Enhancing the Accuracy of Network-based Intrusion Detection with Host-based Context

Holger Dreger¹, Christian Kreibich², Vern Paxson³, **Robin Sommer**¹

¹TU München Germany

²University of Cambridge United Kingdom

> ³ICSI / LBNL Berkeley, CA, USA

DIMVA 2005

Robin Sommer (TU München)

Enhancing Network Intrusion Detection

DIMVA 2005 1 / 19

Motivation

- Network intrusion detection systems (NIDS)
 - Deployed at central network location
 - Suffer from ambiguities and performance problems
- Host intrusion detection systems (HIDS)
 - Deployed on individual hosts
 - Suffer from performance overhead and maintenance hassle
- We combine the two approaches
 - Focus on network-based detection
 - Hosts supply additional context
- Advantages
 - Centrally managed security policy
 - Enhanced accuracy
 - Low performance overhead on host

Use of Host-supplied Context

Robin Sommer (TU München)

Implementation for the Bro NIDS

Use of Host-supplied Context

Implementation for the Bro NIDS

Case Study: Instrumenting a Web Server

Robin Sommer (TU München)

Enhancing Network Intrusion Detection

Observation

- Server application analyzes its input
 - Parses client input (e.g., login sessions)
 - Decides how to react (e.g., deny access)
 - Sends appropriate response
- NIDS analyzes all connections
 - Decodes protocols
 - Extracts semantic information (e.g., user name)
 - Performs detection (e.g., sensitive logins)
- If NIDS could "see" the host's analysis, it could either
 - Replace its own analysis or
 - Verify its own analysis
- We enable host to send information to the NIDS

Comprehensive protocol analysis

- Applications include full protocol decoders
- Hosts can supply internal protocol state

Anti-Evasion

- Evasion attacks exploit ambiguities
- Host can provide authoritative view
- Overcoming encryption
 - NIDS cannot decode encrypted connections
 - Host can supply unencrypted data

Adaptive scrutiny

- NIDS can increase depth of analysis for suspicious hosts
- Host can signal suspicious activity
- NIDS hardening
 - NIDS needs to robustly decode protocols
 - Analysis mismatches may indicate a bug in the NIDS

A B A A B A

Implementation for the Bro NIDS

Case Study: Instrumenting a Web Server

Robin Sommer (TU München)

Enhancing Network Intrusion Detection

The Bro Network Intrusion Detection System

- Bro is powerful open-source NIDS
- Used in various high-performance networks
- Supports different approaches to intrusion detection
- Focuses on
 - Semantically high-level analysis
 - Efficiency
 - Extensibility
 - Robust operation
 - Separation of mechanism and policy

Bro's Architecture

Robin Sommer (TU München)

Enhancing Network Intrusion Detection

DIMVA 2005 10 / 19

-2

イロト イヨト イヨト イヨト

Bro's Architecture

Robin Sommer (TU München)

Enhancing Network Intrusion Detection

DIMVA 2005 10 / 19

э

Bro's Architecture

Robin Sommer (TU München)

Enhancing Network Intrusion Detection

DIMVA 2005 10 / 19

э

Integrating Host-supplied Context Into Bro

- Applications send events to Bro
 - Events are abstractions of host activity
 - Events are policy neutral (like core events)
 - Events are inserted into stream of core events
- Bro maintains central policy
 - No individual configuration on hosts required
 - Bro's full toolbox is used to take decisions
- Application's overhead is low
 - Sending events is inexpensive
 - Instrumentation requires little effort
 - Client-side library is provided (Broccoli)
- Bro's overhead is low
 - Receiving events is inexpensive

Implementation for the Bro NIDS

Case Study: Instrumenting a Web Server

Robin Sommer (TU München)

Enhancing Network Intrusion Detection

Leveraging Web Server Context

- HTTP is most widely used application-layer protocol
- Requests are analyzed by two components
 - Network intrusion detection system
 - Web server
- Interfacing Web server to NIDS
 - Send client-requests to NIDS
 - Replace/supplement NIDS analysis
- Replacing NIDS's HTTP analysis provides
 - Off-load NIDS saves CPU cycles
 - Full request/reply analysis
 - Analysis of SSL sessions
- Supplementing NIDS's analysis provides
 - Detection of analysis differences (e.g., URLs)

(B) (A) (B) (A)

Setups

- Implementation for Apache and Bro
 - Apache sends log-entries to Bro
 - Instrumentation done via module or log-pipe
- Installed Apache/Bro combo in three setups
 - Computer science's Web server of TUM
 - Work group's Web server at TUM
 - Test-bed setup for stress tests (libwhisker, Nikto)
- Implemented two kinds of analysis
 - Run Bro's standard analysis on requests/replies
 - Compare received requests with self-decoded
- Confirmed that our implementation works reliably
 - Reliably sees all requests (incl. SSL)
 - Detections works (incl. bi-directional signatures)

Overall, Apache and Bro work well together

- Main differences between Apache and Bro
 - Apache's expansion and rewriting: /foo/bar/ → /foo/bar/index.html
 - Different forms of URL canonicalization, e.g.,

	Request	Apache	Bro
(1)	tmp//i.html	i.html	tmp//i.html
(2)	http://a.b/i.html	i.html	http://a.b/i.html
(3)	i%%37%%41.html	i%7a.html(E)	i7a.html(E)

Preprocessing filters uninteresting mismatches

Performance Evaluation (1)

- Measured overhead for Apache with httperf:
 - 1000 requests to static page
 - 20 connections/second
- Average overhead on the order of 300µs per request

Performance Evaluation (2)

Impact of overloaded Bro on Apache

- Outgoing events queued in Apache and eventually dropped
- Artificially introduced 0.2s delay into Bro's processing
- No noticeable impact on Apache

Network load

- With Nikto's requests, on average 455 bytes/request
 - \Rightarrow Scales well with more (busy) Web servers

Load on Bro

- Receiving events costs considerably less than parsing HTTP
- Analyzing additional events is not noticeable

A (10) A (10)

- Incorporated host-supplied context into a NIDS
 - Context can replace analysis
 - Context can supplement analysis
- Implemented approach for Bro and Apache
 - Apache sends all requests to Bro
 - Bro performs detection and/or comparison
- Installed Apache/Bro in three environments
 - Work well together
 - No performance problems
- Provide client-library to instrument other applications
 - Work-in-progress: Instrumenting SSHD

Enhancing the Accuracy of Network-based Intrusion Detection with Host-based Context

Holger Dreger¹, Christian Kreibich², Vern Paxson³, **Robin Sommer**¹

¹TU München Germany

²University of Cambridge United Kingdom

> ³ICSI / LBNL Berkeley, CA, USA

DIMVA 2005

Robin Sommer (TU München)

Enhancing Network Intrusion Detection

DIMVA 2005 19 / 19