
Key Set Management in Networked Building Automation Systems
using Multiple Key Servers

Wolfgang Granzer, Christian Reinisch, Wolfgang Kastner ∗

Vienna University of Technology, Institute of Computer Aided Automation
Treitlstraße 1-3, A-1040 Vienna, Austria

{w, cr, k}@auto.tuwien.ac.at

Abstract

With the integration of security critical applications
into traditional building automation systems, a compre-
hensive security concept is mandatory. Most important,
transmitted data have to be secured using cryptographic
techniques. However, even if the used cryptographic al-
gorithms are perfectly secure, the overall security highly
depends on the non-disclosure of the used shared secrets.
Therefore, this paper targets the management of these
shared secrets and the necessary infrastructure used to
manage them. Finally, to eliminate a single point of fail-
ure in this infrastructure, a redundancy concept featuring
multiple key servers is presented.

1. Introduction

For a long time, security in building automation sys-

tems (BAS) has been a side issue at best. Yet, times have

changed. The integration of new services formerly pro-

vided by separate systems (for e.g., access control and

surveillance) promises synergies, but significantly tight-

ens security requirements. A comprehensive approach to-

wards security in building automation networks (BANs)

requires all types of communication to be secured. This

concerns, on the one hand, process data and, on the

other hand, management communication. Therefore, an

overview of the communication models used in BAS is

given and relevant data security classes are presented at

the beginning. The main part of the paper then focuses

on retrieval and distribution of shared secrets, which is

considered to be an integral step towards secured BANs.

This includes the definition of multiple key sets, thus cov-

ering all communication types common in building au-

tomation. Next, a key server infrastructure accompanied

by key set management services (key set binding, unbind-

ing and revocation) and their underlying methods for the

corresponding key sets are presented. Finally, issues con-

cerning the elimination of single points of failure are ad-

∗This work was funded by FWF (Österreichischer Fonds zur

Förderung der Wissenschaftlichen Forschung; Austrian Science Foun-

dation) under the project P19673.

dressed. A multiple key server architecture that provides

key set forwarding and replication is introduced.

2. Communication in building automation
networks

Nowadays, functions of BAS are realized by dis-
tributed control applications. As it is naturally the case

in these distributed systems, there is an inherent need to

communicate. On the one hand, the distributed control

applications need to exchange process data such as sen-

sor or actuating values (process data communication). On

the other hand, it is desirable to change control (e.g., con-

figuring device setpoints) and communication parameters

(e.g., changing the device address). This form of commu-

nication is referred to as management communication.

2.1. Communication models
To exchange process as well as management data be-

tween the involved communication partners, various com-

munication models can be used. A typical model that

is based on a point-to-point relation is the client/server
model. Here, the requesting entity (client) sends a request

to the service provider (server). After having received the

request, the server executes the desired action and sends a

response or an acknowledgment back to the client.

In a producer/consumer model, one or more senders

(called producers) provide data by making it publicly

available. Other devices decide on their own whether they

are interested in the data or not. If they are interested,

they receive and deliver the data to the corresponding ap-

plication (consumers). Otherwise they ignore it. A set of

senders and receivers that are interested in the same data

is called a communication group. Since each group mem-

ber itself is responsible for joining and leaving the group,

there is no central instance that manages the group mem-

bership (loose group membership).

The publisher/subscriber model is similar to the above

mentioned producer/consumer model. However, each

group member has to explicitly join and leave a commu-

nication group by sending a (un-)subscription request to

a dedicated group coordinator (strict group membership).

This group coordinator determines whether the request-

ing device is allowed to join this particular group or not.

978-1-4244-2350-7/08/$25.00 ©2008 IEEE.

Sending and receiving data within a specific communica-

tion group is only possible after a successful group join

(subscription). After the device leaves the group, it is no

longer able to participate in the communication.

Client/Server Producer/ConsumerPublisher/Subscriber

N
et

w
or

k
m

an
ag

em
en

t

D
ev

ic
e

m
an

ag
em

en
t

G
ro

up

m
an

ag
em

en
t

Lo
os

e
gr

ou
p

co
m

m
un

ic
at

io
n

S
tri

ct
 g

ro
up

co
m

m
un

ic
at

io
n

Po
in

t-t
o-

po
in

t
pr

oc
es

s
da

ta

co
m

m
un

ic
at

io
n

Unicast BroadcastMulti-
cast

Figure 1. Communication types in BAS

Figure 1 shows the different communication types used

in BAS and a mapping of them to the corresponding net-

work protocol mechanisms. Although other mappings

may also be valid, the most common one is presented here.

In this paper it is assumed that an underlying BAN proto-

col offers at least a unicast and a broadcast service. An

additional multicast service would be especially advanta-

geous for group communication. However, if such a ser-

vice is not offered by the BAN protocol, either multiple

unicasts or a broadcast will be used instead.

All three communication models can be used for pro-

cess data as well as management data exchange. There-

fore, six different communication types can be distin-

guished in the building automation domain:

• Point-to-point process data communication: As the

name implies, process data is exchanged using the

client/server model. For example, a boiler (client)

periodically requests the present value of a tempera-

ture sensor (server).

• Loose group communication: A typical example

of this communication type is a lighting system in

which multiple light switches are used to control

multiple light sources.

• Strict group communication: Strict group commu-

nication is advantageous in security critical envi-

ronments where only devices with adequate access

rights shall be able to send and receive data of partic-

ular interest (e.g., access control system).

• Device management: Device management uses the

client/server model: A management client starts a so

called management session to the particular device

which is to be configured or maintained (manage-

ment server). After the management client has per-

formed the desired management tasks, the session is

terminated. Consider, for example, a management

device (e.g., an operator work station) intending to

change application parameters of a field device.

• Network management: Network management refers

to management tasks that are addressed to all net-

work members. For example, a network coordina-

tor may want to inform all network members about

changed routing information. Typically, network

management is based on the producer/consumer

model with the management data being distributed

to all network members.

• Group management: Group management is used to

configure and maintain all devices of a particular

group at a time. Since only the members of the de-

sired group shall be addressed, group management

uses the publisher/subscriber model. A typical ex-

ample is a group coordinator that informs the group

members about a new device joining the group.

2.2. Secure communication
To cater for secure data exchange, a protection of both

data, i.e., the exchanged process data (secure process data
communication) as well as the exchanged management

data (secure management communication) is mandatory.

To protect the exchanged data against malicious inter-

ference, it has to be transmitted using a so called se-
cured channel. This secured channel protects the com-

munication among multiple entities using physical and/or

cryptographic techniques [1]. Depending on the security

requirements of the application, a secured channel may

guarantee different security objectives. These are data in-

tegrity, freshness and/or confidentiality [2]. To achieve

the security objectives, security mechanisms are neces-

sary. These mechanisms consist of protocols (e.g., authen-

tication) and cryptographic algorithms (e.g., encryption).

For reasons of cost efficiency, the limited resources of

embedded devices that are commonly used in the build-

ing automation domain are just sufficient for their task.

This concerns primarily processing power, (persistent and

volatile) memory, power consumption, and network band-

width. Since security mechanisms are computationally

intensive, the realization of security objectives must not

exceed the available device resources. The security de-

mands of building automation systems mainly depend on

the application type. Therefore, it is not always necessary

to guarantee all of above mentioned security objectives.

For example, if the non-disclosure of the transmitted data

is not a strict requirement, guaranteeing data integrity and

freshness may be sufficient. In general, only those secu-

rity mechanisms that are absolutely necessary to satisfy

the security demands of the application shall be imple-

mented (”good enough security”).

According to the security objectives that are guaranteed

by a secured channel, the exchanged data can be classified

into the following data security classes:

• Plain data: Plain data is not secured at all. In or-

der to avoid an unauthorized manipulation of plain

data, the transmission channel must be secured phys-

ically. This also includes non-cryptographic tech-

niques (e.g., tamper resistance). As this work targets

mainly key management, these aspects are not dis-

cussed further.

• Protected data: Protected data means that only data

integrity is guaranteed. Additionally, the data origin

can be verified.

• Trusted data: Protected data that is classified as

trusted data is secured in way that data freshness is

provided.

• Confidential data: Trusted data that is additionally

encrypted is called confidential data. It is guaranteed

that only authorized entities are able to read the clear

text version of the confidential data. The ultimate

goal of confidential data is to provide semantic secu-

rity. Semantic security is a strong level of security

where an adversary is not able to gain any informa-

tion about the clear text, even if being in possession

of many encryptions of the same clear text [3].

According to these different data security levels, messages

that contain secured data can be classified into plain, pro-
tected, trusted and confidential messages.

Protected messages can be achieved by adding a sig-

nature to the transmitted data. The signature is calculated

using Message Authentication Code (MAC) algorithms. A

MAC algorithm takes a secret key and an arbitrary-length

message as input. The output is a fixed length MAC (also

called tag). To verify the correctness of a MAC, the re-

ceiver recomputes it. If it matches the received MAC, the

frame can be considered trusted. Many different MAC al-

gorithms that are suitable for the use in building automa-

tion systems exist. Some of the most important ones are

CBC-MAC [4], CMAC [5] and HMAC [6].

To generate trusted messages, it must be guaranteed

that each message is unique even if multiple messages

with the same content are sent. This is done by using

a nonce. Such a nonce can be a random value, a strict

monotonically increasing counter or a timestamp.

For the creation of confidential messages, an encryp-

tion algorithm is necessary. This can be accomplished

using either symmetric or asymmetric encryption algo-

rithms. However, the latter ones are in general too re-

source consuming to be executed on microcontrollers typ-

ically used in the building automation domain [7]. For

this reason, symmetric encryption algorithms (e.g., AES

[8]) have to be used.

Using the above mentioned mechanisms, the assembly

of confidential messages requires two separate algorithms,

one for signature calculation and one for encryption. An-

other possibility is the use of authenticated encryption al-
gorithms. These algorithms generate the encrypted mes-

sage as well as the signature simultaneously. Using a se-

cret key, the message and a nonce as input, they output

the encrypted message with the corresponding MAC. Two

of the most important authenticated encryption algorithms

are Offset Codebook Mode (OCB) [9] and Counter with
CBC-MAC (CCM) [10].

In principle, any of the above mentioned mechanisms

can be used to set up a secured channel. However, choos-

ing an appropriate mechanism or defining a new algorithm

is out of the scope of this paper. Still, the use of symmetric
algorithms is assumed for the rest of this paper, due to the

resource constraints of the embedded devices.

Figure 2 shows the basic principle of a symmetric algo-

rithm. A symmetric algorithm takes two input parameters:

the clear text message containing the user data to be trans-

mitted and so called cryptographic material. This crypto-

graphic material may consist of one or more secret keys,

nonces, initial counter values and timestamps. Taken to-

gether this collection is called a key set. The output of

the algorithm is always the secured message. Depending

on the algorithm employed, this secured message is then

either a protected, trusted or confidential message. It is

important to note that, regardless of the data security class

targeted, cryptographic material always has to be shared

between all sender(s) and receiver(s).

Today, sophisticated algorithms exist, that provide a

good amount of security. However, the overall security

of a (building automation) system also highly depends on

the non-disclosure of the cryptographic material. In par-

ticular, the exchange of key sets over the network is prone

to attacks. While several key distribution protocols have

been developed for the IT world, they do not meet all re-

quirements of BAS systems. For example, Kerberos [11]

is mainly used for the client/server based communication

model but no support is given for the other communication

types identified for BAS. Therefore, the rest of this paper

focuses on key set management, which is an essential step

towards secure BAS.

Symmetric algorithm

Crypographic material
(key set)

Clear text
message

Secured message:
• Protected message
• Trusted message
• Confidential message

Secured channel

Sender

Symmetric algorithm

Crypographic material
(key set)

Clear text
message

Secured message:
• Protected message
• Trusted message
• Confidential message

Receiver

Figure 2. Symmetric algorithm

3. Key sets

Using the same key set for all types of communica-

tion is not desirable. This is for two reasons. First, only

authenticated entities (i.e., entities that have proven their

identities) shall be able to participate in secure communi-

cation. Second, using different key sets for different types

of communication reduces the number of key set uses.

This in turn reduces the chance of attacks that are based

on brute force. Therefore, it is desirable to distinguish the

key sets into different key set types (cf. Section 3.1).

Due to this, a device has to store multiple key sets.

In principle, all used key sets could be distributed man-

ually to the device a priori. However, since this solution

is obviously inflexible, it is desirable that key sets can be

retrieved from a central instance consequently called key
server. Through the use of a key server infrastructure,

it is also possible to change key sets during runtime. In

Section 3.2, a possible integration of this key server func-

tionality into BANs is shown.

3.1. Key set types
In order to support secure communication in all kinds

of BAS, different key set types are distinguished: Net-
work key sets protect network messages that are transmit-

ted to all members of the network. Group key sets are

used to protect communication within a communication

group. Session key sets are used to secure communication

between two devices. Using these three key set types, all

six communication types can be secured:

• Secure network management: In order to (simulta-

neously) perform configuration or maintenance of

all members of the network in a secure manner, se-

cure communication with all network members is re-

quired. This is achieved by protecting the commu-

nication service with the network key set. Devices

retrieve this network key set during the initialization

process, the so called network join (cf. Section 4.1).

• Secure group management: Group management

tasks can be secured using the group key set of the

particular group. The group key sets are maintained

by the key server that is responsible for the group. All

devices are able to retrieve the corresponding group

key set during the group join procedure (cf. Sec-

tion 4.2).

• Secure device management: To securely perform de-

vice management tasks, the exchanged data is se-

cured using a session key set. This session key set is

distributed during the session establishment (cf. Sec-

tion 4.3).

• Secure loose group communication: To securely ex-

change process data using loose group communica-

tion, the process data is secured with the network key

set and transmitted to all network members. All net-

work members receive the message. Since each net-

work member possesses the network key set, each

member can decide on its own whether being inter-

ested in the data or not (cf. Section 4.1).

• Secure strict group communication: Securing the

process data that is exchanged using strict group

communication, the group key set of the particular

group is used. Since only group members are in pos-

session of the group key set of the particular group,

only they are able to send and receive the process

data. As for secure group management, a group key

is retrieved during the group join from the maintain-

ing key server. During this subscription process, the

key server verifies whether the requesting device’s

access rights permit the group join (cf. Section 4.2).

• Secure point-to-point process data communication:

Exchanging process data using the client/server

model is performed in sessions. Therefore, this type

of communication is secured using a session key

set. The distribution and retrieval procedure is sim-

ilar to the one in case of secure device management

(cf. Section 4.3). The most important difference is

the lifetime of the used session key set. While a ses-

sion key set for a device management task is only

valid until the management client finishes its task, a

session key set for process data communication may

be valid for a longer period. This approach is ad-

vantageous since process data communication may

occur more frequently and over a longer time period.

In order to be able to retrieve any key set in a secure

manner, it is a prerequisite that initial key sets called node
key sets are available on all devices. These node key sets

allow the devices to establish a secure connection to the

key server and have to be distributed already at installa-

tion time. Each device has exactly one node key set that

is shared between the device and its key server. However,

to decrease the amount of node key set uses (and thus in-

crease security), a dynamic node key set that is derived

from the node key set is used. Since a new dynamic node

key set is generated for each key establishment procedure,

a dynamic node key set is only valid during a single key

establishment process. However, devices must agree on

a common mechanism to generate the dynamic node key

set. This can, for example, be a monotonically increasing

counter or a (exchanged) nonce, which are then used by

both partners to derive the dynamic node key set [2].

3.2. Key server infrastructure
The management of the key sets requires a key server

infrastructure. Presently, the key server infrastructure of

available BAS is mostly rudimentary. In LonWorks [12]

as well as in KNX/EIB [13], there is no dedicated key

server that supports the alteration of shared secrets (called

domain keys in LonWorks and access keys in KNX/EIB)

during runtime. Rather, shared secrets can only be up-

loaded directly to the devices using a configuration tool.

In BACnet 2004 [14], a single key server is foreseen for

retrieval of so called session keys during runtime [2]. The

use of multiple key servers is not defined. In BACnet Ad-

dendum g [15], the BACnet 2004 security services were

replaced to overcome several security flaws. Amongst

others, the use of multiple key servers became possible,

however with the implementation and synchronization de-

tails still not being specified. In ZigBee [16], the optional

key management functionality is provided by a so called

trust center. The use of multiple trust centers in a single

ZigBee network is not possible.

Clearly, a single key server being responsible for the

key management of the whole network introduces a sin-

gle point of failure. To overcome this limitation, multiple
key servers are necessary. BANs are divided into differ-

ent network segments. In this paper, it is assumed that

these network segments are arranged in a tree-structure

of arbitrary depth. To avoid a single point of failure, each

network segment has a dedicated key server that is respon-

sible for processing all incoming key set management re-

quests within its network segment. This decision brings

along the advantage that only one network segment is af-

fected in case of an attack or a key server failure.

As shown in Figure 3, the key server functionality can

be implemented in two ways. First, it is possible to add

Key server

Router

Router with
integrated
key server

Key server cluster

Figure 3. Key server distribution

a dedicated key server to each network segment. Second,

an existing device (e.g, a router that interconnects the net-

work segment with its parent segment or a network coor-

dinator) can be extended with the key server functionality.

Although the use of one key server per network seg-

ment clearly confines the effects of an attack or failure

within this segment, a single point of failure (at least for

the particular segment) remains. Therefore, a single key

server is only advantageous for small network segments

and in case of applications with relaxed requirements re-

garding robustness and availability. If network segments

consist of many devices (e.g., a backbone or wide-ranging

field network) and high service availability is mandatory

(e.g., alarm systems), this single key server approach is in-

sufficient. To counter this problem, the single key server

has to be replaced by a so called key server cluster. A

key server cluster consists of multiple key servers that are

conjointly responsible for key set management within one

network segment. Obviously, this key server infrastruc-

ture requires some form of synchronization and key ex-

change among the servers. These details will be discussed

in Section 5.

For the remainder of this paper, it is assumed that each

network segment disposes of a key server cluster which

consists of one or more key servers. Since the use of a

key server cluster is completely transparent to the devices

(i.e., the key server cluster is perceived as a single key

server by the devices), all key set management services are

independent from the underlying key server infrastructure.

These key set management services are presented in the

following section.

4. Key set management services

To be able to manage the key sets in a secure man-

ner, three different services have to be provided by the key

server infrastructure. First, a device must be able to set up

a secure relation to the desired communication partner(s)

(secure binding). Consider, for example, a device that

wants to communicate securely with another device (i.e.,

using the client/server paradigm) or with the members of

a particular group (i.e., using the producer/consumer or

the publisher/subscriber model). At the beginning, the de-

vice sends a secure binding request to the key server. The

key server verifies the request and sends a response back

to the requesting entity. This response contains the corre-

sponding key sets for the requested communication type.

These key sets are then used to set up the secured channel

between the desired communication partner(s).

Second, a revocation service is necessary. This service

is used in two different situations. On the one hand, it may

be necessary to actively exclude an entity from a commu-

nication relation. This is necessary if a device has been

compromised or if a device wants to release the commu-

nication relation again. On the other hand, the revocation

mechanism can also be used to limit the lifetime of a key

set by revoking it regularly. During the revocation pro-

cess, the old key set is declared void and a new one is

distributed to the remaining communication partners.

In general, the lifetime of key sets shall correlate with

the number of key set uses (cf. Figure 4). Key sets of com-

munication types that are used more often shall be revoked

more frequently than the key sets belonging to communi-

cation relations that are used rather rarely. However, since

revocation as well as generation and distribution of new

key sets are no trivial tasks, it is not always possible to

revoke key sets as frequently as required for maximum

security.

Number of key set uses

N
um

be
r o

f r
ev

oc
at

io
ns

insecure

secure

Figure 4. Revocation vs. number of uses

The third key set management service provides a mech-

anism to release a secure communication relation (secure
unbinding). Consider, for example, that an entity wants to

close a session or leave a communication group. This is

done by sending an unbinding request to the key server.

From the point of unbinding on, the leaving device must

be precluded from all communication within the group.

Therefore, the current key set must be revoked and a new

one has to be distributed to the remaining communication

partners. Thus, a device that wants to resume the com-

munication with the group must perform a secure binding

again.

Figure 5 shows the notation that is used for all follow-

ing diagrams.

4.1. Network key set management
To be able to securely manage the devices within a

network segment, three different services are required

(cf. Figure 6). It is assumed that a device knows its unique

identifier (UID) (e.g., a serial number which is unique

within the whole installation) and its node key set. Fur-

thermore, it is assumed a key server cluster consisting of

a network-join Nx

Kx_1

Kx_n

.

.

.

I-am-key-server

I-am-key-server

a

a

a get-config.req Kx_y

UID

Kx_n
get-config.resa ICDR DaC

DaT

DaT

DaT

DaT

ADR(Kx_1)

ADR(Kx_n)

UID

revocation-start
key-set-type=NETWORK_KEY_SET

Kx_y Nx

revocation-finished
T

Kx_y Nx
Nx

new

Nx
oldT

network-leave.req
DaT

a Kx_y

a

revocation-start
Key-set-type=

NETWORK_KEY_SET

Kx_y Nx
Nx

oldT
.
.
.

Kx_y
new-key-set

Nx new
Nx oldC

Nx Kx_y
new-key-set

Nx new
DaC

a

Kx_y
new-key-set

Nx new
DzC

z

key-set-type=NETWORK_KEY_SET

.

.

.

old

new

new

Nx old
Nx oldNx new

Nx new= �

T Da

network-leave.res Kx_y

revocation-finished
Key-set-type=

NETWORK_KEY_SET

Kx_y Nx
NxT

old

new

new

a) b) c)

Figure 6. Network join (a), network key set revocation (b) and network leave (c)

a,b,c,...
Nx

Gx

Kx_y

Sab

Da

Nx

Gx

service
content KSZ

x Y

Field device.

y’th key server device of key server cluster within Nx.

Device x sends a message to Y. Y can be all
members of a group, network or a single
device. The message is secured with and
is an instance of message security class Z
(P: protected, T: trusted, C: confidential).

KS

All members of network segment x.

All members of communication group x.

Dynamic node key set of device a.
Network key set of network segment Nx.
Group key set of group Gx.
Session key set shared between device a and b.

Address of a device, group or network segment.ADR(X)

Figure 5. Notation

at least one key server exists in the network segment.

First, a new device must be able to join a network seg-

ment (network join). As shown in Figure 6, a device a
sends a network-join message containing its UID to

all members of the network segment to start the network

join. The message is secured using the dynamic node key

set with a security class of at least ”trusted”. If the mes-

sage is not secured at all or its security class equals ”pro-

tected”, an adversary is able to replay old network-
join messages thus causing unwanted network traffic

since all key servers send a response. If data freshness

is guaranteed (i.e., the message is trusted), these replayed

messages can be identified and discarded. Therefore, for

the rest of this paper, all key set management messages

that do not contain confidential data are trusted messages.

After reception of the request, each key server within

the key server cluster responds with a I-am-key-
server message. This message contains the device

address of the key server and is again secured using a

dynamic node key set. After having received these re-

sponses, the joining device is aware of the addresses of

all key servers within its network segment. To retrieve its

initial configuration parameters, a sends a get-config
.req message to one of the available key servers. The

key server can be chosen randomly, based on transmission

delay measurements or on optional quality-of-service pa-

rameters integrated into the I-am-key-server mes-

sage (e.g., load balancing). Again, this message contains

the UID and is secured using a dynamic node key set. The

key server responds with a get-config.res message.

It is secured using a dynamic node key set and contains a

so called Initial Configuration Data Record (ICDR). The

ICDR contains different configuration parameters such as

the device address, the network address, and most impor-

tant the network key set of the corresponding network seg-

ment. To avoid an unwanted disclosure of the transmitted

key set, this message has to be confidential. For the rest

of this paper, all network management messages that are

used to transmit key sets are confidential messages.

As from now, the new device is able to communicate

within the network segment using the values of the re-

ceived ICDR. Furthermore, the device is able to process

incoming secured network management messages using

the network key set.

To start the revocation process of a network key set, the

key server intending to revoke the network key set sends

a revocation-start message including a param-

eter key-set-type=NETWORK KEY SET to all net-

work members. This message is secured with the current

(old) network key set and indicates that a revocation pro-

cess is under way. From now on, sending messages se-

cured with the old network key set and distribution of the

old network key set is prohibited. After having sent the

message, the key server generates a new network key set

and distributes it to all network members.

However, the approach of securing the new network

key set with the old one is only applicable as long as the

set of network members before and after the revocation

process is identical. If, for example, the revocation is

started due to the detection of a compromised device or

due to a network leave, the old network key set can no

longer be used to securely distribute the new one. One

approach to distribute the new network key set would be

to send separate messages, each secured with the dynamic

node key set, to all remaining group members. In net-

works with a high node count, this can clearly lead to con-

siderable network traffic. Another simple solution would

be to send just a single message which contains the new

network key multiple times. In particular, the new net-

work key is secured with the dynamic node key set of each

a subscribe.req Kx_y

Kx_n
subscribe.resa GCDR DaC

DaTADR(Gx)
revocation-start

key-set-type=GROUP_KEY_SET, ADR(Gx)Kx_y Nx

revocation-finished
T

Kx_y NxNx

NxT
unsubscribe.req

DaT
a Kx_y

a

revocation-start
Key-set-type=

GROUP_KEY_SET, ADR(Gx)
Kx_y Nx

NxT.
.
.

Kx_y
new-key-set

Gx
new

Gx
old

C
Gx Kx_y

new-key-set
Gx

new
DaC

a

key-set-type=GROUP_KEY_SET, ADR(Gx)

.

.

.

new

Gxold
Gx oldGxnew

Gx new= �

T Da

unsubscribe.res Kx_y

revocation-finished
Key-set-type=

GROUP_KEY_SET, ADR(Gx)
Kx_y Nx

NxT

a) b) c)

Kx_y

new-key-set

Gx new
DzC

z

Figure 7. Group join (a), group key set revocation (b) and group leave (c)

network member so that each remaining network mem-

ber can receive the key set. Although the approach elimi-

nates the problem of multiple messages, the transmission

of large messages contrasts BAN where protocols often

exhibit only low bandwidth. Therefore, more advanced

group key distribution schemes such as those surveyed in

[17] need to be employed. As the choice also depends on

the actual installation, a further analysis is not pursued.

At the end of the revocation process, the key server

sends a revocation-finished message to all net-

work members to inform them about the completion of

the revocation process. This message is secured with the

new network key set and triggers the mandatory use of the

new network key set.

During the revocation process, a problem arises if the

key server crashes after revocation-start. From

this message on, the use of the old key set is prohib-

ited but also the use of the new one is not foreseen un-

til the key server sends the revocation-finished
message. This problem can be solved with the help of

key server clusters. Here, the other key servers within the

cluster can monitor and, if necessary, restart the revoca-

tion process after a specific timeout has elapsed. Still, the

value of this timeout is critical and has to be chosen with

respect to the employed key distribution scheme.

In addition to joining a network, a device must be able

to leave the network again in a secure manner (secure un-

binding). To achieve this network leave, the device that

wants to disconnect from the network sends a network-
leave.req message (secured with a dynamic node key

set) to one of the key servers. Then, the key server revokes

the old network key and distributes a new one using the

above mentioned mechanism. Finally, a confirmation is

sent back to the device that left the network (network-
leave.res).

4.2. Group key set management
Secure strict group communication requires all group

members to share a group key set that is used to secure

the exchanged data against malicious interference. Three

different services are needed to manage these group key

sets (cf. Figure 7). To retrieve a group key set, the de-

vice has to subscribe to the group (group join). A group

join is similar to a network join. To start the join pro-

cess, a device a sends a subscribe.req message to

any key server within the key server cluster.1 The key

server then verifies whether the requesting device is al-

lowed to join the group. If not, the key server responds

with a negative subscribe.res message. If the device

is allowed to join the group, the key server sends a positive

subscribe.res message. This message includes a so

called Group Configuration Data Record (GCDR) which

contains information on the group (e.g., group size), and

most important the group key set which is used to com-

municate securely within the group.

The mechanism to revoke a group key set is similar

to the one for revocation of a network key set (cf. Sec-

tion 4.1). The only difference concerns the key-set-
type parameter of the revocation-start request,

which is now set to GROUP KEY SET. Additionally, the

group identifier is also included into the message to iden-

tify which group key set shall be revoked.

To leave a group again, the same mechanism as for a

network leave is used. Corresponding to a network leave,

a group leave uses the services unsubscribe.req and

unsubscribe.res.

4.3. Session key set management
Secure exchange of process data as well as manage-

ment data using the client/server paradigm is accom-

plished during sessions (cf. Figure 8). Consider, for ex-

ample, a device a wants to establish a secure session to

a device b. To start the session, a sends a session-
start.req message to one of the key servers within

the key server cluster. The request contains the address of

b and is secured using a dynamic node key set of a. Af-

ter having received this request, the key server generates

a session key set which is distributed to b using a con-

fidential session-init.req message. The message

contains the session key set as well as the address of a
and is secured with the dynamic node key set of b. If b is

capable of accepting the session establishment request of

a (e.g., b has sufficient resources to host more sessions),

b sends a session-init.res back to the key server.

The key server is now informed that b will accept the ses-

sion request of a. Thus, it distributes the session key set to

a using a confidential session-start.res (secured

1To identify a key server, the device has two options: it can perform

a network join or it knows the list of key servers a priori.

a session-start.req Kx_y

Kx_y
session-init.reqb

DbC

DaTADR(B)

SabT
a

a)

b)c)

Sab

Kx_y
session-start.resa

DaCSab

ADR(A),

Kx_y
session-init.resb

DbT

a session-close
SabT

a session-start.req
DaTADR(B)

.

.

.

b

b

a
SabC

a b

b

Kx_y

session-refresh.req

session-close

Sab

session-refresh.res

or

SabT

Figure 8. Session start (a), session key set
revocation (b) and session destroy (c)

using the dynamic node key set of a). After reception of

the session key set, a and b can communicate securely.

A session key set is valid only until one session part-

ner decides to close the session. This is done by sending

a trusted session-close message (secured using the

session key set) to the session partner.

A session key set can be revoked in two different ways.

First, a session partner can restart the session by closing

the old session (using the session-close message)

and starting a new one. This approach can be used if a

session key has been compromised and a new one can

thus not be secured using the old key set. Second, it is

possible to generate a new session key set and distribute it

during the currently active session (also called session re-
fresh). This is done by sending a confidential session-
refresh.req message to the session partner. The mes-

sage contains the newly created session key set and is se-

cured with the old one. The session partner responds with

a session-refresh.res message which acknowl-

edges the successful retrieval of the new session key set.

5. Key server distribution

As indicated in Section 3.2, a two-tiered key server in-

frastructure is used in the proposed solution: First, each

network segment has a dedicated key server cluster. Sec-

ond, each of these key server clusters consists of one or

more key servers. To avoid inconsistent key sets, two pos-

sible solutions exist. On the one hand, the key set space

can be split into equal parts with the key sets being dis-

tributed across the different key servers (key set distribu-
tion). The main advantage is that a failure of a single key

server only effects a smaller number of key sets. How-

ever, the main drawback is that the single point of failure

remains. If a key server fails, all key sets that are assigned

to this key server become unavailable.

On the other hand, a redundancy scheme where each

key set is replicated to all key servers can be employed

(key set replication). Using such a scheme, the failure of a

single key server does not effect the availability of the key

sets since a device can simply contact another key server.

The price for this redundancy is the synchronization ef-

fort, as any changes must be propagated to all other key

servers to avoid inconsistencies.

The main aim of the proposed solution is to combine

the advantages of both schemes. First, the key set space is

split and distributed across the network segments. This

means that each key server cluster is responsible for a

part of all key sets. Second, these key sets are replicated

among all key servers within a key server cluster.

In the following, this hybrid solution is discussed sep-

arately for each key set type:

• Node key set: Each key server cluster only stores

the node key sets of the corresponding network seg-

ment’s members. Within the key server cluster, these

node key sets are replicated among all key servers.

Using this scheme, each device can securely com-

municate with all key servers of its network segment.

The node key sets have to be uploaded during instal-

lation in a secure manner. Guidelines how such an

initial node key set distribution can be performed are

described in [2].

• Dynamic node key set: Since dynamic node key sets

are derived from the node key sets, each key server

cluster is only responsible for the dynamic node key

sets of its corresponding network segment. As dy-

namic node key sets are only valid during a single

key set management request, their replication is not

necessary.

• Network key set: Each key server cluster is responsi-

ble for maintaining the network key set of its network

segment. Within the key server cluster, the network

key set is replicated.

• Group key set: In this paper, it is assumed that ex-

actly one key server cluster is responsible for a com-

munication group. This maintaining key server clus-

ter acts as a group coordinator and is responsible for

managing the group membership and the group key

set of the corresponding communication group. The

assignment scheme depends on the underlying tech-

nology. For example, the assignment of the com-

munication group to its maintaining key server clus-

ter can be based on the amount of group members

within the network segment in which the cluster is lo-

cated. Alternatively, a special group address assign-

ment where each group address is uniquely mapped

to a network segment can be used. Definition of such

an assignment scheme is left open to implementation.

Within the key server cluster, all group key sets the

key server cluster is responsible for are replicated.

• Session key set: Each key server cluster is responsible

for handling session establishment requests within its

network segment. Since a session key set is only

valid during a single session, a replication of session

key sets is not necessary.

Following this approach, each device can freely choose

any key server within the key server cluster without get-

a session-start.req Kx1_y
DaT

ADR(b)

a) b)

.

.

.

key-transfer.req

Kx2_y
DT

Kx1_y ADR(b)

b session-init.req Kx1_y
DbC

key-transfer.res
Kx2_y

CKx1_y Db

Kx2_y

Kx2_y
D

Sab

a subscribe.req Kx1_y
DaT

ADR(Gx)

key-transfer.req

Kx2_y
DT

Kx1_y ADR(Gx)

a subscribe.res Kx1_y
DaC

GCDR

key-transfer.res Kx2_y
C

Kx1_y GCDR

Kx2_y

Kx2_y
D

.

.

.

ADR(a),

Kx_y
session-start.resa

DaCSab

Kx_y
session-init.resb

DbT

Cx
CxC

replication-transfer.req
KS

new

Kx_y

Cx
CxT

replication-transfer.res Kx_1

Cx
CxT

replication-transfer.res Kx_n

.

.

.

Cx
CxT

replication-commit
Kx_y

c)

Cx

Cx … Cluster group of Nx

… Cluster group key set of Nx

Figure 9. Group key set miss (a), node key set miss (b) and key set replication(c)

ting inconsistent key sets. However, there are situations

in which a key set management request cannot be imme-

diately satisfied by the key server. A possible solution to

such situations is discussed in Section 5.1. Furthermore,

replication requires a thought-out synchronization mecha-

nism among the key servers within the key server cluster.

This mechanism is described in Section 5.2.

5.1. Key forwarding
There are three situations in which a key set retrieval

cannot be immediately satisfied by a key server. First, it is

possible that two communication partners located in dif-

ferent network segments want to establish a session. In

this case, the key server contacted by the session initiator

does not hold the node key set of the second communica-

tion partner (node key set miss). Thus, it cannot distribute

the generated session key set to the second communica-

tion partner (cf. Section 4.3). Second, it is possible that

a device wants to join a group the key server cluster is

not responsible for. In such a case the key server does

not possess the GCDR and so it has to obtain it from the

maintaining key server cluster (group key set miss). Third,

it is possible that the members of a communication group

that uses secure loose group communication are located in

different network segments. Since the communication is

secured using the network key set, only the group mem-

bers that are located at the sender’s network segment are

able to handle these messages (network key set conflict).
To overcome a network key set conflict, the routers of

the network segment have to forward all loose group com-

munication messages. This means that the router has to

disassemble the message using the network key set of the

incoming network segment, generate a secured message

using the network key set of the target network segment

and forward it.2 However, to avoid that routers see the

clear text of forwarded messages, they can simply forward

2It is assumed that the router has sufficient routing information to

forward group messages to the desired network segments. However, for-

warding the group messages to all connected network segments (except

the incoming one) is also possible since the assumed tree-structure pre-

vents loops.

the secured message to a key server of the destination net-

work. In that case, this key server is responsible for re-

assembling the message using the destination network key

set and broadcasting it. Clearly, the key server must also

possess the source network key set for decryption.

To resolve a node key set miss and a group key set

miss, a mechanism has to be provided that allows an ex-

change of key sets between key server clusters. The pro-

posed mechanism is based on an extended variant of the

key forwarding mechanism described in [2]. To achieve a

key set exchange between key servers located in different

key server clusters, each member of the key server cluster

must be aware of the device addresses as well as the node

key sets of its parent as well as of all its child key servers.

To retrieve a key set from a key server located in a

neighbor key server cluster, the key server has to deter-

mine whether the request has to be directed to a key server

within its parent or within one of its child clusters. This

can for example be accomplished using a hierarchical ad-

dressing scheme or with the help of static tables. It is

assumed that a key server is able to determine which of

its neighbor key server clusters it has to contact next.

The key set exchange is done by sending a trusted key-
transfer.req message to any key server part of the

desired key server cluster. The request itself is secured us-

ing a dynamic key set of the destination key server. If the

destination key server has the desired key set, it transfers

it using a confidential key-transfer.res response

(again secured with the dynamic node key set). If the des-

tination key server is not in possession of the desired key

set, it also has to request it from the next cluster.

Using this key set forwarding mechanism, a group key

set miss can be resolved by requesting the desired GCDR

(cf. Figure 9a). However, due to security reasons, the ex-

change of a node key set is not recommended in case of a

node key set miss. Instead, it is more secure to transfer a

dynamic node key set, which is only valid for a single key

set retrieval (cf. Figure 9b).

5.2. Key set replication
As mentioned before, a mechanism that allows to syn-

chronize the key sets within the key cluster is necessary.

To achieve such a key set replication, each member of

the cluster is member of a special communication group

called cluster group. The corresponding group key set is

called cluster key set. To initiate a key set replication, the

key server that wants to replicate a new key set sends a

confidential replication-transfer.req message

to its cluster group (cf. Figure 9c). The request includes

the new key set that shall be replicated and is secured us-

ing the cluster key set. This request also indicates that

the corresponding key set is locked. During this state, a

simultaneous replication as well as a distribution to any

device is not allowed. If a key server is ready for the

replication, it replies with a positive replication-
transfer.res message to the cluster group. Other-

wise (e.g., it has already started a replication of the same

key set), a negative acknowledgment is sent. However, if a

key server does not respond at all, the initiator retransmits

the request. After a defined number of retries, it must be

assumed that the key server has crashed.

In case of a negative replication-transfer
.res message, the replication process has to be aborted

by the initiator. This is accomplished by sending a

replication-abort message to the cluster group. If

only positive acknowledgments are received (even if a key

server crash is detected), the initiator finishes the replica-

tion by sending a replication-commit message to

the other members of the cluster. Upon reception of the

commit message, each key server replaces the old key set

by the new one.

A problem arises if the initiator crashes after it sends

replication-transfer.req since the other key

servers will reside in state ”locking”. This problem can

be solved by implementing a timeout mechanism. If a

key server receives neither a replication-abort nor

a replication-commit message, it decides to abort

the replication process.

The replication protocol discussed above works as long

as the key servers are assumed to be fail-silent. In a non

fail-silent environment situations may occur in which the

replication protocol leads to an inconsistent state. Con-

sider, for example, the case of a key server that has missed

a preceding key set replication and therefore distributes

out-dated key sets. This situation can be solved by adding

key revision numbers to the secured messages.

6. Conclusion

Given the technological developments in BAS, secu-

rity can no longer be neglected. Our architecture is tai-

lored to the resource constraints of embedded devices typ-

ically found in the building automation domain. It sup-

ports different data security classes and key set types. Un-

like any other open protocol security approach, interaction

between multiple key servers was given consideration.

Evaluating and judging the defined management ser-

vices for retrieval and revocation of key sets raises the

question of performance analysis under realistic operat-

ing conditions. To study the real-world behavior of our

solution, we are finalizing a proof-of-concept implemen-

tation for a MSP430 architecture. To analyze the dynami-

cal behavior especially in large installations, a simulation

framework based on OMNeT++ [18] is underway.

References

[1] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,

Handbook of Applied Cryptography, CRC Press, 1997.
[2] W. Granzer, W. Kastner, G. Neugschwandtner, and

F. Praus, “Security in Networked Building Automation

Systems”, in Proc. 6th IEEE Int. Workshop on Factory
Communication Systems, June 2006, pp. 283–292.

[3] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “MiniSec:

A Secure Sensor Network Communication Architecture”,

in Proc. of the 6th International Conference on Informa-
tion Processing in Sensor Networks, 2007, pp. 479–488.

[4] M. Bellare, J. Kilian, and P. Rogaway, “The Security of

Cipher Block Chaining”, Lecture Notes in Computer Sci-
ence, vol. 839, pp. 341–358, 1994.

[5] J. Song, R. Poovendran, J. Lee, and T. Iwata, “The AES-

CMAC Algorithm”, RFC 4493, 2006.
[6] “The Keyed-Hash Message Authentication Code

(HMAC)”, FIPS PUB 198, National Institute of Standards

and Technology, 2002.
[7] N. Okabe, S. Sakane, K. Miyazawa, K. Kamada, A. In-

oue, and M. Ishiyama, “Security Architecture for Control

Networks using IPsec and KINK”, in Proc. Symposium on
Applications and the Internet (SAINT), 2005, pp. 414–420.

[8] “Advanced Encryption Standard (AES)”, FIPS PUB 197,

National Institute of Standards and Technology, 2001.
[9] P. Rogaway, M. Bellare, and J. Black, “OCB: A block-

cipher mode of operation for efficient authenticated en-

cryption”, ACM Transactions on Information and System
Security, vol. 6, no. 3, pp. 365–403, August 2003.

[10] D. Whiting, R. Housley, and N. Ferguson, “Counter with

CBC-MAC (CCM)”, RFC 3610, 2003.
[11] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Ker-

beros Network Authentication Service (V5)”, RFC 4120,

2005.
[12] “Control Network Protocol Specification”,

ANSI/EIA/CEA 709.1, 1999.
[13] “Information Technology - Home Electronic Systems

(HES) Architecture”, ISO/IEC 14543-3, 2006.
[14] “BACnet – A Data Communication Protocol for Build-

ing Automation and Control Networks”, ANSI/ASHRAE

135, 2004.
[15] “BSR/ASHRAE Addendum g to ANSI/ASHRAE Stan-

dard 135-2004, BACnet – A Data Communication Proto-

col for Building Automation and Control Networks”, April

2007, Second Public Review completed.
[16] ZigBee Alliance, “ZigBee Specification”, 2006.
[17] S. Rafaeli and D. Hutchison, “A Survey of Key Manage-

ment for Secure Group Communication”, ACM Comput-
ing Surveys, vol. 35, pp. 309–329, 2003.

[18] A. Varga, “The OMNeT++ Discrete Event Simulation

System”, in Proc. of the European Simulation Multicon-
ference (ESM’2001), 2001.

	Menu
	Workshop Program
	Index of Authors
	Index of Papers
	Welcome Messages
	Keynote by Stephen Hung
	Keynote by Dirk Weidemann
	Reviewers
	Workshop Committees
	Supported by
	Previous Document
	Next Document

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

