
Your partner Your partner when when introducing and usingintroducing and using
modern software modern software developmentdevelopment tools tools

Klaus Wachsmuth
Dr. Peter Dencker

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .2

• In business since 1980

• HQ in San Diego

• In Software TOP 500

• 300+ employees

• Offices in Germany, France, Sweden, UK and US

• Represented in 28 countries

• A Gores Technology Group (GTG) company

Aonix - Worldwide Presence

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .3

Aonix GmbH - Close to You

Offices in Karlsruhe, München and
Düsseldorf

25 Employees

D A CHRegion
including Eastern Europe

with Consulting, Sales, Support and
Training about our Products

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .4

Aonix Product Families

• Software through Pictures (StP)
Family of modeling tools

– /UML for object oriented analysis and design

– /ACD template driven codegeneration

– /SE for structured analysis and design

• ObjectAda
Software development environment for Ada 95

• Raven
Certifiable runtime kernel for safety critical real-time
applications

• TeleUSE
Generator for graphical user interfaces based on Motif

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .5

Ada-Development

• ObjectAda
– Ada 95 development environment for PCs and Unix

– ObjectAda Windows and ObjectAda Real-Time

• Real-Time/Raven:
– implements Ravenscar Profile (RP)

– Checks the RP properties during compilation

– Certification documents for highest criticality
(DO-178B) with warranty available

– supporting partitioning

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .6

Raven Certification

• December 2001:
Pratt & Whitney certification was achieved
at software Level-A of RTCA's DO-178B
for the PW6000 commercial jet engine

• June 2002:
Pratt &Whitney has selected Aonix
ObjectAda®/Raven™ for its next
generation military jet engine for JSF

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .7

From UML Design Pattern to
Safety Critical Software

• Introduction

• Elements of Design Pattern

• Model elements from the Ravenscar
Profile

• Automatic code generation

• Example

• Conclusion

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .8

UML Introduction

• UML language with powerful graphical
expressiveness
concentration on
– class diagrams

– state diagrams

• Semantical interpretation freedom
– Commercial Software

– Real-time Software

• Concentration on Real-time Systems

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .9

Real-time System - Characteristics

• Natural paralellism in design structures

• Historical solutions: sequentialized fixed
time frames

• Typical example
– cyclic readout of a sensor value

– put into a buffer

– then processed by controllers and visualized
on displays

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .10

Real-time System - Items

• Active items - active classes
(state automata)
=> own control flow
=> Thread, Ada Task

• Passive items
(Ex: buffer)
=> no independant control flow
=> Module, Ada Package

• How are they modelled with UML?

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .11

UML Stereotype

• Defines meta-property

• Used to classify UML items

• Constraints, Tagged Values for the
refinement of the meta-properties

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .12

Cyclic Class Characteristics

• Stereotype = „CyclicTask“
– has its own control flow

– runs endless

– Priority

– Periodicity

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .13

Buffer Characteristics

• Stereotype = „resource control“
– no independant control flow

– implicit put method

– implicit get method

– synchronisation of methods

– Tagged Value: Element type

– Tagged Value: Number_of_Elements

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .14

Simple Design Pattern

communication between parallel activities

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .15

Details: Tagged Values

• Class Pressure
– priority = 1

– period = milliseconds(100)

• Class PressureControl
– priority = 2

– period = milliseconds(200)

• Class PressureBuffer
– ItemType = Pressure_Type

– No_Of_Elements = 100

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .16

Ravenscar Profile

• Industrial standard for safety critical
real-time systems with Ada

• Idea: structuring an application
with a set of tasks
– cyclic

– sporadic

– cooperating

• communicating through
events and buffers

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .17

Active model elements

• RepetetiveTask
– recurrent activity without fixed period

– tagged values: priority, stacksize

• CyclicTask
– like RepetetiveTask, but with fixed period

– tagged values: priority, stacksize, period

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .18

Cyclic Task Stereotype with attributes

CycTask

<<Cyclic>>

<<Tags>>
StackSize = 2000
Priority = 28
Period = 50 ms

task CycTask is
 pragma Priority (28);
 pragma Storage_Size (2000);
end CycTask;

task body CycTask is
 Next_Time : Time;
 Period : Time_Span := Milliseconds(50);
begin
 Next_Time := Clock;
 loop
 delay until Next_Time;
 -- body
 Next_Time := Next_Time + Period;
 end loop;
end CycTask;Source code

Generated Code (part)UML Class

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .19

More active model elements

• Transporter
– like cyclic, but including

– a Get-Association and

– a Put-Association

– priority, stacksize, period

– Item_Type

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .20

Example: Transporter

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .21

More active model elements

• SporadicTask
– waits for an event or interrupt

– has an association to a class which
represents the event

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .22

Example: Alarm

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .23

Code Generation

• Template based Code generator
– simple mapping of patterns to code,

selection via stereotypes

– implementation of complicated pattern

– semantic checking

– easy modifiability
=> new patterns

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .24

Code generation

• Static semantic
=> class diagrams

• dynamic semantic
=> State automata

• Patterns are language independant

• Ada provides convient language concepts

• Mapping to C, C++, Java and other
languages possible

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .25

Template: Cyclic Task
template CyclicTaskBody(MClass)
 [OutputWiths([MClass])]
with Ada.Real_Time; use Ada.Real_Time; -- To get visibility to the "+" operator.
package body [MClass.name]_Pkg is
[genStateMachine([MClass])]
task body [MClass.name] is
 Next_Time : Ada.Real_Time.Time;
 Period : constant Ada.Real_Time.Time_Span := [Period([MClass])];
[transporter_decl([MClass])]
 begin
 Next_Time := Ada.Real_Time.Clock;
 loop
 delay until Next_Time;
 [transporter_get([MClass])]
 [genStateMachineCall([MClass])]
 [mergeOut("UCOD:: "getUniqueId([Mclass,"User Def Code", "")]
 Next_Time := Next_Time + Period;
 end loop;
 end [MClass.name];
end [MClass.name]_Pkg;
end template

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .26

Generated Code: Cyclic Task
with PressureSensor_Pkg; with PressureBuffer_Pkg;
with Ada.Real_Time; use Ada.Real_Time;
package body Pressure_Pkg is
 task body Pressure is
 Next_Time : Ada.Real_Time.Time;
 Period : constant Ada.Real_Time.Time_Span := Milliseconds(100);
 Item : Pressure_Type;
 begin
 Next_Time := Ada.Real_Time.Clock;
 loop
 delay until Next_Time;
 Item := PressureSensor_Pkg.Get; -- Raven Class Package
 PressureBuffer_Pkg.Put (Item); -- Raven Class Package
 --#ACD# M(UCOD:: 102:BOTTOM) User Defined Code
 -- Section for User Defined Code
 --#end ACD#
 Next_Time := Next_Time + Period;
 end loop;
 end Pressure;
end Pressure_Pkg;

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .27

Passive Element: RC

template ResourceControlSpec(MClass)
with System; -- for Priority value.
[if (HasInterruptId([MClass]))]
with Ada.Interrupts; use Ada.Interrupts;
[end if]
package [MClass.name]_Pkg is
 protected [MClass.name] is
 function Get return [SharedDataType([MClass])];
 procedure Put(Item : [SharedDataType([MClass])]);
[if (HasInterruptId([MClass]))]
 [HandlerSpec([MClass])]
[end if]
 [ProtectedPriority([MClass])]
 private
 Shared_Data : [SharedDataType([MClass])];
 end [MClass.name];
end [MClass.name]_Pkg;
end template

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .28

Generated Code: RC

package body PressureBuffer_Pkg is
 protected body PressureBuffer is
 function Get return Pressure_Type is
 begin
 return Shared_Data;
 end Get;
 procedure Put(Item : Pressure_Type) is
 begin
 Shared_Data := Item;
 end Put;
 end PressureBuffer;
end PressureBuffer_Pkg;

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .29

Example: Pressure Control

Copyright © Aonix 2002 Model Driven Architecture www.aonix.de .30

Conclusion

• Ravenscar profile patterns
– language independant

– easy mapping to Ada

• Easy composition of patterns

• High level of abstraction

• Mapping to target language realized thru
template driven code generation
=> OMG Model Driven Architecture

