
Prioritization of Test Cases in MUMCUT
Test Sets: An Empirical Study

Presented by M. F. Lau

Centre for Software Engineering
School of Information Technology
Swinburne University of Technology
Melbourne, AUSTRALIA
http://www.it.swin.edu.au/centres/cse

Overview

• Boolean specifications
• Types of Fault
• MUMCUT Strategy
• Test Case Prioritization
• Experiment and Results
• Conclusions and Future work

Boolean Specifications

Example:
S = ac + abd + af + be

where a, b, c, d, e, and f are Boolean
variables

Boolean Specifications (cont’d)

• A Boolean variable is one which has a value
of either True (1) or False (0).

• A Boolean formula connects Boolean
variables with logic operators: and ·, or +,
not −, etc.

• A Boolean formula S represents a function
f : Bn → B where B = { 0, 1 }

• With n Boolean variables, there are 22n

distinct Boolean functions.

Boolean specifications (cont’d)

• Complex conditions in software are often
specified in the form of a Boolean formula.

• Input domain: n-dim Boolean space Bn

• Requires all 2n test points to distinguish a
Boolean function from another

• Problem: How to select a ‘small’ subset of
test points to detect certain types of fault?

Types of Fault

• Expression Negation Fault (ENF)
– The whole expression is negated

• Literal Negation Fault (LNF)
– A literal in a term is negated

• Term Omission Fault (TOF)
– A term is omitted

• Literal Omission Fault (LOF)
– A literal in a term is omitted

• Operator Reference Fault (ORF)
– An operator is replaced by another operator

Types of Fault (cont’d)

• Literal Insertion Fault (LIF)
– A literal is inserted into a term

• Literal Reference Fault (LRF)
– A literal is replaced by another literal

Types of Fault – Example

I = ad + cdLRF

I = ab + acdLIF

I = abcd or I = ab + c + dORF

I = a + cdLOF

I = abTOF

I = ab + cdLNF

I =ENF

S = ab + cdOriginal spec.

cdab +

Types of Fault (cont’d)

• S and I may be equivalent
– e.g. S = a + b, I = a + ab

• Test cases that detect the non-equivalent
implementations are good test cases.
– e.g. S = ab + cd, I = a + cd
– Good: 1000, 1001, …
– Not good: 0011, 1011, …

True Point

• Assume that S is in irredundant disjunctive normal
form (e.g. S = ab + cd)

• True point: point such that S evaluates to true (1)
– TP = { 1100, 1110, 1101, 1111, 0011, 0111, 1011 }

• Unique true point of i-th term: point such that only
the i-th term of S evaluates to true
– UTP(1) = { 1100, 1110, 1101 }
– UTP(2) = { 0011, 0111, 1011 }

False Point

• Example: S = ab + cd
• False point: point so that S evaluates to false (0)

– FP = {0100,0101,0110,1000,1001,1010,0001,0010,0000}

• Near false point of j-th literal of i-th term: false
point that pi,j evaluates to true where pi,j is the
term obtained by negating the j-th literal of the i-th
term
– NFP(1,1)={0100,0101,0110} NFP(1,2)={1000,1001,1010}
– NFP(2,1)={0001,0101,1001} NFP(2,2)={0010,0110,1010}

MUMCUT Strategy

• A strategy by combining three different strategies
– MUTP, MNFP and CUTPNFP strategy

• MUTP strategy
– Select test points in UTP(i) such that every truth value of

every missing variable is covered
– e.g. { 1101, 1110, 0111, 1011 } (S = ab + cd)
– Can detect ENF, LNF, TOF, and LIF

• MNFP strategy
– Select test points in NFP(i,j) such that every truth value of

every missing variable is covered
– e.g. { 0101, 0110, 1001, 1010 } (S = ab + cd)
– Can detect ENF, LNF, and LOF

MUMCUT Strategy (cont’d)

• CUTPNFP strategy
– Select a unique true point in UTP(i) and a near

false point in NFP(i,j) such that the two points
differ only at the j-th literal of the i-th term

– e.g. { 1101, 0101, 1001 , 0111, 0101, 0110 }
(S = ab + cd)

• The MUMCUT strategy can detect all seven
types of fault

MUMCUT Strategy (continued)

• A strategy for generating test cases
– No guidelines on execution order

• Any particular execution order can detect
faults earlier in testing?
– MUTP strategy
– MNFP strategy
– CUTPNFP strategy

Test Case Prioritization, TCP

• Faster detection of more faults facilitates earlier
debugging and fault removal

• Problem:
– What are the effects, if any, of the order of executing test

cases that collectively satisfy the MUMCUT strategy on
the rate of fault detection during testing?

• Two dimensions of assessment:
– Rate of fault detection
– Time for fault detection (wrt the percentage of test set)

• Metric used:
– weighted Average of the Percentage of Faults Detected

(APFD)

Test Case Prioritization, TCP (cont’d)

• Why study Black-box test cases?
– Guidelines are independent of source code

• Why MUMCUT?
– Is a fault-based strategy
– Exists a test set that satisfies MUMCUT strategy
– Contains different groups of test cases

Test Case Prioritization (cont’d)

• Previous results on prioritizing MUMCUT test cases
– CNU order is better than random and serial

• Is that just a coincidence?
• Different possible orders

– CNU (CUTPNFP, MNFP, MUTP)
– CUN
– NCU
– NUC
– UCN
– UNC

Experiment

• Subject under study: Boolean specifications
derived from TCAS II (Traffic Collision
Avoidance System)

• Number of Boolean variables: 5 – 13
• For most specifications except a few, there

is a large number of MUMCUT test sets
• Randomly pick 1000 MUMCUT test sets
• Monitor the executions of test cases to

compute the APFD

Experimental Result

• UCN order gives the highest average values
(APFD) over the 20 Boolean specifications
under study

• The U-group is consistently better than the
C-group which in turn is better than the N-
group

• This is differently than as expected from
Kuhn’s fault hierarchy (VRF > VNF > ENF)
– C-group first, U-group/N-group later

Conclusions and Future Work

• Test cases executed in the “U–C–N” order
yield highest APFD values.

• Need further investigation on the fault-class
hierarchy based on the observations from
the experiments.

