
A Pointillist Approach for Comparing Honeypots

Fabien Pouget, Thorsten Holz

Motivations

 What are the Modus Operandi of the perpetrators?

Who has data to validate in a rigorous way any kind of taxonomy and/or profiling model?

• Are the threats changing?

 How can we figure out if we are facing script kiddies and/or « organized crime »

Motivations (ctd.)

 Darknets and Internet telescopes are based on the assumption that lessons learned from the observation of attacks at a given place can be extrapolated to the whole Internet.

How do we know if that assumption holds?

 What about a deployment of small honeypot sensors placed in a lot of various locations?

Honeypot Families

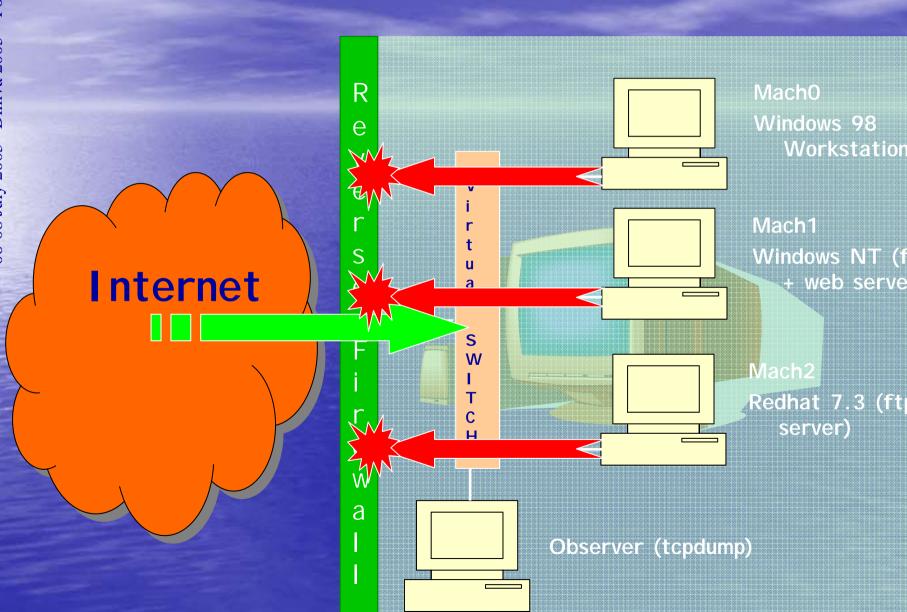
High-Interaction

- Real Environments at the mercy of attackers
- Record hacker shell commands
- Hard monitoring, legal issues
- Costful (resources, maintenance, licenses, etc)

Low-Interaction

- Superficial Behavior
- Safer
- Scalable and flexible
- Cheap (many open projects or home-built tools)

Any qualitative and quantitative comparison?


First Honeypot Environment: H1

High Interaction Experimental Setup H1

- VMWare-based
- Ethernet switch
- Non-persistent disks
- ARP Spoofing
- Three virtual machines: IPs=X.X.X.1, X.X.X.2, X.X.X.3

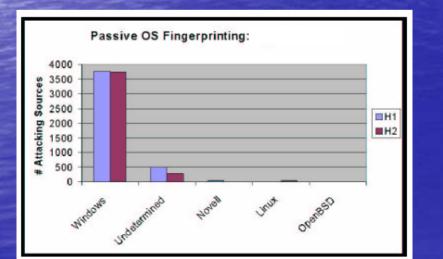
Experimental Set Up

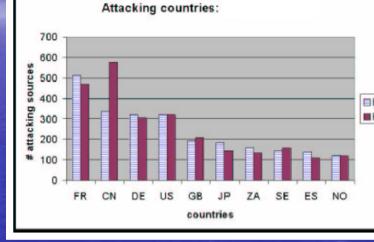
Second Honeypot Environment: H2

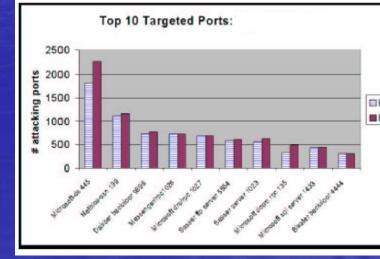
Low Interaction Experimental Setup H2

- Honeyd-based
- ARP Proxy
- 3 Operating Systems Profiles (from nmap & xprobe fingerprints database)
- Port Status (from scanning)
- Emulated Services
- Three virtual machines
 IPs=X.X.X.7, X.X.X.8, X.X.X.9

Comparison: In Short...

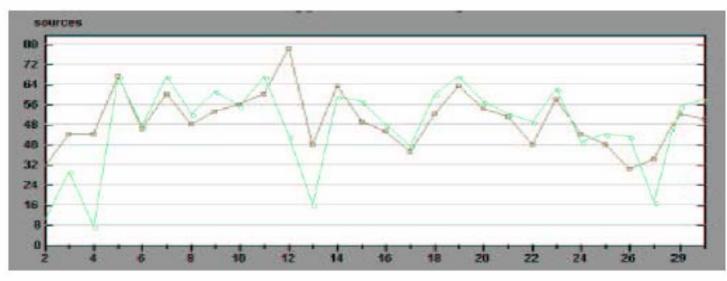

• H1 and H2 are in a French academic Network


- 3 months (August-October 2004) of data collection
- Not hidden behind a firewall
- Data daily collected and stored in a SQL database.
 - Enriched Information (geographical location, Passive OS fingerprinting, whois queries, TCP stats...)
 - Analysis
 - Grouping of attacks sharing same fingerprint on the platform into clusters
 - Particular Attention to losses and reordering (with IPID fields, TCP sequence numbers, etc)
 - And others (time series)


H1: 480700 received packets (40x more than H2)

Global Statistics Analysis

Attacking Countries
Passive OS Fingerprinting
Top10 Targeted Ports



Attack Categories

Grouping attacks according to the number of Virtual Machines they have targeted on each Honeypot Environment

Attack Type	H_1 Environment	H_2 Environment
Total	7150	7364
Type I	4204~(59%)	4544~(62%)
Type II	288~(4%)	278~(4%)
Type III	2658~(37%)	2542 (34%)

Type III Attacks

Type III Attack Order	Percentage
Order 1: Mach0, Mach1, Mach2	79%
Order 2: Mach0, Mach2, Mach1	5%
Order 3: Mach1, mach0, Mach2	4%
Order 4: Mach1, Mach2, Mach0	5%
Order 5: Mach2, Mach0, Mach1	3%
Order 6: Mach2, Mach1, Mach0	4%

Type III Attacks (cont.)

-All IPs are common to both environments
-They send very few packets in general
-Impact of packet losses

⇒ Broad-sweeping scans

⇒ On the usefulness of deploying honeypots using hundreds of IP addresses?

 \Rightarrow In-sequence Scanning (New IP = current IP + 1)

-> What about blooklicting the IDc?

Type II Attacks

 88% => Residus of Type III attacks (many confirmation techniques)

 9% => Scanning one out of two IPs (new IP = current IP + 2)

 3% => Attacks on the sole two Windows virtual machines. Where is coming the information?

Type I Attacks

- 60 % of the observed attacks
- Similar global stats
- But...
- Here, IPs are not observed on both H1 and H2...
- Could we also determine if they are associated to same attack processes?

Type I Attacks (cont.)

• Very few broad-sweeping scans residus (i.e. two packet losses at least)

Random Propagation Strategy
Identification by using the *clustering* method we have developed
Large clusters, some of them being identified and labeled

- Attack fingerprints found on both H1 and H2
- No favorite target (i.e. machines are equally targeted)

• And the others...

... particular to each platform H1 or H2.... And to a given virtual machine..

focused and original Attacks

Examples

Example 1

Attacks on port 25666 Of Mach0 (H1) only

- ✓ Observed 387 times
 ✓ From 378 distinct IPs
 ✓ During three months
- ✓ Very regular (day after day)
- ✓ Source ports=80,8080✓ TCP flag set=RST-ACK

 ✓ Residus of DoS attacks on web servers (*Backscatters*)

• Example 2

Attacks on port 5000 Of Mach1 (H2) only

✓ From 75 distinct IPs
✓ Half a dozen TCP Syn packets
✓ No payload

✓ UPnP port 5000
 ✓ often associated to Bobax or
 Kibuv worms... but... does not
 match their random scanning
 activities

Interaction Differences

- How to periodically validate the relevance of H2 configuration wrt to H1 data?
- Are the actions bound to each port sufficient in H2?
- Idea: the more different attacks interact with a port (from H1 observation), the more important it is that Honeyd runs an interactive script behind the port.

Preliminaries :

FOR the two Environments H_1 and H_2 : FOR each Virtual Machine M_j and each associated port $p_{j,k}$:

Gather the list of Clusters $C_{l,k}$ corresponding to attacks on Virtual Machine M_j against at least port p. Be N the total number of IP Sources having targeted Virtual machine M_j

Be η the threshold to compare interactions between environments. $\eta = 0.7$

FOR each Cluster $C_{l,k}$

Compute the number n_l of Sources belonging to Cluster $C_{l,k}$

Compute P_l , the total number of exchanged packets between Sources belonging to Cluster $C_{l,k}$ Compute the *frequency* of Cluster $C_{l,k}$ as

$$f_l = \frac{n_l}{N}$$

Interaction Estimation:

The interaction estimation is for H_1

$$I(H_1) = \sum_{l\geq 1} P_l.f_l$$

The interaction estimation is for H_2

$$I(H_2) = \sum_{m \ge 1} P_m f_m$$

Analysis:

IF $\frac{I(H_2)}{I(H_1)} \leq \eta$

The current implementation on port $p_{j,k}$ for Virtual Machine M_j in H_2 is not correct

Interaction validation

 It is often sufficient just to open a port ex: 111 (RPC), 515 (LPRng).
 Few scripts are not interactive enough (on

netbios ports especially)

 These tendencies might change over months...


First conclusion

- Comparison between H1 and H2 brings three concrete outcomes:
 - Relevance of the configuration of Low Interaction honeypots
- Low Interaction honeypots capture interesting information, without introducing particular bias.
 Surprising attacks specific to a given machine
 Low Interaction honeypots provide a good representative source of information. High-Interaction honeypots are good etalon systems.

Weather forecast

Volcanic/sismic activities

Leurré.com

- This project aims at deploying the very same honeypots in a large number of diverse locations.
- Early results demonstrate the complementarity of this approach to so-called *Internet telescopes* and *Darknets*.
- You can see this as a simple, widely distributed, fine grained network monitoring system
- Partially funded by the French ACI Security named CADHO (see acisi.loria.fr)

CADHO: Collection and Analysis of Data from HOneypots

Joint work with CERT/RENATER, France
 Joint work with LAAS/CNRS

 Complete this preliminary study on High-Interaction Honeypots in a large-scale network of combined interactions.

35 platforms, 20 countries, 5 continents

In Europe ...

Win-Win Partnership

 The interested partner provides ... One old PC (pentiumII, 128M RAM, 233 MHz...), • 4 routable IP addresses, EURECOM offers ... Installation CD Rom Remote logs collection and integrity check. Access to the whole SQL database by means of a secure web access.

Conclusions

- The more platforms we get, the better the analysis we can carry out.
- Assumptions made by Internet telescopes do not always hold.
- Threats are changing.
- Attacks are as frequent as before but try to stay more stealthy.

 You should join our distributed platform !!! – Contact : pouget@eurecom.fr

References

More information on the French ACI Security available at acisi.loria.fr

F. Pouget, M. Dacier, "Honeypots-based Forensics", *Proc. Of the AusCERT2004 Conference* (refereed stream), May 23-27 2004, Brisbane, Australia.

M. Dacier, F. Pouget, H. Debar, "Attack Processes found on the Internet", *Proc. NATO Symposium on Adaptive Defense in Unclassified Networks*, April 2004.

M. Dacier, F. Pouget, H. Debar, "Honeypots: Practical Means to Validate Malicious Fault Assumptions on the Internet", *Proc. 10th IEEE International symposium Pacific Rim Dependable Computing (PRDC10)*, March 2004, pages. 383-388.

> Exhaustive and up to date list of publications available at http://www.eurecom.fr/~pouget/papers.htm

http://www.leurrecom.org

Thank you for your attention !

Questions?

