
3622 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 11, NOVEMBER 2010

Security in Building Automation Systems
Wolfgang Granzer, Fritz Praus, and Wolfgang Kastner, Member, IEEE

Abstract—Building automation systems are traditionally con-
cerned with the control of heating, ventilation, and air condition-
ing, as well as lighting and shading, systems. They have their
origin in a time where security has been considered as a side issue
at best. Nowadays, with the rising desire to integrate security-
critical services that were formerly provided by isolated subsys-
tems, security must no longer be neglected. Thus, the development
of a comprehensive security concept is of utmost importance. This
paper starts with a security threat analysis and identifies the chal-
lenges of providing security in the building automation domain.
Afterward, the security mechanisms of available standards are
thoroughly analyzed. Finally, two approaches that provide both
secure communication and secure execution of possibly untrusted
control applications are presented.

Index Terms—Building automation, embedded networks, inte-
gration, security.

I. INTRODUCTION AND MOTIVATION

BUILDING AUTOMATION SYSTEMs (BASs) aim at im-
proving the control and management of mechanical and

electrical systems in buildings—more generally, the interaction
among all kinds of devices typically found there. The core
application area of BASs is environmental control handled by
the traditional services—heating, ventilation, and air condi-
tioning (HVAC) and lighting/shading [1]. Other application-
specific services are often implemented by separated systems.
This is particularly true for safety-critical (e.g., fire or social
alarm systems) and security-critical (e.g., intrusion alarm or
access control systems) services, which are typically provided
by proprietary stand-alone systems [2]. If at all, only loose
coupling is implemented with the core BAS for visualization
and alarm management.

To activate all inherent synergies among these diverse sys-
tems, an integration of security and safety-critical systems is a
major topic [3]. The promised benefits range from lower (life
cycle) costs to increased and improved functionality. Consider,
for example, the possibility of sharing the data originating from
just one sensor in multiple application domains in parallel.
This will reduce investment and maintenance costs and also
facilitates management and, in particular, configuration of the
integrated BAS, as now, a multitude of different management
solutions can be substituted for a unified view and a single
central configuration access point.

Manuscript received December 31, 2008; revised May 30, 2009; accepted
August 24, 2009. Date of publication November 13, 2009; date of current
version October 13, 2010. This work was supported by Österreichischer Fonds
zur Förderung der Wissenschaftlichen Forschung (FWF; Austrian Science
Foundation) under Project P19673.

The authors are with the Automation Systems Group, Institute of Computer
Aided Automation, Vienna University of Technology, 1040 Vienna, Austria
(e-mail: w@auto.tuwien.ac.at; f@auto.tuwien.ac.at; k@auto.tuwien.ac.at).

Digital Object Identifier 10.1109/TIE.2009.2036033

Fig. 1. Security attacks.

Integration also makes way for further improvement of the
traditional services. For example, although often not regarded
as security critical, incorporating security countermeasures for
HVAC and lighting/shading services will prevent, among oth-
ers, vandalism acts. The economic impact of a company-wide
shutdown of the lighting system can be easily compared to
a successful attack on the company Web server—the only
difference being that, for the Web server, elaborate security
measures are already common practice.

Obviously, an integration of security-critical services de-
mands the underlying control system to be reliable and robust
against malicious manipulations. Therefore, based on a sound
threat analysis, the goal of this paper is to present a compre-
hensive security concept that fulfills the demands for security-
critical building automation services.

II. SECURITY THREATS IN BUILDING

AUTOMATION SYSTEMS

To be able to integrate security-critical services, the im-
plemented control functions, i.e., functions that control the
building automation services, have to be protected against
unauthorized access and malicious interference (security at-
tack). A typical example of such a security attack is the ma-
nipulation of an access control system that opens and closes an
entrance door. To perform security attacks, the malicious entity
(adversary) has to identify vulnerabilities of a system that can
be utilized to gain unauthorized access to the control functions.
The existence of vulnerabilities leads to a security threat which
can be regarded as the potential for violation of security that
may or may not be utilized. Fig. 1 shows the relation between
these basic security terms.

On one hand, the protection of a system against security
attacks demands that the amount of vulnerabilities is minimized
by incorporating security in every stage of the system’s life
cycle, particularly already during design [4]. On the other hand,
countermeasures that eliminate or prevent security threats and
attacks in advance have to be implemented. For example, the

0278-0046/$26.00 © 2010 IEEE

GRANZER et al.: SECURITY IN BUILDING AUTOMATION SYSTEMS 3623

Fig. 2. Building automation network.

encryption of transmitted data can be used to avoid a disclosure
of confidential information. In cases where a prevention is not
possible with reasonable effort, mechanisms trying to at least
detect security attacks, report them, and minimize the result-
ing damage have to be deployed. Consider, for example, an
intrusion detection system (IDS) that reveals abnormal system
behavior and tries to prevent a propagation by isolating the
source of the attack.

A. Target Analysis

In today’s BASs, the control functions are distributed to
control applications being hosted on different devices inter-
connected by a common network. Unauthorized access by an
adversary to control functions can be gained by, on one hand,
directly manipulating the control applications (e.g., changing
the control logic or modifying control data such as an output
value) or, on the other hand, by indirectly changing control
parameters or interfering with the data exchanged among the
control applications. Therefore, the control applications them-
selves, as well as the ways to interact with them, have to be
secured.

The distributed control applications of a BAS are spread over
a network called building automation network (BAN). While the
functionality of a BAS is organized in a three-level hierarchy,
BANs are typically implemented following a two-tiered model
(cf. Fig. 2). Field networks are home for sensors, actuators,
and controllers (SACs). They are interconnected by a common
backbone, where management nodes that require a global view
of the entire BAN are located.

With this topology in mind, three different device classes
can be identified: SACs that interact with the environment and
perform control functions, management devices (MDs) that
execute configuration (e.g., set initial configuration parame-
ters), maintenance (e.g., changing set points), and operator
tasks (e.g., visualization and alarm monitoring), as well as
interconnection devices (ICDs) providing an interconnection
between network segments (e.g., routers) or remote access to
foreign networks (e.g., gateway to a wide area network).

B. Attack Analysis

Based on this abstract BAN model, five potential attack
targets and the following attack scenarios can be identified.

1) Field network: An adversary may try to interfere with the
data being exchanged among control applications.

2) Backbone: The data transmitted across network borders
are concentrated there. Thus, an adversary may gain a
global view of the entire system.

3) SAC: An adversary may directly access SACs to manip-
ulate the behavior of the hosted control applications by
changing configuration parameters (e.g., set point), the
control logic (e.g., algorithm), or the control data (e.g.,
output value).

4) ICD: An adversary may attack the application running
on the ICD to get access to the data passing through the
ICD. As ICDs may also provide an interconnection to
foreign public networks (e.g., Internet), an ICD can also
be misused as access point to launch further attacks on
the BAN.

5) MD: An adversary may attack an MD by manipulating
the operator software and also impersonate an MD. The
privileges of the compromised device can then be mis-
used to gain management access to SACs or ICDs.

To sum up, an adversary has two different opportunities for
getting access to control functions (cf. Fig. 3). On one hand,
an adversary may attack the network medium to access the
exchanged data and thus interfere with the data when they
are transmitted (network attacks). According to [5], an adver-
sary may try to intercept, manipulate, fabricate, or interrupt
the transmitted data. Access to the network medium can be
achieved in two ways.

1) Medium access: The adversary gains physical access to
the network medium. This can be accomplished more
easily when open communication technologies (i.e., radio
frequency or powerline) are used.

2) Device access: The adversary can use the network inter-
face of another device (e.g., a compromised SAC or a
Web gateway).

On the other hand, the adversary may attack a device to
access control functions (device attacks). These attacks can be
classified based on the means used to launch them [6], [7].

1) Software attacks: An adversary may use regular com-
munication channels to exploit weaknesses in a device’s
software.

2) Physical or invasive attacks: An adversary may use phys-
ical intrusion or manipulation to interfere with a device.

3) Side-channel attacks: An adversary may observe external
(device) parameters which are measurable during opera-
tion to collect information about internals.

While mechanisms that counteract network attacks are pre-
sented in Section IV, countermeasures against device attacks
will be discussed in Section V.

C. Challenges for Providing Security in Building
Automation Systems

In the information technology (IT) world, many well-
established security mechanisms exist. However, they cannot
be trivially mapped to the building automation domain for
various reasons. Due to cost efficiency, SACs are normally
embedded devices with limited system resources (e.g., memory
and processing power) that rely on bus or battery power. Se-
curity mechanisms (particularly cryptographic algorithms) are

3624 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 11, NOVEMBER 2010

Fig. 3. Attacks in building automation systems.

computationally intensive and must not exceed the available
device resources. The overhead imposed by these mechanisms
needs to be reasonably small. Therefore, a suitable balance
between a required level of security and available resources has
to be found (“good enough security”).

For many services in the IT world, the amount of devices that
communicate with each other is relatively small, thus allowing
the client/server model to be used in most cases where only
the communication between the clients and the server has to be
secured. BANs, on the other hand, usually consist of only a few
MDs, some ICDs with defined applications, and thousands of
manifold SACs. Communication between SACs occurs peer to
peer based without a central instance. Thus, the scalability of
the integrated security mechanisms is of major concern.

Furthermore, IT security mechanisms are geared toward
different requirements regarding the used network technology.
While, in the IT world, Internet Protocol (IP)-based network
protocols are dominant, the use of IP networks in BANs is
reserved to the backbone level. At the field level, predominantly
non-IP field buses are used. Moreover, control data typically
transmitted in BANs have a small volume (on the order of
bytes) with perhaps soft real-time requirements (e.g., reaction
time in a lighting system). In the IT/office domain, the data
volume to be transferred is commonly high (on the order of
mega- or gigabytes) with usually no real-time requirements.

Moreover, in BANs, devices often operate in untrusted en-
vironments where physical access (e.g., an intrusion alarm in
a public building or a wireless sensor network [8]) is given.
Therefore, it has to be assumed that a short time physical access
to devices and networks cannot be avoided.

Finally, a BAS has to be kept operable for years or even
decades. Due to the intended long lifetime, the possibility to
update the software running on the devices has to be provided.
This update mechanism also offers an additional attack point
that has to be protected against unauthorized use.

III. SECURITY IN BUILDING AUTOMATION STANDARDS

The most important open BASs’ protocol standards spanning
more than one application domain are BACnet [9], LonWorks
[10], KNX [11], and IEEE 802.15.4/ZigBee [12], [13].

BACnet [9] offers several services to prevent unauthorized
interception, modification, and fabrication of the exchanged
data. These mechanisms use the symmetric Data Encryption
Standard (DES) algorithm and a trusted key server, which is
responsible for generating and distributing session keys. The

session keys are used to encrypt the transmitted data between
two devices. To establish a secure connection to the key server,
each node holds an initial secret key. However, BACnet suf-
fers several security flaws and weaknesses [14]: The initial
secret key management is not defined, reuse of old session
keys is possible since the lifetime is not limited, DES is no
longer secure, and, finally, the protocol is vulnerable to man-
in-the-middle attacks, type flaws, parallel interleaving attacks,
replay attacks, and implementation-dependent flaws. Therefore,
BACnet Addendum g [15] replaces these security services to
overcome the aforementioned limitations. The new services use
the Advanced Encryption Standard (AES), the Keyed–Hash
message authentication code (MAC) (HMAC) algorithm, and a
unique message identifier in combination with a time stamp to
protect the exchanged data against interception, modification,
and fabrication. Furthermore, advanced security concepts like
the use of different key types and key revisions have been
introduced.

LonWorks [10] provides a four-step challenge-response
mechanism to counteract modification and fabrication attacks.
A sender which intends to authenticate a transmission asserts
the authentication bit of its message. Receivers reply with a
64-b random number. The sender returns a 64-b hash value
calculated over the content of the message and the random
number using a shared key. The receiver performs the same
calculation and compares the results. However, [16] describes
the following security flaws: Interception of confidential data
cannot be avoided, the identity of the receiver is not verified,
authentication is limited to acknowledged unicast and multi-
cast, the authentication protocol is inefficient in large groups
due to the limited key length, the cryptographic algorithm is not
secure, key management services are not defined, and each node
can use only a single key. In addition to the basic LonWorks
authentication mechanism, LonWorks/IP [17] defines its own
security mechanism which uses MD5 together with a shared
secret to protect the data against modification and fabrication.
Since the transmitted data are not encrypted, an interception
cannot be avoided. However, due to the fact that MD5 is
not collision resistant, the used mechanism is insecure, too.
Furthermore, secure mechanisms to manage and distribute the
used shared secrets are missing.

KNX [11] does not offer mechanisms to avoid network
attacks. It only provides a basic access control scheme which
can be used to limit the management access to devices. Up
to 255 different access levels can be defined, each of them
associated with a different set of privileges. For each of these

GRANZER et al.: SECURITY IN BUILDING AUTOMATION SYSTEMS 3625

access levels, a 4-B password can be specified. However, it
is of limited use due to the following weaknesses [18]: The
keys are transmitted in clear text, there are no mechanisms to
manage keys in a secure manner, KNX’s single management
tool Engineering Tool Software (ETS) uses only one key for the
whole installation, and an injection of messages after successful
authentication cannot be avoided. In addition to this access
control mechanism, KNXnet/IP specifies some rudimentary
security guidelines. Since they are based on isolation (e.g.,
firewall; KNXnet/IP only Intranet) and “security by obscurity”
(e.g., the use of nonstandard IP addresses; rely on the missing
expertise of an adversary), these security guidelines are not able
to provide reasonable improvements.

IEEE 802.15.4:2006 [12] offers security services at the link
layer that use CCM∗ as combined encryption and authenti-
cation block cipher mode. It can be used in environments
requiring authentication only (against fabrication and modifica-
tion), encryption only (against interception), or a combination
of both. ZigBee 2007 [13] utilizes the IEEE 802.15.4:2003
transmission services of the data link layer. However,
ZigBee 2007 does not use the security mechanisms provided
by IEEE 802.15.4:2003—they are completely replaced by a
more advanced security concept. This concept supports the use
of different key types and provides advanced key management
services. Again, CCM∗ is used as a cryptographic algorithm.

While the security mechanisms of LonWorks and KNX are
not able to fully avoid network attacks, BACnet Addendum g
and IEEE 802.15.4/ZigBee provide a solid base. However, there
is much room for improvement. Due to performance reasons,
the distribution of security primitives is based on symmetric
algorithms exclusively, and thus, an entity called key server
is required. However, nowadays, asymmetric algorithms based
on elliptic curve cryptography (ECC) [19] are suitable for
embedded devices and eliminate the need for a key server [20],
[21]. Moreover, the use of a single key server introduces a
single point of failure. Therefore, a scheme based on multiple
key servers is desirable [22]. To support all kinds of appli-
cations, the use of different communication models shall be
possible. BACnet only provides support for the client/server
model—exchanging process data within groups as it is possible
in LonWorks and KNX is not supported. ZigBee supports
multicast but services to control the group membership, which
may be required for security-critical applications, are miss-
ing. Finally, mechanisms to protect against interruption attacks
[e.g., Denial-of-Service (DoS) attacks] are not supported by any
of these solutions.

Mechanisms to counteract device attacks are not covered
by any of these standards. Since BACnet and IEEE 802.15.4/
ZigBee only specify the communication protocol and the ap-
plication model to be used, details about the device imple-
mentation and methods to manage control applications (e.g.,
management tools to configure and upload control applications)
are not covered. Therefore, appropriate security mechanisms
that handle device attacks are missing, too. A variety of engi-
neering tools is available for LonWorks, most of them based on
the LonWorks Network Operating System (LNS) management
middleware. However, no security countermeasures are incor-
porated into LNS. For KNX, a single management tool called

ETS is available, which provides mechanisms to configure and
upload the control applications. However, the only way to avoid
unauthorized use of these management services is to use the
insecure access control mechanism mentioned before. A test
for malicious behavior of the uploaded control application is
neither provided in LonWorks nor in KNX.

IV. SECURE COMMUNICATION IN BUILDING

AUTOMATION NETWORKS

Entities1 in the building automation domain, which exchange
data, are members of a so-called communication relation-
ship. The communication rules within such a relationship are
specified by a certain communication model. Three different
models are common [22]: the client/server model (point to
point), the producer/consumer model (multipoint to multipoint;
loose group membership), and the publisher/subscriber model
(multipoint to multipoint; strict group membership). In the
producer/consumer model, data are made publicly available,
and the entities decide on their own whether they are interested
in the data or not. In the publisher/subscriber model, a group
coordinator manages the group membership.

A. Requirements for Secure Communication

Entities intending to become a member of a secure commu-
nication relationship must prove their identity first (entity au-
thentication). Entity authentication guarantees that the involved
entities are what they claim to be, as well as that they are active
at the time of authentication.

In addition, the data exchanged between authenticated mem-
bers of a relationship have to be protected against security
attacks. This is guaranteed by a secured channel. A secured
channel uses physical and/or cryptographic techniques to avoid
unauthorized interference of the transmitted data and provides
data integrity (against modification), data freshness (against
fabrication), and/or data confidentiality (against interception).

While the client/server model normally requires a point-to-
point communication service, the producer/consumer, as well
as the publisher/subscriber, model needs an efficient service to
send data to multiple receivers. Therefore, the security counter-
measures should support unicast, as well as broadcast, and, if
possible, multicast communication services.

However, security attacks that threaten the availability of data
(e.g., DoS attacks) cannot be handled using a secured channel.
By wasting network or system resources (e.g., flooding the net-
work with unsolicited messages), the adversary tries to prevent
the target from performing its expected function. Therefore, in
addition to the concept based on secured channels, dedicated
interrupt countermeasures that guarantee data availability have
to be integrated.

B. Available Solutions From the IT Domain

An obvious approach would be to use well-established IT
security mechanisms to counteract network attacks. Within the

1The term entity is used as a synonym for a control application that wants to
exchange data, as well as for a device that hosts control applications.

3626 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 11, NOVEMBER 2010

diversity of available IT security mechanisms, three of the most
important ones are described here. The IP Security (IPsec) has
been specified as an extension to the IP protocol. IPsec provides
mutual entity authentication and data confidentiality, integrity,
and freshness. For key exchange, the Internet Key Exchange
protocol is used. Due to the design of IPsec, it is of limited use
for BASs’ field networks. Since it is an extension of IP, IPsec is
not suitable in non-IP networks in a native way. In addition, due
to its complexity (e.g., protocol overhead; used cryptographic
algorithms), the available resources of embedded devices may
be insufficient. Furthermore, due to problems with IPsec for
multicast communication, changes in the implementation of
IPsec would be necessary.

Secure sockets layer (SSL) and its successor transport layer
security (TLS) are used to protect communication between
two entities. During the initial handshake, the entities are
authenticated, and a secured channel that guarantees data con-
fidentiality, integrity, and freshness is established. The main
disadvantage of SSL/TLS is its support for unicast connections
only. Securing multicast or broadcast is not possible.

A virtual private network (VPN) is a logical network that is
built upon a physical host network. A VPN is transparent to
the connected devices. Secure VPNs use a tunneling protocol
that provides a secured channel. A popular secure VPN imple-
mentation is OpenVPN which makes use of TLS. Most imple-
mentations are tailored for PC-based devices and, therefore, too
complex to run on embedded devices. Furthermore, they use a
centralized server where each client has to connect to. This is
a disadvantage in larger networks due to the lack of scalability,
particularly if multicast and broadcast communication services
are necessary.

While these solutions provide a solid base for protecting
network traffic, the management of the communication rela-
tionships and their associated security tokens (i.e., input param-
eters for the used cryptographic algorithms like shared keys,
asymmetric keys, and certificates) is not sufficient for BASs.
This is particularly true for field networks containing embedded
devices and communication relationships that are based on
multiple senders and receivers.

C. Approach to Secure Communication

Our approach taken is divided into four phases: First, each
entity has to be configured once at installation time (initial
configuration). Using this initial knowledge, each entity is
able to prove its identity and may dynamically join one or
more secure communication relationships at run time (secure
binding). Within such a secure relationship, the entities are able
to exchange data through a secured channel (secure commu-
nication).To close communication, the entity has to leave the
relationship (secure unbinding).

1) Initial Configuration: To be able to securely bind to
communication relationships, the entity has to be prepared
by uploading initial configuration data that consist of general
information about the BAN (e.g., address information), as well
as the so-called initial security token set (ISTS). As outlined
later, an ISTS is required to join a secure relationship during
the secure binding phase.

Due to the nature of initial configuration data, there are no
security tokens available that can be used to cryptographically
secure the distribution. To avoid that an adversary manipulates
the initial configuration data, physical security must be guaran-
teed at the time of upload [18].

2) Secure Binding: After an entity has retrieved the initial
configuration data, it is able to join one or more secure com-
munication relationships. In contrast to the initial configuration
phase which is performed only once, an entity is able to bind to
multiple communication relationships anytime at run time.

To securely bind to a communication relationship, the joining
entity (JE) sends a request to a trustworthy entity (TE). The
TE proves the identity of the JE and vice versa. This process
is called entity authentication. If the JE possesses the required
rights, the TE distributes the so-called dynamic security token
set (DSTS) to the JE. A DSTS is uniquely assigned to a single
communication relationship and is later used in the secure
communication phase to secure the exchanged data. To prevent
security attacks, the authentication of the entities, as well as
the retrieval of the DSTS, has to be secured. This is accom-
plished using cryptographic algorithms that take the previously
received ISTS as input parameter.

To be able to act as a TE for a communication relationship,
a TE must be in possession of the DSTS it is responsible for
and the ISTS in order to securely communicate with the JEs. In
addition, each JE must know where it can find the TEs for the
communication relationships that the JE wants to join.

To achieve this, two different schemes that vary in the
election of the TE exist. First, predefined coordinators can be
used as TEs. To be able to contact them, the address information
of available TEs is contained in the initial configuration data of
the JE. To secure the communication between the JEs and TEs,
the ISTS is used, which contains (among other security tokens)
shared secret keys (for symmetric algorithms) or public/private
keys and certificates (for asymmetric algorithms).2 To avoid a
single point of failure, a set of predefined redundant coordina-
tors can be used.

Second, TEs can be dynamically elected following a demo-
cratic approach. This approach is only reasonable if asymmetric
algorithms are used since the ISTS must only contain the
certificate of the central authority and the entity’s certificate, as
well as its public/private key pair. If symmetric algorithms are
used, each possible TE would have to hold the shared keys of
all possible JEs. Obviously, asymmetric algorithms, like ECC,
that are suitable for embedded devices [24] have to be used.
Furthermore, a service to discover the TEs must be available
since their election is not fixed.

3) Secure Communication: After the DSTS has been re-
trieved, the secured channel can be established. To save mem-
ory and processing power on embedded devices, it shall be
possible to individually choose the desired level of security.

1) Protected channel: A protected channel guarantees data
integrity and allows one to verify the data origin.

2) Trusted channel: In a trusted channel, data freshness and
data integrity are guaranteed.

2Basic cryptography concepts and common algorithms are explained in
detail in [23].

GRANZER et al.: SECURITY IN BUILDING AUTOMATION SYSTEMS 3627

3) Confidential channel: In a confidential channel, the trans-
mitted data are additionally encrypted.

To realize the objectives of a secured channel, symmetric
cryptographic algorithms are used. A typical example would
be to use an encryption algorithm like AES to guarantee data
confidentiality, a MAC algorithm like HMAC or cipher-based
MAC (CMAC) to guarantee data integrity, and a monotonically
increasing counter that is embedded in the message to guar-
antee data freshness. Alternatively, authenticated encryption
algorithms that use a single algorithm to guarantee all three
objectives (e.g., Offset Codebook (OCB) mode used in MiniSec
[25]) can be used. Regardless of the algorithms employed, input
parameters like shared secret keys or other security tokens are
required. These parameters are contained in the DSTS.

To guarantee that only authorized entities can process se-
cured messages and to reduce the amount of DSTS uses, each
DSTS is dedicated to a single secure communication relation-
ship. This guarantees the logical separation of the different
communication relationships. To further reduce the amount of
DSTS uses, the lifetime of a DSTS shall be limited. Therefore,
a DSTS refreshing mechanism is necessary, which periodically
invalidates a DSTS (revocation) and distributes a new one to all
members of the communication relationship.

4) Secure Unbinding: There are two reasons for secure
unbinding. First, an entity may decide on its own to leave a
communication relationship because it is no longer interested
in the exchanged data. An example is an MD that temporar-
ily performs some management tasks. Second, members of a
relationship may decide to actively exclude an entity due to
security reasons. This may, for example, be a compromised
device where an abnormal behavior is detected by an IDS.

In both cases, it must be guaranteed that the device is no
longer able to participate in the communication. Therefore,
a DSTS revocation has to be performed, and a new DSTS
is generated and distributed to the remaining members. The
responsibility of this revocation process lies at the TEs that are
assigned to the dedicated relationship.

D. Summary

The aforementioned generic approach provides entity au-
thentication, as well as data integrity, freshness, and con-
fidentiality, to counteract the security threat modification,
fabrication, and interception. Compared to available solutions
from the IT world, it is tailored to the use in BASs. The
approach has already been put into practice. Reference [22]
features an implementation based on predefined multiple key
servers, while a democratic election based on ECC is presented
in [26]. To guarantee data availability and thus avoid or detect
interruption threats, additional measures are necessary. A pos-
sible solution that is based on intrusion detection and isolation
of the attack sources is presented in [27].

V. SECURE DEVICES IN BUILDING AUTOMATION SYSTEMS

While an overall device security deals with software, side-
channel, and physical attacks, this section focuses on software

attacks. Still, an extensive survey on side-channel and physical
attacks can be found in [28].

A. Requirements for Securing Devices

Any (malicious) software, irrelevant whether it originates
from trusted or nontrusted sources, being run on BASs’ devices
may exploit weaknesses in security schemes and system im-
plementation intentionally or unintentionally. Accidental pro-
gramming flaws shall not be present just like software being
infected by Trojans. Therefore, security mechanisms need to
be included, which ascertain the operational correctness of
protected code and data before and at run time.

While the software architecture of MDs and ICDs is rather
fixed and tailored to the device’s functionality, a SAC typi-
cally comprises of a generic “template” network node with
application-specific hardware. Universally designed base plat-
forms consisting of microcontrollers and network interfaces are
used in conjunction with application-specific components (e.g.,
switches; temperature sensors) to form a particular system.
Similarly, the software is split into a generic operating system
(OS) or system software providing basic functionality and
(customizable) control applications dealing with the specific
hardware. On one hand, such a two-level concept allows rapid
innovation and implementation. On the other hand, it may
impose security risks, which a security concept has to deal
with: While malicious, erroneous, or compromised control
applications may be uploaded long after device deployment,
they shall not interfere with the concerning device software and
thus violate the device security.

B. Available Software Protection Techniques

Commonly used state-of-the-art techniques can be cate-
gorized into static software, dynamic software, hardware-
supported, and human-assisted methods.

Within the context of security, static code analysis (SCA) is
used to detect programming flaws that result in vulnerabilities
[29]. Using code signing (CS), executables are signed by the
developers to confirm both origin and nonmodification. The
user can thus decide about the trustworthiness of a program
with respect to its origin. Software watermarking can be used
to embed additional nonremovable information into a piece
of data, usually to assure that the rights of the creator are
not violated (digital rights management). Proof-carrying code
(PCC)[30] is a technique where a code developer provides a
proof along with a program that allows one to check with
certainty that the code can be securely executed (e.g., does not
to contain buffer overflows).

IDS observes the behavior of a system and uses the col-
lected information to detect malicious behavior or actions
[31]. Signature-based IDS (SIDS) detects malicious actions by
comparing observed information to a collection of signatures
describing known attacks. Anomaly-based IDS (AIDS) uses
representations of the trained normal behavior of a system
to detect abnormal activities. Software-monitoring techniques
(SMTs) observe the execution of specific programs [32]. By
identifying and reacting to certain security-relevant events, they
can check if programs behave according to a given security

3628 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 11, NOVEMBER 2010

TABLE I
COMPARISON OF DESCRIBED SOFTWARE METHODS TO IMPROVE APPLICATION SECURITY

policy. A sandbox (SB) is a technique where programs are
executed in a controlled way, often with restricted permissions.
The essential benefit is that the executing host is protected from
direct attacks of the software running in the SB. Self-checking
code (SCC) checks itself for modifications at run time, assum-
ing that modifications are undesirable and probably malicious
[33]. In addition, a number of attack specific countermeasures
(ASCs) which target only specific types of vulnerabilities (e.g.,
buffer overflows [34]) exist.

Hardware-supported methods may form an extra security
barrier. A common approach is to use a coprocessor which per-
forms security checks at run time [35]. The increased spreading
of multicore architectures allows their use for security mech-
anisms. Physical partitioning [36] may be used to improve a
system’s reliability, as well as its resistance against security
attacks. Processors implementing the Harvard architecture pro-
vide resistance against code injection attacks by design through
the separation of instruction and data memory. A recent security
technique is the no-execute bit (NX) in modern CPUs, allowing
memory regions to be designated as being nonexecutable.

Manual inspection and certification performed by humans
may eliminate a lot of possible attacks, but require extensive
knowledge by the auditing person, and are time consuming and
error prone.

C. Approach for Software Security in Building
Automation Systems

Table I discusses the characteristics of the presented tech-
niques relevant for the building automation domain and evalu-
ates the applicability of the methods for SACs, ICDs, and MDs.
Column “compile time (ct)/run time (rt)” describes whether the
method is applied at compile time or before execution, at run
time, or both. Column “attack types” discusses the effectiveness
against known, specific, or all attack types. Column “updates
required” states whether the method requires continuous up-
dates, and column “scalability” evaluates the method with
respect to its costs and maintainability in BASs.

SCA, CS, and PCC are assumed to be easily applicable with
respect to resources of the target system because they are only
used at compile time. A problem of SCA is that, for typical
programming languages, some fundamental questions are un-

decidable or uncomputable [37]. CS can also be effective to pre-
vent the installation of malicious programs by simply refusing
to execute not properly signed ones and thus trusting the signee.
However, CS does not prevent accidental flaws. The universal
applicability of PCC is questionable since the generation and
encoding of proofs for complex security policies are nontrivial
tasks. A combination of the static PCC approach with dynamic
execution monitoring, however, seems to be practically feasible
[38]. Moreover, SCA, CS, and PCC have to be performed on
every code change. SIDS is not well suited as it depends on
a usually large database and requires constant updates which
would be difficult in the case of SACs and ICDs. AIDS, SMT,
and SCC may be efficiently implemented and could therefore
be quite appropriate. SMT at least requires hardware support for
context switches. ASCs can also work well but are not generally
applicable due to differing processor and memory architectures.
The applicability of SBs strongly depends on the overhead
imposed by its feature set. While a reduced and lightweight
SB could easily be deployed to SACs, an architecture like the
full Java VM with its vast execution and security mechanisms
imposes high overhead. The targeted hardware of SACs and
ICDs does not provide the necessary hardware support for OSs.
Moreover, such OSs cannot provide comparable protection or
are not even designed to provide security measures. Hardware-
supported methods requiring additional components cannot
be cost effectively deployed to SACs. Manual inspection and
certification do not scale at all and may only be applied to code
which does not change frequently.

As can be seen, all methods have one aspect in common:
They are not able to offer full protection against the threats dis-
cussed in Section II. Therefore, the approach is to combine the
techniques to make them—along with some human preparation
or interaction—useful in practice.

The software of an MD typically consists of an OS and the
management software. The security of the OS has to be pro-
vided by the system administrator. The security of the manage-
ment software itself can be established using SCA, sandboxing,
and up-to-date development tools. Since the software of ICDs
is rather fixed, SCA and hardware-supported methods may be
used.

To ease the development of secure control applications
hosted on SACs, a software environment being able to deal

GRANZER et al.: SECURITY IN BUILDING AUTOMATION SYSTEMS 3629

Fig. 4. Secure control applications.

with the discussed attacks is required. Protection basically
against software attacks shall be provided but with other attack
scenarios such as physical or side-channel attacks in mind [39].

As outlined in Fig. 4, the software of a SAC consists of three
major components, each imposing an additional security barrier
to the overall security and limiting possible attack points.

1) A simple, tight, and secure system software provides
controlled access to system resources. Its security is
analyzed using human-being-based inspection and SCA
using automated tools, as well as formal verification [40].

2) An SB restricts the execution of customizable control
applications. Basically, this uploadable code shall be
allowed to perform any desired action. However, to pre-
vent security flaws, it is under continuous control of the
system software during run time, determining whether
it is allowed to execute a desired function or not. The
SB is also designed to support the rapid development of
control applications. It provides a clear abstraction of the
underlying hardware and offers interfaces to the system
software. The developer is thus relieved of any hardware
or device-specific details and can focus on the application
development itself. This allows portability of applications
between devices offering the same SB.

3) A configuration has to be provided to the system software
during the upload of a control application that defines
its basic policy (i.e., normal behavior). Any abnormal
behavior can then be detected by the system software
using an AIDS. Thus, limits to, for example, network or
processing resources may be defined, which are enforced
at run time.

To further limit the possible attack scenarios, the use of
Harvard-architecture-based hardware is recommended.

D. Summary

When deployed to SACs, the proposed architecture allows
the development, upload, and execution of arbitrary, nonin-
spected, and uncertified (and possibly erroneous or malicious)
software without compromising the overall device security.
Note that not only attacks evolving from accidental software
faults can be prevented but also attacks resulting from inten-
tional malicious software. The solution is low cost since it
does not require any additional hardware modifications, thus
allowing easy and compatible integration into existing BASs.
References [39] and [41] show the novelty of this approach
when put into practice.

VI. CONCLUSION

The history of IT security can serve both as good and bad
examples for the future of BASs’ security. Important Internet-
related protocols were developed for a virtually closed user
community. Consequently, security was neglected, and services
and applications that used these protocols remained unprotected
against security attacks. Due to the ubiquitous use of the
Internet, unprotected services and applications became attrac-
tive for adversaries. The resulting economic damage through
viruses, Trojan horses, and worms is still clearly tangible today.
To counteract these threats, protocol extensions and security
mechanisms have been developed that are widely used today.

As has been demonstrated in this paper, a BAS is equally
prone to security attacks (as the IT world years before) because
existing technologies lack state-of-the-art security features.
Thus, it is mandatory to identify and set up security mecha-
nisms as it has been done in the IT domain. On the road to reach
this ambitious goal, it is necessary to secure communication and
to provide a secure environment for BASs’ devices—otherwise,
adversaries will soon single out unprotected building systems as
their next target on a large scale.

REFERENCES

[1] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, “Com-
munication systems for building automation and control,” Proc. IEEE,
vol. 93, no. 6, pp. 1178–1203, Jun. 2005.

[2] M. Thuillard, P. Ryser, and G. Pfister, “Life safety and security systems,”
in Sensors in Intelligent Buildings, vol. 2. Weinheim, Germany: Wiley-
VCH, 2001, pp. 307–397.

[3] T. Novak, A. Treytl, and P. Palensky, “Common approach to functional
safety and system security in building automation and control systems,” in
Proc. IEEE Int. Conf. Emerging Technol. Factory Autom., 2007, pp. 1141–
1148.

[4] Information Technology–Security Technique–Evaluation Criteria for IT
Security, IEC 15408, 2005.

[5] C. P. Pfleeger and S. L. Pfleeger, Security in Computing, 4th ed.
Englewood Cliffs, NJ: Prentice-Hall, 2006.

[6] D. Hwang, P. Schaumont, K. Tiri, and I. Verbauwhede, “Securing embed-
ded systems,” IEEE Security Privacy, vol. 4, no. 2, pp. 40–49, Mar. 2006.

[7] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in
embedded systems: Design challenges,” ACM Trans. Embed. Comput.
Syst., vol. 3, no. 3, pp. 461–491, Aug. 2004.

[8] V. Gungor and G. Hancke, “Industrial wireless sensor networks: Chal-
lenges, design principles, and technical approaches,” IEEE Trans. Ind.
Electron., vol. 56, no. 10, pp. 4258–4265, Oct. 2009.

[9] BACnet—A Data Communication Protocol for Building Automation and
Control Networks, ANSI/ASHRAE 135, 2008.

[10] Control Network Protocol Specification, ANSI/EIA/CEA 709.1, 1999.
[11] KNX Specification, Konnex Assoc., Diegem, Belgium, 2009, Ver. 2.0.
[12] Wireless Medium Access Control (MAC) and Physical Layer (PHY)

Specifications for Low-Rate Wireless Personal Area Networks (WPANs),
IEEE 802.15.4, 2006.

[13] ZigBee Specification 2007, ZigBee Alliance, San Ramon, CA, 2007.
[14] D. G. Holmberg, “BACnet wide area network security threat assessment,”

Nat. Inst. Standards Technol., Gaithersburg, MD, NISTIR Tech. Rep.
7009, 2003.

[15] ANSI/ASHRAE Addendum 135–2008 g: Updating BACnet Network Se-
curity, May 2010, Status: 5th public review. [Online]. Available: http://
bacnet.org/Addenda/index.html

[16] C. Schwaiger and A. Treytl, “Smart card based security for fieldbus sys-
tems,” in Proc. IEEE Int. Conf. Emerging Technol. Factory Autom., 2003,
pp. 398–406.

[17] Tunneling Component Network Protocols Over Internet Protocol Chan-
nels, ANSI/EIA 852, 2002.

[18] W. Granzer, W. Kastner, G. Neugschwandtner, and F. Praus, “Security in
networked building automation systems,” in Proc. IEEE Int. Workshop
Factory Commun. Syst., 2006, pp. 283–292.

[19] A. Cilardo, L. Coppolino, N. Mazzocca, and L. Romano, “Elliptic curve
cryptography engineering,” Proc. IEEE, vol. 943, no. 2, pp. 395–406,
Feb. 2006.

3630 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 11, NOVEMBER 2010

[20] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle, and
S. C. Shantz, “Sizzle: A standards-based end-to-end security architecture
for the embedded Internet,” Pervasive Mobile Comput., vol. 1, no. 4,
pp. 425–445, Dec. 2005.

[21] W.-S. Juang, S.-T. Chen, and H.-T. Liaw, “Robust and efficient password-
authenticated key agreement using smart cards,” IEEE Trans. Ind. Elec-
tron., vol. 55, no. 6, pp. 2551–2556, Jun. 2008.

[22] W. Granzer, C. Reinisch, and W. Kastner, “Key set management in net-
worked building automation systems using multiple key servers,” in Proc.
IEEE Int. Workshop Factory Commun. Syst., 2008, pp. 205–214.

[23] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL: CRC, 1997.

[24] T. Wollinger, J. Pelzl, V. Wittelsberger, C. Paar, K. Saldamli, and
C. K. Koc, “Elliptic and hyperelliptic curves on embedded μP,” ACM
Trans. Embed. Comput. Syst., vol. 3, no. 3, pp. 509–533, Aug. 2004.

[25] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “MiniSec: A secure sensor
network communication architecture,” in Proc. Int. Conf. Inf. Process.
Sens. Netw., 2007, pp. 479–488.

[26] W. Granzer, D. Lechner, F. Praus, and W. Kastner, “Securing IP backbones
in building automation networks,” in Proc. IEEE Int. Conf. Ind. Informat.,
2009, pp. 410–415.

[27] W. Granzer, C. Reinisch, and W. Kastner, “Denial-of-service in automa-
tion systems,” in Proc. IEEE Int. Conf. Emerging Technol. Factory Au-
tom., 2008, pp. 468–471.

[28] F. Koeune and F.-X. Standaert, “A tutorial on physical security and side-
channel attacks,” in Foundations of Security Analysis and Design III.
Berlin, Germany: Springer-Verlag, Sep. 2005, pp. 78–108.

[29] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security
Privacy, vol. 2, no. 6, pp. 76–79, Nov. 2004.

[30] G. C. Necula and P. Lee, “Safe, untrusted agents using proof-carrying
code,” in Mobile Agents and Security, vol. 1419, Lecture Notes in Com-
puter Science. Berlin, Germany: Springer-Verlag, Jan. 1998, pp. 61–91.

[31] Z. Li, A. Das, and J. Zhou, “Theoretical basis for intrusion detection,” in
Proc. IEEE Inf. Assurance Workshop, 2005, pp. 184–192.

[32] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure execution
via program shepherding,” in Proc. USENIX Security Symp., 2002,
pp. 191–206.

[33] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H.
Jakubowski, “Oblivious hashing: A stealthy software integrity verification
primitive,” in Proc. Int. Workshop Inf. Hiding, 2003, pp. 400–414.

[34] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proc. USENIX
Security Conf., 1998, pp. 63–78.

[35] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Hardware-assisted
run-time monitoring for secure program execution on embedded proces-
sors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 12,
pp. 1295–1308, Dec. 2006.

[36] I. Hiroaki, M. Edahiro, and J. Sakai, “Towards scalable and secure execu-
tion platform for embedded systems,” in Proc. Des. Autom. Conf., 2007,
pp. 350–354.

[37] W. Landi, “Undecidability of static analysis,” ACM Lett. Program. Lang.
Syst., vol. 1, no. 4, pp. 323–337, Dec. 1992.

[38] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C. DuVarney,
“Model-carrying code: A practical approach for safe execution of un-
trusted applications,” in Proc. ACM Symp. Oper. Syst. Principles, 2003,
pp. 15–28.

[39] F. Praus, T. F. Thomas, and W. Kastner, “Secure and customizable soft-
ware applications in embedded networks,” in Proc. IEEE Int. Conf.
Emerging Technol. Factory Autom., 2008, pp. 1473–1480.

[40] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, “seL4: Formal verification of an OS kernel,” in Proc.
ACM Symp. Oper. Syst. Principles, 2009, pp. 207–220.

[41] F. Praus, W. Granzer, and W. Kastner, “Enhanced control application
development in building automation,” in Proc. IEEE Int. Conf. Ind. In-
format., 2009, pp. 390–395.

Wolfgang Granzer received the Dipl.Ing. and
Dr.Techn. degrees in computer science from Vienna
University of Technology, Vienna, Austria, in 2005
and 2010, respectively.

He was a Junior Scientist with the Research Unit
of Integrated Sensor Systems, Austrian Academy
of Sciences, Wiener Neustadt, Austria, where he
was involved in the research activities on high-
precision clock synchronization. Since 2006, he has
been with the Automation Systems Group, Institute
of Computer Aided Automation, Viennna University

of Technology, where he initiated the research project “Security in Building
Automation.” His research interests include the field of automation systems
with special focus on security, embedded networks, and home and building
automation.

Fritz Praus received the Dipl.Ing. degree in com-
puter science and the Mag.rer.soc.oec. degree in
computer science management from Vienna Uni-
versity of Technology, Vienna, Austria, in 2005
and 2008, respectively, where he is currently work-
ing toward the Ph.D. degree. His Ph.D. disserta-
tion is about secure control applications in building
automation.

From 2005 to 2006, he was with the Research Unit
of Integrated Sensor Systems, Austrian Academy of
Sciences, Wiener Neustadt, Austria, where he was

working on high-precision clock synchronization. Since 2006, he has been
with the Automation Systems Group, Institute of Computer Aided Automation,
Vienna University of Technology, where his research interest is in the area of
automation systems. His focus lies on security, hardware–software codesign,
and home and building automation.

Wolfgang Kastner (M’06) received the Dipl.Ing.
and Dr.Techn. degrees in computer science from
Vienna University of Technology, Vienna, Austria,
in 1992 and 1996, respectively.

Since 1992, he has been with the Automation
Systems Group, Institute of Computer Aided Au-
tomation, Vienna University of Technology, Austria,
where he has been holding the position of an Asso-
ciate Professor for computer engineering since 2001.
From 1992 to 1996, he was working on reliable trans-
mission protocols for distributed real-time systems.

Since 1997, his research interests have been in the areas of control networks and
automation systems with a special focus on home and building automation. His
current research targets the field- and management-level integrations of building
automation networks, concentrating on the open standards BACnet, LonWorks,
KNX, and IEEE 802.15.4/ZigBee.

Dr. Kastner is a Founder Member of the IEEE Industrial Electronics Society
Technical Committee for Building Automation, Control, and Management.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

