
Communication Services for
Secure Building Automation Networks

Wolfgang Granzer and Wolfgang Kastner
Vienna University of Technology, Institute of Computer Aided Automation, Automation Systems Group

Treitlstraße 1-3, A-1040 Vienna, Austria

Email: {w, k}@auto.tuwien.ac.at

Abstract—Up to now, building automation systems were con-
sidered as virtually closed enviroments. If at all, they had
to provide some well dedicated dial-in connections for remote
management. With the introduction of interconnections to foreign
networks (e.g., Web gateways to the Internet) and wireless
technologies, the assumption of physical isolation is not longer
valid. In parallel, building automation systems of the next
generation shall also be home for tight integrated services with
seamless interworking nodes of formerly separated systems.
When security-critical integration is considered, this promises
synergies, but significantly tightens requirements on the protocol
stack. This paper summarizes the demands to be met by nodes
participating in such an environment and presents necessary
secure services that are part of the protocol architecture.

I. INTRODUCTION AND MOTIVATION

Building automation comprises all aspects of services for

controlling and managing a functional building. Core domains

are still the high energy intensive areas of Heating, Ventilation,

and Air-Conditioning (HVAC), and lighting/shading. In the

early years of building automation, realization of commu-

nication structures for device interconnection focused on a

domain specific centralized approach [1]. Reasons were the

limited capabilities of the involved devices, mainly restricted

to their actual domain intrinsic functionality (e.g., sensing or

actuating for room temperature control, constant light control).

The technical evolution of field devices and of communication

systems led to more intelligent sensors, actuators, and con-

trollers as well as networks segments to connect them. To force

data exchange inside a specific domain, network segments

were connected via a common backbone where meanwhile

the Internet Protocol (IP) found a widespread acceptance.

With the (still) ongoing down-shift of intelligence, devices

are nowadays capable of processing more tasks locally without

need of a central controlling instance. As a future trend,

decentralized considerations for communication structures will

even allow sensor sharing and sensor fusion across a domain.

On this way, further services from the safety and security

domain may be fully integrated in an automated building.

However, when such services are going to be integrated, it is

required to keep sensitive information confidential and prevent

abuse of the resulting system for economic or even life safety

reasons [2].

Available technologies do not satisfy the requirements for

an integration of security-critical applications – some solutions

provide a solid base (e.g., BACnet, IEEE 802.15.4/ZigBee),

while others at least include rudimentary features (e.g., KNX,

LonTalk) [3]. After identifying the most important require-

ments for a secure communication (Section II), this paper

presents a generic architecture that allows a secure exchange

of data between security-critical control applications (Section

III). Resting upon existing low-level protocol mechanisms, a

multi-protocol communication stack is defined (Section IV,

V, and VI). Accompanied by specific quality of service fea-

tures, this stack supports secure communication services that

provide a common environment for security-critical building

automation systems. The paper is concluded by an outlook on

implementation details (Section VII).

II. REQUIREMENTS

A. Security

To be able to secure communication between all kinds

of building automation applications, the following security

objectives have to be met1.

• Entity authentication: Guaranteeing entity authentication

avoids that a malicious node impersonates a trustworthy,

legitimate one. While in most cases both the receivers as

well as the senders must prove their identities (mutual
entity authentication), it may be sufficient that only one

side i.e., either the receiver side or the sender side

within a secure relationship is authenticated (unilateral
entity authentication). A typical example of a relationship

where only unilateral entity authentication is demanded

is a sensor that periodically broadcasts data. In such a

case, it is important that the identity of the sender is

authenticated – proving the authentication of the receivers

is not required.

• Authorization: After the authentication of the members

of a secure communication relationship has taken place,

it must be verified whether the joining node has the

necessary access rights to attend a relationship. If it has

insufficient access rights, participating in a relationship

must be denied.

• Secured channel: After the members of the relationship

are authenticated and all of them have the required access

rights, the data that is exchanged within the relation-

ship must be protected against security attacks. This is

done by establishing a so called secured channel. A

1The used security terms and definitions are based on [4].

978-1-4244-6391-6/10/$26.00 ©2010 IEEE 3380

secured channel uses non-cryptographic (e.g., physical or

organizational measures) and/or cryptographic techniques

(e.g., using Message Authentication Codes (MACs) or

encryption algorithms) to protect data against security

attacks while it is transmitted over an insecure network.

Depending on the requirements of the involved nodes, a

secured channel may guarantee:

– Data integrity. Providing data integrity guarantees that

the data was not modified by unauthorized nodes dur-

ing transmission. To achieve this, modification attacks

have to be prevented. However, if a full prevention

is not possible, modification attacks shall at least be

detected in order to avoid the use of corrupted data.

– Data origin authentication. In addition to data integrity

i.e., the protection of data against unauthorized modifi-

cation, a receiver can uniquely identify the data origin

i.e., the data source.

– Data freshness. Data freshness guarantees that the

transmitted data is recent and that an adversary has

not replayed previously sent data. A key feature of

guaranteeing data freshness is message ordering.

– Data confidentiality. The disclosure of confidential

information must be avoided. It must be guaranteed

that only authorized nodes have access to it. A typical

example of confidential information would be a PIN

code that is entered for accessing a room. However,

data that is exchanged within an HVAC system may

also contain confidential information. Consider a single

room temperature sensor: while the current room tem-

perature seems to be no secret, a low temperature may

indicate that the HVAC system is in “vacation mode”.

Using this knowledge, an adversary may deduce that

there is nobody present.

– Data availability. Data availability guarantees that

authorized nodes have access to the data and that

the access to this information is not prevented by

adversaries.

Beside these primary security objectives, there are sec-
ondary security objectives that may be more or less relevant for

building automation. Anonymity guarantees that an adversary

cannot learn the identity of a node. Furthermore, it is guar-

anteed that an adversary is not able to track a node and that

it is not able to derive a behavior pattern. While anonymity

might be a side issue, it may be important when a node is

directly related to an individual. A typical example would be

a social alarm system that monitors the healthiness of people.

Auditability is concerned with providing the proof what a

system has done. It is only possible if several other security

objectives like data origin authentication and non-reputability

are guaranteed. Auditability is primarily important in systems

like fire alarm or access control.

B. Quality of Service

Depending on the requirements of the control applications,

necessary communication services must also guarantee differ-

ent Quality-of-Service (QoS) properties related to security. The

most important one is reliability. Services are said be reliable

if the following properties can be guaranteed [5]:

• Integrity: Every message received was previously sent

i.e., there is no corruption of a message while it is

transmitted.

• No duplicates2: Every message is received at most once.

• Liveness: Every message is received at least once.

While integrity is required by most applications in building

automation, preventing duplicates and guaranteeing liveness

may be optional. For example, control applications that re-

ceive absolute values of control data (e.g., the present room

temperature) do not care about duplicates since receiving the

same value twice does not influence their proper functionality.

If a control application receives absolute values at regular

intervals, missing a few values may be tolerable and liveness

may be optional. However, applications that send relative state

changes (e.g., increase the set point of the room temperature

by 5 degrees) demand a reliable communication service that

guarantees liveness as well as the absence of duplicates.

Otherwise, irregular system states may be the result.

In addition to reliability, the ordering of the messages may

also be a requirement (see data freshness). In the general case

of multiple sources and sinks, three kinds of ordering are

distinguished:

• Single-source FIFO ordering: For all messages mi, mj

and all nodes nk, nl, if nk sends mi before mj then nl

does not receive mj before mi.

• Causal ordering: For all messages mi, mj and each node

nk, if mi precedes mj then nk does not receive mj before

mi where the ”preceding operator” is defined by the well

known ”happened-before” relation [6].

• Total ordering: For all messages mi, mj and all nodes

nk, nl, if nk receives mi before mj then nl does not

receive mj before mi.

III. SECURE COMMUNICATION ARCHITECTURE

To provide a generic solution that it is applicable to

building automation systems of all sizes and types (including

security-critical applications), the requirements identified in

the previous section have to be satisfied. To achieve this, the

proposed architecture is based on a modular, plugin-based,

multi-protocol communication stack. Its main feature is the

support for communication services that guarantee end-to-end

security on a per-device level. The stack itself is partitioned

into three layers (cf. Fig. 1). The Network Specific Layer
(NSL) provides low-level communication services that are

used to transmit messages over native network media. To be

able to reuse an already existing network infrastructure, any

data link/physical layer combination can be used. On top of

the NSL, the so called Security Abstraction Layer (SAL) is

located. The SAL is the key component within the stack. It

abstracts the communication services of the NSL, enhances

2Note that these QoS properties are related to the control applications
(i.e., to the application layer). At lower protocol layers, the requirements
may be different. Consider, for instance, safety applications where message
duplication is used to detect transmission failures.

3381

K
N

X

IE
EE

80

2.
15

.4

Et
he

rn
et

Lo
nT

al
k

1

2

6
.
3

Application Programming Interface (API)
7

High-level communication interface

IP

Security Abstraction Layer (SAL)

Application Specific Layer (ASL)

Network
Specific
Layer
(NSL)

User
application

User
application8

…

User
application

User
application

Low-level communication interface

Bl
ue

to
ot

h

Fig. 1. Multi-protocol architecture

them with security, QoS, and routing/naming features, and

offers generic secure communication services to the above

located Application Specific Layer (ASL). The ASL cares for

the functionality of a common application layer and provides

an interface to user applications. As all layers operate on

plugins, easy extension is supported.

IV. NETWORK SPECIFIC LAYER

The NSL corresponds to layers 1 and 2 of the OSI reference

model. It provides basic access to the underlying network

medium and supports low-level communication services for

sending and receiving messages on a single hop basis. Today,

many different building automation technologies exist which

in turn support various network media. Each of them offers

significant advantages regarding their physical characteristics.

While Ethernet based networks provide high bandwidth that is

necessary for backbone networks, fieldbuses based on Twisted-

Pair (TP) or Powerline are advantageous at the field level

since they support free topology. Wireless technologies, with

all their benefits and challenges, are also getting more and

more important. Available technologies also differ at the data

link layer. For example, some of them offer native support

for multicast (e.g., KNX, LonTalk) which can be used to

efficiently exchange data within communication groups.

As a result, choosing a single existing data link/physical

layer combination or even developing a new one is not

desirable. Therefore, the presented solution does not demand

the use of a single data link/physical layer combination –

in principle, it is possible to reuse any existing network

technology. To provide an abstraction of the underlying data

link communication services, so called data link plugins are

introduced. A data link plugin is dedicated to a specific data

link/physical layer combination and is located between the

NSL and the SAL. Data link plugins are geared towards

sensible (re-)use of already existing data link primitives. This

means that each plugin chooses the services that fit best

for the communication services required by the SAL. A

typical example would be the reuse of the existing multicast

communication services of KNX or LonTalk. In contrast to

that, the use of unsuited protocol features (e.g., ineffective

security mechanisms provided by KNX or LonTalk) can be

blocked by the plugin. Furthermore, it is even possible that

a device implements more than one data link/physical layer

combination (multi-protocol devices). Therefore, devices are

K
N

X

IE
EE

80

2.
15

.4

Et
he

rn
et

Lo
nT

al
k

KNX
DL

plugin

LonTalk
DL

plugin

IP
DL plugin

1

2

IEEE
802.15.4
DL plugin

IP
VDLL

Network
Specific

Layer (NSL)

… other
technologies

Low-level communication interface

* Optional

unicast-receive(ADRsrc,ADRdst)
broadcast-receive(ADRsrc)
multicast-receive(ADRsrc,ADRG)*

unicast-send(ADRsrc,ADRdst)
broadcast-send(ADRsrc)

multicast-send(ADRsrc,ADRG)*

Fig. 2. Low-level communication interface between NSL and SAL

able to have several interfaces to heterogeneous networks.

In addition to native data link plugins, it shall also be

possible to use a higher layer (i.e., layer 3 and above) as data

link layer. To achieve this, a so called Virtual Data Link Layer
(VDLL) is included. A VDLL simulates the use of higher

protocol layers as native data link layer. A typical example

would be the use of IP as data link layer for the SAL.3

To be able to use a broad range of network technologies,

the demands on the underlying data link/physical layer com-

binations shall be reduced to a minimum. Therefore, only

an unconfirmed unicast and broadcast communication service

are considered as mandatory. Fig. 2 shows the resulting low-
level communication interface that is located between the

NSL and the SAL. The data link services unicast-send
and unicast-receive are used to send and receive local

unicast messages. ADRsrc and ADRdst denote the source and

destination addresses used by the data link layer of the under-

lying network technology. To send and receive local broadcast

messages i.e., messages to all network members located at the

same network segment, the services broadcast-send and

broadcast-receive are available. Other communication

services (e.g., native support for multicast) or service features

(e.g., confirmed communication) are optional. However, if

they are provided by the underlying data link/physical layer

combination, they may be reused by the corresponding data

link plugins. A typical example would be use of services

for multicast communication (cf. multicast-send and

multicast-receive in Fig. 2).

V. SECURITY ABSTRACTION LAYER

The SAL corresponds to the OSI layers 3 to 6 serving

two objectives. First, it is responsible for providing a routing
scheme that allows a communication across heterogeneous

network segments. To achieve this, a global addressing scheme

is introduced. This scheme is based on global SAL addresses
that are used by the user applications to address other devices

or groups of them (i.e., communication groups). Each device

has to have a unique ID (denoted as IDA) that acts as SAL

address. In practice, this ID can be a serial number or a well-

3This concept is similar to BACnet/IP where UDP is used as data link layer
for BACnet internetworks.

3382

defined human-readable name4. Each network segment has a

dedicated SAL network address Nx that is unique within the

whole network. Between network segments, routers that im-

plement the proposed communication stack are located. Since

the network topology is static, it is assumed that routers are

configured accordingly.5 This means that each router knows

the network addresses of its connected network segments and

has sufficient routing information to find the next hop to any

network segment. Using these SAL addresses, routing across

network segment borders is possible – the SAL maps the

node’s ID (IDA) to the network address where the device is

connected to and also to its so called device address (denoted

as ADRA) and vice versa. A device address has to be unique

within the network segment and is identical to the address

used by the corresponding data link layer. Using this mapping

scheme, the different data link layers can be abstracted and a

heterogeneous routing is possible.

Additionally, devices can be arranged in communication

groups. Since communication groups are not limited to a

dedicated network segment, they are defined within the scope

of the whole network. Each group has a dedicated group ID

(denoted as IDGx
) which acts as SAL address. Again, this

ID is used by the application to uniquely identify a specific

group. If the underlying network technology provides a native

multicast service at the data link layer, IDGx
is mapped to

the group address(es) used by the data link layer(s) (denoted

as ADRGx
). Otherwise, the SAL maps the request to multiple

unicasts or to a global broadcast.

The second objective of the SAL is to provide generic secure

communication services to the ASL. The security concept of

the SAL is based on the concept of secure communication
relationships. A node can be member of one or more se-

cure communication relationships. Depending on the amount

of members, three different types of secure communication

relationships are distinguished. A network relationship (de-

noted as Nx) consists of all members of a network segment.

Relationships that contain only two members are referred to

as session relationships or sessions. A session is denoted as

SXY where the nodes X and Y are the two members of

the relationship. Finally, relationships that consist of three

or more members that are located across the entire network

are referred to as communication groups. A communication

group is denoted as Gx where IDGx
holds the unique ID

within the network. Based on these three different types

of communication relationship, all six communication types

typically found in building automation [7] can be supported

by the SAL: secure point-to-point control data communication
and device management are performed within sessions using

secure unicast, secure loose group communication and net-
work management are handled by network relationships using

4The distribution of the IDs is done during system deployment by the
system engineer. Therefore, the IDs may be distributed randomly or according
to a hierarchical assignment scheme based on the physical building structure
(e.g., “buildingA/floor1/roomA/light1”).

5Using a routing protocol that allows a change of routing information during
runtime is possible but out of scope of this paper.

secure broadcast, and secure strict group communication and

group management are provided by communication groups

using secure multicast.

To protect the communication services against security at-

tacks, a secured channel is necessary. The basis for providing a

secured channel is the use of cryptographic schemes. However,

cryptographic schemes are computationally intensive. Since

embedded devices with limited system resources (processing

power, persistent and volatile memory, power consumption,

and network bandwidth) are commonly used in building

automation, the realization of a secured channel must not

exceed the available device resources. Therefore, only those

cryptographic schemes that are absolutely necessary to satisfy

the security demands of the application shall be implemented

(“good enough security”). For example, if the non-disclosure

of the transmitted data is not a strict requirement, guaranteeing

data origin authentication and freshness may be sufficient.

Therefore, applications are able to choose between the fol-

lowing security levels:

• Raw: Raw communication services are not secured at all.

In order to avoid an unauthorized manipulation of data,

the communication channel must be secured physically.

• Protected: Protected communication services are services

where only data integrity is guaranteed. Data freshness is

not provided.

• Trusted: A communication service that is classified as

trusted is secured in a way that data integrity and data

freshness are provided.

• Confidential: Trusted communication services where the

exchanged data is additionally encrypted are called confi-

dential communication services. It is guaranteed that only

authorized nodes are able to read the clear text version

of confidential data.

For trusted and confidential communication services, guar-

anteeing data origin authentication instead of data integrity is

optionally possible.

The communication services provided by the SAL are

accessible through the so called high-level communication
interface (cf. Fig. 3). To establish a session for secure point-to-

point control data communication or device management, the

session-start primitive has to be used. IDdst denotes

the ID of the destination node, security the required security

level (i.e., raw, protected, trusted or confidential with optional

support for data origin authentication), reliability the require-

ments regarding reliability (i.e., integrity, no duplicates, and

liveness), and ordering the desired ordering of the messages

(i.e., single-source FIFO, causal, or total) demanded by the

application. Message exchange during a session is done by

the session-send and session-receive services. To

terminate a session, the session-end service is available.

To join a network, the network-join service is present.

Since it is possible that a node has more than one network

interface, the parameter if specifies the interface where the

join has to be performed. Again, security, reliability, and

ordering denote the requirements of the application. To ex-

change messages within network relationships, three different

3383

6
.
.
3

High-level communication interface

Security Abstraction Layer (SAL)

Low-level communication interface
unicast-receive(ADRsrc,ADRdst)
broadcast-receive(ADRsrc)
multicast-receive(ADRsrc,ADRG)*

unicast-send(ADRsrc,ADRdst)
broadcast-send(ADRsrc)

multicast-send(ADRsrc,ADRG)*

session-start(IDdst,security,reliability,ordering)
session-send(IDdst,msg)

session-end(IDdst)

network-join(if,security,reliability,ordering)
network-send-local(if,msg)

network-send-remote(Ndst,msg)
network-send-global(msg)

network-leave(if)

group-join(IDG,security,reliability,ordering)
group-send(IDG,msg)

group-leave(IDG)

session-receive(IDsrc,msg)

network-receive-local(IDsrc,if,msg)
network-receive-remote(IDsrc,Ndst,msg)
network-receive-global(IDsrc,msg)

group-receive(IDsrc,IDG,msg)

* Optional

Security
manager

Fig. 3. High-level communication interface between SAL and ASL

kinds of services are available. The network-send-local
and network-receive-local services are dedicated for

local broadcast i.e., broadcast dedicated to members of the

network segment where the device is connected to. The pa-

rameter if specifies the target interface of the local broadcast.

The network-send-remote and network-receive-
remote primitives are used to send and receive messages

that need to be forwarded to a remote network segment. The

address of the destination network segment is specified using

the parameter Ndst. Finally, the network-send-global
and network-receive-global services are available for

addressing all members within the entire network. To leave

the network where the device is connected to, the network-
leave service is provided.

Using the group-join service, a device is able to par-

ticipate in a group. IDG specifies the ID of the group,

security the required security level, and reliability as well

as ordering the QoS properties demanded by the application.

Sending and receiving of group messages are possible using

the group-send and group-receive services. To leave a

communication group, the group-leave service is at hand.

To be able to fulfill the requirements regarding security,

reliability, and ordering, the communication stack of the SAL

is supported by the so called security manager. It is respon-

sible for managing the membership of the different secure

communication relationships (i.e., session establishment and

termination, network/group join/leave). It has also the task to

maintain the corresponding meta-data that are associated with

the relationships. For each relationship, this includes the corre-

sponding SAL and data link addresses, routing information to

reach the specific members of the relationship, as well as the

used cryptographic secrets to protect communication against

security attacks.

VI. APPLICATION SPECIFIC LAYER

The ASL corresponds to the application layer of the OSI

reference model. It makes use of the communication services

provided by the underlying high-level communication interface

and offers an API to the hosted user application(s). The main

aim of the ASL is to completely hide the complexity of

the underlying communication system. For user application

engineers, it shall be possible to focus on the implementation

of the functionality of the desired control applications – that

is the collection of input information, performing control

functionality, and interacting with the environment by setting

new output values. However, user application engineers should

not need to bother with communication details. Managing

communication relationships and dealing with data exchange

between the user applications shall be left to the stack.

To provide such a high-level approach, the ASL is based on

the concept of data points (cf. Fig. 4). They provide an abstract

encapsulation of the control data that is under control of the

user applications (e.g., the current output value of a light).

The ASL is responsible for the management of these data

points. All data points of a device are represented as so called

Application Objects (AOs) stored in a generic application
object database. A typical example would be a binary object

of type “Boolean” that represents the output value i.e., the data

point of a light.

To access these AOs, two different ways exist. First, the user

application must be able to manipulate the AOs of interest. The

access to the application object database shall only be possible

through a well-defined API. Second, since control applications

are typically of distributed nature, remote devices must also

be able to access remote data points via the network. This is

achieved by associating data points of one node with (multiple)

data points hosted on remote nodes. These associations are

also referred to as bindings. If two AOs located at two remote

devices are bound with each other, changing the value of

the data point at one side also changes the value of the

corresponding data point at the remote side. Using this scheme,

user applications can take full advantage of control data that is

distributed across the entire network. Consider, for example,

the AO of a light switch that is bound with the AOs of two

lights (cf. Fig. 4). The necessary binding information is stored

within a so called binding table that is under control of the

ASL. Note that associations between AOs are not restricted

to one-to-one relations. One-to-many or even many-to-many

bindings may also be possible.

To be able to perform a reasonable binding between re-

mote AOs, the structure and semantics of the associated data

points have to be specified, too. This concerns the data point
type, the corresponding representation (i.e., the encoding of

the data points’ values within network messages and their

interpretation), and meta-data that is associated with the

data point. Typical examples of meta-data among others are

engineering units, upper and lower bounds, and most important

the required security and QoS level. It must be possible to

specify the minimum security and QoS level that the remote

node must fulfill in order to be able to bind to a remote AO.

Beside the ability to change the value of data points,

their management is also of great importance. This concerns

creation, changing, and removal of AOs as well as their

corresponding binding entries. These configuration and main-

tenance tasks shall be possible within two ways. First, the API

shall provide user applications the opportunity to dynamically

manage AOs and their associated bindings during runtime.

3384

High-level communication interface

Application Specific Layer (ASL)
Application Programming Interface (API)

User
application

User
application

User
application

Binding table

Application object
database

High-level communication interface

Application Specific Layer (ASL)
Application Programming Interface (API)

User
application

User
application

User
application

Binding table

Binding
High-level communication interface

Application Specific Layer (ASL)
Application Programming Interface (API)

User
application

User
application

User
application

Binding table

Management device

U
S

B

Management
access

I/0

I/0 I/0

Fig. 4. Application model

Second, it shall also be possible to access the AOs using

management tools. Management access can be provided via

the network (using the same secure communication services

as for user applications) or via a dedicated local interface

(e.g., using a point-to-point connection). Obviously, to avoid

malicious misuse, the management access must be protected.

VII. CONCLUSION AND OUTLOOK

This paper presented an adaptive security layer protocol

architecture that is capable of operating on heterogeneous

networks. The modular framework is designed to support

virtually any combination of network protocols to meet the

requirements for the integration of security-critical applica-

tions best. Through a plugin-based approach, easy extension

and reuse of existing protocol mechanisms are achieved. When

put into practice several non-functional requirements must be

taken into account. The overhead imposed by the security

mechanisms needs to be reasonably small. It is essential to

find a good balance between a required level of security and

available resources. For example, if the non-disclosure of the

transmitted data is not strictly necessary, data confidentiality

is unnecessary. Since building automation is usually home for

a huge amount of devices, scalability of the integrated security

mechanisms (e.g., secret key exchange and revocation) is of

major concern. Moreover, building automation systems have

to be kept operable for years or even decades. Since designing

a perfect secure system is impossible, it must be assumed that

security vulnerabilities will be discovered during the intended

long lifetime. To be able to correct identified flaws in the

system design, the possibility to update and maintain the used

system components has to be provided.

To evaluate the presented architecture, a detailed speci-

fication as well as a proof-of-concept implementation are

currently underway. Providing security objectives for the re-

quired secured channel is done using cryptographic techniques.

Since cryptographic algorithms are computationally intensive,

their use must not exceed the available device resources.

Therefore, symmetric algorithms (e.g., HMAC for providing

data integrity, AES for en/decryption of confidential data)

as well as asymmetric ones that are suitable for embedded

devices (e.g., algorithms based on elliptic curve cryptography)

have to be used. Integrating security mechanisms also assist

in satisfying reliability properties. If the used cryptographic

algorithm already provides data integrity, integrity (from a

reliability’s point of view) is guaranteed in a native way.

Mechanisms to guarantee data freshness can also be reused for

reliability and ordering issues. For example, using monotoni-

cally increasing counters provide data freshness but also work

against duplicates. If each sender has its own counter even

single-source FIFO ordering can be guaranteed. If more so-

phisticated time variant parameters are used for data freshness,

even causal or total ordering can be supported. For instance,

both, logical vector or synchronized timestamps guarantee data

freshness, and offer causal and total ordering, respectively.

However, some QoS properties cannot be supported by using

security mechanisms exclusively. To provide liveness, addi-

tional measures based on feedback of the receiver(s) have to

be implemented. Since a simple acknowledgment mechanisms

may lead to inconsistent data views (especially in communi-

cation groups), more advanced schemes are necessary. Here

(two/three) commit phase protocols may be a solution.

ACKNOWLEDGMENT

The work presented in this paper was funded by FWF (Austrian Science

Foundation) under the project P19673.

REFERENCES

[1] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, “Com-
munication systems for building automation and control,” Proceedings of
the IEEE, vol. 93, no. 6, pp. 1178–1203, Jun. 2005.

[2] W. Kastner and T. Novak, “Functional safety in building automation,” in
Proc. IEEE Conference on Emerging Technologies and Factory Automa-
tion, Sep. 2009.

[3] W. Granzer, F. Praus, and W. Kastner, “Security in building automation
systems,” IEEE Transactions on Industrial Electronics, vol. 56, 2009.

[4] R. Shirey, “Internet Security Glossary, Version 2,” RFC 4949, August
2007. [Online]. Available: http://www.ietf.org/rfc/rfc4949.txt

[5] H. Attiya and J. Welch, Distributed Computing—Fundamentals, Simula-
tions and Advanced Topics. Wiley-Interscience, 2004.

[6] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[7] W. Granzer, C. Reinisch, and W. Kastner, “Key set management in
networked building automation systems using multiple key servers,” in
Proc. IEEE International Workshop on Factory Communication Systems,
May 2008, pp. 205–214.

3385

