
Gateway-free Integration of BACnet and KNX
using Multi-Protocol Devices

Wolfgang Granzer, Wolfgang Kastner, Christian Reinisch

Vienna University of Technology, Automation Systems Group

Treitlstrasse 1-3, Vienna, Austria

Email: {w,k,cr}@auto.tuwien.ac.at

Abstract— Today, building automation systems can be realized
using a multitude of different standards. Since each of these
standards has its benefits, the combination of different standards
and consequently of their best features promises substantial
synergies. However, an integration is far from being straightfor-
ward and thus demands research. Starting from an analysis of
the benefits that integrated building automation networks can
offer, this work reviews the different approaches to combine
KNX and BACnet. A gateway-free solution based on multi-
protocol devices is considered most promising and examined
in detail. The required protocol adaptations are discussed and,
finally, a prototype implementation of an integrated, gateway-free
BACnet/KNX internetwork is presented.

I. INTRODUCTION

Building Automation Systems (BAS) aim at improving con-

trol and management of mechanical and electrical systems in

buildings. The system functionality is broken up into three lev-

els [1]. At the field level, the data is collected (measurement,

counting, metering) and the process is controlled (switching,

setting, positioning). The automation level encompasses the

various aspects of automatic control, e.g., the execution of

control loops. Global configuration and management tasks

(e.g., visualization) are part of the management level functions.

Today, many different standards for BAS exist. The three

most popular and well-known ones are KNX [2], Lon-

Works [3] and BACnet [4]. While these open standards are

application-independent and can be used at all three levels,

other standards are dedicated to the use at a single level. Some

of the latter ones are application-specific (e.g., the Digital

Addressable Lighting Interface, DALI [5]) while others bring

along specific characteristics (e.g., ZigBee focuses on wireless

networking [6]). A mapping of the most important standards

to the architectural levels in BAS is illustrated in Fig. 1. In

Europe, it can be observed that both KNX and LonWorks are

used predominantly at the field and automation level while

BACnet is prevalent at the management and automation level.

However, the introduction of KNXnet/IP and LonWorks/IP

made way for these protocols’ use also at the management

level. Likewise, the specification of MS-TP and LonTalk as

network option enabled BACnet to be used at the field level.

Especially, in North America, BACnet/MS-TP is used at the

field level.

Nowadays, the three level functional model [7] is often

implemented as a flatter, two level architecture. On the one

hand this shift stems from the development of intelligent field

Modbus

JCI N2SBT P1

Management 
level

Field
level

Automation
level

Fig. 1. Standards in building automation

devices which incorporate more functionality and thus can

take over automation functions themselves. On the other hand

information technology is no longer used exclusively at the

management level but also at the automation level. Therefore,

the functions of the automation level can be split and reas-

signed to the “intelligent” field as well as the management

devices. Today’s building automation networks (BANs) are

often implemented following this two tier model: multiple

field networks that are home for intelligent sensors, actuators

and controllers are interconnected by a common backbone. A

typical example of such a 2-tiered BAN is shown in Fig. 2.

II. BACNET AND KNX

The main objective of BACnet is to provide a solution for

building automation and control systems of all sizes and types.

BACnet was first published in 1995 by the standing standard

project committee SSPC135 of the American Society of Heat-

ing, Refrigerating and Air ConditioningEngineers (ASHRAE).

Together with ANSI, BACnet was made an ISO standard in

2003. The currently effective standards are ANSI/ASHRAE

135:2004 [4] and ISO 16484-5:2007 [8].

The protocol architecture of BACnet consists of four lay-

ers which correspond to the physical, data link, network,

and application layer of the ISO/OSI model. In contrast to

other building automation standards, BACnet is not bound

to a specific network medium. Hence, BACnet leaves the

underlying physical and data link layer undefined, so that

– in principle – any physical/data link layer combination

could be used. However, to increase the compatibility of

BACnet devices offered by different vendors, six physical/data

link layer combinations called network options have been

defined by BACnet. These are Ethernet, ARCNET, Master-

ⓒ



Slave/Token-Passing (MS/TP), LonTalk, Point-to-Point (PTP)
and BACnet over IP (BACnet/IP).

In 2002, the KNX standard was defined as a combination

of EIB (European Installation Bus), Batibus and EHS (Eu-

ropean Home System). In 2004, KNX was published as an

European Standard (EN 50090). Finally, in 2006, it became an

international standard (ISO/IEC 14543). The standard itself is

maintained by the Konnex Association [2].

KNX provides the choice of different network media. It

supports the use of twisted-pair (KNX TP0 and KNX TP1),

powerline (KNX PL110 and KNX PL132) as well as a

wireless solution called KNX Radio Frequency (KNX RF).

Additionally, a simple form of IP tunneling is also available

(KNXnet/IP). The most common type is KNX TP1 which

allows a maximum bandwidth of 9.6 KBit/s and free topology.

In KNX, two different types of communication are possible.

On the one hand, configuration and maintenance of devices

is accomplished using unicast connections (connection-less

or connection-oriented). On the other hand, process data is

exchanged among communication groups using exclusively

multicast communication (group communication).

Up to now, a KNX based network option is not part of the

BACnet standard. However, KNX offers specific advantages

over other protocols. Amongst others, these are free topology,

simple yet robust medium access using CSMA/CA and a

small network stack footprint which makes KNX an interesting

option especially at the field level. The promising combination

of the features of BACnet and KNX in a so called BACnet

internetwork is shown in Fig. 2. The KNX segment is intercon-

nected to the BACnet backbone using a gateway. Following

the 2-tier approach, the use of a gateway is mandatory as

it caters for the mapping of KNX and BACnet data points.

But the use of gateways also exhibits several drawbacks.

Most prominent, the configuration and maintenance effort

increases as all relevant data points from both adjacent network

segments have to be translated. This requires considerably

large mapping tables to be stored and may be a limiting factor

regarding the scalability of the BAS. The gateway approach

thus introduces a single point of failure and additionally a

security risk. Regarding security, all process data has to be

concentrated in the gateway device to be accessible from

both attached networks. This makes the gateway of particular

interest for an adversary who gains a complete system view

once the gateway is attacked successfully.

Faced with these drawbacks, a solution that allows the

interconnection of a KNX network with a BACnet backbone

without the need for gateways is desirable. This approach and

its advantages are presented in the next section. In Sections IV

and V the mechanisms that enable our solution are presented.

The discussion is followed by a prototype implementation in

Section VI. An outlook on future work is given in Section VII.

III. GATEWAY-FREE INTEGRATION

Since a gateway-based approach is responsible for several

disadvantages, a gateway-free solution is targeted. Still, the

BACnet operator 
workstation

BACnet
logging server

KNX BACnet/Ethernet

B
ac

kb
on

e
le

ve
l

BACnet/Ethernet

BACnet/Ethernet -
BACnet/Ethernet router

Fi
el

d 
le

ve
l

BACnet/Ethernet -
KNX gateway

Datapoint
mapping

Field devices

Fig. 2. Two tier model using a gateway

functionality originally provided by the gateways has to re-

main available in the network to allow communication across

BACnet and KNX network segments.

One way to integrate KNX would be to use BACnet com-

munication over the KNX medium for the field networks. The

drawback of this solution is the obvious need for completely

new devices. All of them would have to feature the KNX phys-

ical and data link layer below the mandatory higher BACnet

layers. The KNX part would thus be degraded to a BACnet

network option and standard-conform KNX communication

up to the user application would no longer be possible. This

clearly contrasts the goal to fully integrate a KNX network

that can coexist with the BACnet network. Still, this approach

would allow to eliminate the gateways.

The only way to realize a coexistent and integrated BAC-

net/KNX network without gateways is to break down the

data point mapping to the field level. This distribution of

the gateway functionality across the devices only requires a

modification to the devices that shall be integrated. These

devices have to implement both a BACnet and a KNX

protocol stack to fully support BACnet as well as standard

KNX communication. The result is a so called multi-protocol
device that supports both communication protocols [9]. Such a

BACnet/KNX multi-protocol device can coexist with standard

KNX devices attached to the same network segment with-

out any modification and can even fully participate in the

KNX communication. Following this approach the data point

mapping previously performed by gateways located at the

network segment borders becomes obsolete. This makes way

for the substitution of the gateways with more simple routers.

These routers analyze and translate the incoming network

messages only up to OSI layer 3 and therefore need not be

aware of any data points. Compared to gateways, configuration

and maintenance of routers implies considerably less effort

as no mapping tables need to be maintained. The reduced

complexity of a “routing task” also impacts the hardware

requirements (especially memory and computational power)

which are significantly decreased for the dedicated routing

device. Clearly, the configuration effort at the field level is

in turn slightly increased. Field devices are now themselves

required to keep a mapping table containing all data points

to be shared. However, these data points and especially their

associated bindings have to be configured and maintained in



any case so that only the data point mapping table has to

be considered additional overhead. This overhead is alleviated

by the fact that the tables can be created and maintained

at least semi-automatically with the help of management

tools. Furthermore, breaking down the data point mapping to

the field level also reduces a potential security risk that is

introduced by the use of gateways. Compared to a gateway,

a multi-protocol device has to store only a subset of the data

points of particular interest. Therefore, an adversary who has

successfully attacked a multi-protocol device only gains access

to a subset of the process data.

BACnet operator 
workstation

BACnet
logging server

KNX + BACnet/KNX BACnet/Ethernet

B
ac

kb
on

e
le

ve
l

BACnet/Ethernet

BACnet/Ethernet -
BACnet/Ethernet router

Fi
el

d 
le

ve
l

BACnet/Ethernet -
BACnet/KNX router

Datapoint
mapping

BACnet devices
Standard KNX 

device

Multi-protocol 
device

BACnet
communication

KNX
communication

2

3

1

Fig. 3. Two tier BACnet internetwork with integrated KNX network

Fig. 3 shows an example of a BAN where a KNX field

network is integrated with a BACnet network using routers

exclusively. The router based solution allows standard KNX

devices as well as BACnet/KNX multi-protocol devices to

share the same KNX field network.
Four different types of data exchange in the integrated

network are possible. Obviously, multi-protocol devices are

able to exchange data with other multi-protocol devices.

Additionally, a multi-protocol device that is attached to a

KNX network can exchange process data with other standard

KNX devices (cf. �1 ), because it implements a full KNX

protocol stack. As each multi-protocol device also implements

a BACnet stack, full support for all BACnet communication

services is given. This main feature allows two additional

ways of data exchange. As shown in �2 , the multi-protocol

device is able to exchange process data with other BACnet

field devices located in other BACnet field networks. The

necessary mapping is then performed by the multi-protocol

device itself and the messages just need to be routed to

the destination segment. Finally, also BACnet management

devices (e.g., a BACnet operator work station located at the

backbone) can directly access the multi-protocol device to

perform configuration or maintenance tasks (cf. �3 ).
The router-based approach offers significant advantages

over the integration with the help of a gateway. Nevertheless,

some precautions that prevent unwanted interference between

BACnet and KNX network messages have to be taken. These,

and a detailed description of the multi-protocol device archi-

tecture are presented in the following section.

IV. BACNET/KNX MULTI-PROTOCOL DEVICE

The key components of gateway-free integration are multi-

protocol devices. Their main benefit is the ability to commu-

nicate with standard KNX devices as well as with BACnet

devices that are possibly located in other BACnet networks.

To achieve this, multi-protocol devices implement both com-

munication protocol stacks.

Fig. 4 shows the structure of a BACnet/KNX multi-protocol
device named BACknx device. Once integration of a KNX

network is intended, BACknx devices need to have an interface

to the KNX network medium. Thus, the use of KNX as

transport medium for both communication stacks is mandatory.

Due to the fact that BACnet does not specify the data link

and physical layers, KNX must be used as network option for

BACnet. A detailed description will be given in Section V.

BACnet stack

KNX stack KNX as BACnet 
network option

API

Application
objects

User
application

User
application

...

KNX TP1

Data point 
mapping

Fig. 4. BACnet/KNX multi-protocol device

On top of the two communication stacks, a common data

base that stores the application data is located. The following

application model is assumed in this approach: process data

(e.g., sensor and actuator values) are represented by data

points. Each device has a set of data points that are represented

by application objects within the device. In order to achieve

compatibility between the application models of BACnet and

KNX, the following application object model is used: each

application object consists of two mandatory properties (object

ID and object type), various object-specific properties (e.g.,

present sensor value) and multiple optional properties (e.g.,

min. value, max. value). Each property can be either a single

data element or an array of elements. In addition, each property

has a property ID and a field specifying the property type i.e.,

the size of a single data element.

Obviously, the object and property IDs and types as well

as the encoding of the stored data values differs in BACnet

and KNX. Therefore, a mapping and/or translation scheme

needs to be defined. This is achieved through the employment

of four different tables for mapping the object IDs (including

the application service access points), the object types, the

property IDs, and the property types. An example mapping of

a binary application object is presented in Section VI-A.



V. KNX AS NETWORK OPTION FOR BACNET

Because KNX has not yet been considered as network op-

tion for BACnet, an approach to use the popular KNX medium

TP1 is part of our proposed solution. The BACnet network

layer provides an unconfirmed communication service which

in turn requires (at least) an unacknowledged communication

service from an underlying data link layer. Regarding the use

of the KNX data link and physical layers as new BACnet net-

work option this means that the KNX L Data service [2] can

be used. The corresponding parameters of the L Data service

are the source and destination address, a message priority, the

user data (i.e., the LSDU) to be transmitted, and a Boolean

value specifying if a layer 2 acknowledgment is expected.

Setting up the required point-to-point communication within

a local BACnet network communication can be accomplished

using KNX’s individual addressing scheme. In this approach,

the KNX individual address can be used unchanged as BACnet

device address.

Both BACnet and KNX distinguish between four priority

levels. However, the levels have different semantics so that

a mapping has to be performed. With respect to the fact

that BACnet high priority messages have to be handled

first, the following mapping is chosen: BACnet normal
to KNX low, BACnet urgent to KNX normal, BACnet
critical equipment to KNX urgent, and BACnet
life safety to KNX system. The remaining BACnet

user data are embedded into the LSDU part of the L Data
service. Although the use of KNX link layer acknowledgments

for BACnet/KNX frames is not mandatory, its activation is

recommended to increase robustness.

This straight-forward mapping of BACnet NPDUs into the

KNX LPDUs works as long as exclusively BACnet commu-

nication is used. However, in case that BACnet and KNX

communication shall be used simultaneously, problems would

emerge. Consider, for example, that a BACnet broadcast

message is transmitted over the KNX network. Since both

BACnet-over-KNX and standard KNX messages use the same

LPDU type, it is not possible to differentiate between a

“mapped” BACnet-over-KNX and a standard KNX message.

Therefore, standard KNX devices receive the BACnet broad-

cast message, too. However, the message will be interpreted

wrongly by the higher KNX layers.

One way to counter this problem would be to define a

new LPDU type for BACnet/KNX messages. The drawback

of this solution is that standard KNX routers (couplers)

could no longer route these messages since the new LPDU

type is unknown to them. To overcome this limitation, a

new TPDU type called T DATA BACNET REQ PDU has been

defined. Using this new TPDU type, an unwanted interference

between BACnet/KNX and KNX messages is prevented and

the message can still be processed correctly by standard KNX

routers. The encapsulation (replacement of the TSDU and

mapping of parameters) is handled by a so called BACnet/KNX
Virtual Link Layer (BKVLL) which is located between the

KNX transport and the BACnet network layer (cf. Fig. 5).

KNX Data Link Layer

KNX Network Layer

KNX Transport Layer

BACnet/KNX Virtual Link Layer

BACnet Network Layer

ARCNET

PTP

LonTalk

BACnet Application Layer

UDP/IP

KNX Physical Layer

ISO 8802-3
(IEEE 802.3)

„Ethernet“

ISO 8802-2
(IEEE 802.3)

Type 1

BVLL 
(BACnet/IP)

EIA 485

MS/TP

EIA 232

Fig. 5. BACnet/KNX as new network option

BACnet supports message segmentation at the application

layer. The maximum amount of APDU segments may vary and

can be negotiated between the sending and receiving device.

Due to the fact that different network options can be used

in BACnet, the maximum length of a single APDU within

a single message segment may vary, too. According to the

BACnet specification, the maximum APDU length is limited

by the maximum APDU length transmittable by the device,

the maximum APDU length accepted by the remote peer and

the maximum NPDU length permitted by the local, remote or

any intervening network segments between the sending and

the receiving device. In addition to these constraints, BACnet

demands a maximum APDU length of at least 50 octets. Since

the APDU length of standard KNX frames is limited to 15

octets, they cannot be used without further precautions.

0 1 2 3 4 5 6 7

C
on

tro
l F

ie
ld

K
N

X
 S

ou
rc

e
A

dd
re

ss

K
N

X
 D

es
tin

at
io

n
ad

dr
es

s

K
N

X
 T

P
C

I

K
N

X
 C

he
ck

su
m

E
xt

. C
on

tro
l F

ie
ld

8 … 8 + N
Le

ng
th

(0
-2

54
) N

st
ar

ts
 w

ith
 o

ct
et

 8

9+N

B
A

C
ne

t N
P

C
I

B
A

C
ne

t A
P

C
I

B
A

C
ne

t
A

pp
lic

at
io

n 
D

at
a

0 54321 76
0 r 10 00pr

0 54321 76
0 0 00hop 0 0x04 … T_DATA_BACNET_REQ_PDU

0
0

00

11
1

1
KNX system BACnet life safety
KNX urgent BACnet critical equipment
KNX normal BACnet urgent
KNX low BACnet normal

Fig. 6. BACnet/KNX frame format

One solution would be to introduce segmentation at the data

link layer that is performed independently of the segmentation

at the BACnet application layer. This additional segmentation

process would have to be implemented by the BKVLL. The

main drawback of this solution is the resulting overhead.

Since the maximum NPCI length of a BACnet NPDU (in

case of a transmission between two BACnet/Ethernet peers)

is 24 octets, the resulting NPDU length is 74 (assuming a

maximum APDU length of 50). Together with 1 octet occupied

by the segmentation sequence number, this leads to a minimum

length of 75 octets. Therefore, the BACnet NPDU would have

to be split into five KNX standard messages since a single

standard KNX TSDU may only contain up to 15 octets. The

encountered overhead of this approach is unacceptably high



at 55%.1 However, the overhead introduced by the data link

layer segmentation can be avoided if the KNX extended frame

format is used. Using KNX extended frames, the KNX TSDU

can now contain up to 254 octets. Considering a worst case

NPCI length of 24 octets, 230 octets remain available for

the APDU. This way, data link layer segmentation is clearly

rendered unnecessary. Fig. 6 shows the frame structure of the

proposed solution.

VI. PROTOTYPE IMPLEMENTATION

As a first proof-of-concept, a prototype BACnet internet-

work consisting of a BACnet/Ethernet backbone and a KNX

TP 1 based field network has been set up (cf. Fig. 7).

VTS BACnet client

BACnet/Ethernet-to-BACnet/KNX router

Standard 
KNX device

ETS 
client

BACnet/Ethernet

BACknx 
device

BACnet/KNX

Fig. 7. Prototype implementation

The encapsulation technique presented in Section V enables

(separate) BACnet as well as standard KNX communication

without any interference between the two protocols. However,

also mixed operation of both protocols is supported. For

demonstration purposes additional devices are integrated into

the prototype network. At the BACnet/Ethernet network, a

BACnet client is connected via Ethernet. The client runs the

Visual Test Shell (VTS)2, an open-source Windows application

for BACnet conformance testing. The VTS is used to send and

receive BACnet messages.

The KNX TP1 network contains a standard KNX light

switch and a KNX management client (represented by a

notebook) running the standard KNX management software

Engineering Tool Software (ETS). Furthermore, an implemen-

tation of the previously presented BACknx device is attached to

the KNX TP1 network. Obviously, a router that interconnects

the BACnet/Ethernet backbone with the KNX TP1 network is

required. Its implementation is presented in Section VI-B.

A. BACknx device

The main hardware components of the BACknx device are a

MSP430 microcontroller and a Twisted Pair - Universal Asyn-

chronous Receive Transmit (TP-UART) [10] interface which is

used to access the KNX TP1 medium. Additionally, multiple

digital I/O ports including connected peripherals (LEDs and

buttons) are available. In the proposed test environment, one

LED is used to simulate a light source.

1In this case, the overhead is calculated as follows: overhead =
(KNXLPCIlength + KNXNPCIlength + KNXTPCIlength +
sequenceID)/(BACnetNPDUlength) ∗ 100.

2http://sourceforge.net/projects/vts/

TP-UART IC

KNX Data Link Layer

KNX 
Application

Layer

KNX Network Layer
KNX Transport Layer

BACnet/KNX Virtual Link 
Layer

BACnet Network Layer 

BACnet Application Layer

TP-UART Stack
Hardware Abstraction Layer (HAL)

UARTTimer

I/O

Software Implementation
MSP430 Microcontroller

BACknx node

API

User Application

Binary
Output

BACnet/KNX

Fig. 8. BACknx node

The software architecture of the BACknx device is shown

in Fig. 8. A simple Hardware Abstraction Layer (HAL)
abstracts the underlying microcontroller hardware (i.e., UART

and timer). On top of it, a hardware independent TP-UART
stack allows an efficient implementation of the BACnet/KNX

protocol. In principle, the TP-UART supports the use of

extended frames. However, due to the format of the TP-UART

specific services, a maximum frame length of 62 octets and

thus a KNX APDU length of 53 octets is possible [10].

Therefore, a data link layer segmentation is still necessary.

The maximum BACnet APDU length of 50 octets (as it is

required by the BACnet specification) can be guaranteed by

splitting a BACnet NPDU into at most two KNX messages,

thus keeping the overhead significantly lower.

The BACknx protocol stack resting above consists of

two major parts: A lean KNX stack provides basic ser-

vices for group communication. In particular the ser-

vices A GroupValue Read, A GroupValue Write and

A GroupValue Response as well as the connection-

oriented services A PropertyValue Read, A Property
Value Write and A PropertyValue Response are

implemented. Furthermore, a simple BACnet stack supports

the BACnet services Who-is, I-am, Who-has, I-have,

ReadProperty, and WriteProperty. The BACnet stack

is placed on top of the BACnet/KNX virtual link layer which

is responsible for replacing the TSDU part of a KNX message

with the BACnet NPDUs.

On top of the KNX and BACnet stack, a simple, generic

application object table has been implemented. For this pro-

totype the table contains a single binary output object that is



associated with the state of a LED. The object can be accessed

in three different ways: On the one hand, the user application

is associated with the binary output object. Whenever the state

of the binary output object is changed (i.e., by an incoming

BACnet or KNX request), the user application is notified

thereof and can change the state of the LED. On the other

hand, the object is accessible through both communication

stacks using BACnet or KNX services. In the prototype, this

means that either the VTS client can alter it using a BACnet

PropertyWrite, or the KNX light switch can be used to

turn on/off the LED by sending a KNX A GroupValue
Write. Additionally, the current state of the object can be

read out by the VTS (using BACnet’s ReadProperty) or

by the ETS (via KNX’s A GroupValue Read).

As mentioned in Section IV, a data point mapping has to

be performed. In the current implementation, the KNX binary

group object is mapped to a BACnet binary output object.

The group address of the KNX group object is mapped to the

BACnet Object Identifier while the value is mapped to

the BACnet object property Present Value. The mapping

of the property types follows the data point type mapping

described in Annex H.5 of the BACnet specification [4].

The presented prototype implementation requires about

35Kbyte of memory. Compared to a KNX-only implemen-

tation that uses about 30Kbyte, the BACnet stack needs an

additional 5Kbyte of memory, and therefore introduces a

minimum overhead only.

B. BACnet/Ethernet-to-BACnet/KNX router

For successful operation of an integrated BACnet/KNX

internetwork, a router that interconnects the network segments

is needed. The task of the BACnet/Ethernet-to-BACnet/KNX

router is to receive messages from either network, convert the

messages according to the destination network’s requirements

and finally forward the converted messages to the destination

network. As shown in Fig. 9, the router has been implemented

on an ARCOM VIPER embedded PC. A connection to the

BACnet/Ethernet network is established using the onboard

Ethernet controller. The KNX TP1 is accessed through a TP-

UART board that is connected to an EIA 232 interface.

TP-UART

eibd

Ethernet NIC

Raw socket

Routing 
table

Arcom Viper Embedded PC
Embedded Linux

BACnet/KNXBACnet/Ethernet

BACnet/Ethernet –
BACnet KNX routing daemon

BACnet network
management

Fig. 9. BACnet/Ethernet-to-BACnet/KNX router

Embedded Linux has been chosen as operating system

for the router device. A routing daemon routes the net-

work traffic based on the information about the network

topology that is stored in the routing table. Currently, this

table only contains one entry for the Ethernet and one for

the KNX network. However, an extension for routers that

support more than two network interfaces is easily possible.

The main task of the routing daemon is to receive, con-

vert and forward incoming BACnet/KNX or BACnet/Ethernet

messages. Incoming KNX frames are captured using eibd3

whereas BACnet frames are received using a local UNIX
raw socket. Additionally, the daemon supports multiple BAC-

net network layer communication services. Currently, ser-

vices for a discovery of the router by other BACnet de-

vices (i.e., Who-Is-Router-To-Network and I-Am-
Router-To-Network) as well as for dynamically changing

the routing table (i.e., Initialize-Routing-Table and

Initialize-Routing-Table-Ack) are implemented.

VII. CONCLUSION AND FUTURE WORK

Integration is one of the main future challenges in BAS, yet

it offers significant benefits. This paper presents an approach

to integrate KNX field networks with BACnet. This concerns,

on the one hand, KNX TP1 as new BACnet network option

and, on the other hand, multi-protocol devices.

Further development is, thus, possible in two ways. First,

adapting the encapsulation mechanisms to add support for the

other KNX media (e.g., KNX RF) is easily possible. Second,

the modular architecture of the multi-protocol devices allows

a straightforward extension towards other BAS standards, e.g.,

wireless networks such as ZigBee.

Furthermore, the presented mapping between BACnet and

KNX application objects will be refined. Starting from the

basic mapping defined in Annex H of the current BACnet

specification, also the mapping of more complex BACnet

object types to KNX functional blocks (and vice versa) shall be

included in our generic application model. Finally, the BACnet

conformance testing tool VTS shall be extended to support

KNX as new network option.

ACKNOWLEDGMENT

The work presented in this paper was funded by FWF (Austrian Science

Foundation) under the project P19673.

REFERENCES

[1] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman,
“Communication systems for building automation and control,” Pro-
ceedings of the IEEE, vol. 93, no. 6, pp. 1178–1203, 2005.

[2] “KNX specification,” Version 1.1, 2004.
[3] “Control network protocol specification,” ANSI/EIA/CEA 709.1, 1999.
[4] “BACnet – a data communication protocol for building automation and

control networks,” ANSI/ASHRAE 135, 2004.
[5] “A.C.-supplied electronic ballasts for tubular fluorescent lamps – Control

interface for ”Control by digital signals”,” IEC 60929 Annex E, 2006.
[6] ZigBee Specification 2007, ZigBee Alliance, San Ramon, 2007.
[7] International Organization for Standardization, “Building Automation

and Control Systems (BACS) – Part 2: Hardware,” ISO 16484-2, 2004.
[8] “Building automation and control systems (BACS) – part 5: Data

communication protocol,” ISO 16484-5, 2007.
[9] S. Soucek and D. Loy, “Vertical Integration in Building Automation

Systems,” in Proc. 5th IEEE INDIN, June 2007, pp. 81–86.
[10] Siemens, “Technical Data EIB-TP-UART-IC,” 2001, version D.

3http://www.auto.tuwien.ac.at/˜mkoegler/index.php/eibd


