is changed,
the application program will not work. The original value must be restored to
make it work again.

bcuread expects the URL of a BCU back end (similar to bcuaddrtab, FT1.2, USB or
BCU 1), a starting memory address (in hexadecimal notation) and a length value
between 1 and 8 (bytes). It displays the content of the specified memory region of
the local BCU.

164

10.3. Recovering from errors

10.3. Recovering from errors

As the BCU SDK provides a wide range of possibilities to cause damage, methods for
how to recover from errors will be shown in the following. As access to the PEI is needed
for some error recovery techniques, it is not recommended to use the BCU SDK when
the PEI connector is not accessible.

• If a BCU program contains a severe error, the BCU 1 can stop responding to all
telegrams. In such a case, directly connect pins 5 and 6 of the PEI. These are the
pins at the short side of the PEI. If the pins on the other side are connected, no
harm will be done because these are both ground pins.

While they are connected, the BCU should start to respond again. In this situation,
it may be necessary to reprogram the individual address. Then a new application
program can be downloaded. After this, the original PEI type can be restored.

• If a BCU 2 shows a malfunction which does not disappear after a reset (power
cycle), you need to perform a master reset. Connect pins 5 and 6 of the PEI.
Then turn off the bus power (or disconnect the BCU from the bus). Keep the
programming button pressed and restore the power.

Then the relevant content of the BCU memory should have been deleted. The
PEI type can be restored and after reprogramming the individual address, a new
application program can be loaded.

• ETS says that a BCU has the wrong manufacturer (or is an other type): Experience
has shown that in this case typically the content of the manufacturer data is
destroyed. To solve the problem, rewrite the memory locations between 0x101 and
0x106. The correct values can either be read out of another device of the same
type or can be read before starting programming attempts.

• In any other cases, reprogramming the BCU should be sufficient.

10.4. Developing BCU applications

To develop a BCU application, first of all a BCU configuration (in the following
bcu.config) and all necessary source files have to be created.

In the source directory, run

build.ai -cbcu bcu.config

This will generate the application information in the file bcu.config.ai and the program
text (value of the program ID tag) will be stored in a file with the name bcu.

If you want to see what is going on internally, add the option -Dtmp. With this option,
a directory named tmp will be created where all temporary files are kept.

Next, generate a configuration description. It is possible to write one from scratch
according to the specification, but you can generate a template. Run

165

10. Usage/Examples

gencitemplate bcu.config.ai bcu.config.ci

This template has many possible structures created with the right IDs. In this template,
all values must be adjusted (and some entries must even be removed in some cases). The
syntax is described in section 9.4.

Build the image with

build.img -cbcu -ibcu.load bcu.config.ci

Again, if you want to see what happens internally, add the option -Dtmp. A directory
named tmp will be created, where all temporary files are kept.

If you want to check if the image is loadable (e.g. if it is small enough), run viewimage
bcu.load. To download it, run loadimage local:/tmp/eib bcu.load.

If an error is found, it is sufficient to rerun build.ai and then build.img, if the struc-
ture has not changed. Otherwise the configuration description needs to be updated or
recreated.

10.4.1. Development build

To simplify debugging during the development phase, it is possible to provide all val-
ues which normally go into the configuration description via CI blocks in the BCU
configuration.

To develop a BCU application, first of all a BCU configuration (in the following
bcu.config) and all necessary source files have to be created.

In the source directory, run

build.dev bcu.config

This will build a image with the name bcu.config.load.
If you want to see what is going on internally, add the option -Dtmp. With this option,

a directory named tmp will be created where all temporary files are kept.
If you want to check if the image is loadable (e.g. if it is small enough), run viewimage

bcu.config.load. To download it, run loadimage local:/tmp/eib bcu.config.load.

10.5. Generating BCU applications

When development is finished, the extra program text file is no longer necessary. In this
case, only

build.ai bcu.config

for building the application information is used. As the configuration description con-
tains the program text (program ID) from the application description, the image is built
with

build.img -ibcu.load bcu.config.ci

There are two useful utilities, embedprogid and extractprogid, to extract and embed
program IDs in application informations and configuration descriptions.

166

10.6. Example program

10.6. Example program

10.6.1. A negation which can be disabled

The following program passes changes of the group object recv to the group object send
as negated values, while the cond group object is enabled. All group objects are of type
DPT Bool (1.002).

cond.config

Device {
PEIType 0 ;
BCU bcu12 ; // use bcu20 f o r a BCU 2.0
T i t l e ” Cond i t iona l negat ion ” ;

Funct ionalBlock {
Ti t l e ” Cond i t iona l negat ion ” ;
P ro f i l e ID 10000 ;
I n t e r f a c e {

Reference { send } ;
Abbreviat ion send ;
DPType DPT Bool ; // same as 1 .002

} ;
I n t e r f a c e {

Reference { recv } ;
Abbreviat ion recv ;
DPType DPT Bool ;

} ;
I n t e r f a c e {

Reference { cond } ;
Abbreviat ion cond ;
DPType DPT Bool ;

} ;
} ;

GroupObject {
Name send ;
Type UINT1 ;
Sending t rue ;
T i t l e ”Output ” ;
StateBased true ;

} ;

GroupObject {

167

10. Usage/Examples

Name recv ;
Type UINT1 ;
on update send update ;
T i t l e ” Input ” ;
StateBased true ;

} ;

GroupObject {
Name cond ;
Type UINT1 ;
Rece iv ing t rue ;
T i t l e ”Condit ion ” ;
StateBased true ;

} ;

i n c lude { ”cond . c” } ;
} ;

cond.c

void send update ()
{

i f (cond){
send=recv +1;
send transmit () ;
}

}

cond.ci

<?xml ve r s i on =”1.0”?>
<DeviceConf ig >

<ProgramID>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</ProgramID>
<PhysicalAddress >1.3.1</ PhysicalAddress>
<GroupObject id=”id0”>

<Pr i o r i t y >low</Pr i o r i t y >
<SendAddress >0/0/1</SendAddress>

</GroupObject>
<GroupObject id=”id2”>

<Pr i o r i t y >low</Pr i o r i t y >
<ReceiveAddress>

<GroupAddr>0/0/5</GroupAddr>
</ReceiveAddress>

</GroupObject>
<GroupObject id=”id4”>

168

10.6. Example program

<Pr i o r i t y >low</Pr i o r i t y >
<ReceiveAddress>

<GroupAddr>0/0/7</GroupAddr>
</ReceiveAddress>

</GroupObject>
</DeviceConfig>

Description

The program will be loaded on the device 1.3.1. It uses 0/0/1 as group address for the
output, 0/0/5 for the input and 0/0/7 for the condition.

Each GroupObject command creates a group object, as well a variable to receive
values. The send object has set Sending to true, so that a transmit function named
object name transmit is generated. If a value is to be sent, the variable is changed and
the transmit function is called.

The recv object contains the on update statement, which causes the given function to
be called when a value for this group object is received.

Setting Receiving to true for cond causes a group object to receive new values in its
associated variable, but does not cause any action in that case.

As a special feature, group objects (and other objects) can be declared in any number
without necessarily having impact on the code size. Objects which are to be visible in
the application information must be referenced in an Interface within a FunctionalBlock.
Otherwise, they will not consume space in the binary image. Also, objects which are
disabled or not referenced in the configuration description will not increase the image
size. However, this automatic removal is not possible when some parts of the object are
used in the C code which cannot be removed by GCC.

10.6.2. Cyclic switching

The following program periodically changes the state of the group object out and trans-
mits its value. The initial period can be selected by the parameter time. At runtime,
the period can be changed via a property.

timer.config

Device {
BCU bcu20 ;
PEIType 0 ;
T i t l e ” Cyc l i c sw i t ch ing ” ;

CI { Phys ica lAddress $1 . 3 . 2 ; } ;

Funct ionalBlock {
Ti t l e ”Timer ” ;
P ro f i l e ID 10001 ;

169

10. Usage/Examples

I n t e r f a c e {
DPType 1 . 0 0 0 ;
Reference { out } ;
Abbreviat ion out ;

} ;
I n t e r f a c e {

DPType 5 . 0 0 0 ;
Reference { time , ctime } ;
Abbreviat ion per iod ;

} ;
} ;

GroupObject {
Name out ;
Type UINT1 ;
T i t l e ”Output ” ;
StateBased true ;
Sending t rue ;

CI { SendAddress $0 /0/9 ; } ;
} ;

Timer {
Name timeout ;
Type UserTimer ;
Reso lut ion RES 1066ms ;
on exp i r e send ;

} ;

IntParameter {
Ti t l e ”Period ” ;
Name time ;
MinValue 1 ;
MaxValue 127 ;
Defau l t 10 ;

CI { Value 20 ; } ;
} ;

i n c lude { ” t imer . c ”} ;
o n i n i t i n i t ;

Object {

170

10.6. Example program

Name prop ;
ObjectType 100 ;

Property {
Name ctime ;
PropertyID 100 ;
Type PDT UNSIGNED CHAR;
T i t l e ”Transmit per iod ” ;

} ;
} ;

} ;

timer.c

void i n i t ()
{

ctime=time ;
t imeout s e t (ctime) ;

}
void send ()
{

out=!out ;
out t ransmi t () ;
t imeout s e t (ctime) ;

}
timer.ci

<?xml ve r s i on =”1.0”?>
<DeviceConfig>

<ProgramID>YYYYYYYYYYYYYYYYYYYY</ProgramID>
<PhysicalAddress >1.3.2</ PhysicalAddress>
<GroupObject id=”id4”>

<Pr i o r i t y >low</Pr i o r i t y >
<SendAddress >0/0/9</SendAddress>

</GroupObject>
<Parameter>

<IntParameter id=”id1”>
<Value>20</Value>

</IntParameter>
</Parameter>

</DeviceConfig>

Description

The program will be loaded into the device 1.3.2. It uses group address 0/0/9 as
destination.

171

10. Usage/Examples

An integer parameter named ctime is defined, which accepts values between 1 and
127. Additionally, a property named ctimer is defined.

The on init clause causes init to be executed. This function copies the initial value
from time to ctime and starts the timer timeout. This timer is defined as a user timer.

When it expires, on expire causes that send is executed. This function inverts the
current state of the group object, transmits its state and starts the timer again.

timer.config also include the CI blocks for build.dev with the same configuration as
specified in timer.ci.

172

Part IV.

Appendix

173

A. Image format

The image format is a binary format. All multi byte values are stored in big endian
format. The image is divided into streams.

A valid image starts with a 10 byte header. After this header, it may only include
well formed streams as described in this chapter, without any space between them. It
is possible to include new stream types, if a new stream identifier number is chosen for
them.

The header has the following content:

• Bytes 0–3: 0xBC 68 0C 05

• Bytes 4–7: 0xBC 68 0C 05

• Bytes 8–9: Size of the whole file

The header of each stream has the following structure:

• Bytes 0–1: Size of the stream (excluding this field)

• Bytes 2–3: Type code of this stream (see common/loadctl.h)

• Bytes 4–end: Any stream specific data.

A.1. Streams

In general, a stream which is specified in the following section must have the described
format and may not be extended.

A.1.1. L BCU TYPE

This stream specifies for which BCU the image is intended. It contains the mask version
in bytes 4–5.

A.1.2. L CODE

This stream contains the memory image of the BCU program. For BCU 1.2 and 2.x,
this is the content of the EEPROM starting at address 0x100.

175

A. Image format

A.1.3. L STRING PAR

This stream describes the location of a string parameter. Bytes 4–5 contain the address
of the parameter, bytes 6–7 the length of the reserved space. Then, the ID value of the
parameter of the application information follows as a null terminated string.

A.1.4. L INT PAR

This stream describes the location of an integer parameter. Bytes 4–5 contain the address
of the parameter, byte 6 the type of the integer. Then, the ID value of the parameter
from the application information follows as a null terminated string.

If the type value is negative, the type is signed, else unsigned. The allocated size is
2abs(type)−1.

A.1.5. L FLOAT PAR

This stream describes the location of a float parameter. Bytes 4–5 contain the address
of the parameter. Then the ID value of the parameter of the application information
follows as null terminated string.

A.1.6. L LIST PAR

This stream describes the location of a list parameter. Bytes 4–5 contain the address of
the parameter, bytes 6–7 the count of list elements. Then, the ID value of the parameter,
which is used in the application information, follows as a null terminated string. After
that, the ID of the list elements follows (as null terminated strings) in the same order
they have in the C enumeration.

A.1.7. L GROUP OBJECT

Byte 4 contains the number of the group object, then the ID value of the group object
which is used in the application information follows as a null terminated string.

A.1.8. L BCU1 SIZE

• Bytes 4–5: size of the program in the EEPROM

• Bytes 6–7: size of the available stack

• Bytes 8–9: size of the data segment

• Bytes 10–11: size of the bss segment

176

A.1. Streams

A.1.9. L BCU2 SIZE

• Bytes 4–5: size of the program in the EEPROM

• Bytes 6–7: size of the available stack

• Bytes 8–9: size of the data segment in lo-RAM

• Bytes 10–11: size of the bss segment in lo-RAM

• Bytes 12–13: size of the data segment in hi-RAM

• Bytes 14–15: size of the bss segment in hi-RAM

A.1.10. L BCU2 INIT

• Bytes 4–5: start of the address table

• Bytes 6–7: size of the address table

• Bytes 8–9: start of the association table

• Bytes 10–11: size of the association table

• Bytes 12–13: start of the readonly text segment

• Bytes 14–15: end of the readonly text segment

• Bytes 16–17: start of the parameter segment

• Bytes 18–19: end of the parameter segment

• Bytes 20–21: pointer to the EIB User Object List

• Bytes 22–23: count of the EIB User Objects

• Bytes 24–25: address of the application call back

• Bytes 26–27: pointer to the group object table

• Bytes 28–29: pointer to segment 0 (for group objects)

• Bytes 30–31: pointer to segment 1 (for group objects)

• Bytes 32–33: address of handler for PEI handler

• Bytes 34–35: address of the init function

• Bytes 36–37: address of the run function

• Bytes 38–39: address of the save function

177

A. Image format

• Bytes 40–41: start of the .eeprom segment

• Bytes 42–43: end of the .eeprom segment

• Bytes 44–45: polling address use by the polling slave

• Byte 46: polling slot used by the polling slave

A.1.11. L BCU2 KEY

The first four bytes contain the installation key. Then the keys to be set follow (as four
byte values). The first key becomes number 0, the second number 1, and so on.

A.2. Valid images

A valid image for a BCU 1.2 contains a L BCU TYPE, a L CODE and a L BCU1 SIZE
stream. The L BCU TYPE contains the mask version 0x0012. Additionally, all memory
requirements of the program must be within the limitation of the BCU. Other valid
streams are ignored.

A valid image for a BCU 2.0 (or 2.1) contains a L BCU TYPE, a L CODE,
L BCU2 SIZE and a L BCU2 INIT stream. The L BCU TYPE contains the mask
version 0x0020 (or 0x0021 for a BCU 2.1). All memory requirements of the program
must be within the limitation of the BCU. Other valid streams are ignored.

If a L BCU2 KEY stream is present, its keys are used. It must contain one installation
key and three keys for the three privileged access levels. If it is missing, all keys are
assumed to be 0xFFFFFFFF.

During loading, the following segments in the EEPROM are allocated (and loaded):

header The memory between 0x100 and 0x115.

addrtab Address table, must start at 0x116 and is checksum protected; needs access
level 1 for write access.

assoctab Association table, is checksum protected; needs access level 1 for write access.

readonly Read only text segment, is checksum protected; needs access level 0 for write
access.

eeprom .eeprom segment, is not checksum protected, e.g. for group objects in the
EEPROM; needs access level 1 for write access.

param Parameter segment, is checksum protected, intended for run time parameters
which are changed by A Memory Write; needs access level 2 for write access.

The order and location of these segments is determined by the L BCU2 INIT stream.
The segments may not overlap. If a checksum is used, the last byte of the segment is used
for this purpose. If any space is left between segments, the values of these EEPROM
locations are undefined.

178

B. Tables

B.1. Available DP Types

BCU SDK knows the following DPT types by name. This list is based on the proposed
list of 2004-02-12.

DPT Number Name

1.001 DPT Switch
1.002 DPT Bool
1.003 DPT Enable
1.004 DPT Ramp
1.005 DPT Alarm
1.006 DPT BinaryValue
1.007 DPT Step
1.008 DPT UpDown
1.009 DPT OpenClose
1.010 DPT Start
1.011 DPT State
1.012 DPT Invert
1.013 DPT DimSendStyle
1.014 DPT InputSource
1.015 DPT Reset
1.016 DPT Ack
1.017 DPT Trigger
1.018 DPT Occupancy
1.019 DPT Window Door
1.020 DPT Toggle Mode
1.021 DPT LogicalFunction
1.022 DPT Scene AB
1.023 DPT ShutterBlinds Mode
1.100 DPT Heat Cool
2.001 DPT Switch Control
2.002 DPT Bool Control
2.003 DPT Enable Control
2.004 DPT Ramp Control
2.005 DPT Alarm Control

179

B. Tables

DPT Number Name

2.006 DPT BinaryValue Control
2.007 DPT Step Control
2.008 DPT Direction1 Control
2.009 DPT Direction2 Control
2.010 DPT Start Control
2.011 DPT State Control
2.012 DPT Invert Control
3.007 DPT Control Dimming
3.008 DPT Control Blinds
3.009 DPT Mode Boiler
4.001 DPT Char ASCII
4.002 DPT Char 8859 1
5.001 DPT Scaling
5.003 DPT Angle
5.004 DPT Percent U8
5.005 DPT DecimalFactort
5.010 DPT Value 1 Ucount2
6.001 DPT Percent V8
6.010 DPT Value 1 Count
6.020 DPT Status Mode3
7.001 DPT Value 2 Ucount
7.002 DPT TimePeriodMsec
7.003 DPT TimePeriod10MSec
7.004 DPT TimePeriod100MSec
7.005 DPT TimePeriodSec
7.006 DPT TimePeriodMin
7.007 DPT TimePeriodHrs
7.010 DPT PropDataType
7.011 DPT Length mm
7.012 DPT UElCurrentmA
8.001 DPT Value 2 Count
8.002 DPT DeltaTimeMsec
8.003 DPT DeltaTime10MSec
8.004 DPT DeltaTime100MSec
8.005 DPT DeltaTimeSec
8.006 DPT DeltaTimeMin
8.007 DPT DeltaTimeHrs
8.010 DPT Percent V16
8.011 DPT Rotation Angle
9.001 DPT Value Temp
9.002 DPT Value Tempd

180

B.1. Available DP Types

DPT Number Name

9.003 DPT Value Tempa
9.004 DPT Value Lux
9.005 DPT Value Wsp
9.006 DPT Value Pres
9.007 DPT Value Humidity
9.008 DPT Value AirQuality
9.009 DPT Value AirFlow
9.010 DPT Value Time1
9.011 DPT Value Time2
9.020 DPT Value Volt
9.021 DPT Value Curr
9.022 DPT PowerDensity
9.023 DPT KelvinPerPercent
9.024 DPT Power
10.001 DPT TimeOfDay
11.001 DPT Date
12.001 DPT Value 4 Ucount
13.001 DPT Value 4 Count
13.002 DPT ElectricEnergy 10Wh
13.003 DPT ElectricReactiveEnergy 10VAh
13.100 DPT LongDeltaTimeSec
14.000 DPT Value Acceleration
14.001 DPT Value Acceleration Angular
14.002 DPT Value Activation Energy
14.003 DPT Value Activity
14.004 DPT Value Mol
14.005 DPT Value Amplitude
14.006 DPT Value AngleRad
14.007 DPT Value AngleDeg
14.008 DPT Value Angular Momentum
14.009 DPT Value Angular Velocity
14.010 DPT Value Area
14.011 DPT Value Capacitance
14.012 DPT Value Charge DenstySurface
14.013 DPT Value Charge DenstyVolume
14.014 DPT Value Compressibility
14.015 DPT Value Conductance
14.016 DPT Value Electrical Conductivity
14.017 DPT Value Density
14.018 DPT Value Electric Charge
14.019 DPT Value Electric Current

181

B. Tables

DPT Number Name

14.020 DPT Value Electric CurrentDensity
14.021 DPT Value Electric DipoleMoment
14.022 DPT Value Electric Displacement
14.023 DPT Value Electric FieldStrength
14.024 DPT Value Electric Flux
14.025 DPT Value Electric FluxDensity
14.026 DPT Value Electric Polarization
14.027 DPT Value Electric Potential
14.028 DPT Value Electric PotentialDifference
14.029 DPT Value ElectromagneticMMoment
14.030 DPT Value Electromotive Force
14.031 DPT Value Energy
14.032 DPT Value Force
14.033 DPT Value Frequency
14.034 DPT Value Angular Frequency
14.035 DPT Value Heat Capacity
14.036 DPT Value Heat FlowRate
14.037 DPT Value Heat Quantity
14.038 DPT Value Impedance
14.039 DPT Value Length
14.040 DPT Value Light Quantity
14.041 DPT Value Luminance
14.042 DPT Value Luminous Flux
14.043 DPT Value Luminous Intensity
14.044 DPT Value Magnetic FieldStrength
14.045 DPT Value Magnetic Flux
14.046 DPT Value Magnetic FluxDensity
14.047 DPT Value Magnetic Moment
14.048 DPT Value Magnetic Polarization
14.049 DPT Value Magnetization
14.050 DPT Value MagnetomotiveForce
14.051 DPT Value Mass
14.052 DPT Value MassFlux
14.053 DPT Value Momentum
14.054 DPT Value Phase AngleRad
14.055 DPT Value Phase AngleDeg
14.056 DPT Value Power
14.057 DPT Value Power Factor
14.058 DPT Value Pressure
14.059 DPT Value Reactance
14.060 DPT Value Resistance

182

B.1. Available DP Types

DPT Number Name

14.061 DPT Value Resistivity
14.062 DPT Value SelfInductance
14.063 DPT Value SolidAngle
14.064 DPT Value Sound Intensty
14.065 DPT Value Speed
14.066 DPT Value Stress
14.067 DPT Value Surface Tension
14.068 DPT Value Common Temperature
14.069 DPT Value Absolute Temperature
14.070 DPT Value TemperatureDifference
14.071 DPT Value Thermal Capacity
14.072 DPT Value Thermal Conductivity
14.073 DPT Value ThermoelectricPower
14.074 DPT Value Time
14.075 DPT Value Torque
14.076 DPT Value Volume
14.077 DPT Value Volume Flux
14.078 DPT Value Weight
14.079 DPT Value Work
15.000 DPT Access Data
16.000 DPT String ASCII
16.001 DPT String 8859 1
17.001 DPT SceneNumber
18.001 DPT SceneControl
19.001 DPT DateTime
20.001 DPT SCLOMode
20.002 DPT BuildingMode
20.003 DPT OccMode
20.004 DPT Priority
20.005 DPT LightApplicationMode
20.006 DPT ApplicationArea
20.007 DPT AlarmClassType
20.008 DPT PSUMode
20.011 DPT ErrorClass System
20.012 DPT ErrorClass HVAC
20.100 DPT FuelType
20.101 DPT BurnerType
20.102 DPT HVACMode
20.103 DPT DHWMode
20.104 DPT LoadPriority
20.105 DPT HVACContrMode

183

B. Tables

DPT Number Name

20.106 DPT HVACEmergMode
20.107 DPT ChangeoverMode
20.108 DPT ValveMode
20.109 DPT DamperMode
20.110 DPT HeaterMode
20.111 DPT FanMode
20.112 DPT MasterSlaveMode
20.600 DPT Behaviour Lock Unlock
20.601 DPT Behaviour Bus Power Up Down
21.001 DPT StatusGen
21.002 DPT Device Control
21.100 DPT ForceSign
21.101 DPT ForceSignCool
21.102 DPT StatusRHC
21.103 DPT StatusSDHWC
21.104 DPT FuelTypeSet
21.105 DPT StatusRCC
21.106 DPT StatusAHU
22.100 DPT StatusDHWC
23.001 DPT OnOff Action
23.002 DPT Alarm Reaction
23.003 DPT UpDown Action
23.100 DPT PresenceSensorType
23.101 DPT HVACOperationModeType
23.102 DPT HVAC PB Action
24.001 DPT VarString 8859 1
25.001 DPT DoubleNibble
200.001 DPT DelayTimeMinSc
200.100 DPT Heat Cool Z
200.102 DPT WindowState
201.100 DPT HVACMode Z
201.101 DPT HVACModeUser
201.102 DPT DHWMode Z
201.103 DPT DHWModeUser
201.104 DPT HVACContrMode Z
201.105 DPT EnablH CStage Z
201.106 DPT EnableH Energy
201.107 DPT BuildingMode Z
201.108 DPT OccMode Z
201.109 DPT HVACEmergMode Z
201.110 DPT EmergMode Z

184

B.1. Available DP Types

DPT Number Name

202.001 DPT RelValue Z
202.002 DPT UCountValue8 Z
202.100 DPT ActPosSetp
203.002 DPT TimePeriodMsec Z
203.003 DPT TimePeriod10Msec Z
203.004 DPT TimePeriod100Msec Z
203.005 DPT TimePeriodSec Z
203.006 DPT TimePeriodMin Z
203.007 DPT TimePeriodHrs Z
203.011 DPT UFlowRateLiter h Z
203.012 DPT UCountValue16 Z
203.013 DPT UElCurrentA Z
203.014 DPT PowerKW Z
203.016 DPT TimePeriodMin Z
203.100 DPT HVACAirQual Z
203.101 DPT WindSpeed Z
203.102 DPT SunIntensity Z
203.103 DPT ElPower
203.104 DPT HVACAirFlowAbs Z
204.001 DPT RelSignedValue
205.002 DPT DeltaTimeMsec Z
205.003 DPT DeltaTime10Msec Z
205.004 DPT DeltaTime100Msec Z
205.005 DPT DeltaTimeSec Z
205.006 DPT DeltaTimeMin Z
205.007 DPT DeltaTimeHrs Z
205.100 DPT TempHVACAbs Z
205.101 DPT TempHVACRel Z
205.102 DPT HVACAirFlowRel Z
206.100 DPT HVACModeNext
206.101 DPT HVACModeExceptPer
206.102 DPT DHWModeNext
206.103 DPT DHWModeExceptPer
206.104 DPT OccModeNext
206.105 DPT BuildingModeNext
206.106 DPT TariffNext
207.100 DPT StatusBUC
207.101 DPT LockSign
207.102 DPT ValueDemBOC
207.103 DPT LockSignHFDM
207.104 DPT ActPosDemAbs

185

B. Tables

DPT Number Name

207.105 DPT StatusAct
207.106 DPT RelValUser
208.100 DPT HVACAirQualSetpSet
208.101 DPT ElPowerNext
208.102 DPT TempNext
209.100 DPT StatusHPM
209.101 DPT TempRoomDemAbs
209.102 DPT StatusCPM
209.103 DPT StatusWTC
210.100 DPT TempFlowWaterDemAbs
21.100 DPT LM Priority
211.100 DPT EnergyDemWater
211.100 DPT RoomTempSetpShift
212.100 DPT TempRoomSetpSetShift
213.100 DPT TempRoomSetpSet
213.101 DPT TempDHWSetpSet
214.100 DPT PowerFlowWaterDemHPM
214.101 DPT PowerFlowWaterDemCPM
215.100 DPT StatusBOC
215.101 DPT StatusCC
216.100 DPT SpecHeatProd
217.001 DPT Version
218.001 DPT VolumeLiter Z
219.001 DPT AlarmInfo
220.100 DPT TempHVACAbsNext
221.001 DPT SerNum
222.001 DPT Current Set F16
222.100 DPT TempRoomSetpSetF16
222.101 DPT TempRoomSetpSetShiftF16
223.100 DPT EnergyDemAir
224.100 DPT TempSupplyAirSetpSet
225.001 DPT ScalingSpeed
225.002 DPT Scaling Step Time
226.500 DPT PowerPriority
227.001 DPT PowerPeriod

186

B.2. Available property IDs

B.2. Available property IDs

BCU SDK knows the following property IDs by name. This list is based on the proposed
list of 2004-02-12.

Property ID Name

1 PID OBJECT TYPE
2 PID OBJECT NAME
3 PID SEMAPHOR
4 PID GROUP OBJECT REFERENCE
5 PID LOAD STATE CONTROL
6 PID RUN STATE CONTROL
7 PID TABLE REFERENCE
8 PID SERVICE CONTROL
9 PID FIRMWARE REVISION
10 PID SERVICES SUPPORTED
11 PID SERIAL NUMBER
12 PID MANUFACTURER ID
13 PID PROGRAM VERSION
14 PID DEVICE CONTROL
15 PID ORDER INFO
16 PID PEI TYPE
17 PID PORT CONFIGURATION
18 PID POLL GROUP SETTINGS
19 PID MANUFACTURER DATA
20 PID ENABLE
21 PID DESCRIPTION
22 PID FILE
23 PID TABLE
24 PID ENROL
25 PID VERSION
26 PID GROUP OBJECT LINK
27 PID MCB TABLE
28 PID ERROR CODE
51 PID ROUTING COUNT
52 PID MAX RETRY COUNT
53 PID ERROR FLAGS
54 PID PROGMODE
55 PID PRODUCT ID
56 PID MAX APDULENGTH
57 PID SUBNET ADDR
58 PID DEVICE ADDR

187

B. Tables

Property ID Name

59 PID PB CONFIG
60 PID ADDR REPORT
61 PID ADDR CHECK
62 PID OBJECT VALUE
63 PID OBJECTLINK
64 PID APPLICATION
65 PID PARAMETER
66 PID OBJECTADDRESS
67 PID PSU TYPE
68 PID PSU STATUS
69 PID PSU ENABLE
70 PID DOMAIN ADDRESS
71 PID IO LIST
72 PID MGT DESCRIPTOR 01
73 PID PL110 PARAM
74 PID RF REPEAT COUNTER
75 PID RECEIVE BLOCK TABLE
76 PID RANDOM PAUSE TABLE
77 PID RECEIVE BLOCK NR
78 PID HARDWARE TYPE
79 PID RETRANSMITTER NUMBER
80 PID SERIAL NR TABLE
81 PID BIBATMASTER ADDRESS
101 PID CHANNEL 01 PARAM
102 PID CHANNEL 02 PARAM
103 PID CHANNEL 03 PARAM
104 PID CHANNEL 04 PARAM
105 PID CHANNEL 05 PARAM
106 PID CHANNEL 06 PARAM
107 PID CHANNEL 07 PARAM
108 PID CHANNEL 08 PARAM
109 PID CHANNEL 09 PARAM
110 PID CHANNEL 10 PARAM
111 PID CHANNEL 11 PARAM
112 PID CHANNEL 12 PARAM
113 PID CHANNEL 13 PARAM
114 PID CHANNEL 14 PARAM
115 PID CHANNEL 15 PARAM
116 PID CHANNEL 16 PARAM
117 PID CHANNEL 17 PARAM
118 PID CHANNEL 18 PARAM

188

B.2. Available property IDs

Property ID Name

119 PID CHANNEL 19 PARAM
120 PID CHANNEL 20 PARAM
121 PID CHANNEL 21 PARAM
122 PID CHANNEL 22 PARAM
123 PID CHANNEL 23 PARAM
124 PID CHANNEL 24 PARAM
125 PID CHANNEL 25 PARAM
126 PID CHANNEL 26 PARAM
127 PID CHANNEL 27 PARAM
128 PID CHANNEL 28 PARAM
129 PID CHANNEL 29 PARAM
130 PID CHANNEL 30 PARAM
131 PID CHANNEL 31 PARAM
132 PID CHANNEL 32 PARAM
51 PID EXT FRAMEFORMAT
52 PID ADDRTAB1
53 PID GROUP RESPONSER TABLE
51 PID PARAM REFERENCE
51 PID MEDIUM TYPE
52 PID COMM MODE
53 PID MEDIUM AVAILABILITY
54 PID ADD INFO TYPES
55 PID TIME BASE
56 PID TRANSP ENABLE
51 PID GRPOBJTABLE
52 PID EXT GRPOBJREFERENCE
51 PID POLLING STATE
52 PID POLLING SLAVE ADDR
53 PID POLL CYCLE
51 PID AR TYPE REPORT
51 PID PROJECT INSTALLATION ID
52 PID KNX INDIVIDUAL ADDRESS
53 PID ADDITIONAL INDIVIDUAL ADDRESSES
54 PID CURRENT IP ASSIGNMENT METHOD
55 PID IP ASSIGNMENT METHOD
56 PID IP CAPABILITIES
57 PID CURRENT IP ADDRESS
58 PID CURRENT SUBNET MASK
59 PID CURRENT DEFAULT GATEWAY
60 PID IP ADDRESS
61 PID SUBNET MASK

189

B. Tables

Property ID Name

62 PID DEFAULT GATEWAY
63 PID DHCP BOOTP SERVER
64 PID MAC ADDRESS
65 PID SYSTEM SETUP MULTICAST ADDRESS
66 PID ROUTING MULTICAST ADDRESS
67 PID TTL
68 PID EIBNETIP DEVICE CAPABILITIES
69 PID EIBNETIP DEVICE STATE
70 PID EIBNETIP ROUTING CAPABILITIES
71 PID PRIORITY FIFO ENABLED
72 PID QUEUE OVERFLOW TO IP
73 PID QUEUE OVERFLOW TO KNX
74 PID MSG TRANSMIT TO IP
75 PID MSG TRANSMIT TO KNX
76 PID FRIENDLY NAME

190

C. Source documentation

C.1. eibclient.h File Reference

#include "sys/cdefs.h"

#include "stdint.h"

#include "eibloadresult.h"

Typedefs

• typedef EIBConnection EIBConnection

type represents a connection to eibd

• typedef uint16 t eibaddr t

type for storing a EIB address

Functions

• EIBConnection ∗ EIBSocketURL (const char ∗url)

Opens a connection to eibd.

• EIBConnection ∗ EIBSocketLocal (const char ∗path)

Opens a connection to eibd over a socket.

• EIBConnection ∗ EIBSocketRemote (const char ∗host, int port)

Opens a connection to eibd over TCP/IP.

• int EIBClose (EIBConnection ∗con)

Closes and frees a connection.

• int EIBClose sync (EIBConnection ∗con)

Closes and frees a connection and wait, until all resources are freed.

• int EIBComplete (EIBConnection ∗con)

Finish an asynchronous request (and block until then).

191

C. Source documentation

• int EIB Poll Complete (EIBConnection ∗con)

Checks if an asynchronous request is completed (non-blocking).

• int EIB Poll FD (EIBConnection ∗con)

Returns FD to wait for the next event.

• int EIBReset (EIBConnection ∗con)

Switches the connection to pristine state.

• int EIBReset async (EIBConnection ∗con)

Switches the connection to pristine state - asynchronous.

• int EIBOpenBusmonitor (EIBConnection ∗con)

Switches the connection to binary busmonitor mode.

• int EIBOpenBusmonitor async (EIBConnection ∗con)

Switches the connection to binary busmonitor mode - asynchronous.

• int EIBOpenBusmonitorText (EIBConnection ∗con)

Switches the connection to text busmonitor mode.

• int EIBOpenBusmonitorText async (EIBConnection ∗con)

Switches the connection to text busmonitor mode - asynchronous.

• int EIBOpenVBusmonitor (EIBConnection ∗con)

Switches the connection to binary vbusmonitor mode.

• int EIBOpenVBusmonitor async (EIBConnection ∗con)

Switches the connection to binary vbusmonitor mode - asynchronous.

• int EIBOpenVBusmonitorText (EIBConnection ∗con)

Switches the connection to text vbusmonitor mode.

• int EIBOpenVBusmonitorText async (EIBConnection ∗con)

Switches the connection to text vbusmonitor mode - asynchronous.

• int EIBGetBusmonitorPacket (EIBConnection ∗con, int maxlen, uint8 t
∗buf)

192

C.1. eibclient.h File Reference

Receives a packet on a busmonitor connection.

• int EIBOpenT Connection (EIBConnection ∗con, eibaddr t dest)

Opens a connection of type T Connection.

• int EIBOpenT Connection async (EIBConnection ∗con, eibaddr t dest)

Opens a connection of type T Connection - asynchronous.

• int EIBOpenT Individual (EIBConnection ∗con, eibaddr t dest, int write -
only)

Opens a connection of type T Individual.

• int EIBOpenT Individual async (EIBConnection ∗con, eibaddr t dest, int
write only)

Opens a connection of type T Individual - asynchronous.

• int EIBOpenT Group (EIBConnection ∗con, eibaddr t dest, int
write only)

Opens a connection of type T Group.

• int EIBOpenT Group async (EIBConnection ∗con, eibaddr t dest, int
write only)

Opens a connection of type T Group - asynchronous.

• int EIBOpenT Broadcast (EIBConnection ∗con, int write only)

Opens a connection of type T Broadcast.

• int EIBOpenT Broadcast async (EIBConnection ∗con, int write only)

Opens a connection of type T Broadcast - asynchronous.

• int EIBOpenT TPDU (EIBConnection ∗con, eibaddr t src)

Opens a raw Layer 4 connection.

• int EIBOpenT TPDU async (EIBConnection ∗con, eibaddr t src)

Opens a raw Layer 4 connection - asynchronous.

• int EIBSendAPDU (EIBConnection ∗con, int len, const uint8 t ∗data)

Sends an APDU.

• int EIBGetAPDU (EIBConnection ∗con, int maxlen, uint8 t ∗buf)

193

C. Source documentation

Receive an APDU (blocking).

• int EIBGetAPDU Src (EIBConnection ∗con, int maxlen, uint8 t ∗buf,
eibaddr t ∗src)

Receive a APDU with source address (blocking).

• int EIBSendTPDU (EIBConnection ∗con, eibaddr t dest, int len, const
uint8 t ∗data)

Sends a TPDU with destination address.

• int EIBGetTPDU (EIBConnection ∗con, int maxlen, uint8 t ∗buf, eibaddr t
∗src)

Receive a TPDU with source address.

• int EIBOpen GroupSocket (EIBConnection ∗con, int write only)

Opens a Group communication interface.

• int EIBOpen GroupSocket async (EIBConnection ∗con, int write only)

Opens a Group communication interface - asynchronous.

• int EIBSendGroup (EIBConnection ∗con, eibaddr t dest, int len, const
uint8 t ∗data)

Sends a group APDU.

• int EIBGetGroup Src (EIBConnection ∗con, int maxlen, uint8 t ∗buf,
eibaddr t ∗src, eibaddr t ∗dest)

Receive a group APDU with source address (blocking).

• int EIB M ReadIndividualAddresses (EIBConnection ∗con, int maxlen,
uint8 t ∗buf)

List devices in programming mode.

• int EIB M ReadIndividualAddresses async (EIBConnection ∗con, int
maxlen, uint8 t ∗buf)

List devices in programming mode - asynchronous.

• int EIB M Progmode On (EIBConnection ∗con, eibaddr t dest)

Turn on programming mode (connectionless).

• int EIB M Progmode On async (EIBConnection ∗con, eibaddr t dest)

194

C.1. eibclient.h File Reference

Turns on programming mode (connectionless) - asynchronous.

• int EIB M Progmode Off (EIBConnection ∗con, eibaddr t dest)

Turns off programming mode (connectionless).

• int EIB M Progmode Off async (EIBConnection ∗con, eibaddr t dest)

Turns off programming mode (connectionless) - asynchronous.

• int EIB M Progmode Toggle (EIBConnection ∗con, eibaddr t dest)

Toggle programming mode (connectionless).

• int EIB M Progmode Toggle async (EIBConnection ∗con, eibaddr t
dest)

Toggle programming mode (connectionless) - asynchronous.

• int EIB M Progmode Status (EIBConnection ∗con, eibaddr t dest)

Check if a device is in programming mode (connectionless).

• int EIB M Progmode Status async (EIBConnection ∗con, eibaddr t
dest)

Check if a device is in programming mode (connectionless) - asynchronous.

• int EIB M GetMaskVersion (EIBConnection ∗con, eibaddr t dest)

Retrieve the mask version (connectionless).

• int EIB M GetMaskVersion async (EIBConnection ∗con, eibaddr t
dest)

Retrieve the mask version (connectionless) - asynchronous.

• int EIB M WriteIndividualAddress (EIBConnection ∗con, eibaddr t
dest)

Set individual address for device currently in programming mode.

• int EIB M WriteIndividualAddress async (EIBConnection ∗con,
eibaddr t dest)

Set individual address for device currently in programming mode - asynchronous.

• int EIB MC Connect (EIBConnection ∗con, eibaddr t dest)

Opens a management connection.

195

C. Source documentation

• int EIB MC Connect async (EIBConnection ∗con, eibaddr t dest)

Opens a management connection - asynchronous.

• int EIB MC Read (EIBConnection ∗con, uint16 t addr, int len, uint8 t
∗buf)

Read BAU memory (over a management connection).

• int EIB MC Read async (EIBConnection ∗con, uint16 t addr, int len, uint8 t
∗buf)

Read BAU memory (over a management connection) - asynchronous.

• int EIB MC Write (EIBConnection ∗con, uint16 t addr, int len, const uint8 t
∗buf)

Write BAU memory (over a management connection).

• int EIB MC Write async (EIBConnection ∗con, uint16 t addr, int len, const
uint8 t ∗buf)

Write BAU memory (over a management connection) - asynchronous.

• int EIB MC Progmode On (EIBConnection ∗con)

Turns programming mode on (over a management connection).

• int EIB MC Progmode On async (EIBConnection ∗con)

Turns programming mode on (over a management connection) - asynchronous.

• int EIB MC Progmode Off (EIBConnection ∗con)

Turns programming mode off (over a management connection).

• int EIB MC Progmode Off async (EIBConnection ∗con)

Turns programming mode off (over a management connection) - asynchronous.

• int EIB MC Progmode Toggle (EIBConnection ∗con)

Toggles programming mode (over a management connection) - asynchronous.

• int EIB MC Progmode Toggle async (EIBConnection ∗con)

Toggles programming mode (over a management connection) - asynchronous.

• int EIB MC Progmode Status (EIBConnection ∗con)

Check if a device is in programming mode (over a management connection).

196

C.1. eibclient.h File Reference

• int EIB MC Progmode Status async (EIBConnection ∗con)

Check if a device is in programming mode (over a management connection) - asyn-
chronous.

• int EIB MC GetMaskVersion (EIBConnection ∗con)

Retrieve the mask version (over a management connection).

• int EIB MC GetMaskVersion async (EIBConnection ∗con)

Retrieve the mask version (over a management connection) - asynchronous.

• int EIB MC PropertyRead (EIBConnection ∗con, uint8 t obj, uint8 t prop-
erty, uint16 t start, uint8 t nr of elem, int max len, uint8 t ∗buf)

Read a property (over a management connection).

• int EIB MC PropertyRead async (EIBConnection ∗con, uint8 t obj, uint8 -
t property, uint16 t start, uint8 t nr of elem, int max len, uint8 t ∗buf)

Read a property (over a management connection) - asynchronous.

• int EIB MC PropertyWrite (EIBConnection ∗con, uint8 t obj, uint8 t prop-
erty, uint16 t start, uint8 t nr of elem, int len, const uint8 t ∗buf, int max len,
uint8 t ∗res)

Write a property (over a management connection).

• int EIB MC PropertyWrite async (EIBConnection ∗con, uint8 t obj,
uint8 t property, uint16 t start, uint8 t nr of elem, int len, const uint8 t ∗buf, int
max len, uint8 t ∗res)

Write a property (over a management connection) - asynchronous.

• int EIB MC PropertyDesc (EIBConnection ∗con, uint8 t obj, uint8 t prop-
erty, uint8 t ∗type, uint16 t ∗max nr of elem, uint8 t ∗access)

Read a property description (over a management connection).

• int EIB MC PropertyDesc async (EIBConnection ∗con, uint8 t obj, uint8 t
property, uint8 t ∗type, uint16 t ∗max nr of elem, uint8 t ∗access)

Read a property description (over a mangement connection) - asynchronous.

• int EIB MC PropertyScan (EIBConnection ∗con, int maxlen, uint8 t
∗buf)

List properties (over a management connection).

197

C. Source documentation

• int EIB MC PropertyScan async (EIBConnection ∗con, int maxlen, uint8 t
∗buf)

List properties (over a management connection) - asynchronous.

• int EIB MC GetPEIType (EIBConnection ∗con)

Read PEI type (over a management connection).

• int EIB MC GetPEIType async (EIBConnection ∗con)

Read PEI type (over a management connection) - asynchronous.

• int EIB MC ReadADC (EIBConnection ∗con, uint8 t channel, uint8 t count,
int16 t ∗val)

Read ADC value (over a management connection).

• int EIB MC ReadADC async (EIBConnection ∗con, uint8 t channel, uint8 t
count, int16 t ∗val)

Read ADC value (over a management connection) - asynchronous.

• int EIB MC Authorize (EIBConnection ∗con, uint8 t key[4])

Authorize (over a management connection).

• int EIB MC Authorize async (EIBConnection ∗con, uint8 t key[4])

Authorize (over a management connection) - asynchronous.

• int EIB MC SetKey (EIBConnection ∗con, uint8 t key[4], uint8 t level)

Sets a key (over a management connection).

• int EIB MC SetKey async (EIBConnection ∗con, uint8 t key[4], uint8 t
level)

Sets a key (over a management connection) - asynchronous.

• int EIB MC Restart async (EIBConnection ∗con)

Restarts EIB device (management connection will not be useable after this any more)
- asynchronous.

• int EIB MC Restart (EIBConnection ∗con)

Restarts EIB device (management connection will not be useable after this any more).

• int EIB MC Write Plain (EIBConnection ∗con, uint16 t addr, int len, const
uint8 t ∗buf)

198

C.1. eibclient.h File Reference

Write BAU memory without doing verify (over a management connection).

• int EIB MC Write Plain async (EIBConnection ∗con, uint16 t addr, int len,
const uint8 t ∗buf)

Write BAU memory without doing verify (over a management connection) - asyn-
chronous.

• int EIB LoadImage (EIBConnection ∗con, int len, const uint8 t ∗image)

Loads a BCU SDK program image (over a management connection).

• int EIB LoadImage async (EIBConnection ∗con, int len, const uint8 t
∗image)

Loads a BCU SDK program image (over a management connection) - asynchronous.

• int EIB Cache Enable (EIBConnection ∗con)

Enable Group Cache.

• int EIB Cache Disable (EIBConnection ∗con)

Disable Group Cache.

• int EIB Cache Clear (EIBConnection ∗con)

Clear Group Cache (all group addresses).

• int EIB Cache Remove (EIBConnection ∗con, eibaddr t dest)

Remove all cache data for a group address.

• int EIB Cache Read Sync (EIBConnection ∗con, eibaddr t dest, eibaddr t
∗src, int max len, uint8 t ∗buf, uint16 t age)

Query the last value sent to a group address; if not in cache, try to get it via A -
GroupValue Read.

• int EIB Cache Read (EIBConnection ∗con, eibaddr t dest, eibaddr t ∗src,
int max len, uint8 t ∗buf)

Query the last value sent to a group address.

• int EIB Cache Enable async (EIBConnection ∗con)

Enable Group Cache - asynchronous.

• int EIB Cache Disable async (EIBConnection ∗con)

Disable Group Cache - asynchronous.

199

C. Source documentation

• int EIB Cache Clear async (EIBConnection ∗con)

Clear Group Cache (all group addresses) - asynchronous.

• int EIB Cache Remove async (EIBConnection ∗con, eibaddr t dest)

Remove all cache data for a group address - asynchronous.

• int EIB Cache Read Sync async (EIBConnection ∗con, eibaddr t dest,
eibaddr t ∗src, int max len, uint8 t ∗buf, uint16 t age)

Query the last value sent to a group address; if not in cache, try to get it via A -
GroupValue Read - asynchronous.

• int EIB Cache Read async (EIBConnection ∗con, eibaddr t dest,
eibaddr t ∗src, int max len, uint8 t ∗buf)

Query the last value sent to a group address - asynchronous.

C.1.1. Typedef Documentation

typedef uint16 t eibaddr t

type for storing a EIB address

typedef struct EIBConnection EIBConnection

type represents a connection to eibd

C.1.2. Function Documentation

int EIB Cache Clear (EIBConnection ∗ con)

Clear Group Cache (all group addresses).

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

int EIB Cache Clear async (EIBConnection ∗ con)

Clear Group Cache (all group addresses) - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

200

C.1. eibclient.h File Reference

int EIB Cache Disable (EIBConnection ∗ con)

Disable Group Cache.

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

int EIB Cache Disable async (EIBConnection ∗ con)

Disable Group Cache - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIB Cache Enable (EIBConnection ∗ con)

Enable Group Cache.

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error (EBUSY if KNX/EIB transmissions are blocked, e.g.,

because a busmonitor is active)

int EIB Cache Enable async (EIBConnection ∗ con)

Enable Group Cache - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIB Cache Read (EIBConnection ∗ con, eibaddr t dest, eibaddr t ∗ src, int
max len, uint8 t ∗ buf)

Query the last value sent to a group address.

Parameters:
con eibd connection

dest group address

201

C. Source documentation

src source address of the last APDU

max len buffer size

buf buffer for last APDU

Returns:
-1 if error (ENODEV=group cache not enabled, ENOENT=no telegram in cache),

else length of APDU

int EIB Cache Read async (EIBConnection ∗ con, eibaddr t dest, eibaddr t ∗
src, int max len, uint8 t ∗ buf)

Query the last value sent to a group address - asynchronous.

Parameters:
con eibd connection

dest group address

src source address of the last APDU

max len buffer size

buf buffer for last APDU

Returns:
0 if started, -1 if error

int EIB Cache Read Sync (EIBConnection ∗ con, eibaddr t dest, eibaddr t ∗
src, int max len, uint8 t ∗ buf, uint16 t age)

Query the last value sent to a group address; if not in cache, try to get it via A Group-
Value Read.

Parameters:
con eibd connection

dest group address

src source address of the last APDU

max len buffer size

buf buffer for last APDU

age if non-zero, send a A GroupValue Read, if the cached telegram is older than
age seconds.

Returns:
-1 if error (ENODEV=group cache not enabled, ENOENT=A GroupValue Read

request was not answered), else length of APDU

202

C.1. eibclient.h File Reference

int EIB Cache Read Sync async (EIBConnection ∗ con, eibaddr t dest,
eibaddr t ∗ src, int max len, uint8 t ∗ buf, uint16 t age)

Query the last value sent to a group address; if not in cache, try to get it via A Group-
Value Read - asynchronous.

Parameters:
con eibd connection

dest group address

src source address of the last APDU

max len buffer size

buf buffer for last APDU

age if non-zero, send a A GroupValue Read, if the cached telegram is older than
age seconds.

Returns:
0 if started, -1 if error

int EIB Cache Remove (EIBConnection ∗ con, eibaddr t dest)

Remove all cache data for a group address.

Parameters:
con eibd connection

dest group address

Returns:
0 if successful, -1 if error

int EIB Cache Remove async (EIBConnection ∗ con, eibaddr t dest)

Remove all cache data for a group address - asynchronous.

Parameters:
con eibd connection

dest group address

Returns:
0 if started, -1 if error

203

C. Source documentation

int EIB LoadImage (EIBConnection ∗ con, int len, const uint8 t ∗ image)

Loads a BCU SDK program image (over a management connection).

Parameters:
con eibd connection

image pointer to image

len legth of the image

Returns:
result (for values see IMG ∗ constants), -1 if communication error with eibd

int EIB LoadImage async (EIBConnection ∗ con, int len, const uint8 t ∗ image)

Loads a BCU SDK program image (over a management connection) - asynchronous.

Parameters:
con eibd connection

image pointer to image

len legth of the image

Returns:
0 if started, -1 if error

int EIB M GetMaskVersion (EIBConnection ∗ con, eibaddr t dest)

Retrieve the mask version (connectionless).

Parameters:
con eibd connection

dest address of EIB device

Returns:
-1 if error, else mask version

int EIB M GetMaskVersion async (EIBConnection ∗ con, eibaddr t dest)

Retrieve the mask version (connectionless) - asynchronous.

Parameters:
con eibd connection

dest address of EIB device

Returns:
0 if started, -1 if error

204

C.1. eibclient.h File Reference

int EIB M Progmode Off (EIBConnection ∗ con, eibaddr t dest)

Turns off programming mode (connectionless).

Parameters:
con eibd connection

dest address of EIB device

Returns:
0 if successful, -1 if error

int EIB M Progmode Off async (EIBConnection ∗ con, eibaddr t dest)

Turns off programming mode (connectionless) - asynchronous.

Parameters:
con eibd connection

dest address of EIB device

Returns:
0 if started, -1 if error

int EIB M Progmode On (EIBConnection ∗ con, eibaddr t dest)

Turn on programming mode (connectionless).

Parameters:
con eibd connection

dest address of EIB device

Returns:
0 if successful, -1 if error

int EIB M Progmode On async (EIBConnection ∗ con, eibaddr t dest)

Turns on programming mode (connectionless) - asynchronous.

Parameters:
con eibd connection

dest address of EIB device

Returns:
0 if started, -1 if error

205

C. Source documentation

int EIB M Progmode Status (EIBConnection ∗ con, eibaddr t dest)

Check if a device is in programming mode (connectionless).

Parameters:
con eibd connection

dest address of EIB device

Returns:
0 if not in programming mode, -1 if error, else programming mode

int EIB M Progmode Status async (EIBConnection ∗ con, eibaddr t dest)

Check if a device is in programming mode (connectionless) - asynchronous.

Parameters:
con eibd connection

dest address of EIB device

Returns:
0 if started, -1 if error

int EIB M Progmode Toggle (EIBConnection ∗ con, eibaddr t dest)

Toggle programming mode (connectionless).

Parameters:
con eibd connection

dest address of EIB device

Returns:
0 if successful, -1 if error

int EIB M Progmode Toggle async (EIBConnection ∗ con, eibaddr t dest)

Toggle programming mode (connectionless) - asynchronous.

Parameters:
con eibd connection

dest address of EIB device

Returns:
0 if started, -1 if error

206

C.1. eibclient.h File Reference

int EIB M ReadIndividualAddresses (EIBConnection ∗ con, int maxlen, uint8 t
∗ buf)

List devices in programming mode.

Parameters:
con eibd connection

maxlen buffer size

buf buffer

Returns:
number of used bytes in the buffer or -1 if error

int EIB M ReadIndividualAddresses async (EIBConnection ∗ con, int maxlen,
uint8 t ∗ buf)

List devices in programming mode - asynchronous.

Parameters:
con eibd connection

maxlen buffer size

buf buffer

Returns:
0 if started, -1 if error

int EIB M WriteIndividualAddress (EIBConnection ∗ con, eibaddr t dest)

Set individual address for device currently in programming mode.

Parameters:
con eibd connection

dest new address of EIB device

Returns:
-1 if error, 0 if successful

int EIB M WriteIndividualAddress async (EIBConnection ∗ con, eibaddr t dest)

Set individual address for device currently in programming mode - asynchronous.

Parameters:
con eibd connection

dest new address of EIB device

Returns:
0 if started, -1 if error

207

C. Source documentation

int EIB MC Authorize (EIBConnection ∗ con, uint8 t key[4])

Authorize (over a management connection).

Parameters:
con eibd connection

key key

Returns:
-1 if error, else access level

int EIB MC Authorize async (EIBConnection ∗ con, uint8 t key[4])

Authorize (over a management connection) - asynchronous.

Parameters:
con eibd connection

key key

Returns:
0 if started, -1 if error

int EIB MC Connect (EIBConnection ∗ con, eibaddr t dest)

Opens a management connection.

Parameters:
con eibd connection

dest destionation address

Returns:
0 if successful, -1 if error

int EIB MC Connect async (EIBConnection ∗ con, eibaddr t dest)

Opens a management connection - asynchronous.

Parameters:
con eibd connection

dest destionation address

Returns:
0 if started, -1 if error

208

C.1. eibclient.h File Reference

int EIB MC GetMaskVersion (EIBConnection ∗ con)

Retrieve the mask version (over a management connection).

Parameters:
con eibd connection

Returns:
-1 if error, else mask version

int EIB MC GetMaskVersion async (EIBConnection ∗ con)

Retrieve the mask version (over a management connection) - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIB MC GetPEIType (EIBConnection ∗ con)

Read PEI type (over a management connection).

Parameters:
con eibd connection

Returns:
PEI type or -1 if error

int EIB MC GetPEIType async (EIBConnection ∗ con)

Read PEI type (over a management connection) - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIB MC Progmode Off (EIBConnection ∗ con)

Turns programming mode off (over a management connection).

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

209

C. Source documentation

int EIB MC Progmode Off async (EIBConnection ∗ con)

Turns programming mode off (over a management connection) - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIB MC Progmode On (EIBConnection ∗ con)

Turns programming mode on (over a management connection).

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

int EIB MC Progmode On async (EIBConnection ∗ con)

Turns programming mode on (over a management connection) - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIB MC Progmode Status (EIBConnection ∗ con)

Check if a device is in programming mode (over a management connection).

Parameters:
con eibd connection

Returns:
0 if not in programming mode, -1 if error, else programming mode

int EIB MC Progmode Status async (EIBConnection ∗ con)

Check if a device is in programming mode (over a management connection) - asyn-
chronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

210

C.1. eibclient.h File Reference

int EIB MC Progmode Toggle (EIBConnection ∗ con)

Toggles programming mode (over a management connection) - asynchronous.

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

int EIB MC Progmode Toggle async (EIBConnection ∗ con)

Toggles programming mode (over a management connection) - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIB MC PropertyDesc (EIBConnection ∗ con, uint8 t obj, uint8 t property,
uint8 t ∗ type, uint16 t ∗ max nr of elem, uint8 t ∗ access)

Read a property description (over a management connection).

Parameters:
con eibd connection

obj object index

property property ID

type pointer to store type

max nr of elem pointer to store element count

access pointer to access level

Returns:
-1 if error, else 0

int EIB MC PropertyDesc async (EIBConnection ∗ con, uint8 t obj, uint8 t
property, uint8 t ∗ type, uint16 t ∗ max nr of elem, uint8 t ∗ access)

Read a property description (over a mangement connection) - asynchronous.

Parameters:
con eibd connection

obj object index

property property ID

211

C. Source documentation

type pointer to store type

max nr of elem pointer to store element count

access pointer to access level

Returns:
0 if started, -1 if error

int EIB MC PropertyRead (EIBConnection ∗ con, uint8 t obj, uint8 t property,
uint16 t start, uint8 t nr of elem, int max len, uint8 t ∗ buf)

Read a property (over a management connection).

Parameters:
con eibd connection

obj object index

property property ID

start start element

nr of elem number of elements

max len buffer size

buf buffer

Returns:
-1 if error, else read length

int EIB MC PropertyRead async (EIBConnection ∗ con, uint8 t obj, uint8 t
property, uint16 t start, uint8 t nr of elem, int max len, uint8 t ∗ buf)

Read a property (over a management connection) - asynchronous.

Parameters:
con eibd connection

obj object index

property property ID

start start element

nr of elem number of elements

max len buffer size

buf buffer

Returns:
0 if started, -1 if error

212

C.1. eibclient.h File Reference

int EIB MC PropertyScan (EIBConnection ∗ con, int maxlen, uint8 t ∗ buf)

List properties (over a management connection).

Parameters:
con eibd connection

maxlen buffer size

buf buffer

Returns:
number of used bytes in the buffer or -1 if error

int EIB MC PropertyScan async (EIBConnection ∗ con, int maxlen, uint8 t ∗
buf)

List properties (over a management connection) - asynchronous.

Parameters:
con eibd connection

maxlen buffer size

buf buffer

Returns:
0 if started, -1 if error

int EIB MC PropertyWrite (EIBConnection ∗ con, uint8 t obj, uint8 t property,
uint16 t start, uint8 t nr of elem, int len, const uint8 t ∗ buf, int max len, uint8 t
∗ res)

Write a property (over a management connection).

Parameters:
con eibd connection

obj object index

property property ID

start start element

nr of elem number of elements

len buffer size

buf buffer

max len length of the result buffer

res buffer for the result

Returns:
-1 if error, else length of the returned result

213

C. Source documentation

int EIB MC PropertyWrite async (EIBConnection ∗ con, uint8 t obj, uint8 t
property, uint16 t start, uint8 t nr of elem, int len, const uint8 t ∗ buf, int
max len, uint8 t ∗ res)

Write a property (over a management connection) - asynchronous.

Parameters:
con eibd connection

obj object index

property property ID

start start element

nr of elem number of elements

len buffer size

buf buffer

max len length of the result buffer

res buffer for the result

Returns:
0 if started, -1 if error

int EIB MC Read (EIBConnection ∗ con, uint16 t addr, int len, uint8 t ∗ buf)

Read BAU memory (over a management connection).

Parameters:
con eibd connection

addr memory address

len size to read

buf buffer

Returns:
-1 if error, else read length

int EIB MC Read async (EIBConnection ∗ con, uint16 t addr, int len, uint8 t ∗
buf)

Read BAU memory (over a management connection) - asynchronous.

Parameters:
con eibd connection

addr memory address

len size to read

buf buffer

Returns:
0 if started, -1 if error

214

C.1. eibclient.h File Reference

int EIB MC ReadADC (EIBConnection ∗ con, uint8 t channel, uint8 t count,
int16 t ∗ val)

Read ADC value (over a management connection).

Parameters:
con eibd connection

channel ADC channel

count repeat count

val pointer to store result

Returns:
0, if successful or -1 if error

int EIB MC ReadADC async (EIBConnection ∗ con, uint8 t channel, uint8 t
count, int16 t ∗ val)

Read ADC value (over a management connection) - asynchronous.

Parameters:
con eibd connection

channel ADC channel

count repeat count

val pointer to store result

Returns:
0 if started, -1 if error

int EIB MC Restart (EIBConnection ∗ con)

Restarts EIB device (management connection will not be useable after this any more).

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

int EIB MC Restart async (EIBConnection ∗ con)

Restarts EIB device (management connection will not be useable after this any more) -
asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

215

C. Source documentation

int EIB MC SetKey (EIBConnection ∗ con, uint8 t key[4], uint8 t level)

Sets a key (over a management connection).

Parameters:
con eibd connection

level level to set

key key

Returns:
-1 if error, else 0

int EIB MC SetKey async (EIBConnection ∗ con, uint8 t key[4], uint8 t level)

Sets a key (over a management connection) - asynchronous.

Parameters:
con eibd connection

level level to set

key key

Returns:
0 if started, -1 if error

int EIB MC Write (EIBConnection ∗ con, uint16 t addr, int len, const uint8 t ∗
buf)

Write BAU memory (over a management connection).

Parameters:
con eibd connection

addr memory address

len size to read

buf buffer

Returns:
-1 if error, else read length

int EIB MC Write async (EIBConnection ∗ con, uint16 t addr, int len, const
uint8 t ∗ buf)

Write BAU memory (over a management connection) - asynchronous.

Parameters:
con eibd connection

216

C.1. eibclient.h File Reference

addr Memory address

len size to read

buf buffer

Returns:
0 if started, -1 if error

int EIB MC Write Plain (EIBConnection ∗ con, uint16 t addr, int len, const
uint8 t ∗ buf)

Write BAU memory without doing verify (over a management connection).

Parameters:
con eibd connection

addr memory address

len size to read

buf buffer

Returns:
-1 if error, else read length

int EIB MC Write Plain async (EIBConnection ∗ con, uint16 t addr, int len,
const uint8 t ∗ buf)

Write BAU memory without doing verify (over a management connection) - asyn-
chronous.

Parameters:
con eibd connection

addr Memory address

len size to read

buf buffer

Returns:
0 if started, -1 if error

int EIB Poll Complete (EIBConnection ∗ con)

Checks if an asynchronous request is completed (non-blocking).
EIBComplete must be still be used for asynchronous functions to retrieve the re-

turn value. For connections where packets are returned (Busmonitor, T ∗), EIB Poll -
Complete can be used to check if new data is available. If this function returns an error,
the eibd connection should be considered as broken (and therefore be closed).

Parameters:
con eibd connection

Returns:
-1 if any error, 0 if not finished, 1 if finished

217

C. Source documentation

int EIB Poll FD (EIBConnection ∗ con)

Returns FD to wait for the next event.
The returned file descriptor may only be used to select/poll for read data available.

As EIBComplete (and functions, which return packets) block if only a part of the data
is available, EIB Poll Complete can be used to check whether blocking will occur.

Parameters:
con eibd connection

Returns:
-1 if any error, else file descriptor

int EIBClose (EIBConnection ∗ con)

Closes and frees a connection.

Parameters:
con eibd connection

int EIBClose sync (EIBConnection ∗ con)

Closes and frees a connection and wait, until all resources are freed.

Parameters:
con eibd connection

int EIBComplete (EIBConnection ∗ con)

Finish an asynchronous request (and block until then).

Parameters:
con eibd connection

Returns:
return value, as returned by the synchronous function call

int EIBGetAPDU (EIBConnection ∗ con, int maxlen, uint8 t ∗ buf)

Receive an APDU (blocking).

Parameters:
con eibd connection

maxlen buffer size

buf buffer

Returns:
received length or -1 if error

218

C.1. eibclient.h File Reference

int EIBGetAPDU Src (EIBConnection ∗ con, int maxlen, uint8 t ∗ buf,
eibaddr t ∗ src)

Receive a APDU with source address (blocking).

Parameters:
con eibd connection

maxlen buffer size

buf buffer

src pointer, where the source address should be stored

Returns:
received length or -1 if error

int EIBGetBusmonitorPacket (EIBConnection ∗ con, int maxlen, uint8 t ∗ buf)

Receives a packet on a busmonitor connection.

Parameters:
con eibd connection

maxlen size of the buffer

buf buffer

Returns:
-1 if error, else length of the packet

int EIBGetGroup Src (EIBConnection ∗ con, int maxlen, uint8 t ∗ buf,
eibaddr t ∗ src, eibaddr t ∗ dest)

Receive a group APDU with source address (blocking).

Parameters:
con eibd connection

maxlen buffer size

buf buffer

src pointer to where the source address should be stored

dest pointer to where the destination address should be stored

Returns:
received length or -1 if error

219

C. Source documentation

int EIBGetTPDU (EIBConnection ∗ con, int maxlen, uint8 t ∗ buf, eibaddr t ∗
src)

Receive a TPDU with source address.

Parameters:
con eibd connection

maxlen buffer size

buf buffer

src pointer to where the source address should be stored

Returns:
received length or -1 if error

int EIBOpen GroupSocket (EIBConnection ∗ con, int write only)

Opens a Group communication interface.

Parameters:
con eibd connection

write only if not null, no packets from the bus will be delivered

Returns:
0 if successful, -1 if error

int EIBOpen GroupSocket async (EIBConnection ∗ con, int write only)

Opens a Group communication interface - asynchronous.

Parameters:
con eibd connection

write only if not null, no packets from the bus will be delivered

Returns:
0 if started, -1 if error

int EIBOpenBusmonitor (EIBConnection ∗ con)

Switches the connection to binary busmonitor mode.

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

220

C.1. eibclient.h File Reference

int EIBOpenBusmonitor async (EIBConnection ∗ con)

Switches the connection to binary busmonitor mode - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIBOpenBusmonitorText (EIBConnection ∗ con)

Switches the connection to text busmonitor mode.

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

int EIBOpenBusmonitorText async (EIBConnection ∗ con)

Switches the connection to text busmonitor mode - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIBOpenT Broadcast (EIBConnection ∗ con, int write only)

Opens a connection of type T Broadcast.

Parameters:
con eibd connection

write only if not null, no packets from the bus will be delivered

Returns:
0 if successful, -1 if error

int EIBOpenT Broadcast async (EIBConnection ∗ con, int write only)

Opens a connection of type T Broadcast - asynchronous.

Parameters:
con eibd connection

write only if not null, no packets from the bus will be delivered

Returns:
0 if started, -1 if error

221

C. Source documentation

int EIBOpenT Connection (EIBConnection ∗ con, eibaddr t dest)

Opens a connection of type T Connection.

Parameters:
con eibd connection

dest destination address

Returns:
0 if successful, -1 if error

int EIBOpenT Connection async (EIBConnection ∗ con, eibaddr t dest)

Opens a connection of type T Connection - asynchronous.

Parameters:
con eibd connection

dest destination address

Returns:
0 if started, -1 if error

int EIBOpenT Group (EIBConnection ∗ con, eibaddr t dest, int write only)

Opens a connection of type T Group.

Parameters:
con eibd connection

dest group address

write only if not null, no packets from the bus will be delivered

Returns:
0 if successful, -1 if error

int EIBOpenT Group async (EIBConnection ∗ con, eibaddr t dest, int
write only)

Opens a connection of type T Group - asynchronous.

Parameters:
con eibd connection

dest group address

write only if not null, no packets from the bus will be delivered

Returns:
0 if started, -1 if error

222

C.1. eibclient.h File Reference

int EIBOpenT Individual (EIBConnection ∗ con, eibaddr t dest, int write only)

Opens a connection of type T Individual.

Parameters:
con eibd connection

dest destination address

write only if not null, no packets from the bus will be delivered

Returns:
0 if successful, -1 if error

int EIBOpenT Individual async (EIBConnection ∗ con, eibaddr t dest, int
write only)

Opens a connection of type T Individual - asynchronous.

Parameters:
con eibd connection

dest destionation address

write only if not null, no packets from the bus will be delivered

Returns:
0 if started, -1 if error

int EIBOpenT TPDU (EIBConnection ∗ con, eibaddr t src)

Opens a raw Layer 4 connection.

Parameters:
con eibd connection

src my source address (0 means default)

Returns:
0 if successful, -1 if error

int EIBOpenT TPDU async (EIBConnection ∗ con, eibaddr t src)

Opens a raw Layer 4 connection - asynchronous.

Parameters:
con eibd connection

src my source address (0 means default)

Returns:
0 if started, -1 if error

223

C. Source documentation

int EIBOpenVBusmonitor (EIBConnection ∗ con)

Switches the connection to binary vbusmonitor mode.

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

int EIBOpenVBusmonitor async (EIBConnection ∗ con)

Switches the connection to binary vbusmonitor mode - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIBOpenVBusmonitorText (EIBConnection ∗ con)

Switches the connection to text vbusmonitor mode.

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

int EIBOpenVBusmonitorText async (EIBConnection ∗ con)

Switches the connection to text vbusmonitor mode - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIBReset (EIBConnection ∗ con)

Switches the connection to pristine state.

Parameters:
con eibd connection

Returns:
0 if successful, -1 if error

224

C.1. eibclient.h File Reference

int EIBReset async (EIBConnection ∗ con)

Switches the connection to pristine state - asynchronous.

Parameters:
con eibd connection

Returns:
0 if started, -1 if error

int EIBSendAPDU (EIBConnection ∗ con, int len, const uint8 t ∗ data)

Sends an APDU.

Parameters:
con eibd connection

len length of the APDU

data buffer with APDU

Returns:
tranmited length or -1 if error

int EIBSendGroup (EIBConnection ∗ con, eibaddr t dest, int len, const uint8 t
∗ data)

Sends a group APDU.

Parameters:
con eibd connection

dest destination address

len length of the APDU

data buffer with APDU

Returns:
tranmited length or -1 if error

int EIBSendTPDU (EIBConnection ∗ con, eibaddr t dest, int len, const uint8 t
∗ data)

Sends a TPDU with destination address.

Parameters:
con eibd connection

dest destination address

len length of the APDU

data buffer with APDU

Returns:
tranmited length or -1 if error

225

C. Source documentation

EIBConnection∗ EIBSocketLocal (const char ∗ path)

Opens a connection to eibd over a socket.

Parameters:
path path to the socket

Returns:
connection handle or NULL

EIBConnection∗ EIBSocketRemote (const char ∗ host, int port)

Opens a connection to eibd over TCP/IP.

Parameters:
host hostname running eibd

port portnumber

Returns:
connection handle or NULL

EIBConnection∗ EIBSocketURL (const char ∗ url)

Opens a connection to eibd.
url can either be ip:host:[port] or local:/path/to/socket

Parameters:
url contains the url to connect to

Returns:
connection handle or NULL

226

Bibliography

The entire GNU tool chain documentation is distributed with the respective program
sources. Different versions are available at http://ftp.gnu.org/gnu/. However, the
best information source is the version distributed with the sources you are using. Online
references are valid as of 2005-05-05.

[ANYC] AnyC – GPL C compiler for 8-bit microcontrollers. http://anyc.sf.net/

[ASU86] A. V. Aho, R. Sethi, J. D. Ullman, Compilers – Principles, Techniques and
Tools. Addison-Wesley, 1986

[BASYS] BASys 2003 home. http://www.basys2003.org

[BCU1] Siemens AG, BCU1 Helpfile. 1996 1

[BCU2] Siemens AG, BCU2 Helpfile. Version 1.2, 2005 2

[BFD] Steve Chamberlain and others, libbfd – The Binary File Descriptor Library.
Available as part of the binutils sources

[BFDINT] Ian Lance Taylor and others, BFD Internals. Available as part of the binu-
tils sources

[BIN01] Unsupported targets slated for removal. http://sourceware.org/ml/

binutils/2005-03/msg00618.html

[BSD] A sample of a BSD style licence. http://www.debian.org/misc/bsd.

license

[CEXT] ISO/IEC TR 18037:2004, Programming languages – C – Extensions to
support embedded processors.3

[DFSG] The Debian Free Software Guidelines (DFSG). http://www.debian.org/
social contract#guidelines

[EIBIDE] Free EibIDE for Linux. http://sourceforge.net/projects/freeeibide

1Available at http://www.auto.tuwien.ac.at/∼mkoegler/index.php/bcudoc
2Available at http://www.auto.tuwien.ac.at/∼mkoegler/index.php/bcudoc
3The last draft version is available at http://www.open-std.org/jtc1/sc22/wg14.

227

http://ftp.gnu.org/gnu/
http://anyc.sf.net/
http://www.basys2003.org
http://sourceware.org/ml/binutils/2005-03/msg00618.html
http://sourceware.org/ml/binutils/2005-03/msg00618.html
http://www.debian.org/misc/bsd.license
http://www.debian.org/misc/bsd.license
http://www.debian.org/social_contract#guidelines
http://www.debian.org/social_contract#guidelines
http://sourceforge.net/projects/freeeibide
http://www.auto.tuwien.ac.at/~mkoegler/index.php/bcudoc
http://www.auto.tuwien.ac.at/~mkoegler/index.php/bcudoc
http://www.open-std.org/jtc1/sc22/wg14

Bibliography

[GAS] Dean Elsner, Jay Fenlason and others, Using as – The GNU assembler.
Available as part of the binutils sources

[GASINT] Free Software Foundation, Assembler Internals. Available as part of the
binutils sources

[GCC] Free Software Foundation, Using the GNU Compiler Collection (GCC).
Available as part of the GCC sources

[GCCINT] Free Software Foundation, GNU Compiler Collection (GCC). Available as
part of the GCC sources

[GDB] Richard Stallman, Roland Pesch and others, Debugging with GDB. Avail-
able as part of the GDB sources

[GDBINT] John Gilmore and others, Using GDB – A guide to the internals of the
GNU debugger. Available as part of the GDB sources

[GNU11] GNU Development Chain for 68HC11 & 68HC12. http://www.gnu.org/
software/m68hc11/

[GPL] GNU General Public License. http://www.gnu.org/copyleft/gpl.html

[KNX] Konnex Association, KNX Specification. Version 1.1, 2004

[LD] Steve Chamberlain, Ian Lance Taylor and others, Using ld – The GNU
linker. Available as part of the binutils sources

[LDINT] Per Bothner, Steve Chamberlain and others, A guide to the internals of the
GNU linker. Available as part of the binutils sources

[M68HC05] Motorola Inc., M68HC05 Family, Understanding Small Microcontrollers.
Revision 2, undated

[NEW1] Rob Savoye and others, Porting The GNU Tools To Embedded Systems.
Available as part of the newlib sources

[NEW2] Steve Chamberlain and others, The Red Hat newlib C Library. Available
as part of the newlib sources

[NEW3] Steve Chamberlain and others, The Red Hat newlib Math Library. Avail-
able as part of the newlib sources

[PTH] GNU PTH – The GNU Portable Threads. http://www.gnu.org/

software/pth/

[PTHSEM] Semaphore support for GNU PTH. http://www.auto.tuwien.ac.at/
∼mkoegler/index.php/pth

228

http://www.gnu.org/software/m68hc11/
http://www.gnu.org/software/m68hc11/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/software/pth/
http://www.gnu.org/software/pth/
http://www.auto.tuwien.ac.at/~mkoegler/index.php/pth
http://www.auto.tuwien.ac.at/~mkoegler/index.php/pth

Bibliography

[SDCC] SDCC – Small Device C Compiler. http://sdcc.sf.net/

[XML2] XML Schema Part 2: Datatypes Second Edition. W3C Recommendation,
28 October 2004, http://www.w3.org/TR/xmlschema-2/

229

http://sdcc.sf.net/
http://www.w3.org/TR/xmlschema-2/

	Introduction
	The European Installation Bus
	The GNU project
	Goal of the present project
	Features and limitations
	Licence

	Place of the BCU SDK in the development and deployment work flow
	Development work flow
	Deployment work flow

	Course of the project
	Future work
	Structure of the document

	M68HC05
	M68HC05 architecture
	Register
	Addressing modes
	Instruction set

	GNU utilities
	Overview of the GNU utilities
	Configuration
	Opcode library
	Bfd library
	Relaxation

	Binutils
	GNU assembler
	Assembler syntax

	GNU linker
	Sim
	GNU debugger
	Newlib
	Libgloss

	GCC
	Structure of GCC
	RTL
	Machine description
	Normal named instruction
	Normal anonymous instruction
	Definition of an expander
	Definition of constants
	Definition of attributes
	Definition of a combination of instruction and splitter
	Peephole optimization

	Libgcc
	Target description
	Overview of the M68HC05 port
	Details
	Type layout
	Register
	Register classes
	Pointer
	Calling convention
	Stack frame
	Frame pointer elimination
	Sections
	Constraints
	Operands
	RTL split helper functions
	RTL patterns
	Predicates
	Cost functions
	The eeprom attribute
	The loram attribute

	BCU/EIB
	BCU operating system
	Modes of communication
	BCU 1
	Accessing the PEI
	Timer Subsystem
	BCU 1 API

	BCU2
	BCU 2 API

	BCU SDK
	Common files
	XML related programs
	Build system
	Configuration file parser
	Bcugen1 and bcugen2
	Overview of the generated code
	Memory layout

	EIB bus access
	Overview
	Architecture
	Back ends
	EMI2
	EMI1
	KNX USB interface
	EIBnet/IP Routing
	EIBnet/IP Tunneling
	TPUART kernel driver
	TPUART user mode driver

	Core
	Layer 3
	Layer 4

	Layer 7
	EIBnet/IP server front end
	EIBD front end
	Protocol
	EIBD client library - C version
	EIBD client library - PHP version
	EIBD client library - Java version
	EIBD client library - other languages
	Using the EIBD client library

	Using the BCU SDK
	Input format
	BCU configuration
	Device block
	FunctionalBlock block
	Interface block
	IntParameter block
	FloatParameter block
	ListParameter block
	StringParameter block
	GroupObject block
	Object block
	Property block
	Debounce block
	Timer block
	PollingMaster block
	PollingSlave block

	C files
	API functions

	File format for data exchange with integration tools
	Configuration process
	Basic definitions
	Application information
	Functional block
	Interface
	Group objects
	Properties
	Polling master
	Polling slave
	Parameter

	Configuration description
	Group objects
	Property
	Polling master
	Polling slave
	Parameter

	Limitations

	Usage/Examples
	Installation
	Installation in a home directory
	Prerequisites
	Getting the source
	Installing GCC
	Installing pthsem
	Installing the BCU SDK
	Granting EIB access to normal users
	Development version
	Building install packages

	Using eibd
	Command line interface
	EIBnet/IP Tunneling via NAT
	USB backend
	Group Cache
	EIBnet/IP server
	Example programs
	Usage examples
	eibd utilities

	Recovering from errors
	Developing BCU applications
	Development build

	Generating BCU applications
	Example program
	A negation which can be disabled
	Cyclic switching

	Appendix
	Image format
	Streams
	L_BCU_TYPE
	L_CODE
	L_STRING_PAR
	L_INT_PAR
	L_FLOAT_PAR
	L_LIST_PAR
	L_GROUP_OBJECT
	L_BCU1_SIZE
	L_BCU2_SIZE
	L_BCU2_INIT
	L_BCU2_KEY

	Valid images

	Tables
	Available DP Types
	Available property IDs

	Source documentation
	eibclient.h File Reference
	Typedef Documentation
	Function Documentation

