
1

This regular paper was presented as part of the main technical program at IEEE ETFA'2011

978-1-4577-0018-7/11/$26.00 ©2011 IEEE

Interoperability at the Management Level of Building Automation Systems:
A Case Study for BACnet and OPC UA

Andreas Fernbach, Wolfgang Granzer, Wolfgang Kastner
Vienna University of Technology, Automation Systems Group

Treitlstrasse 1-3, A-1040 Vienna, Austria
{afernbach,w,k}@auto.tuwien.ac.at

Abstract

In modern building automation systems a plethora of
different networking technologies exists. Therefore, inter-
operability between devices using various technologies is
a key requirement. The use of Web Services as a platform-
and technological-independent method of communication
is a promising approach to address this challenge. Since
IP extensions to available technologies are more and more
established in building automation systems the network
infrastructure and necessary protocols for Web Services
communication are already present. However, providing
appropriate concepts to model information that can be
accessed in a generic way are still missing. OPC Uni-
fied Architecture (OPC UA) is a powerful and promising
standard that aims at solving this challenge. This work
discusses an approach to map the interworking model
of BACnet to OPC UA. Using the resulting information
model BACnet applications can be represented in OPC
UA and, thus, be accessed by OPC UA clients in a stan-
dard and well-defined way.

1. Introduction

A commonly agreed model of Building Automation

Systems (BAS) is the automation pyramid [1, 12]. It is

divided into three levels which reflect the different func-

tional aspects of BAS. The lowest level is the field level

where the interaction with the technical process such as

metering, setting, and switching happens. The automa-

tion level placed in the middle of the pyramid provides the

control functionality (i.e., the execution of control loops

on data prepared by the field level). At the top level of

this hierarchy, the management level acts as an interface

to management and enterprise applications. Configuration

of the system, visualization, and archiving of process data

are typical activities at this level. Another task of the man-

agement level is to provide interoperability between dif-

ferent systems and technologies used at the lower two tiers

of the BAS. To achieve interoperability, a general appli-
cation model covering the functionality of these systems

has to be defined. Since IP based networks are commonly

used at the management level of today’s BAS, the most

suitable concept of communication at this level is the use

of Web Services (WS) [11]. WS have the advantage that

they provide platform- and programming language inde-

pendence. Based on the exchange of messages, WS follow

the Service Oriented Architecture (SOA) paradigm. This

enables devices to exchange data independently from the

underlying network technologies.

Within this context, OPC Unified Architecture (OPC
UA) is one of the most important standards supporting

WS. While OPC UA is already well-established in in-

dustrial automation systems [8, 15], it gains importance

within the building automation domain. In addition to

the less used standards, such as oBIX [2] and BAC-

net/Web Services (BACnet/WS) [3], OPC UA can be used

to provide a generic view to management clients that need

global access to the entire BAS. However, to be able to

use OPC UA at the management level, interfaces to the

underlying technologies are required. Therefore, this pa-

per presents an approach how OPC UA can be integrated

into one of the most important open BAS standards used

at the automation and management level, namely Building

Automation and Control Network (BACnet). The paper

starts with an introduction to BACnet and its application

model (cf. Section 2). In the following Section 3, the main

concepts of OPC UA are described. In Section 4, the main

contribution of this paper is presented – i.e., a method to

map the interworking model of BACnet to an OPC UA

information model. Finally, as a proof-of-concept a pro-

totype application of an OPC UA server interfacing with

BACnet/IP networks is presented in Section 5. In Section

6, the paper is concluded with an outlook on ongoing re-

search activities.

2. BACnet

The Building Automation and Control Network (BAC-

net) protocol was developed by the American Society of

Heating, Refrigerating, and Air Conditioning Engineers

(ASHRAE) and was standardized in 1995. Continuous

maintenance and development are applied since then. The

current standard is BACnet 2008 [3] which is also laid

down as ISO 16484-5:2010 [6].

To allow remote devices to access process data, an

object-oriented, “network-visible” representation of the

2

Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectIdentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Present_Value REAL W
Progress_Value REAL R
Resolution REAL O
Binary_Present_Value BACnetBinaryPV O
Output_Type BACnetLightingOutputType R
Lighting_Command BACnetLightingCommand W

Figure 1: BACnet object type definition [5]

stored data has been specified by BACnet. Up to now,

30 different BACnet object types are defined within the

current BACnet standard. They differ in the compo-

sition of their so called BACnet properties which can

be seen as datapoints i.e., the logical representation of

the process data of the technical process under con-

trol. Each property has a unique identifier referred

to as Property Identifier, a designated property

type, and a conformance code attribute. The confor-

mance code defines the access permissions of a prop-

erty and specifies whether a property must be present or

not. Possible values are Readable (R), Writable (W),

and Optionally present (O). Figure 1 gives an example of

such an object type definition. There are three manda-

tory properties that must be defined for each BACnet

object: Object Identifier, Object Name, and

Object Type. The former two properties must be

unique within a BACnet device. Since a BACnet object

is always dedicated to exactly one device, these proper-

ties can be used to reference a BACnet object within the

device.

Available BACnet object types as well as the in-

cluded properties are mostly generic ones. For ex-

ample, BACnet defines generic object types such as

the BACnet Binary Output Object type and the

BACnet Analog Input Object type. It is within

the responsibility of the application program to map the

functionality of a dedicated application to certain BACnet

objects. However, there are also efforts underway to stan-

dardize more application-specific object types in BACnet.

In Addendum i to BACnet 2008, a basic BACnet object for

lighting has been defined [5]. Figure 1 shows parts of the

definition of the BACnet Lighting Output object.

Every BACnet device holds exactly one special object

called Device Object. The Device Object pro-

vides basic information about the BACnet device like ven-

dor information, firmware and protocol version, and local

time and date. Additionally, its Object Identifier
and Object Name must be unique within the whole

BACnet network and so it can be used to identify the de-

vice in the network.

In addition to the representation of process data,

the standard defines different communication ser-

vices. Two important object access services are

the ReadProperty and the WriteProperty
services for getting and setting the value of a

property. The ReadProperty service takes the

Object Identifier, the Property Identifier
and optionally the Property Array Index of the

property that has to be read as arguments. If succeeded,

the service response of a ReadProperty contains

the input arguments of the request and the value of the

property to be read. The WriteProperty service,

on the other hand, takes the Object Identifier,

the Property Identifier, the Property
Array Index as well as the Property Value and

the corresponding Priority of the property that has to

be written as arguments. Success is indicated to the client

by sending a positive confirmation response.

3. OPC Unified Architecture

In 1995, an association of vendors developing Human

Machine Interface (HMI) and Supervisory Control and

Data Acquisition (SCADA) software was founded. It tar-

geted to address the drawbacks of the plenty of vendor-

specific fieldbus systems and protocols already available

on the market but being not compatible among each other.

The association was named OPC Foundation.

Its first release was a standard providing services for

reading and writing process data. It was named OLE
for Process Control (OPC), since the protocol was based

on Microsoft OLE. The idea behind OPC was that each

vendor provides specific OPC drivers for network de-

vices. These drivers link the individual network protocols

to the OPC Application Programming Interface (API).

This enables devices implementing different communica-

tion standards to exchange data and control information

using the uniform OPC representation of data and ser-

vices. In the beginning, Microsoft’s Component Object

Model (COM) and Distributed COM (DCOM) were used

as APIs. This reuse of intellectual property enabled the

foundation to focus on the development of important new

features and quick adoption of the standard for the ad-

dressed use cases [13] which was an advantage of the OPC

Foundation against other organizations. In addition to the

original OPC standard that was later renamed to OPC Data

Access (OPC DA), additional specifications were defined.

Examples are OPC Alarm & Events (OPC A&E) that de-

scribes the handling of event based information, and OPC
Historical Data Access (OPC HDA) which specifies an

interface to archived process data.

Originally an advantage, the COM/DCOM dependency

of these so called classical OPC specifications became

more and more a limitation to many applications [14]. In

addition to the insufficiency of COM/DCOM (e.g., limited

remote access support, weak security mechanisms, depen-

dency to Microsoft Windows systems, incompatibility of

COM/DCOM between different Windows versions), an-

other drawback of classical OPC was the weaknesses in

modeling complex data and systems caused by the lack of

object oriented concepts like using a type hierarchy. To

eliminate these drawbacks, the OPC Unified Architecture
(OPC UA) [4, 7] was released as a full replacement of the

classical OPC specifications [10]. The main points of evo-

lution of this new standard are:

• Combine all features from the classical OPC specifi-

3

cation into one specification

• Achieve platform independency by using Web Ser-

vices and TCP based protocols for communication

• Allow remote access over the Internet

• Provide strong security mechanisms

• Use of a common object-oriented model for repre-

senting any kind of data

• Allow scalability in data complexity

• Offer the possibility to model meta information of

process data

• Provide an abstract base model from which other

user-defined models can be derived

Data modeling and transportation are the two core

components of the OPC UA specification. The meta
model defines base modeling concepts and rules that can

be used to model data. The transport part describes com-

munication services that can be used in combination with

two different transport protocols: a TCP based binary pro-

tocol for efficient communication and data exchange as

well as a Web Service based protocol using XML and

SOAP. The exchange of data in OPC UA follows the

client-server model. On top of these two core compo-

nents, the OPC UA service API and the OPC UA infor-
mation model are located. The services in OPC UA are

used to exchange data between OPC clients and servers.

If a client wants to access data on the server, it calls a

distinct method of the service set. Typical examples are

the discovery service set to discover the available servers

and the attribute service set to read and write OPC UA

attributes. The OPC UA information model, on the other

hand, that is used to represent process data is described in

the following.

3.1. Information modeling in OPC UA
Contrary to classical OPC which only provides possi-

bilities to represent basic data, OPC UA supports mecha-

nisms to expose specific semantics to data. For example,

in addition to the measurement value of a sensor, informa-

tion about the senor type or the device that implements the

sensor functionality can be modeled.

Interoperability between devices of different vendors

requires a uniform representation of data. In OPC UA, the

idea is to define information models (i.e., data represen-

tations) for different application domains. Vendors can

use these models or can even extend them by their own

domain-specific knowledge. Clients do not have to dis-

tinguish between different vendors since they all have the

same base model exposing data in common.

Information models in OPC UA are based on a meta

model called address space which prescribes the follow-

ing rules:

• Information is modeled in form of nodes carrying at-

tributes and references linking the nodes.

• Type hierarchies and inheritance are used as object-

oriented principles.

• There is no distinction between the exposure of data

and type information. The latter is needed by clients

Node 1

Attributes
NodeId: “1“
NodeClass: Object

References

Ref1:
-NodeId: “2“
-ServerURI: NULL
-Type: “has-child“
-Direction: forward

Node 2

Attributes
NodeId: “2“
NodeClass: Object

References

Ref1:
-NodeId: “1“
-ServerURI: NULL
-Type: “has-parent“
-Direction: inverse

Figure 2: The concept of nodes and references [13]

to interpret the data which is accessed.

• Information is modeled in form of a network with

full-meshed nodes. There is no unique way to model

information. Each use case requires a specific man-

ner of modeling.

• The base information model as part of the specifica-

tion is extensible with regard to defining subtypes of

nodes and references between them.

• Information models only exist on OPC UA servers.

Clients gain their knowledge about how data is mod-

eled by fetching that information from the server.

Nodes in OPC UA consist of attributes which give a de-

scription of the node and references creating links to other

nodes (cf. Figure 2). Some attributes are inherent in all

node classes, some are specific. Examples of common at-

tributes are the NodeId for uniquely identifying the Node

in the address space, the BrowseName that identifies a

node when browsing through the address space, and the

DisplayName attribute which contains the name of the

node to be displayed in a user interface. For the entire list

of attributes see [4].

Each node is assigned to a distinct node class. Basi-

cally, it can be distinguished between node classes defin-

ing types and node classes defining instances of types.

The built-in type definition node classes are the follow-

ing:

• DataType node class: defines the data type of the

value attribute of a variable or variable type

• VariableType node class: used to define the type

of a variable

• ObjectType node class: specifies the type of an

object

• ReferenceType node class: used to specify refer-

ence types

The following built-in instance definition node classes are

defined:

• Variable node class: variables must always be-

long to another node (e.g., an object). The Value
attribute holds a physical value of a technical pro-

cess (if it is linked by a HasComponent reference)

or provides meta information for the superior node

(when referenced by HasProperty). When refer-

4

enced by a HasProperty reference, a variable is

called Property.

• Object node class: objects consist of variables,

methods, and properties. They are used to model de-

vices or components of the technical process under

control like a temperature controller or a motor con-

troller.

• Method node class: methods are always referenced

to an object. They represent functions that can be

called by the OPC UA client (e.g., start and stop rou-

tines of a motor controller).

• View node class: In order to reduce the scope of a

client accessing an information model on a server,

views can be used to make only parts of it visible.

Depending on the use case, only the relevant part of

the whole model is accessible by the client.

Users can extend the built-in information model by defin-

ing their own use case specific type definitions. These

types are inherited from built-in ones and enhanced with

additional semantics by using user-defined names (simple
types) or by defining further subnodes (complex types).

References in OPC UA are applied to create a link be-

tween two nodes. Although a reference type is handled

internally as a node, references do not have attributes and

are not directly accessible – only indirectly by browsing

a node. However, reference types follow the same exten-

sible concept as nodes. Users can likewise inherit spe-

cial reference types from built-in ones in order to define

the required semantics. References are divided into hi-

erarchical and non-hierarchical ones. Hierarchical refer-

ence types are typically used in type hierarchies (e.g., the

HasSubtype reference) or when assigning properties to

objects or variables by a HasProperty reference. The

HasTypeDefinition is a typical non-hierarchical ref-

erence.

4. OPC UA information model for BACnet

The same challenges the OPC foundation originally ad-

dressed when releasing the classical OPC standards exist

in the building automation domain. There are many differ-

ent control and fieldbus networks and technologies avail-

able but they are not compatible among each other. Since

OPC UA is mainly designed for usage at the management

level of the automation pyramid, it is mostly utilized in

this realm of building automation. Used at the manage-

ment level, OPC UA can provide interoperability by ab-

stracting the underlying networking technologies. It cre-

ates a uniform view of the process data and allows com-

munication between network devices of different tech-

nologies. Figure 3 shows a possible setup of an OPC UA

server in a building automation network that uses BACnet

over IP as network. One or more OPC UA servers are used

to gather data from different BACnet controllers to create

a live process image. OPC UA clients that are located

within the same subnet or even in a foreign WAN can ac-

cess this process image for monitoring purposes (e.g., for

visualization and trending applications). Another use case

OPC UA server

BACnet/IP
network

Router

OPC UA client

BACnet
controllers

Fi
el

d
le

ve
l

M
an

ag
em

en
t

le
ve

l
Au

to
m

at
io

n
le

ve
l

WAN

BACnet
client

Field
devices

Figure 3: OPC UA in a BACnet network

is taking over control of the process from the management

level by an operator or facility manager.

In the work presented, the focus is on building an

OPC UA information model for BACnet. Using this in-

formation model, OPC UA servers and clients can be

used to implement management applications that need

to gather data from BACnet networks. There is a sig-

nificant resemblance in BACnet and OPC UA with re-

spect to data mapping. Both standards follow an ob-

ject oriented approach. However, the modeling concept

in OPC UA is more advanced than in BACnet since the

latter does not support inheritance. Thus, defining a

type hierarchy is not possible in BACnet. Section 4.1

presents how the interworking model of BACnet can be

mapped to OPC UA. Another similarity exists in address-

ing the objects holding the process data. In BACnet, ob-

jects have an Object Identifier, properties have a

Property Identifier. In OPC UA nodes are ref-

erenced by their NodeId. A mapping of these two ad-

dressing schemes is given in Section 4.2. Furthermore,

the concepts of services used to access data are similar in

both standards. Access services to read and write exist in

both worlds. Alarm and event handling are also defined

which allow, for example, the monitoring of process vari-

ables and triggering of an event or an alarm if a change

of values happens or a threshold is exceeded. While this

aspect is not treated in this paper, an outlook is given in

Section 6.

4.1. BACnet interworking model
Due to the powerful capabilities of OPC UA the BAC-

net view of data can be modeled in OPC UA. The chosen

approach is to transform BACnet objects to OPC UA com-

plex objects. BACnet properties as members of BACnet

objects are in turn mapped to OPC UA variables refer-

enced by the corresponding OPC UA objects. In order to

instantiate an entity in OPC UA, a type describing it has to

be defined before. This needs to be done for the objects,

variables, and references.

Since the value attribute of a variable is of a partic-

ular data type, the first thing to do is to define a data

type hierarchy that represents the available BACnet

data types. Some of these BACnet data types can

directly be mapped to the built-in OPC UA data types.

5

For instance, the BACnet property type REAL (e.g.,

used by the property Present Value of a BACnet

Lighting Output Object type) can be modeled

as the OPC UA Float data type. However, there

are more complex BACnet property types that can

not be represented by built-in OPC UA data types.

Two examples are the BACnetObjectIdentifier
and the BACnetObjectType. These BACnet

data types have to be modeled as subtypes of OPC

UA built-in data type Structure which can be

used to model complex data types. An exemplary

part of it is shown in Figure 4a. All user-defined

BACnet data types are subtypes of the user-defined

abstract data type BACnetPropertyDatatype
that is inherited from the OPC UA built-in data type

Structure. For each user-defined structured data

type, at least one encoding has to be defined that is

used by clients to correctly interpret the user-defined

data. In the proposed model, DefaultBinary
encoding is chosen for all user-defined data types.

For every encoding, a description of the type (rep-

resented by a DataTypeDescriptionType
node) exists which in turn is a component of the

BACnetPropertyDictionary. Within this

user-defined dictionary, the entire encoding is de-

scribed in XML format. For the BACnet property type

BACnetObjectIdentifier, this XML representa-

tion looks as follows1:

<StructuredType Name="BACnetObjectIdentifier">
<Field Name="ObjectType"

TypeName="Bit" Length="10">
</Field>
<Field Name="InstanceNumber"

TypeName="Bit" Length="22">
</Field>

</StructuredType>

After having defined the BACnet data types, the BAC-

net properties have to be represented in OPC UA. To

achieve this, user-defined OPC UA variable types are

defined that are used for the instance declarations of

the BACnet properties. Each of these BACnet spe-

cific user-defined variable types is a subtype of the

abstract user-defined BACnetPropertyType variable

type. This abstract variable type contains the user-defined

OPC UA property BACnetPropertyId which repre-

sents the BACnet Property Identifier. This at-

tribute is unique for each BACnet property. Some def-

initions of such variable types are shown in Figure 4c.

To create user-defined OPC UA variable types, the cor-

responding attributes of the new variable type have to

be set. The DataType attribute is set to the corre-

sponding user-defined OPC UA data type defined be-

fore. The AccessLevel informs the OPC UA client

about access permissions to the particular variable. In

this information model the access permission facet of

the conformance code of BACnet properties is mapped

to the OPC UA AccessLevel attribute. Possible val-

ues are Readable and Writeable. Examples for fur-

ther attributes to be set are the BrowseName and the

1For details about the XML representation refer to Part 3 of [4].

Structure

BACnetProperty
DataType

BACnetObject
Identifier BACnetObjectType

HasEncoding HasEncoding

DefaultBinary::
DataTypeEncodingType

DefaultBinary::
DataTypeEncodingType

BACnetObjectIdentifier
Description::

DataTypeDescriptionType

BACnetObjectIdentifier
Description::

DataTypeDescriptionType
Attributes
DataType=ByteString
Value={„BACnetObjectIdentifier“}

HasDescription

BACnetObjectType_
Description::

DataTypeDescriptionType

BACnetObjectType_
Description::

DataTypeDescriptionType
Attributes
DataType=ByteString
Value={„BACnetObjectType“}

HasDescription

BACnetProperty_Dictionary::
DataTypeDictionaryType

BACnetProperty_Dictionary::
DataTypeDictionaryType

Attributes
DataType=ByteString
Value={„<?xml...“}

OPCBinary::
DataTypeSystemType

(a) Datatype Definition

HasComponent

HasBACnetProperty HasBACnetObject

Aggregates

(b) Reference Type Definition

BaseDataVariableType

BACnetPropertyTypeBACnetPropertyType
Attributes
Range

Object_IdentifierTypeObject_IdentifierType

Attributes
DataType=
BACnetObjectIdentifier
AccessLevel=Readable

Object_NameTypeObject_NameType

Attributes
DataType=ByteString
AccessLevel=Readable

Object_TypeTypeObject_TypeType

Attributes
DataType=
BACnetObjectType
AccessLevel=Readable

Present_ValueTypePresent_ValueType

Attributes
DataType=Float
AccessLevel=Writeable

. . .

BACnetPropertyID::
BACnetPropertyIDType

(c) Variable Type Definition

Figure 4: Definition of BACnet Types

6

DisplayNamewhich are both set to the human-readable

name of the BACnet property defined in the standard.

To assign the variables representing BACnet properties

to OPC UA objects, references are used. To express

the special semantics of these references, the new ref-

erence type HasBACnetProperty has been defined.

This reference type is inherited from the hierarchical type

HasComponent (cf. Figure 4b).

Now having all the necessary components avail-

able, the BACnet object types can be modeled

in OPC UA. All BACnet object types are rep-

resented by user-defined OPC UA complex object

types that are all subtypes of the abstract user-

defined BACnetObjectType. This object type con-

tains the BACnet properties Object Identifier,

Object Name, and Object Type that are common to

all BACnet objects. The assignment of the variables that

represent the BACnet properties to the corresponding ob-

ject type is done by using the HasBACnetProperty
reference mentioned before. To model the part of the

conformance code of BACnet properties that specifies

whether a property must be present or not, an OPC UA

ModellingRule is defined for each variable. In this

information model only the Mandatory and Optional
modeling rules are used. The former forces the particular

variable to be instantiated, the latter leaves only an option

for that. Figure 5 shows example how modeling rules can

be used.

Inherited from the abstract BACnetObjectType all

BACnet object types that are specified in the standard

can be defined in OPC UA. Figure 5 shows an example

how the BACnet Device Object type and the BAC-

net Lighting Output Object type are represented

using this concept. As shown in this figure, only the object

specific variables are defined – the common ones are in-

herited from the supertype. As it is common in OPC UA,

the HasSubtype reference is used to model the relation

between sub- and supertype. An example of how meta

information can be modeled is also shown in Figure 5 in

form of the EngineeringUnit node referenced from

the Power variable. To model the assignment of a unit

to the value of a variable, the UPC UA built-in reference

HasProperty is taken.

4.2. Instantiating and addressing of BACnet objects in
OPC UA

After having presented how BACnet object and prop-

erty types are modeled in OPC UA, it must be specified

how instances of BACnet objects and properties are rep-

resented by the OPC UA server and how they are ad-

dressed within OPC UA. In BACnet, each BACnet ob-

ject is dedicated to exactly one BACnet device – BACnet

objects are therefore never distributed across more than

one BACnet device. Therefore, it is reasonable to use a

device-centric view – each BACnet device is represented

as an OPC UA object instance of the user-defined ob-

ject type BACnetDeviceType which in turn is a sub-

type of the standard OPC UA BaseObjectType (cf.

BACnetObjectType

BACnetLighting
OutputObjectType

Present_Value::
Present_ValueType

[Mandatory]

Progress_Value::
Progress_ValueType

[Mandatory]

P

P

Lighting_Command::
Lighting_CommandType

[Mandatory]
P

Power::
PowerType
[Optional]

P

EngineeringUnit::
Kilowatts

BACnetDeviceObjectType

Object_List:
Object_ListType
[Mandatory]

P

.

.

.

Object_Identifier:
Object_IdentifierType

[Mandatory]

Object_Name:
Object_NameType

[Mandatory]

Object_Type:
Object_TypeType
[Mandatory]

P

P

P

.

.

.

BaseObjectType

BACnetDeviceType

BACnetDeviceObject:
BACnetDeviceObjectType

[Mandatory]
O

.

.

.

P HasBACnetProperty
O HasBACnetObject

Figure 5: Object type definition

Figure 5). The corresponding BACnet objects are as-

signed to the OPC UA object by using the user-defined

HasBACnetObject reference which is a subtype of the

standard OPC UA HasComponent reference type (cf.

Figure 4b). Figure 6 shows an example how a BACnet

device that contains a BACnet Device Object and a

BACnet Lighting Output Object is modeled.

What is still remaining is how the BACnet properties

can be addressed. BACnet properties are addressed by

the Property Identifier which is unique within

the object. In the proposed information model, this can

be done by reading the BACnetPropertyID property

that is dedicated to each BACnet variable definition. To

address the BACnet object, the Object Identifier
which is unique within the device is used. The

Object Identifier can be determined by the read-

ing the value of the Object Identifier variable

that is mandatory for each BACnet object. Finally, to

address the device itself, the BACnet Device Id or

the Device Name which are both unique within the

whole BACnet network can be used. To determine

the BACnet Device Id within the OPC UA model,

the value of the Object Identifier variable of

the Device Object has to be read – to determine

the Device Name, the value of the Object Name
variable of the Device Object has to be retrieved.

As a result, the combination of the value of the

BACnetPropertyID property, the value of the OPC

UA Object Identifier variable, and the value of

7

LightingOutputObject1:
LightingOutputObjectType

Present_Value::
Present_ValueType

[Mandatory]

Progress_Value::
Progress_ValueType

[Mandatory]

P

P

Lighting_Command::
Lighting_CommandType

[Mandatory]
P

Power::
PowerType
[Optional]

P

.

.

.

Object_Type:
Object_TypeType
[Mandatory]

P

P

P

EngineeringUnit::
Kilowatts

BACnetDevice1

O

.

.

.

Object_Type:
Object_TypeType
[Mandatory]

P

P

P

O

BACnetPropertyID::
BACnetPropertyIDType
Attributes
Value=75

BACnetPropertyID::
BACnetPropertyIDType
Attributes
Value=77

BACnetPropertyID::
BACnetPropertyIDType
Attributes
Value=79

BACnetPropertyID::
BACnetPropertyIDType
Attributes
Value=85

BACnetPropertyID::
BACnetPropertyIDType
Attributes
Value=246
BACnetPropertyID::

BACnetPropertyIDType
Attributes
Value=242

BACnetPropertyID::
BACnetPropertyIDType
Attributes
Value=245

BACnetPropertyID::
BACnetPropertyIDType
Attributes
Value=75
BACnetPropertyID::

BACnetPropertyIDType
Attributes
Value=77

BACnetPropertyID::
BACnetPropertyIDType
Attributes
Value=79

Object_Identifier:
Object_IdentifierType

[Mandatory]
Attributes
Value=29054

Object_Name:
Object_NameType

[Mandatory]
Attributes
Value=“BACnetDevice1“

Object_Identifier:
Object_IdentifierType

[Mandatory]
Attributes
Value=1
Object_Name:

Object_NameType
[Mandatory]

Attributes
Value=“Light1“

DeviceObject

P HasBACnetProperty
O HasBACnetObject

Figure 6: Instantiation of a BACnet device

the Object Identifier variable of the Device
Object (or the value of the Object Name variable of

the Device Object) is used to address a BACnet prop-

erty in the presented OPC UA model.

Figure 6 illustrates an instantiation of a BACnet

Lighting Output Object. Consider, for exam-

ple, an OPC UA client browses to the Present Value
variable of the BACnet Lighting Output Object
and wants to read the value of it. To read its

current value, the OPC UA server needs to invoke

the BACnet ReadProperty service. To send this

request, the address information has to be deter-

mined. First, the Property Identifier is de-

termined by reading the BACnetPropertyID prop-

erty of the Present Value variable (in the pro-

posed example 85). Afterwards, the value of the

Object Identifier variable is read (in the given ex-

ample 1). Then, the Device Id is determined by read-

ing the Object Identifier variable of the Device
Object (in the proposed example 29054). Using the

combination of these values, the OPC server is able to

send the ReadProperty request to the BACnet device.

After having received the response, the OPC server is able

to forward the present value to the OPC UA client.

5. Implementation

In the context of the EraSME project “Web-based

Communication in Automation (WebCom)”2 an OPC

UA framework called Comet has been developed by the

project partner HB-Softsolution3. Among other software

modules it contains a Software Development Kit (SDK)

for implementing Java based OPC UA servers. This server

SDK is functionally separated into two parts: one is the

core OPC UA server which is based on the OPC UA Java

stack released by the OPC foundation. This core server

loads the standard OPC UA information model plus any

user-defined information model out of one or more XML

files. This way the configuration part is completely iso-

lated from the server’s code. As a result, the server’s infor-

mation model can be changed and extended even during

runtime. The second part of the server module consists of

a driver framework which allows to implement drivers for

particular network technologies that can be loaded into the

core server. These drivers are responsible for interfacing

with the required protocol stacks of the used technologies.

Depending on these technologies the stack implementa-

tions can freely be chosen. The driver framework only

provides an API for read and write methods which have to

be implemented individually.

To evaluate the developed information model for BAC-

net, a proof-of-concept implementation was performed.

The implementation uses the Comet framework to imple-

ment an OPC UA for BACnet/IP networks. The driver im-

plementation for the required interface to the BACnet/IP

network is based on the open source BACnet/IP for Java
stack4. It is a high-performance implementation of the

BACnet/IP protocol supporting the most important kinds

of BACnet services and objects. Emulating a BACnet de-

vice by instantiating local BACnet objects is also suitable

for this implementation.

Another important software module of the Comet

framework is the OPC UA Model Designer which was

used to implement the developed BACnet information

model. As an editing tool, it can be used to generate in-

formation models and extend existing ones. It provides a

graphical user interface that supports the user in applying

definitions of data types, variable types, reference types,

and object types. Furthermore, instances can be derived

from these type definitions in a very comfortable way. The

hierarchical structure of the resulting information model

2http://www.webcom-eu.org/
3http://www.hb-softsolution.com/
4http://bacnet4j.sourceforge.net/

8

Figure 7: OPC UA Model Designer

is expressed by a tree view. A screenshot in Figure 7

shows the definition of the BACnet Lighting Output
Object (without completeness of properties) embedded

in its type hierarchy. The information model created by

the Comet Model Designer is finally exported in XML

format. This file can be opened again by the model de-

signer for further editing or it can be used as input for the

Comet OPC UA Server.

To show the feasibility of the developed information

model, an instance of a real-world BACnet controller was

modeled within the Comet Model Designer. This BACnet

controller is used to control a Heating, Ventilation, and Air

Conditioning (HVAC) test installation within a laboratory

equipment. The resulting OPC UA model of this BAC-

net controller is loaded into the Comet OPC UA server

which can be accessed by any OPC UA client to control

the HVAC test installation.

6. Conclusion and outlook

In this paper an approach of establishing an OPC UA

information model for BACnet was presented. As an ex-

ample, the BACnet Lighting Output Object was

taken to show the way a BACnet object with its proper-

ties can be mapped to OPC UA. In addition to the BAC-

net Lighting Output Object, it is also planned to

map the remaining standardized BACnet object types into

the developed information model. On the way to a com-

plete information model, other OPC UA concepts shall be

transferred to BACnet. Especially the alarm and event ser-

vice sets which allow to monitor BACnet properties and

generate alarms on particular conditions have great prac-

tical relevance and so a mapping to monitoring and sub-

scription mechanism of OPC UA is one of the next steps.

Furthermore, it shall be investigated how other parts of the

OPC UA specification (e.g., OPC Historical Access) can

be used to represent additional aspects of BACnet.

To achieve the desired interoperability in BAS, infor-

mation models have to be introduced for other technolo-

gies, too. A similar information model that maps the in-

terworking model of KNX into OPC UA was already pre-

sented in [9]. A final step in this process is to design a

model representing the common aspects of BAS in gen-

eral.

Also within the focus of the WebCom project is the

implementation of a KNX driver for the OPC framework

presented in the previous section. It should act as a proof

of concept like the BACnet driver implemented in the con-

text of this work. Furthermore, an interoperability lab will

be set up to put OPC UA software implementations into

operation and to run distributed tests over the Internet.

Acknowledgement

This work was funded by FFG (Austrian Research Pro-

motion Agency) under the EraSME/COIN project “Web-

based Communication in Automation” (P824675).

References

[1] Building Automation and Control Systems (BACS) –

Part 2: Hardware. ISO 16484-2, 2004.
[2] oBIX 1.0 Committe Specification. OASIS, 2006.
[3] BACnet – A Data Communication Protocol for Building

Automation and Control Networks. ANSI/ASHRAE 135,

2008.
[4] OPC Unified Architecture Specification. OPC Foundation,

2009.
[5] BACnet – A Data Communication Protocol for Building

Automation and Control Networks. ANSI/ASHRAE 135-

2008: Addendum i, 2010. Status: 4th public review.
[6] Building Automation and Control Systems (BACS) –

Part 5: Data Communication Protocol. ISO 16484-5,

2010.
[7] OPC Unified Architecture. IEC 62541, 2010. Current sta-

tus: Approved for FDIS circulation.
[8] R. Cupek and A. Maka. OPC UA for vertical communica-

tion in logistic informatics systems. In IEEE Conference
on Emerging Technologies and Factory Automation, pages

1–4, 2010.
[9] W. Granzer, W. Kastner, and P. Furtak. KNX and OPC

UA. In Konnex Scientific Conference, Nov. 2010.
[10] T. Hannelius, M. Salmenpera, and S. Kuikka. Roadmap to

adopting OPC UA. In IEEE International Conference on
Industrial Informatics, pages 756–761, 2008.

[11] A. Kalogeras, J. Gialelis, C. Alexakos, M. Georgoudakis,

and S. Koubias. Vertical integration of enterprise indus-

trial systems utilizing web services. IEEE Transactions on
Industrial Informatics, 2(2):120–128, May 2006.

[12] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M.

Newman. Communication Systems for Building Automa-

tion and Control. Proceedings of the IEEE, 93(6):1178–

1203, June 2005.
[13] W. Mahnke, S.-H. Leitner, and M. Damm. OPC Unified

Architecture. Springer, 2009.
[14] M. Son and M.-J. Yi. A study on OPC specifications: Per-

spective and challenges. In International Forum on Strate-
gic Technology, pages 193–197, 2010.

[15] J. Virta, I. Seilonen, A. Tuomi, and K. Koskinen. SOA-

based integration for batch process management with OPC

UA and ISA-88/95. In IEEE Conference on Emerging
Technologies and Factory Automation, pages 1–8, 2010.

