
Charles: A Data Structure Library for Ada95

Matthew Heaney

April 30, 2002

Charles is a data structure library for Ada95, mod-
elled principally on the C++ STL. It features both
ordered (lists and arrays) and unordered (sets and
maps) collections.

Associated with each data structure type is a sepa-
rate iterator type, which allows you to visit each item
in the container. In particular, an iterator abstracts
away differences in specific container types, allowing
you to view the collection simply as a sequence of
items. A generic algorithm (for sorting, say) can be
written in terms of an iterator, so that you can use
the algorithm over any data structure having an it-
erator with the requisite operations.

Data structures are categorized by their time and
space semantics. A list has constant time insertion
and removal of items, but searching for an item re-
quires linear time. An array (”vector”) has constant
time searching (”random access”), but insertions and
removal require time proportional the length of the
array. (A ”deque” is another STL data structure that
supports constant time insertion of items at the ei-
ther end of the sequence, and allows random access of
elements. This data structure is planned for a future
version of Charles.)

In addition to lists and vectors, the Charles library
has set, multi-set, map, and multi-map data struc-
ture types. A map is an ”associative container” that
allows you to index an item by some other arbitrary
type. These data structures are extremely useful for
testing membership of an item in a collection. In
Charles all of these types are are implemented us-
ing a red-black tree, so finding an item requires only
logarithmic time. (Note that even though sets and
maps are traditionally ”unordered” data structures,
for pragmatic reasons the item type used to instanti-

ate the component must have a relational operator.)
Lists and arrays are ordered sequences, and you’re

allowed to insert an item at a specific position in the
container. There are special operations for inserting
an item in the front or back of the container. In-
sertion of an item into a set or map is performed
according to its order relative to the items already in
the container.

Charles doesn’t have Stack or Queue container
types specifically, because the ordered container
types allow you to achieve the same effect by simply
pushing and popping an item from the appropriate
end. One data structure that is missing, however,
is a priority queue; this is planned for a future ver-
sion of the library. (You can use a set or map as a
priority queue, but this is not as efficient, because a
height-balanced tree requires more maintenance dur-
ing insertions and removals.)

One of my design goals for Charles was that instan-
tiation of components should be as painless as pos-
sible. My philosophy is that common things should
be easy to do (and consequently that less common
things should be less easy to do). The library has
therefore been optimized for container items whose
type is non-limited and definite. In general, creating
a container type from a Charles component requires
only a single instantiation, passing only the item type
as a generic actual parameter.

Container types are declared as traditional ab-
stract data types, not as tagged types. A theme of
the library is that you create a complex abstraction
by composing instantiations of generic components,
not by extending a tagged type. (If polymorphism is
required, then the client can use the Adapter pattern
to provide that himself. For that reason I specifically

1



rejected the approach used by the Booch components,
which implements containers as a hierarchy of tagged
types, requiring two separate instantiations.)

It is useful to have set elements and map indices
that are indefinite (a symbol table, for example, is a
map whose index type is a string). One solution is to
simply require that clients use a definite type directly
(type Unbounded String, say) when instantiating the
data structure. However, in the absence of auto-
matic type conversion (as you have in C++), manip-
ulation of such a data structure would be awkward.
Therefore, given the importance of unconstrained ar-
ray types in general, and type String in particular,
in Charles I have provided additional set and map
components that accept an indefinite generic formal
type.

The container types in Charles have both bounded
(stack-based) and unbounded (heap-based) forms.
For the bounded forms I pass the size as a discrim-
inant of the type. (I prefer to do it this way rather
than passing the size as a generic formal constant.)
The unbounded forms have a generic formal pool ob-
ject (of type Root Storage Pool’Class), which is used
for all internal allocation. Charles provides a pool
object to simplify instantiation for those clients that
don’t have specific storage pool needs.

There is the orthogonal issue of whether items in
the collection can be limited. On the one hand, we
desire the library be as general as possible, and there-
fore we should support collections of limited items (to
implement a queue of File Type, for example). On
the other hand, this would require passing in a generic
formal subprogram to assign items (because data
structure types are themselves non-limited), which
is in conflict with our goal to make instantiation as
painless as possible. (A queue of integer items should
require only that the integer type be passed as the
generic actual type.)

My solution in Charles was therefore to have dif-
ferent versions of the data structure types, one for
non-limited items and another for limited items. For
limited items, the data structure type is itself lim-
ited. A operation for adding an item to the container
doesn’t actually accept an item argument; rather, it
just creates a new ”slot” for the item. A separate se-
lector function returns a pointer to the item, so that

the client can manipulate the actual item (not just
a copy). This allows the component to be agnostic
about whether the item is ”really” limited. (Indeed,
even for a type that has assignment, if the items are
”large” it may be more efficient to store them as ”lim-
ited” items in a limited container, as this prevents
undesirable copying of items.)

When I began writing the library, I was unsure
about whether to implement unbounded data struc-
ture types as controlled. One argument against is
that you can add controlled-ness as necessary, at the
point of declaration of the object. For example, you
can implement a generic controlled helper type that
calls a generic formal subprogram during its own fi-
nalization. You can use an access discriminant to
bind the controlled helper object to the data struc-
ture object, and have it call an appropriate final-
ization operation. Another technique is that if the
uncontrolled data structure is a component of some
higher-level abstraction that is itself controlled, then
the data structure can be manually finalized during
finalization of the enclosing record.

However, in practice it’s too easy to forget to final-
ize the data structure. It’s one more thing to have to
think about, and more likely than not you won’t think
about it. So it turns out to be easier to simply have
the component automatically finalize itself. Another
reason is that if data structures weren’t controlled,
then they’d have to be limited, in order to prevent
structure sharing. But that would make it harder to
create complex data structures comprising elements
that are themselves simpler data structures.

The data structure types in the STL require sepa-
rate iterator types for forward and backward traver-
sal. This is because templates in C++ have the sense
of type-safe macros: the text of the template is simply
expanded inline, so the operations of the type have
to be identically named. (For example, the increment
operator (”++iter”) moves forward for a forward iter-
ator type, but backwards for a reverse iterator type.)
In Ada, however, there is less coupling between the
generic formal type and the generic actual type, and
therefore only one iterator type is necessary. The
only requirement is that the signature of an opera-
tion match, not the name. (That being said, it’s aw-
fully convenient that the name does match, because

2



this greatly simplifies instantiation when formal op-
erations are marked having a default. Charles always
defaults all generic formal subprograms.)

My goal was to make iterators as simple, general,
and efficient as possible, and that generic algorithms
be easy to instantiate. This means passing only an
iterator type during the instantiation, and taking ad-
vantage of ”default” generic formal subprograms to
implicitly pass operations directly visible at the point
of instantiation.

There is lots of debate about how type-safe itera-
tors should be. Should a container keep track of the
iterators designating items in the container? What
should happen if you try to remove an item from
the container while it’s being designated by an itera-
tor? However, worrying about this would have com-
plicated the design, and made everything else much
less efficient. (In general, in the design of Charles I
have been willing to trade type-safety for flexibility
and efficiency.)

For unbounded forms, iterator implementation is
relatively simple, and usually it’s just a thin wrap-
per around an access type that designates a node
of internal storage. I implemented iterator types for
bounded forms exactly the same as for the unbounded
forms, but unfortunately this means I lost the access-
ability checks that Ada provides when manipulating
pointers to locally declared objects. I am not en-
tirely satisfied with that choice, and it may very likely
change in a future version of the library.

(For example, an iterator for a bounded form could
be implemented as an integer array index, and it-
erator operations could accept both the data struc-
ture and the iterator. The operation would be im-
plemented by using the integer index to de-reference
an array component. This means the signature for
iterator operations of a bounded form would be dif-
ferent from an unbounded form, which means you
wouldn’t be able to use a generic algorithm directly.
However, you could work around that by declaring
local subprograms, that are implemented by calling
the operations of the locally declared bounded data
structure.)

It was also my goal that generic algorithms (such
as a sort) also work directly on Ada array types, as
is the case in C++. This can be effected in Charles

by declaring local subprograms that look like iterator
operations, and which operate on the locally declared
array object. These subprograms are then implicitly
passed as default actual subprograms to the instanti-
ation of the algorithm, which is instantiated with the
array index type as the ”iterator” type.

In order to iterate over a range of items of a se-
quence, it is necessary to have a nonce item that acts
as a sentinel to terminate the iteration. We refer to
this as a ”half-open” range, meaning that it includes
the first element but not the last element. Unfor-
tunately, this idiom conflicts with Ada’s higher-level
approach, which uses a ”closed range” that includes
both the first and last elements. (In an earlier ver-
sion the library I tried an iterator design that used a
closed range, but there were certain cases that caused
dangling iterator references. I have therefore con-
cluded that the current half-open design is superior.)
One consequence of the current design is that differ-
ent sentinels are needed for forward versus backwards
iteration over a half-open range, so the data struc-
tures in Charles have selectors that return ”first” and
”back” iterators for forward iteration, and ”last” and
”front” iterators for backward iteration.

Charles also includes an ”access control” type,
which is exactly analogous the the auto ptr type in
C++. This is extremely useful for those times when
it’s necessary to manipulate access objects directly
(polymorphic programming, for example). The ab-
straction reifies the notion of the ”owner” of an access
object who can transfer ownership to another control
object, or release ownership entirely. If the access
control object still owns an access object at the time
of its finalization, then it automatically frees the des-
ignated object.

3


