

Improving the Efficiency of Misuse Detection

DIMVA 2005

Michael Meier, Sebastian Schmerl, Hartmut König

Brandenburg University of Technology Cottbus, Germany Computer Networks and Communication Systems Group E-Mail: {mm,sbs,koenig}-/at/-informatik.tu-cottbus.de

- > Motivation
- Modeling Complex Signatures
- Existing Analysis Approaches
- Optimizing Strategies
- Experimental Evaluation

> Conclusion

- increasing performance of networks and end systems
 - ⇒ increase of data volumes to be analyzed
- increasing complexity of networks and systems
 - ⇒ increasing number of attack signatures
- ⇒ delayed detection of and response to attacks
- ⇒ IDS drop data in high load situations
- ⇒ Efficiency of IDS analysis methods becomes more important

- Manifestation of an attack
 - Audit data records generated during this attack (trace)
- Signature of an attack
 - Criteria used to identify the manifestation of this attack (type) within the audit data stream (patterns)
- Signature Instance of an attack
 - Criteria used to identify the manifestation of a particular instance of this attack (type) within the audit data stream

- EDL Event Description Language
- based on high-level Petri Nets
- Basic Concepts
 - Place system state of an attack
 - defines a set of features
 - Transition state changes
 - triggered by an event
 - Event security relevant action
 - associated with a transition
 - Token instances of a signature
 - contain bound variables for each feature defined by the place it resides on

- Program modules for signatures
 - Examples: IDIOT, STAT
 - Signatures are translated into C++ class modules
 - A class instance for each signature instance
 - Run time: events are passed to each class instance
 - independent analysis of each signature instance
 - redundant calculations
 - ⇒ arguable efficiency

- > Expert systems
 - Examples: CMDS (CLIPS), Emerald (P-Best), AID (RT-Works)
 - Translation of signatures into rules and facts
 - tokens and current event represented as facts
 - transitions implemented as rules
 - Optimized match algorithms (e.g. RETE)
 - Avoid redundant calculations (by common sub-expression elimination)
 - Exploit the assumption that fact changes are rare
 - the current event fact is continuously changed
 - validity seems to be doubtful

- > Starting point
 - naive analysis procedure for EDL signatures
 - check all transitions of all signatures for each incoming event x
 - For each transition
 - check event type
 - check transition conditions for each combination of tokens on input places and event x
 - ⇒ number of tokens grows during operation
 - ⇒ performance cost increases

> Exploit structural characteristics of signatures to improve performance

- > Problem
 - all transitions are checked for the event type
- Solution
 - create an event type subscription table by static analysis of signatures

Event Type	Transitions
Х	t1, t4, t7, t12
Y	t3, t6, t9, t11
Z	t2, t5, t8, t10

- allows to efficiently determine all transitions associated with a given event type
- Additional costs at run time: 0

- Problem
 - repeated evaluation of transition conditions
- Solution
 - distinction between Intra- and Inter-Event Conditions
 - Intra-Event Conditions are independent of tokens on input places and need to be checked only once for an event
 - only if Intra-ECs are fulfilled, Inter-ECs are checked for any combinations of tokens and the event
- Additional costs at run time: 0

- > Problem
 - many tokens or token combinations have to be checked
- Solution
 - analyze comparison operations in Inter-ECs
 - manage value tables for token variables
 - select matching tokens using value tables
 - combine conditions using set operations
- > Additional costs at runtime:
 - table updates if tokens move
 - set operations

- also works for Inter-ECs like p2.uid == p3.owner (see paper)
- can be realized for other comparison operators e.g. <, >

- > Problem
 - identical (sub-)conditions of different transitions are evaluated repeatedly with same parameters
- > Solution
 - cache and reuse results of already evaluated conditions
 - identical conditions are evaluated only once with same parameters
 - parameters of Intra-ECs change only for a new event
 - cached results are valid until the next event
 - parameters of Inter-ECs differ for different token combinations
 - cached results are valid only for one token combination
- > Additional costs at run time: cache management

- Problem/Fact
 - different costs and selectivity of conditions
- Solution/Exploitation
 - conditions are often or mostly evaluated false
 - check mostly false conditions first may avoid other conditions checks
 - condition checks require different run-times
 - evaluating cheap conditions first may avoid expensive checks
 - condition prioritization
 - static based on run-time estimations
 - dynamic based on regular run-time and selectivity measurements

> Six different versions realize different strategy combinations

SAM Version	Realized Strategies
SAM_1	1
SAM_2	1, 2
SAM_3	1, 2, 4
SAM_4	1, 2, 3, 4
SAM_5	1, 2, 3, 4, 5 (static)
SAM_6	1, 2, 3, 4, 5 (dynamic)

- > (For an experimental comparison of SAM versions see paper)
- > STAT
 - from UC Santa Barbara
 - realizes the program modules for signatures approach
- > CLIPS-IDS
 - prototype of an Expert System based IDS
 - uses the RETE-based Expert System CLIPS
- > SAM_6

- Three signatures
 - Shell Link Attack
 - SUID Script Attack
 - Login Attack

- Test data
 - ten concurrent instances of each of the three attacks
 - repeated a 1000 times
 - 110000 audit records (BSM style audit data)
 - ⇒ number of ongoing instances grows with each repetition
- Measurements
 - consumed run times are logged every 1000 events (records)
- > Comparison
 - run time changes for growing number of analyzed events

Experimental Evaluation: Results

- Use of
 - standard techniques and
 - exploitation of structural characteristics of signatures
 - ⇒ can avoid redundant/useless calculations
- ⇒ Can significantly improve efficiency

Thank you!

Contact:

- Michael Meier
- Brandenburg University of Technology Cottbus
- Email: mm-/at/-informatik.tu-cottbus.de
- WWW: http://www-rnks.informatik.tu-cottbus.de/~mm
- ⇒ post-doc opportunities are welcome