
A network interface for highly accurate clock
synchronization

MARTIN HORAUER NIKOLAUS KERÖ

Institute of Computer Technology Department of Industrial Electronics
and Material Sience

Technische Universität Wien Technische Universität Wien
Gußhausstraße 25–27 Gußhausstraße 25–27

A-1040 Vienna, Austria A-1040 Vienna, Austria
tel: +43-1-58801-38416 tel: +43-1-58801-36666
fax: +43-1-58801-38499 fax: +43-1-58801-36099

e-mail: horauer@ict.tuwien.ac.at e-mail: keroe@tuwien.ac.at

ULRICH SCHMID

Department of Automation
Technische Universität Wien

Treitlstraße 1, A-1040 Vienna, Austria
tel: ++43-1-58801-18325, fax: ++43-1-58801-18391

e-mail: s@auto.tuwien.ac.at

Abstract

This paper describes a novel network interface hardware, which enables clock synchroniza-
tion with sub-µs-range accuracy in network-coupled distributed systems. The basic idea, which
works for any packet-oriented data network, is to timestamp data packets at the interface be-
tween physical layer transceiver and network controller upon packet arrival and departure. Our
particular implementation targets the standardized Media Independent Interface (MII), which is
used by almost any modern 10/100/1000 Mb/s Ethernet chipset. A custom FPGA intercepting
the MII datastream is used for triggering timestamps and inserting them into the data packets.
Local time is supplied by the high-resolution rate-adjustable adder-based clock of our UTCSU-
Asic [SSHL97], which also contains all other hardware support required for interval-based exter-
nal clock synchronization, like local accuracy intervals and interfaces to GPS receivers. Owing
to this design, GPS time can be distributed over Ethernet without sacrificing the excellent time
accuracy of modern GPS receivers.

Keywords: Networked distributed systems, Global Positioning System (GPS), Fast Ether-
net, packet timestamping, Media Independent Interface (MII), Network Interface Card (NIC),
Peripheral Component Interconnect (PCI).

1

1 Introduction

The interaction of components in a distributed system is usually much easier to coordinate if some
sort of global time is available. In addition, if specific real-time constraints are to be met by the dis-
tributed system, global time is indispensable for timestamping external events, scheduling resources
and initiating actions. A time service providing global time can either be implemented as a cen-
tral time server accessible from all nodes or, preferably, as a distributed time service. In the latter
case, each nodei hosts a local clockCi(t), which is periodically adjusted in a way that guarantees
|Ci(t)−Cj(t)| ≤ π ∀t ≥ t0, for any two fault-free nodesi and j in the system;π is usually called
the worst case precision.
Since distributed applications usually have very different precision requirements, many different ap-
proaches for clock synchronization exist. They range from dedicated clocking lines up to purely
software-based solutions, thereby spanning a range from ns up to ms for the achievable precision,
see [SKMNCK99] for a survey. Still, a separate clocking network is usually only affordable if the
interconnected nodes are only a few meters apart. For larger systems, clock synchronization must
be accomplished by exchanging time information over data network connections. Most modern dis-
tributed systems, however, are based on shared broadcast LANs. Since this type of networks suffer
from a considerable medium access uncertainty in the 1. . . 10-ms-range, high-accuracy clock syn-
chronization is difficult here due to the resulting high variability (uncertainty) of the transmission
delaysε.
Fortunately, with moderate hardware support,ε and henceπ can be brought down to theµs range. In
the project SynUTC1, we developed a dedicated hardware M-Module termedNetwork Time Inter-
face(NTI), which ensuresε in the range of 1µs over Ethernet. It couples the local clock provided in a
custom Asic termedUniversal Time Coordinated Clock Synchronization Unit(UTCSU), cf. [Lo96],
[SSHL97] and an Ethernet controller by means of shared memory: Timestamps are triggered and
inserted in packet memory when the network controller grabs/deposits a packet there. Experiments
revealed, however, that the internal packet FIFO’s of the network controller prohibit a further reduc-
tion of ε for this memory-based timestamping method, see [SKMNCK99] for details.
In this paper, we present the implementation of ourMedia-Independent Interface-based timestamp-
ing method first proposed in [SHK99], which allows to further reduce the transmission delay un-
certaintyε. In fact, by equipping every node of the distributed system with ourMII-Network Time
Interface(MII-NTI), we should be able to pushε (and henceπ) down to thens-range in Fast Eth-
ernet networks. Prior to the illustration of the involved principles, we give a short overview of the
architecture of a node and its MII-NTI. In the subsequent sections, we elaborate on the mechanisms
required for MII-based timestamping and their implementation in a field programmable gate array.
Some conclusions and further directions of improvement eventually round off the paper.

2 Node Architecture

The MII-NTI node architecture is outlined in figure 1. It consists of an off-the-shelf Network Inter-
face Card (NIC) built around a 10/100 Mbit/s Fast Ethernet network controller with an integrated
PCI interface, and a separate physical layer interface device. These two devices are interconnected

1The SynUTC-project received support from the Austrian Sience Foundation (FWF) grant P10244-ÖMA, the OeNB
“Jubiläumsfonds-Projekt” 6454, the BMfMV research contract Zl.601.577/2-iV/B/9/96, the Gesellschaft für Mikroelek-
tronik (GMe), and the START programme Y41-MAT. See http://www.auto.tuwien.ac.at/Projects/SynUTC/ for further
information.

2

http://www.auto.tuwien.ac.at/Projects/SynUTC/

Network
Medium

Timestamp
Logic

UTCSU

PCI
target

Layer IF

Physical

PCI bus

CPU

Shared
Memory

PCI-to-PCI

brigde

Controller
Fast Ethernet

External

GPS Receiver

Application Support

MII-NTI

Local PCI bus

Figure 1: Node Architecture

via a standardized Media Independent Interface (MII) interface. The MII-based timestamping unit
is implemented as a field programmable gate array and sits in between the two devices. It works
as follows: Aclock synchronization packet(CSP) is recognized by a special type field value and
contains fields for a transmit and a receive timestamp; the latter must be left untouched (reserved) by
the device driver. When a CSP is detected on transmission resp. reception, the transmit resp. receive
timestamp is automatically inserted on-the-fly into the data stream. Local time is supplied by the
UTCSU Asic, see [SSHL97], which maintains the node’s local clock and accuracy information on
behalf of a clock synchronization algorithm running on the CPU, cf. [SKMNCK99], [SS97].
However, since the UTCSU provides no PCI interface, a PCI target chip is required to access the
many UTCSU registers from the CPU. To satisfy the rules of the PCI bus specification, a PCI-to-PCI
bridge has to be incorporated between the PCI bus interfacing to the network controller/PCI target
and the PCI bus on the CPU side.

3 Timestamping Mechanisms

The MII-based timestamping of Ethernet packets is the key idea of the presented MII-NTI. Figure 2

Preamble
1010...1010 10101011

SFD Destination
Address

Source
Address

Type/Length
Field Data Pad FCS

46 - 1500 bytes2 bytes6 bytes6 bytes8 bits56 bits 4 bytes

Figure 2: Ethernet/IEEE 802.3 Data Frame

illustrates an Ethernet data frame according to [Ieee85]. The preamble constitutes of 56 subsequent
“1010..” bits followed by the Start Frame Delimiter (SFD).2 The destination ethernet address field

2Sometimes the first six “101010” bits of the SFD are considered as being part of the preamble, which results in a
SFD of only two bits constituting “11”.

3

holds the address of the intended receiver; for broadcast addresses this field is all 1’s. The source
ethernet address field is the unique ethernet address of the sending station. The address fields are
followed by the length field, which holds the number of data bytes within the frame (for IEEE
802.3) or the type descriptor of the packet (for Ethernet I & II). Data frames hold between 46 and
1500 bytes of data, while shorter frames must be padded to 46 bytes. Note that type field codes are
larger than 1500, which allows both IEEE and Ethernet I/II frames to co-exist. The frame check
sequence (FCS) is a 32 bit CRC calculated of destination/source address, type/length field, data and
optional pad bytes using the Autodin-II polynomial:

g(x) = x32+x26+x23+x22+x16+x12+x11+x10+x8 +x7 +x5 +x4 +x2 +x+1

Preamble, SFD, Source Ethernet Address and FCS are usually inserted by the Media Access Con-
troller (MAC), whereas the destination address, the length/type field and the data is provided via a
device driver routine from the local host processor.

Sender - Transmit Timestamping:

Sender - Device Driver: Preamble SFD

Preamble SFD T.F.

T.F. don’t care

don’t care

don’t care

Src. Addr.

Dest. Addr.

Dest. Addr.

Transmit TS

User Data

User Data FCSSrc. Addr.

new FCS

new FCS

Receiver - Receive Timestamping: Preamble SFD T.F.Src. Addr.

Receive TS

User DataDest. Addr. Transmit TS

Receiver - Device Driver: Preamble SFD T.F. Transmit TS Receive TSSrc. Addr. User Data FCSDest. Addr.

Figure 3: CSP timestamping

Timestamps are automatically inserted into the incoming resp. outgoing datastream when a Clock
Synchronization Packet (CSP) is received resp. transmitted. Note that the CRC values are to be
modified here as well to ensure correct packet transmission. Figure 3 shows the modification of a
CSP when being sent resp. received. The MII-NTI hardware recognizes CSPs by their unique type
field value; all other frames are passed through without modification.

4 Timestamp Logic

Figure 4 shows a block diagram of the timestamp logic, which is split into a transmit timestamp
unit (TTU) and a receive timestamp unit (RTU). The TTU monitors the data-stream from the MAC
unit of the Fast Ethernet controller to the physical layer device. When a CSP is sent, a timestamp is
sampled from the UTCSU and transparently inserted into the outgoing packet, and the frame check
CRC is adjusted accordingly. In the reverse direction, the RTU monitors the incoming data-stream.
Upon CSP reception, a receive timestamp is sampled and inserted into the packet. When the original

4

RTU

Fast

Ethernet

Controller Interface

Layer

Physical

UTCSU Interface

TTU

Figure 4: Timestamp Logic Block-diagram

CRC value was correct, a new CRC value is computed and inserted into the packet. Otherwise, the
inverted new CRC value is passed on to the media acces unit (MAC) to allow for error detection
within the MAC. Both units need access to the local time information provided by the UTCSU for
timestamping purposes. Although the TTU and RTU have a similar layout, resource sharing between
them is not possible since the Fast Ethernet Controller may occupy both channels simultaneously in
full-duplex mode.

Transmit Timestamp Unit (TTU)

The task of the transmit timestamp unit is to filter outgoing packets for transmit clock synchroniza-
tion packets (CSP). When a CSP is recognized by the TTU logic, a timestamp is pulled off the
UTCSU NTP-interface, cf. [Lo96] and inserted into the CSP data field. A CRC module within the
TTU re-calculates the checksum, based on the modified data, and replaces the CRC value in the
packet. All other packets are simply passed through by the TTU. Figure 5 shows a block diagram of

MII Control Signals
Physical Layer Device

Physical Layer Device
MII Data Bus

COMPARE + CONTROL

LOGIC

M+SM+S

Fast Ethernet
Controller

MII Data Bus

MII Control Signals
Controller

Fast Ethernet

M+S M+S M+S

CRC (Autodin II)

TTU

UTCSU Interface

Figure 5: Transmit Timestamp Unit Block Diagram

5

the TTU. It consists primarily of several nibble wide multiplex and shift building blocks, a compare
and control unit, and a CRC module. The compare and control unit detects the transmission of a CSP
by analyzing the type field of every packet. The compare logic triggers when the unique type value
of a CSP is recognized at a fixed offset from the start frame delimiter, which in turn is identified by
the first “1011” sequence following the beginning of a frame. This trigger event is eventually used
to feed the time information read from UTCSU NTP-bus into the multiplex and shift units, which
finally insert the timestamp into the data stream. Last but not least, a new CRC value, calculated
from the modified data, needs to be inserted into frame overwriting the previous checksum. Since
the frame check sequence is calculated from the address, type, and data field, it must be initiated
after the start frame delimiter has been detected and stopped after the last data nibble within the
current frame. Insertion of the resulting CRC value into the outgoing datastream is done in the same
way as for the timestamp.

Receive Timestamp Unit (RTU)

The receive timestamp unit performs similar operations as the transmit timestamp unit, although in
the reverse direction. An additional CRC check is required in order to check for error free packet
reception. When a frame is received, a CSP is recognized in the same way as within the TTU, by
analyzing the type-field of the incoming packet. When a CSP is recognized, a receive timestamp is
inserted at its appropriate location after the transmit timestamp. The unmodified data is additionally
fed to a CRC unit, which calculates the checksum and compares it with the checksum included in
the frame check sequence field. When a mis-match is detected, the data is passed on to the MAC
with a wrong CRC. Otherwise the checksum, calculated by a second CRC unit, replaces the one in
the modified receipt frame.
Figure 6 shows a block-diagram of the RTU consisting of two CRC units, several multiplex and

COMPARE + CONTROL

LOGIC
Physical Layer Device

MII Control Signals

M+SM+S

Fast Ethernet
Controller

MII Data Bus

MII Control Signals
Controller

Fast Ethernet

M+S S S

CRC (Autodin II)

MII Data Bus

UTCSU Interface

Physical Layer Device

CRC (Autodin II)

RTU

Figure 6: Receive Timestamp Unit Block Diagram

shift building blocks and a compare and control unit. The CRC module at the input stage of the RTU
has some additional compare logic built-in. This logic is used to compare the CRC calculated from
the destination and source address, type, and data fields with the received frame check sequence.

6

The result of this comparison is fed to the compare and control logic in order to decide whether the
CRC unit at the output stage of the RTU should insert a correct CRC or an inverted (false) one into
the modified CSP frame.

Cyclic Redundancy Check Module

As mentioned earlier, the Autodin-II polynomial is used for frame check sequence generation, see
[Ro96] for an informal introductory tutorial. Destination, source address, type, and data field are
used as input for this CRC polynomial. The computed checksum is appended at the end of the
Ethernet frame. At the receiver, the same CRC is calculated and matched against the transmitted
CRC value. The steps involved in encoding withk data bits,n− k control bits and a generator
polynomialg(x) ∈GF2(x) of degreer = n−k are:

1. Multiply the messagem(x) with xn−k

xn−km(x) =
n−1

∑
i=n−k

cix
i .

2. The above result is divided inGF2(x) by the generator polynomial g(x). The resulting remain-
der is

r(x) =
r−1

∑
i=0

cix
i .

3. Finally the resulting code polynomial is constructed by

c(x) := xn−km(x)+ r(x) =
n−1

∑
i=0

cix
i

and transmitted to its destination address.

At transmission the receiver gets the polynomiald(x) and performs the following decoding steps:

1. Divided(x) in GF2(x) by g(x) in order to get the remainder r(x).

2. If r(x) 6= 0 report an error and request a re-transmission.

3. In caser(x) = 0 andd(x) = ∑n−1
i=0 cixi set

m(x) :=
k−1

∑
i=0

cn−k+ix
i .

CRC codes are used for error detection and can be efficiently implemented in hardware. Since CRC
is based on polynomial division, it is possible to compute n steps of the serial CRC scheme at once.
A formal proof of this method is given in [BFGL96]. All CRC modules within the TTU and RTU
operate with data nibbles since MII is a nibble wide interface.

7

5 Conclusion

We presented an overview of the prototype implementation of our MII-based Network Time Interface
for PCI-based nodes, which facilitates high-accuracy time distribution in Ethernet-based distributed
systems. By timestamping data packets at the standardized MII interface between Ethernet network
controller and physical transceiver, a time distribution accuracy down to the 10 ns-range can be
achieved in Fast Ethernet networks.

The research prototype of the MII-NTI was primarily designed for experimental evaluation purposes
and can hence be improved in many ways. Apart from the fact that the pivotal UTCSU-Asic was
designed solely for research purposes and hence contains many redundant blocks, its traditional bus
interface requires a quite complex PCI board as well: A PCI target chip and a seperate PCI-to-PCI
bridge is required on-board the MII-NTI to make the UTCSU registers accessible to the CPU.

In order to circumvent those shortcomings, we plan to re-design the UTCSU. More specifically,
we will reduce its die size (currently 110mm2, implemented in 0.7µm ATMEL-ES2 process) by
migrating to a smaller technology and by eliminating unnecessary redundancy. In addition, we will
incorporate the MII-based timestamping logic provided by the FPGA directly in the UTCSU, and
will add a programming interface that allows accessing the UTCSU registers viadata packetsas
well. The latter will eliminate the need for a PCI target chip and the PCI-to-PCI bridge on the MII-
NTI, will allow re-use of existing network controller device drivers, and will finally open up many
interesting possibilities for remote clock synchronization.

References

[BFGL96] M. Braun and J. Friedrich and Th. Grün and J. Lembert.Parallel CRC Computa-
tion in FPGAs, Field Programmable Logic - Smart Applications, New Paradigms
and Compilers - 6th International Workshop on Field-Programmable Logic and
Applications pp.156–165, Darmstadt Germany, September 1996.

[HSS98] M. Horauer and U. Schmid and K. Schossmaier,NTI: A Network Time Interface
M-Module for High-Accuracy Clock Synchronization, Proceedings of the 6th In-
ternational Workshop on Parallel and Distributed Real-Time Systems (WPDRTS),
Orlando Florida, March 30 – April 3 1998.

[Lo96] D. Loy, GPS-Linked High Accuracy NTP Time Processor for Distributed Fault-
Tolerant Real-Time Systems, Faculty of Electrical Engineering, Vienna University
of Technology, April 1996.

[Ieee85] ANSI/IEEE Std.802.3-1985,Carrier Sense Multiple Access with Collision Date-
ction (CSMA/CD) Access Method and Physical Layer Specification, IEEE Com-
puter Society, 1985.

[Ro96] N.W. Ross,A Painless Guide to CRC Error Detection Algorithms, Rocksoft PTY
Ltd. Hazelwood Park, Australia, 1996.

8

[SN99] U. Schmid and H. Nachtnebel,Experimental evaluation of high-accuracy time
distribution in a COTS-based Thernet LAN, Proc. 24th IFAC/IFIP Workshop on
Real-Time Programming (WRTP’99), pages 59–68, Schloß Dagstuhl, May/June
1999.

[SKMNCK99] Ulrich Schmid and Johann Klasek and Thomas Mandl and Herbert Nachtnebel
and Gerhard R. Cadek and Nikolaus Kerö,A Network Time Interface M-Module
for Distributing GPS-time over LANs, J. Real-Time Systems vol. 18 no. 1, 2000.

[SS97] U. Schmid and K. Schossmaier,Interval-based Clock Synchronization, Journal of
Real-Time Systems vol. 12 no. 2 pp.173–228, March 1997.

[SSHL97] K. Schossmaier and U. Schmid and M. Horauer and D. Loy, Specification and Im-
plementation of the Universal Time Coordinated Synchronization Unit (UTCSU),
Journal of Real-Time Systems vol. 12 no. 3 pp. 295–327, May 1997.

[SHK99] Ulrich Schmid, Martin Horauer, and Nikolaus Kerö. How to distribute GPS-time
over COTS-based LANs. InProceedings of the 31th IEEE Precise Time and Time
Interval Systems and Application Meeting (PTTI’99), Dana Point, California, De-
cember 1999. (to appear).

9

	Introduction
	Node Architecture
	Timestamping Mechanisms
	Timestamp Logic
	Conclusion

