
BACnet over KNX

Wolfgang Granzer Wolfgang Kastner

Automation Systems Group
Institute of Automation

Vienna University of Technology

Treitlstraße 1-3, A-1040 Vienna, Austria
{w,k} @ auto.tuwien.ac.at

The Building Automation and Control Network Protocol (BACnet) has been devel-
oped to provide a solution for building automation and control systems of all sizes
and types. While BACnet specifies an application model as well as different routing
services, the underlying network medium is not defined. BACnet messages can, in
principle, be conveyed over any network. However, a number of network types are
recommended in the BACnet standard. Since KNX with all its benefits has not been
considered as a network medium for BACnet, we provide an approach that uses
KNX TP 1 as network medium for BACnet. Additionally, a first proof-of-concept
implementation is presented in this paper.

1 Introduction

In [1], a standard model for all kinds of Building Automation Systems (BAS) is described. In
this model, the system functionality is divided into three levels which are ordered hierarchically.
At the field level, environmental data are measured and parameters of the environment are
physically controlled. Automatic control is performed at the automation level whereas global
configuration and managements tasks are realized at the management level.

Nowadays, the standard three level functional hierarchy model can be implemented as a
flatter, two-level architecture [2]. This is for two reasons. First, so called intelligent field devices
incorporate more functionality than ordinary ones. Second, information technology (IT) and its
infrastructure became accepted not only at the management level, but also at the automation
level. Consequently, functions of the former automation level are split being reassigned either to
field devices (e.g., implementing controller functionality) or management devices (e.g., realizing
process data monitoring).

As a result, today’s communication networks for BAS are implemented following a two-tiered
model. Smart sensors, actuators and controllers are interconnected by multiple field networks.
These field networks are coupled by a backbone network which is home to management sta-
tions requiring a global view of the entire BAS. For the field level, robust, low-bandwidth and
cost efficient field bus protocols are well established. For the backbone level, IP based pro-
tocols are preferred due to reasons of economy and easy integration of management stations

1

with (office) local area networks and the Internet. A protocol that can be used at both levels is
the Building Automation and Control Network Protocol (BACnet).

While BACnet is more popular at the backbone level, it can also be used at the field level,
where it is limited to the features of the underlying protocols. BACnet defines only the network
and application layer. The underlying network medium (i.e. physical and data link layer) is
not part of the standard. However, to increase the compatibility of BACnet devices, the use
of different physical/data link layer combinations (called network options) for BACnet has been
standardized. Up to now, KNX TP1 with all its benefits (e.g., CSMA/CA, link-powered devices,
free topology, small network stack footprint for end-devices and routers) has not been consid-
ered as a network option for BACnet. For this reason, we provide a solution called BACnet over
KNX (BACnet/KNX).

The paper starts with an introduction into BACnet. Next, a possible solution to use KNX
as network option for BACnet is described. Based on this approach, an implementation of a
prototype network that demonstrates the simultaneous use of BACnet and KNX is presented.
Afterwards, a conclusion and an outlook on future work is given.

2 BACnet

In 1987, a project committee of the American Society of Heating, Refrigerating and Air Condi-
tioning Engineers (ASHRAE) started the development of BACnet. The main objective was to
provide a solution for building automation and control systems of all sizes and types. The devel-
opment effort was completed in 1995, when BACnet was first published as an ANSI/ASHRAE
standard. Later in 2003, it became a CEN and ISO standard [3]. The BACnet specification is
under continuous maintenance and further development. The current version is BACnet 2004
[4].

The protocol architecture of BACnet consists of four layers corresponding to the physical,
data link, network, and application layer of the ISO/OSI model. While BACnet specifies the
network and application layer, a specific physical and data link layer is not laid down in the
standard. In principle, any physical and/or data link layer combination could be used for BAC-
net message exchange. To increase the compatibility between BACnet devices, five different
network options with particular ranges of speed and throughput have been defined. These five
network options are:

• Ethernet
• ARCNET
• Master-Slave/Token-Passing (MS/TP)
• LonTalk
• Point-to-Point (PTP)

In addition to these network options, BACnet/IP allows the use of BACnet communication over
IP networks. For tunneling, a special device called BACnet/Internet Protocol Packet-Assembler-
Disassembler (B/IP PAD) encapsulates the BACnet message into a UDP packet. The packet
is transmitted to the destination B/IP PAD where it is reconverted into a BACnet message.
Another possibility to use IP networks is to employ UDP as native data link layer protocol. To
achieve this, the BACnet Virtual Link Layer (BVLL) was defined. For broadcast communication
covering multiple IP subnets, a special device called BACnet Broadcast Management Device
(BBMD) is required.

2

Figure 1 gives an overview of all available network options and BACnet/IP.

BACnet Network Layer

ISO 8802-3
(IEEE 802.3)

„Ethernet“
ARCNET EIA 485 EIA 232

MS/TP PTP

LonTalk

BACnet Application Layer

BVLL
(BACnet/IP)

UDP/IP

ISO 8802-2
(IEEE 802.3)

Type 1

Figure 1: BACnet network options

2.1 Network topology

In BACnet, each device is attached to a so called physical segment. To extend the maximum
cable length, physical segments are interconnected by repeaters or bridges. An interconnec-
tion of such segments is called a BACnet network. These BACnet networks can be linked
together to form a BACnet internetwork. To achieve such an interconnection, BACnet routers
are necessary.

Each BACnet network has a 2 byte network address, which uniquely identifies the network
in the BACnet internetwork. To identify a device within a BACnet network, each device has its
local address. Since this local address corresponds to the layer 2 address of the used BACnet
network option (i.e., the MAC address), the length of the local address varies.

2.2 BACnet network layer

The BACnet network layer provides an unacknowledged connectionless communication service
to the application layer. The two service primitives are called N-UNITDATA.request(des-
tination_address, data, network_priority, data_expecting_reply) and
N-UNITDATA.indication(source_address, destination_address, data, net-
work_priority, data_expecting_reply). N-UNITDATA.request() is used by the
application layer to send a BACnet message. N-UNITDATA.indication() indicates the
application layer the reception of a new BACnet message. The destination address and (if
present) the source address consist of an optional network number and the local address. The
optional network number addresses a device located at a remote BACnet network. The local
address allows to uniquely identify a device within its local BACnet network and consists of a
device address and a link service access point. Since the MAC address of the data link layer
is used as the device address, its length varies according to the chosen network option. Also,
the structure of the link service access point is depending on the network option.

3

To specify the priority of BACnet messages, four different network_priority levels are de-
fined. These levels are called normal, urgent, critical equipment and life safety
and have to be mapped to the data link priority level of the underlying network option. The
parameter data_expecting_reply indicates whether a reply to this service primitive is ex-
pected or not.

The general frame format of a BACnet NPDU1 is shown in Figure 2. The structure of a spe-
cific NPCI depends on the used service. The presence or absence of NPCI parts is specified by
the control field. Bit 7 indicates whether the NPDU contains a BACnet APDU or the message
is a network layer message. Bit 5 defines the absence or presence of the fields DNET, DLEN,
DADR, and hop count. Bit 3 indicates whether the source address information (SNET, SLEN
and SADR) is present or not. Finally, the bits 1 and 0 define the network_priority.

Ve
rs

io
n

C
on

tro
l

M
es

sa
ge

 T
yp

Ve
nd

or
 ID

H
op

 C
ou

nt

D
N

E
T

D
LE

N
 =

 d

D
AD

R

SN
ET

SL
EN

 =
 s

SA
D

R

AP
D

U

1 1 1 1 1 12 2d s 2 n

Control octet:
Bit 7: 1 … Message is a network layer message

0 … Message contains a BACnet APDU
Bit 6: Reserved
Bit 5: 0 … DNET, DLEN, DADR, hop count absent

1 … DNET, DLEN, DADR, hop count present
Bit 4: Reserved
Bit 3: 0 … SNET, SLEN, SADR absent

1 … SNET, SLEN, SADR present
Bit 2: Corresponds to data_expecting_reply parameter
Bit 1,0: 11 … Life safety message

10 … Critical equipment message
01 … Urgent message
00 … Normal message

Figure 2: BACnet NPDU

2.3 BACnet application layer

In BACnet, an application process is defined as the functionality that performs information
processing required for a particular application. Each application process is divided into an ap-
plication program and an application entity [4]. The application program is the part outside the
application layer and is not specified by BACnet. The application entity refers to the part within
the application layer and is responsible for the BACnet communication. The interaction be-
tween the application program and the application entity is handled via the application program
interface (API) not defined by BACnet.

The application entity is divided into two parts. The BACnet application service element
(ASE) consists of a set of application services that are classified into 5 different categories:

• Alarm and Event
• File Access
• Object Access
• Remote Device Management
• Virtual Terminal

These application services are implemented as unconfirmed or confirmed application services.
Unconfirmed services do not expect a message reply whereas confirmed services are based on
a client/server communication model. The service user (BACnet client) sends a service request

1According to the OSI model, NPDU denotes the network protocol data unit that consists of a network protocol
control information (NPCI) and a network service data unit (NSDU). Corresponding abbreviations are used for
the other protocol layers.

4

to the service provider (BACnet server) that replies with a positive/negative acknowledgment or
with a message containing the result of the request.

The second part of an application entity is called BACnet user element. It is responsible
for providing the API to the application program as well as the implementation of the service
procedure portion of each application service. Figure 3 shows the application model.

BACnet
User Element

BACnet
Application Service

Entity

Application
Program

Application
Layer

Application
Entity

Network Layer

API

Application Process

Figure 3: BACnet application model

The internal data structures used in a BACnet device are left open by the BACnet standard.
To be able to exchange data between devices of different vendors, the network-visible repre-
sentation of the data structures has been defined. This network-visible part of a single data
element is called a BACnet object. Currently, 25 different object types are defined. Each object
represents a collection of a set of properties. Each property has a dedicated data type that
defines the size and the encoding of the particular data element. To represent a list of data
elements, a data type called BACnetArray is also available. Up to now, nearly 200 different
properties are defined. Three of them must be present in each object: object-identifier,
object-name and object-type. To access and manipulate BACnet objects, different object
access services are available. The most important ones are ReadProperty used to read the
value of a property, and WriteProperty used to set a new property value.

For further details on BACnet see [2] and [4].

3 KNX as network option for BACnet

BACnet is based on a client/server communication model. A point-to-point communication
service is necessary to send a request to a server and optionally receive a response. For
this task, the BACnet application layer provides confirmed communication primitives. These
primitives are built upon the unconfirmed communication service of the BACnet network layer
which in turn requires (at least) an unacknowledged data link communication service.

To use the KNX data link and physical layer as new BACnet network option, the KNX L_Data
service [5] is sufficient. The corresponding parameters of the L_Data service are the source
and destination address, a message priority, the user data (i.e., LSDU) to be transferred, and

5

a Boolean value specifying whether a layer 2 acknowledgment is mandatory or not. For setting
up the required point-to-point communication within a local BACnet network communication,
KNX provides the individual addressing scheme. In our approach, the BACnet destination ad-
dress simply replaces the KNX individual address. Both, BACnet and KNX distinguish between
4 different priority levels, however, with different semantics. Since it has to be guaranteed that
BACnet high priority messages are served first, the following mapping was chosen: BACnet
normal to KNX low, BACnet urgent to KNX normal, BACnet critical equipment to
KNX urgent, and BACnet life safety to KNX system. The remaining BACnet user data
are embedded into the LSDU part of the L_Data Service. Although a KNX layer 2 acknowl-
edgment for BACnet/KNX frames is not mandatory, its activation is recommended to increase
the robustness.

This straight-forward mapping of BACnet NPDUs into the KNX LPDUs works as long as only
BACnet/KNX devices are located in a KNX segment. However, in case of a mixed operation
(i.e., BACnet/KNX and standard KNX devices share the same segment), problems will emerge.
Consider, for example, a BACnet/KNX broadcast message is transmitted. Such a BACnet/KNX
broadcast message causes a misinterpretation in standard KNX devices, since those devices
are not able to differentiate between a “mapped” BACnet/KNX telegram and a standard KNX
message. A possible solution would be to define a new LPDU type for BACnet/KNX messages.
However, these messages could not be routed by standard KNX routers (couplers), since the
new LPDU type is unknown to them. To overcome this limitation, a new TPDU type called T_
DATA_BACNET_REQ_PDU has been defined.

Using this new TPDU type, an unwanted interference between BACnet/KNX and KNX mes-
sages is avoided. The encapsulation (replacement of the TSDU and mapping of parameters)
is handled by a so called BACnet/KNX Virtual Link Layer (BKVLL) located between the KNX
transport and the BACnet network layer (cf. Figure 4).

KNX Data Link Layer

KNX Network Layer

KNX Transport Layer

BACnet/KNX Virtual Layer Layer

BACnet Network Layer

ISO 8802-3
(IEEE 802.3)

„Ethernet“
ARCNET

EIA 485 EIA 232

MS/TP PTP

LonTalk

BACnet Application Layer

BVLL
(BACnet/IP)

UDP/IP

ISO 8802-2
(IEEE 802.3)

Type 1

KNX Physical Layer

Figure 4: BACnet/KNX as new network option

BACnet supports message segmentation at the application layer. The maximum amount of
APDU segments may vary and can be negotiated between the sending and receiving device.
Due to the fact that different network options can be used in BACnet, the maximum length
of a single APDU within a single message segment may vary too. According to the BACnet
specification, the maximum APDU length is limited by the maximum APDU length transmittable
by the device, the maximum APDU length accepted by the remote peer and the maximum
NPDU length permitted by the local, remote or any intervening network segments between
the sending and the receiving device. In addition to these constraints, BACnet demands a

6

maximum APDU length of at least 50 octets. Since the APDU length of standard KNX frames
is limited to 15 octets, their use without any further mechanisms is not sufficient.

One possible solution is to introduce segmentation at the data link layer performed indepen-
dently of the segmentation at the BACnet application layer. This message segmentation has
to be implemented by the BKVLL. However, the main drawback of this solution is the resulting
overhead. Since the maximum NPCI length of a BACnet NPDU (in the case of a transmission
between two BACnet/Ethernet peers) is 24 octets, the resulting NPDU length is 74 (assuming
a maximum APDU length of 50). Together with 1 octet that is necessary for a segmentation
sequence number, this leads to a minimum length of 75 octets. Therefore, this BACnet NPDU
would have to be split into 5 KNX standard messages since a single standard KNX TSDU may
contain only 15 octets. This would result to an overhead of 55%. 2

To avoid the overhead of the data link layer segmentation, the KNX extended frame format
can be used. Using KNX extended frames, the KNX TSDU can contain up to 254 octets.
Considering a worst case NPCI length of 24 octets, an APDU length of 230 octets is possible
which is sufficient to avoid the need for a data link layer segmentation. Figure 5 shows the
frame structure of the proposed solution.

0 1 2 3 4 5 6 7

C
on

tro
l F

ie
ld

K
N

X
 S

ou
rc

e
Ad

dr
es

s

K
N

X
 D

es
tin

at
io

n
ad

dr
es

s

KN
X

 T
P

C
I

K
N

X
 C

he
ck

su
m

Ex
t.

C
on

tro
l F

ie
ld

8 … 8 + N
Le

ng
th

(0
-2

54
) N

st
ar

ts
 w

ith
 o

ct
et

 8
9+N

B
A

C
ne

t N
P

C
I

B
A

C
ne

t A
P

C
I

BA
C

ne
t

A
pp

lic
at

io
n

D
at

a
0 54321 76
0 r 10 00pr

0 54321 76
0 0 00hop 0 0x04 … T_DATA_BACNET_REQ_PDU

0
0

00

11
1

1
KNX system <--> BACnet life safety
KNX urgent <--> BACnet critical equipment
KNX normal <--> BACnet urgent
KNX low <--> BACnet normal

Figure 5: BACnet/KNX frame format

4 Prototype implementation

As a first proof-of-concept, a prototype BACnet internetwork has been set up. The internetwork
consists of a BACnet/Ethernet network (i.e., Ethernet is used as network option for BACnet)
and a KNX TP 1 network. Due to the presented encapsulation mechanism, BACnet commu-
nication is possible without disturbing the standard KNX communication. Figure 6 shows the
experimental setup.

To demonstrate the mixed operation, different devices are integrated into the prototype net-
work. At the BACnet/Ethernet network, a BACnet client is connected via Ethernet. The client
runs the Visual Test Shell (VTS) [6], an open-source Windows application for BACnet confor-
mance testing. The VTS supports the network options Ethernet, PTP, ARCnet, MS/TP as
well as BACnet/IP. It is used to send and receive BACnet messages.

2In this case, the overhead is calculated as follows: overhead = (KNXLPCIlength + KNXNPCIlength +

KNXTPCIlength + sequenceID)/(BACnetNPDUlength) ∗ 100.

7

BACnet/Ethernet

BACnet/KNX + standard KNX

VTS BACnet client

BACnet/Ethernet-to-BACnet/KNX router

BACknx
node

Standard KNX node ETS client

Figure 6: Prototype implementation

The KNX TP 1 network contains a standard KNX light switch, an ETS client (running on
a standard laptop), and a special device called BACknx node. The BACknx node supports
both the KNX operation mode as well as a BACnet operation mode (using KNX as network
option). For testing purposes, a LED is attached to the BACknx node associated with a generic
application object (cf. Section 4.1). The state of the object can be changed using BACnet
as well as KNX services. On the one hand, the VTS client can alter it by sending a BACnet
PropertyWrite. On the other hand, the KNX light switch can turn on/off the LED by sending
a KNX A_GroupValue_Write. Additionally, the current state of the object can be read by
the VTS (using BACnet ReadProperty) or by the ETS (via KNX A_GroupValue_Read).
Also, the KNX services A_PropertyValue_Read and A_PropertyValue_Response can
be used to read the current value of the binary object.

To interconnect the Ethernet network to the KNX TP 1 network, routing is necessary. For this
reason, the design and implementation of a simple BACnet/Ethernet-to-BACnet/KNX router is
part of the presented work. Its task is to receive messages from either the Ethernet or the
KNX network, to convert them into messages suitable for the destination network and finally to
forward the converted messages to the destination network (cf. Section 4.2).

4.1 BACknx node

The main hardware components of the BACknx node are a MSP430 microcontroller, a Twisted
Pair - Universal Asynchronous Receive Transmit (TP-UART) and several digital I/O ports with
some connected peripherals (LEDs and buttons). The TP-UART is used to access the KNX TP
1 medium.

The software implementation of BACknx is shown on the left hand side of Figure 7. It is di-
vided into different software modules. A simple Hardware Abstraction Layer (HAL) provides an
abstraction of the underlying hardware components (UART and timer). On top of it, a hardware
independent TP-UART stack including the feature to handle KNX extended frames supports a
performant implementation of the BACnet/KNX protocol. The protocol stack resting above con-
sists of two major parts: A lean KNX stack supports basic services for group communication,

8

TP-UART IC

KNX Data Link Layer

KNX Application
Layer

KNX Network Layer

KNX Transport Layer

BACnet/KNX virtual
link layer

BACnet Network
Layer

BACnet Application
Layer

Application
objects

BACnet/KNX

TP-UART Stack

Hardware Abstraction Layer (HAL)

UARTTimer

I/O

Software Implementation

MSP430 Microcontroller

BACknx node

Figure 7: BACknx node

i.e., A_GroupValue_Read, A_GroupValue_Write and A_GroupValue_Response as well
as some connection oriented services (e.g., A_PropertyValue_Read, A_PropertyValue_
Write and A_PropertyValue_Response). Second, a simple BACnet stack supports the
BACnet services Who-is, I-am, ReadProperty, and WriteProperty. The BACnet stack
is placed on top of the BACnet/KNX virtual link layer being responsible for replacing the TSDU
part of a KNX message with the BACnet NPDUs as well as providing the mapping (cf. Sec-
tion 3).

To avoid the communication overhead of a data link layer segmentation, the KNX extended
frame format is used. In principle, the TP-UART supports the use of extended frames. However,
due to the format of the U_L_DataContinue-Service of the TP-UART, a maximum frame
length of 62 octets, i.e. a KNX APDU length of 53 octets is possible [7]. Therefore, a data
link layer segmentation is still necessary. To achieve a maximum BACnet APDU length of 50
octets (as required by the BACnet specification), splitting a BACnet NPDU into at most 2 KNX
messages is sufficient. Compared to the data link layer segmentation approach that would be
necessary if standard KNX frames are used, the resulting overhead is significantly smaller.

On top of the KNX and BACnet stack, a simple, generic object model has been implemented.
In this model, different objects can be defined that encapsulate the process data. Each object
includes a set of properties that in turn consist of an array of data elements. In addition to this
array, each property has a field specifying the size of a single data element. The semantics as
well as the encoding of the data elements have not been defined in this model yet.

9

The main advantage of the proposed solution is that each application object can be accessed
using KNX and BACnet/KNX simultaneously. For example, the BACnet service ReadProperty
and the KNX service A_Property_Read can both be used to read the data elements of a
single object.

4.2 BACnet/Ethernet-to-BACnet/KNX router

To interconnect the BACnet/Ethernet to the BACnet/KNX network, a simple BACnet/Ethernet-
to-BACnet/KNX router has been developed. It is implemented on an ARCOM VIPER embedded
PC that is based on a 400MHz XScale processor. The embedded PC provides an integrated
100 MBit Ethernet controller, several EIA 232 interfaces and a USB host controller. To connect
to the BACnet/Ethernet network, the onboard Ethernet controller is used. Connection to KNX
TP1 has been realized with a TP-UART board that is connected to one of the EIA 232 interfaces.

Embedded Linux has been chosen as operating system for the router device. A routing
daemon routes the network traffic between the BACnet/Ethernet and the BACnet/KNX network.
It simply waits for incoming BACnet/KNX and BACnet/Ethernet messages, converts them into
destination network messages and finally forwards them to the destination network. Incoming
KNX frames are captured using eibd [8, 9] whereas incoming BACnet frames are captured
using a local UNIX raw socket. Figure 8 shows the software design as well as a picture of this
routing device.

TPUART

eibd

Ethernet NIC

Raw socket

BACnet/Ethernet – BACnet KNX
routing daemon

BACnet/Ethernet BACnet/KNX

Embedded PCTPUART EthernetKNX

Figure 8: BACnet/Ethernet-to-BACnet/KNX router

10

5 Conclusion and future work

This paper presents an approach to use the KNX physical and data link layer as network option
for BACnet. The main advantage of the proposed solution is that standard KNX and BAC-
net/KNX devices can share the same network medium without interfering each other.

As a first proof-of-concept, a simple prototype BACnet internetwork containing a BACnet/Eth-
ernet as well as a BACnet/KNX network has been implemented. Besides standard KNX and
BACnet devices, a special device called BACknx has been integrated into this prototype in-
ternetwork. BACknx has been developed to support both, the KNX as well as the BACnet
protocol. Currently, both protocol stacks provide only basic communication services. As a next
step, these stacks shall be improved by providing support for more advanced communication
services. Additionally, the implemented object model shall be enhanced.

To be able to route the network traffic between the two networks, the development of a so
called BACnet/Ethernet-to-BACnet/KNX router was part of the project. Currently, this router
provides only basic routing based on static routing tables. Therefore, providing support for
BACnet router auto-configuration and router table maintenance is planned.

Furthermore, a VTS plugin shall be developed that provides the opportunity to use KNX as a
BACnet network option.

References

[1] “Building Automation and Control Systems (BACS) – Part 2: Hardware”, IS0 16484-2, 2004.
[2] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, “Communication Systems for

Building Automation and Control”, Proceedings of the IEEE, vol. 93, no. 6, pp. 1178–1203, 2005.
[3] “Building Automation and Control Systems (BACS) – Part 5: Data Communication Protocol”, ISO

16484-5, 2003.
[4] “BACnet – A Data Communication Protocol for Building Automation and Control Networks”, AN-

SI/ASHRAE 135, 2004.
[5] “KNX Specification”, Version 1.1, 2004.
[6] “Visual Test Shell for BACnet”, http://sourceforge.net/projects/vts/, 2007, version 3.4.10.
[7] Siemens, “Technical Data EIB-TP-UART-IC”, 2001, version D.
[8] M. Koegler, “Free Development Environment for Bus Coupling Units of the European Installation

Bus”, Master’s thesis, Vienna University of Technology, Institute of Computer Aided Automation,
2005.

[9] M. Koegler, “eibd”, http://www.auto.tuwien.ac.at/ mkoegler/index.php/eibd.

11

