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Abstract. We investigate some real time behaviour of a (discrete time) single server system
with nonpreemptive LCFS task scheduling. The main results deal with the probability distri-
bution of a random variable SRD(T), which describes the time the system operates without
any violation of a fixed task service time deadline T. A tree approach, similar to those already
used for the derivation of the same quantities for other scheduling disciplines (e.g., FCFS) is
suitable here again, establishing the power of such techniques once more. :
Relying on a simple general probability model, asymptotic formulas concerning all mo-
ments of SRD(T) are determined; for example, the expectation of SRD(T) is proved to grow
exponentially in T, i.e., E[SRD(TY] ~ CT3/25T for some p > 1. QOur computations rely
on a multivariate (asymptotic) coefficient extraction technique which we called asymptotic
separation.

1. Basics

In this paper we shall study some aspects conéerning the real time behaviour of a discrete
time single server system with nonpreemptive LCFS task scheduling. Instead of using
queueling theory, we apply a special tree approach already used for the derivation of similar
results in the case of FCFS and preemptive LCFS scheduling, see [2], [8]. Both papers
contain a very detailed introduction to the model, too.

The outline of the paper is as follows: After a short description of the underlying model
and some questions of interest, we provide the tree approach suitable for the combinatorial
and asymptotic computations in Section 3 and 4. Section 5 is devoted to our final results.
Some conclusions are appended in Section 6.

We consider a system containing a task scheduler, a task list and a single server. Tasks
arriving to the system are taken by the scheduler and placed into the task list according
to the scheduling strategy. The server always executes the task at the head of the list,
thus scheduling is done by rearranging the task list. A dummy task will be generated by
the scheduler if the list becomes empty. If the server executes a dummy task the svstem
is called idle, otherwise busy.

Rearranging the task list is assumed to occur at discrete points on the time axis only,
without any overhead. The (constant) time interval between two such points is called a
cycle. Due to this assumption we are able to model tasks formed by indivisible (atomic)
actions with duration of 1 cycle. The task ezecution time of a task is the number of cycles
necessary for processing the task to completion if it might occupy the server exclusively.
A ‘regular’ task may have an arbitrary task execution time, a dummy task as mentioned
above is supposed to consist of a single no-operation action (1 cycle). The service time
of a task is the time (measured in cycles) from the beginning of the cycle in which the

~corresponding task arrives at the system to the end of the last cycle of that task.
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Obviously, the time axis is covered by busy periods, which are supposed to include the
initial idle cycle, too. Note, that this definition implies the correspondence between an
idle cycle and a busy period with duration of 1 cycle. A sequence of busy periods without
any violation of any task’s service time deadline, followed by a busy period containing at
least one deadline violation is called a run, the sequence without the last (violating) busy
period is refered to by successful run. ’

In order to investigate real time performance, we shall study the successful run duration
SRD(T), which is the time interval from the beginning of the initial idle cycle to the
beginning of the (idle) cycle initiating the busy period containing the first violation of a
task’s deadline 7. -

We assume an arrival process which provides an arbitrary distributed number of task
arrivals within a cycle, independent from the arrivals in the preceding cycles, and indepen-
dent from the arbitrary distributed task execution times, too. .

The probability generating function (PGF) of the number of task arrivals during a cycle
is denoted by

Az) =) a2t (1.1)

k>0

and should meet the constraint ay = A(0) > 0, i.e., the probability of no arrivals during a
cycle should be greater than zero. This assures the existence of idle cycles.

The PGF of the task execution time (measured in cycles) is denoted by

L(z) = ) 2t (1.2)

k>0

with the additional assumption L(0) = 0, i.e., the task execution time should be greater
than or equal to one cycle. Note, that we assume an a priori knowledge of the task
execution time at the time the task arrives.

For technical reasons we shall need some additional conditions concerning the behaviour
of P(z) = A(L(z)), which are summarized in Section 4.

We should mention that the number of probability distributions meeting our constraints
is considerably limited due to the required independency. An example for a suitable model
1s based on an interarrival distribution with the so-called memoryless property, i.e., an
exponential or geometric distribution, leading to (well-thumbed) Poisson- or Bernoulli-
type arrivals within a cycle, respectively.

2. TREE APPROACH

In this Section we will establish a one-to-one mapping between busy periods and a family
of (labeled) planted planar trees, which provides a straightforward correspondence between
deadline constraints and limited label sums of some subtrees. Due to this fact, we may
relate the original problem of investigating the random variable SRD(T) to a counting
problem regarding a special (sub)family Bt of trees.
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Consider the following diagram, which represents an example busy period.
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According to our discrete time model, the horizontal axis is divided into equidistant
cycles. Those cycles forming the busy period of interest are numbered consecutively;
cycle 0 denotes the initial (idle) cycle. Task arrivals are shown by small lightnings with
task-names above. The execution of a task is displayed by a horizontal line whose length
equals the task execution time. The vertical level of a line, i.e., its vertical distance to
the horizontal axis, represents the number of tasks not processed to completion at the
beginning of that task. For the sake of readability, each such line is marked with the name
of the corresponding task (and, sometimes, its task execution time).

There is an important relation between deadline constraints and the length of the so-
called sub busy periods. A sub busy period is the epoch from the arrival of the first (new)
task during the execution of a level 1 (or level 0) task to the end of the last cycle of the
new task. For instance, looking at the cycle 0 in our example, one obtains the arrival
of task T;. Due to the nonpremptive LCFS scheduling discipline, this task is badly off,
because all tasks arriving before the beginning of the execution of T; are prefered! Hence,
if the length of a sub busy period is less or equal to T', all processed tasks are guaranteed
to meet a service time deadline of T cycles. Conversely, if the length of a sub busy period
is larger than T, at least the task having arrived first will miss its deadline.
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To obtain the corresponding tree, a task is represented by an elliptical node which is
labeled according to its task execution time, i.e., the label of a node is the number of cycles
necessary for processing the task to completion. Equivalently, this labelling may be done
by drawing the corresponding number of circles (each describing a cycle, of course) within
the node.

The number of successors of a node equals the number of arrivals during the execution of
the corresponding task. If a task has a task execution time of J cycles and will be scheduled
to start at the i-th cycle (¢ > 0) of the busy period, the execution will be completed at
the end of the i + 1 —1-th cycle since we. are dealing with nonpreemptive LCFS scheduling.
Thus, with ¢;, i > 0 denoting the number of task arrivals during the i-th cycle of the busy
period, the number of successors of the node is ti +tiy1 + -+ + tipi—1. Successors are
drawn from the left to the right, according to their arrival sequence.

Due to our construction, the outer leftmost (elliptical) nodes in the tree correspond
to those tasks which both complete a sub busy period and start a new one, too. They
are displayed in the equivalent labeling-style mentioned above. If such a node has no
successors, it indicates the end of the whole busy period; at least one idle cycle follows.

Note, that the reconstruction of the busy period from a given tree is done by a right-to-
left preorder traversal of all (elliptical) nodes of the tree.

Deadline constraints are reflected by suitable limits on the number of cycles. More
precisely, the sum of the labels of nodes belonging to a sub busy period has to be less than
the deadline T, for all sub busy periods, of course. In our example tree above, those nodes
belonging to a specific sub busy period are fenced in by a dotted line.

Unfortunately, the fact that consecutive sub busy periods overlap one another, introduces
unpleasant difficulties. Since two consecutive sub busy periods are pasted together at an
outer leftmost node, (some of) its cycles have to be taken into account in both. On the
other hand, to obtain the total number of cycles of a whole busy period, each cycle has to
be counted excatly once. Hence, we are forced to investigate trees representing sub busy
periods first, and paste them together in order to obtain whole busy periods.

3. COMBINATORICS

As mentioned in Section 1, a run denotes a sequence of busy periods not violating any
task’s deadline, followed by a busy period with at least one deadline violation. Let

bi,r = prob{Length of a non violating busy period equals & cycles}

and

Br(u) =} b ru* (3.1)

k>0

be the corresponding PGF. The PGF of the random variable SRD(T), i.e., the length of a
successful run, is given by

W)= S s gt = L= Br(l) )
ST(u)—k_;)ak’Tu -I—BT(LL)' (3.2)

T




This follows from the fact that the PGF of the length of an arbitrary number of nonviolating
busy periodsis 3 ., Br(u)", and that the probability of the occurrence of the terminating
violation busy period equals 1 — Bp(1). '

As promised, we start our treatment concerning Br(u) with studying the family B; ; of
trees which correspond to sub busy periods starting with a label 7 node and completing
with a label j node (i > 1, j > 1). We shall use symbolic equations for the description
of classes of combinatorial structures (i.e., families of trees), cf. [3] for an overview. To
keep the notation simple, we defer attaching the necessary weights to the translation into
generating functions. : :

We have the following decomposition:

Bij =HVica + EHVima + EXHVios + -+ E72H, V), + EMH;. (3.3)

The combinatorial objects used for building blocks have straightforward meaning. £ de-
notes a single cycle with no task arrivals, H; denotes a single cycle with at least one arrival,
leading to the leftmost label j node. Vi denotes a éequence of £ > 1 consecutive cycles
with an arbitrary number of arrivals. To start with the most important one, we have the
- following symbolic equation:

Vi=® + CF+ /@\ +~~‘+ /®\ + o

Ve Ve Ve VeV

with V, = >, Vi. In order to translate the symbolic equation into an appropriate or-
dinary generating function (OGF), we have to attach suitable sizes and weights to each
combinatorial object. If we attach sizes by ‘multiplying’ each elementary object (i.e., a
node with label [) by 2! the size of a (composed) object (i.e., a tree) is the sum of its
labels. Additionally, providing suitable probability weights leads to an equivalent of the
OGF of a class of combinatorial structures (i-e., a family of trees), namely the PGF of the
random variable to which it corresponds.
For example, recalling definition (1.2), the OGF of V. reads

Va(z) = ) LVi(2).

k>1
Due to the definition of the PGF of task arrivals within a cycle, we have
qn,k = prob{n task arrivals during & (consecutive) cycles} = [z"]A(z)*.

forn > 0, k > 1. Obviously, [2"]f(z) denotes the coefficient of =™ in the power series
expansion of f(z). Thus, the OGF of V, reads
Vi(2) = qoss" + quaz™V(z) + o+ gt V() + - -
=25 ga Vil

n>0




Introducing the bivariate generating function

G(z,u) = Zlka(z)uk,

k>0

one obtains Vi(z) = G(z,1). Multiplying the above equation for Vi(z) by lyu* and sum-
ming up for k > 1 yields :

G(z,u) = Z Ii(zu)F Z 4n,kG(z,1)"

k>1 n2>0 :
= Z G(z,1)"[w™] Z lx (A(w)zu)k
n>0 k>1

= L(zuA(G(z,1))).
Because of
Vi(z) = [hu')G(z,u) = zA(G(z,1)),

we find
D WVi(2)ut = Gz,u) = LW(2) = S LWa(z)fut, |

; k>1 k>1
hence Vi(z) = Vi(2)f and V,(z) = G(z,1) = L(Vl(z)). Substituting the latter in the
equation for Vi(z) above, we obtain

Vi(e) = 2A(L(K(2))) = P (W(2)).

As we might have expected, this is the generating function of a family of simply generated
trees, cf. [6]. This function appeared in our investigations concerning preemptive LCFS
scheduling (B(z), see [8]), too.

At next, we look at Hj, 3 2 1. The symbolic equation reads

H; = ?+ R + e 4 //@\ + oo

T, T V. TV,

with 7; denoting a label j node. Obviously, the corresponding OGF is Tj(z) = I;27.

Since each combinatorial object in H; corresponds to an object in V;, where the leftmost
successor V, (at the top level) is replaced by 7;, we may omit the detailed translation of
the symbolic equation and write down the result immediately:

() = 1., 7202) —aez
HJ( ) ZJ L(Vl(z)) .

Note, that the term ayz corresponds to the ‘smallest’ tree in V;, which consists of the root ;
only (no arrivals during the corresponding cycle). |
The OGF for € ist straightforward; mentioning definition (1.2). we have ’

E(z) =agz. t

We summarize the results in the following lemma.
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LEMMA 3.1. With the notations above, the ordinary generating functions of Vi, H; and
&, respectively, are given by

Vi(z) = B(2)* for k> 1,
B(z) —agz .
Hj(z) = ljz7 ———" forj > 1,
’ 7" L(B(2))
E(z) = agz,
where B(z) denotes the solution of

B(z) = zA(L(B(2))) = zP(B(z)).

Now we are able to translate symbolic equation (3.3) into the appropriate PGF. For
reasons which will become more clear when pasting sub busy periods together, we shall
attach two different sizes to a structure from that class. Roughly speaking, the size rep-
resented by z ist responsible for counting the length of the corresponding sub busy period
w.r.t. deadline properties. A different size is represented by the variable u. It counts the
contributions of the corresponding sub busy period to the overall length of the whole busy
‘period; remember our remarks at the end of Section 2. We find

B; j(z,u) = i E’(1)i_1‘IHj(zu)B(zu)lu"1‘1.
=0

Note, that we should have no contributions from £ , both for deadline counting and the
overall size, thus E(1) is used. The last term w=!~! makes the difference in the size counted
by z and u. The [ + 1 cycles within the initial label ; node, i.e., the ‘roots’ of H; and V¥,
must be counted in z only (deadlines), not in u. The latter is done in the preceding sub
busy period!

That is, for a sub busy period starting with a label ¢ and terminating with a label 7
node, [2'][u”]B; ;(z,u) ist the probability that all tasks meet a deadline of # cycles (and
no smaller one), contributing n cycles to the length of the whole busy period.

Simplifying the expression above yields

_ B(zu) — apzu

)

- ((ﬂf—)) B a:’) Bg;z(uﬁ)’(;:)o)zu ' B(zu)l—— wag Li(zu). (3.4)

1—1
Li(zu) Z ay 7' B(zu)u !
=0

Now, we shall try to paste sub busy periods together. In order to enable deadline
counting in each sub busy period, we are forced to use different counting variables zp
instead of z. Let Bf_j denote the family of trees, which are formed by pasting together
exactly k& > 1 sub busy periods. For example, we have ‘

Bi; = BBy,

k>1

7




the corresponding (multivariate) generating function reads

B} ,(z2,21;u) = ) Bi(z2,u)By j(z1,u).
k>1

To keep notations simple, we introduce the following abbreviations:
Bij(z,u) = Si(z,u)I(2,u)T;(z,u),
cf. equation (3.4). Using this, we obtain

B} i(z2,21;4) = Si(z2,u)I(22,u) ZTk(ZQ, w)Sk(z1,u)I(z1,w)Tj(21,u)

E>1
= Si(z9,u)I(22,u) Z i(zou)k <(1—3-(%Q) ¢ — aé‘) I(zy,u)T;(21,u)
k>1

= Si(z2,u)I(z2,u)[L(22 B(21u)) — L(aozyu)) I(zl7 u)T; (21, u).

Note, that overlapping of sub busy periods is reflected by the ‘connecting function’ within
the brackets. The ‘starting’ and ‘trailing’ functions Si(.,u) and Tj(.,u) appear in the
expression again; thus we may use this technique repeatedly to construct the general term:

Bf,j(zk, sy 2z u) = Si(zk, u)(zk, u)-
(L(2x B(2zk-1u)) — L(aozku))I(zk—1,u)-
(L(zk_lB(zk..gu)) — L{agzg— u))[(zk_g, u)-

(L(z;B(zlu)) - L(aoz;,u))[(zl, u)-
Tj(zl ,U)

To construct a whole busy period consisting of exactly k sub busy periods, we have to deal
with the decomposition E

Ct=ud Bt &,

jz1

U denotes a single cycle forming the initial cycle of the first sub busy period, its OGF is
Uliz) =z & isa label j node with no arrivals: according to Lemma 3.1, we obtain the
OGF Ej(z) = E(z)! = (apz)’. Translating the symbolic equation above, we find

C'k(zk,...,:l;u):uZBf‘j(zk,...,:l;u)E(l)j. ;

J21
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Note, that we do not count cycles resulting from the terminating idle period, i.e., £;. We
easily obtain :

CH(zk, .. z15u) = uSy (k, w)I(zy, u)-
(L(zB(zk-1%)) — L(aozku)) [(z5—1,u)-

(L(zeB(z1u)) — L{agzu))I(z1,u)-

L{agzu)
=u(B(zku) Y )B(zku)—-aozku _ 1 .
u “ " L(B(zw))  B(zru) — uag

B(zk_lu) — Qglk-1U 1
L(B(zk_l u)) B(zg—1u) —uaqy

(L(zxB(2zx-1u)) — L{aq zgu))

B(zu) — apzyu 1

L(B(zu)) ‘ B(zju) — uag

(L(ZzB(Zl U)) - L(aozgu))

L(agzl u)

Obviously, a busy period with no sub busy periods, that is, an idle cycle, has the symbolic
equation {&;. The corresponding OGF is very simple:

C%u) = agu.

Since a whole busy period may consist of an arbitrary number of sub busy periods not
exceeding T cycles (for deadline counting, of course), we are forced to study

1 1 1
B = o ,T .
7(u) = aou + k§>1[zk] [21 ]1 o 1=z, 1C

C'k(zk,...,zl;u),
21

which is the PGF of the length of an arbitrary busy period containing no deadline violation.

Introducing the abbreviations y; = zxu and
A N 1 1
Dlv - wu) = L—ye/u 1—yorju 1=y /u
_ 1 Blyr) —aoyx
Cl-wy/u L(B(w))
1 CLOEBlye-1)) = Liaoyx) Blyx—1) = AoYk—1
1 —yr1/u B(yr-1) — uay L(B(yk—l))

Ck(yk/ua' .. 7y1/u?u)

1 _ L(%B(yl)) - L(aoyg\) . B(yl) - ao‘y1‘
1—yi/u B(y;) — uay L(B(yl))
L{aoy:)

|
|
;
;
i



we find

Br(uw) = aou+ Y u*T[yf]- - WTID yk, .., y1; ). (3.6)
k>1

4. ASYMPTOTICS

Looking more closely at the (delicate) expression for Br(u), one obtains non-trivial in-
terdependencies among the coefficients [yf], ..., [yT], resulting from the ‘connecting func-
tions’ L(% B(y;~1)). Hence, a direct extraction of the desired coefficients yields terribly
complicated expressions, at first (and possibly second) sight far away from tractability.
Thus, we shall use the powerful tool of singularity analysis of generating functions instead;
see [3] for a survey. '

Such techniques are based on the fact that the asymptotic behaviour of a Taylor coef-
ficient [2"]f(z) of an analytic function largely depends on the behaviour of f(2) near its
dominant singularities, i.e., the ones of smallest modulus. In fact, restricting ourselves to
functions having only one singularity z = ¢ on their circle of convergence, is it possible to
deal with local expansions of f(z) near (. For instance, if f(z) = O(g(z)) for z — (, we
have [z"]f(z) = O([z"]g(z)) for n — co, under fairly general conditions; consider [4] for a
rigorous treatment concerning suitable ‘scales’ of functions g(2) and appropriate transfer
lemmas. An example is the following ' '

LEMMA 4.1 (TRANSFER LEMMA). Assume that, with the sole exception of the (real and
positive) singularity z = ( > 0, the function f(z) is analytic in the indented disk Ac(n,p) =
{z:lzl (4 larg(z = ()| > v,z # (}, wheren > 0 and 0 < p < m/2. Assume further
that as z tends to ¢ in A¢(n, @)

f(z) =0((1 - 2/¢)%)

for some real number a. Then the n-th Taylor coefficient of f (z) satisfles

[2"1f(z) = O(n™>71¢T™).

Note, that this lemma requires analytic continuation of f(2z) beyond its circle of con-
vergence, but only order of growth information (and no side-conditions & la Tauber or
Darboux). The proof is based on estimations of Cauchy’s formula using a suitable contour
in Ac(n, ), see [4] for details. '

Using Lemma 4.1. we shall establish the (well-known, cf. [6]) asymptotic behaviour of
the n-th Taylor coefficient of

B(z) = bpe™,

n>0

which denotes the (non-negative, that is, 5, > 0) solution of the functional equation
B(z) = zP(B(z)) with P(w) = A(L(w)), cf. Lemma 3.1. The following conditions are to
be met: 4

(1) A(0) > 0, cf. Section 2.

(11) L(0) = 0, cf. Section 2.

10




(712) P"(1) > 0, which implies that for some | > 2

P(w) = Zinn = po + prw + prw' + O(w'*!) forw — 0
n>0

where p; = a5 > 0 and p; > 0.

(1v) The equation P(w) — wP'(w) = 0 has a real solution w = 7 > 1. Note, that this
forces P'(1) < 1, as can be shown by simple geometric arguments.

(v) P(w) has a radius of convergence larger than r.

(vi) L(w) has a radius of convergence larger than 72/ P(r). This condition will become
meaningful later in this section.

Providing this, we are able to state the following
LEMMA 4.2 (EXPANSION OF B(z)). With the notations and conditions above, the function

B(z) is analytic in a domain A (7, ) with some n>0and 0 < ¢ < m/2. There is only
one algebraic singularity z = p on its circle of convergence, in whose neighborhood

B(z)=7—=b-(1=2/p)/* +O(1~2/p)  forz— p,z€ Ayn,0)

with b = %—173;%% holds. The asymptotic expansion of b,, = [2"]B(z) reads

b
by = —=n"%2p" 4 O(n~%p™™) for n — oo.

Proof: Let
Flz,w) = Z fijz'w’ = zP(w).
i+>1
The following facts are easily established:
(1) ALl fi; (and by, of course) are non-negative and condition (112) implies f;; > 0 for
some j > 2. In addition, foo > 0 by condition (i) and f5; = 0 # 1.
(2) Let

pzﬁ;’

we have 1 < p < 7. The lower bound follows from the fact that flz) = z/P(z)
is strictly monotonic for z < 7 and f(1) = 1, the upper bound is obvious since
P(r) > 1. It is clear from condition () that the point (p. 7) lies within the region
where F'(z,w) converges (absolutely) and that

Flp,r)=r1
Fw(p,T) =1,

remember condition (iv).

11




(3) There is some j > i > 1 with ged(,7) = 1 such that 5;5; > 0. Provided that
B(z) exists, we have by = B(0) =0 - P(B(0)) = 0, hence B(z) = O(z) for z — 0.
Bootstrapping yields

B(z) = zP(0(2)) = zpy + O(z"*')  for z — 0
with m > 1 by virtue of condition (411). A second step establishes
B(z) = zP(zpy + O(z™*)) = zpg + pmplz™*! + O(z™+2) for z — 0.

Hence,7=1and j = m + 1 > 2 provide the required result.

At this point, all conditions necessary for the application of Theorem 2 of [7] are estab-
lished. It provides the conclusion that B(z) is analytic, has an algebraic singularity z = p
on its circle of convergence (but no others) and B(p) = r. The required expansion for
z — p follows from Theorem 5 of [1]. Since B(z) may be continued analytically beyond
its circle of convergence for all z = ¢ with |[¢| = p but ¢ # p, as can be shown by using
the Implicit Function Theorem, B(z) is analytic in a domain Ay(n,¢) with n > 0 and
0 <@ < /2. The same is true for g(z) = —(1 — z/p)!/2, whose n-th Taylor coefficient g,
has the well-known expansion

1
gn = mn_gnp—" + O(n—5/2p‘") for n — co.

Thus, we are permitted to apply Lemma 4.1 to B(z)—71+b-(1—2/p)'/?, which establishes
the asymptotic expansion of b, as asserted. J

Keep in mind that the remainder O(1 — z/p) in the expansion of B(z) represents a
function which is analytic in Ap(n, ©)! By the way, it is easy to improve this remainder
term to O((1—2/p)3/?) by using the more accurate expansion B(z) =7 —b-(1—2/p)'/? +
c-(L=z/p)+0((1- z/p)*/?) forz = p, z € Ay(n,¢). The linear term contributes nothing
to the n-th Taylor coefficient, hence

bn -—b—n‘3/2p_" +0(n™2p™™)  for n — co. (4.1)

=57

After these preliminary discussion we shall give a short and informal overview how to
proceed with the investigation of Br(u). Since we are interested in (factorial) moments
of SRD(T), that is, derivatives of Sp(u) at u = 1 (cf. equation (3.2)), we have to deal
with derivatives of Br(u) evaluated at u = 1. Thus, in what follows we assume u to be a
complex parameter in the closed disk D(1,v) = {z: |z — 1| < v} for some arbitrary small
v>0.

Looking more closely at y;-related terms in Br(u), that is

1 _ L(2B(y1)) — L(agy) ' B(y1) — aoys
1=y /u B(y1) — uag L(Biy))

- Llaoy:) (4.2)

12
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our task is the determination of the T-th Taylor coefficient [y{] in this multivariate func-
tion, which is analytic for y;, ¥, in a neighborhood of 0 and u € D(1,v). Due to general
Theorems (Cauchy’s formula for multivariate analytic functions), [y]f(y2, y1,%) is an an-
alytic function of y, and u, too. In addition, it is not hard to prove that the statement of
Lemma 4.1 remains valid for a multivariate analytic function. For example, if

f(zw) = O(g(w)(1 = 2/0)7)  for z = p,
uniformly w.r.t. w, it follows that
(2" f(z,w) = O(g(w)n-l‘af—") for n — oo,

uniformly in w, too. Again, keep in mind that the latter O(.) represents a function which
is analytic in w! - ,

Returning to our original function, we obtain three ‘sources’ of singularities,

(1) a (removeable) simple pole at y; = ¢(u) < 1, resulting from B(C(u)) = apu,

(2) a simple pole at y; = u,

(3) an algebraic singularity at y; = p resulting from functions involving B(y; ).
The fact, that y; = ((u) is a removeable singularity, i.e., that there is no singularity at all,
is easily established by taking into account the zero of L(2B(y1)) — L(aoy2) at yy = ((u).

Remembering p > 1 it follows that y; = u is the singularity with the smallest modulus;
in fact we choose v small enough, i.e., 1 +v < p- The appropriate contribution to [le ] is
easily determined via subtracted singularities:

L(%B(“)) — L{agy,)
L(B(u))

L(aou) - u™7,

Investigating the behaviour of (4.2) near the ‘next’ singularity y; = p it turns out that
B(y1) — aoy: and L(B(y )) obey expansions similar to B(y1). The function L(apy;) has
a radius of convergence larger than p by virtue of condition (v1), i.e., is well-behaved in a
neighborhood of y; = p. Hence, the only remaining difficulty concerns the term containing
the ‘connecting function’, i.e.,

L(%B(yl)) - L(aoyz)
B(yl) - Udg '

But, using the mentioned extension of our devices it is possible to attack this multivariate
analytic function, too. Since y; comes up with B(y1), one feels that L(£&B(y, )) should
have an algebraic singularity at y; = p, independent of y,! Due to the fact that. at our next
‘stage’, y; will play the role of y; and ys the one of yy, it is obvious to ask for the behaviour
in a neighborhood of y» = p (and y, = u. resulting from the subtracted singularity term
for y2, too). However. since y, appears in conjunction with the well-behaved function L(.)
only, we may expect inferior influences here: To make a long story short, we assert that it
is possible to determine a uniform expansion

L(%B(?Jlﬂ — L(agy,)

‘ = blyz,u) + clys. u)(1 - 241001 - for y; — p
Blo) —ua (y2,u) + cly2, u)(1 - y1 /p) (1-y1/p) U1
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where 5(y2,u) and c(y2,u) denote well-behaved analytic functions of both y2 and u. The
remainder O(1 — y;/p) represents a multivariate analytic function, too, and the implied
constant is independent of y;, y, and u.

Note, that although it is impossible to separate the ‘connecting function’ directly, i.e.,
to split up L(%’-B(yl ) into a product f(y1)g9(y2), an asymptotic separation succeeded!

Putting all terms together, we obtain a uniform expansion for (4.2) at y; = p, similar
to the expansion above:

Blyz2,u)L(aop) + v(y2,u)L(aop)(1 — y1/p) /2 + O(1 — 1 /p) for y1 — p.

Note, that the terms L(agp) represent the contribution resulting from the terminating
function L(agy, ).

The subtracted term resulting from the simple pole Y1 = u is meaningless for the analysis
of the singularity y; = p since (1—y; /u)~! is analytic for all y1 # u. Using transfer lemmas,
the desired coefficient [y7] finally yields

a(yz, u)L(agu)u™T — #ﬂyz, wWL(aop)T*p™ T+ O(T2T)  for T — o
with both a(y;,u) and ¥(y,, u) analytic at y, = p; the ‘elimination’ of y; is complete.

Now, the same procedure may be used for the extraction of [y7] (hence, for all [yT]) since
the related terms are almost the same. In fact, the only difference springs from replacing
L(aoy1) by a(ys,u) and ¥(yz, u), respectively! Using this simple iterative scheme (leading
to a recurrence relation) it is possible to compute an asymptotic expansion

Br(u) = B(u) — R(u)uTT3/2p-T 4 O(uTT72p™T)

uniformly valid for v € D(1,v). By virtue of a general theorem concerning uniform expan-
sions we may differentiate this expansion in order to derive Br_g-wm) (1) for an arbitrary but
fixed m.

We start our detailed treatment with providing some ‘building blocks’, that is, asymp-
totic expansions of the functions involved. At first we look at C (2) = L(B(z)) which
obviously denotes the (positive) solution of C(z) = L(zA(C(z))). Thus, the same pro-
cedure as in the proof of Lemma 4.2 might be used. This would establish that C(z) has
exactly one algebraic singularity z = p on its circle of convergence and C(p) = L(71), i.e.,
provide an asymptotic expansion similar to B(z). :

But, since we need the uniform asymptotic expansion of C(z,w) = L(wB(z)) for an
arbitrary complex value w € A (7, ¢), too (which covers C(z) above), we shall use another
idea. Note however, that C(z,w) is a solution of Clz,w) = L(sz(L{"”(C(z,w))/w))
which (formally) leads to an algebraic singularity z = pand C(p.w) = L(wr).

Our alternative approach is based on condition (vi), which guarantees that v = wr lies
within the radius of convergence of L(.) for all w € D(0,p + €) for some ¢ > 0 sufficiently
small. Using the Taylor expansion at wr. i.e.,

() (wr
Lv)= S 2Ty,




valid for v € D(wr,¢), and substituting
v=wB(z) = wr — wb(1 — z/p)1/2(1 +r(2))

with r(z) = O(1 — 2/p)'/? (analytic for z € A,(n,¢)), we have for z sufficiently close to p

™) (wr i
H(wB@) = 3 T (<uta = 2/ (1 4102

n>0
= L(wr) = bwL'(wr)(1 = 2/p)'* + O(1 = 2/p)  for z = p, z € A(n, ),

where the O(.)-term is uniformly valid for w € D(0, p+¢) (and denotes an analytic functmn
of both z and w, of course)! Using this result, we find for yz_; — pt

1 1

L(B(ye-1))  L(r) = BL'(r)(L - ya—s /o) 2(1 + O((1 - yx—1/p)"/?))

1 bL‘ T L
= I(r) L(f)z)(l yi-1/p)'/* + O(1 =y /p)

and
L(ZByim)) = L(Er) 82 01—y /o)1 +0(1 = i /)

uniformly for yx € D(0,p 4+ ¢) and u € D(1,v). The latter and Lemma 4.2 yield the
asserted expansion for

L(%B(yk_1)) — L(aoyx)
B(yr—1) — uag

QYk, Yk—1,u) =

namely

L) — L(aoye) = b2 L'(%r)(1 — g1 /)2 + O(1 = yi—y /)
T —aot = b(1 — yx—1/p)'/* + O(1 — yx—1/p)

Q(Yk, Yk—1,u) =

L(%r) — Liagus |
_ K0 - o) |

T — aou !
b(L(L7) — L{agyx b I (e,
( ( <EL ) (20%)) - G )>(1—yk /)P
T —agu) T —agu

O(1 —yx-1/p)  for yx_y — p,

uniformly valid for yx € D(0.p + ¢) and u € D(1,v). Remember our remarks in the
preceding overview, especially concerning the functions b{yz,u) and c(y,, u)!

tIn what follows we use the notation Yk—1 — p as an abbreviation for y;_; — p where y;_; € A,(n, ).
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For the sake of completeness we mention the trivial expansions

1
= + O(1 — yi— ,
l—yp1/u  1-p/u (1= /p)

B(yk-1) = @oyk-1 = 7 — aop = b(1 = yi—1/p)/* + O(1 = yx—y1 /p)

as Yr—1 — P, and

L(aoyr) = L(aop) + O(1 — yi/p),
L(%Er) = L(Zr) + O(1 - yi/p)

as yx tends to p, uniformly for u € D(1,v).

Thus, all ‘building blocks’ for the expansion of the expressions a la (4.2) are present.
Let t¢—1(y,u,T) denote a function analytic for y € D(0, p + e) and u € D(1,v) with

tk-1(y,u, T) = tem1(p,u, T)(1 4+ O(1 = y/p))  fory—p (43)

uniformly for u € D(1,v), ¥ > 1 and T — co. Starting with t;(y,u,T) = L(aey) we shall
investigate Fr(yx,yr-1) = Fr(yx, Yr—1,u,T) for k > 2, which reads

1 _ L(2B(yx-1)) — L{agyz) . B(yx—-1) — aoyr—1
1= yp_1/u B(yr-1) — uag L(B(yk-1))
= Blyrs w)tk—1(p, u, T) + v(ys, whti—1(p, u, TYL = ye_1 /p) /2 +
O(te-1(pu, T)1 = yk=1/p))  asyr_y — p,

Fi(yr,yk—1) = th-1(yr-1,u,T)

uniformly for yx € D(0,p+¢), u € D(1,v), k> 1 and T — oo. Moreover, the functions
B(yk,u) and y(yx, u) are analytic and

1 L(%7) - L(agyr) 7 —agp

Blyk, u) = 1—p/u T — uay L(7)

and
U [ L(R0) = Llag) L) - ap
R e e e
LOSET) = Llaoys) b L(%7) ~ L{aoys), JBL(T)
T — uag L(r) T — ua | e L(7)?
_ b r-—ap 1 L(%T)"L(aoyk)_yiy(gk;f ~
T l—p/u T —aou L(r) T — uag u u )
L(%7) — Llaoys) | L'(7), w ™

P + i) (L( » T)—L(aoyk))} (4.4)
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The contributions resulting from the simple pole at Yk—1 = u are easily determined via
subtracted singularities, as already mentioned. The subtracted function is

Sk(yka Ye—-1,U, T) =

— te_
1 — yk—l/u a(ykvu) k l(u’u’T)y

where
L(%B(u)) — L(aoyz)
L(B(u))

Its T-th Taylor coefficient is an analytic function for yk € D(0,p+¢) and u € D(1,v) and
reads

(4.5)

aye,u) =

[Wi-1)Sk(ye, v, u, T) = ays, w)tis (u,u, T)u"T. (4.6)

Obviously, Sk(yk,yk—-1,u,T) is analytic at yr_; = p, hence

Sk(yr, yr—1,u,T) = a(yr, u)te—1(u, u, T) + O(te-1(u,u, T)(1 = yx_1/p))

1
1—p/u
for yx—1 — p, uniformly for yx € D(0,p+¢), u € D(1,v), ¥k > 1 and T — oo. Thus, the
function Gi(yk, yx—1,4,T) = Fe(yx, ye—1,u,T) — Sk(Yx, yr-1,u,T) has no singularity at
Yk—1 = u but the same singularity yr_; = p as Fk(yk,yk-l,u,T). For yx—1 — p we obtain
the expansion

1
Gk(yka Yk—1,U, T) = /B(yk’ U)t]c—l(P, U,T) - 1 — P/u a(yka u)tk—-l(u> U, T)+

Y(ye, whtk—1(p,u, TY(1 = yx—-1/p)'/*+

O (te—1(u,u, TH1 = yk-1/p)) + O(te—1(p,u, T)(1 — yx_1/p)),
uniformly valid for y € D(0, p+¢), u € D(1, v), k > 1and T — oc. This finally establishes
the asymptotic expansion of [y7_ | Fi(yk, ya-1, 1, T'); using our Transfer Lemma, we obtain
(that is, define) for £ > 2

te(ye, u T) = [yia ] Fe(yr, ya—1,u,T)
1
= a(ykv u)tk—l (1.1,, u, T)U—T - ——_-’Y(ykv u)tk—-l (P u, T)T—:}/ZP—T"”

2/7 |
O(tem1(u,u, TYT2p7T) + O(ti o1 (p.w, T)T2p~T) (4.7)

as T tends to infinity. Obviously, the first term springs up from the subtracted singularity
term, cf. (4.6). Keep in mind that the (uniform) remainder terms represent bivariate
analytic functions, say Ri(yx.u.T) and Ri(yx, u, T'), both analytic for yx € D(0,p + <)
and v € D(1.v). As already mentioned. we have

t1(y1. u.T) = Llagy; ).

This iterative scheme defines a sequence of analytic functions which are consistent with
equation (4.3). To show this. we shall provide suitable lemmas: prior to those technical
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details we should establish the connection between Br(u) and the above. This relation is
straightforward, cf. equation (3.6):

1 B -
Br(u) = apu + Y uH[y]] Ble) = o

k>1 1-ye/u  L(B(yk)) te(yr,u,T).

Since 2x(yx,u,T) is analytic for yx € D(0,p + ), the desired coefficient [vF] is easily
evaluated. Providing the expansion

B(ye) —aoye _7—aop , BL'(7)(r—aop) b \ . _
L(B(y)) — L(r) ( L(r)? L(T))(l ye/p)? + O(1 = yi /p)

for yr — p, we easily obtain

_ B(u) —apu _
Br(u) = agu + —L(B—(u))—u T;tk(u,u,T)ukT—

b ) (r —aop)L'(1) - L(r) -3/2 _~T -1/2 w. TV *T
2y/7 (1= p/u)L(r)? GG ,;tk(p, ) (45)

Obviously, the first sum results from a subtracted singularity term for y; = u.

That’s why we are interested in infinite sums involving tx; in order to justify our ma-
nipulations, we provide the lemmas promised. Instead of investigating t; directly, we look
at hr—1(y,u,T) = tg(y,u, T)u* DT in a somewhat generalized manner:

LEMMA 4.3 (SOLUTION OF A RECURRENCE RELATION). Consider
hﬂ(y’ u, T) = f(y’ u‘)hn—-l(uv u, T) + g(yv u, T)¢Thn—1(pv u, T) + r(y, u, T)wThn—l(u7 u, T)
forn>1,p>1andT — oo. In addition,

hO(ya u, T) = h(y)

fly,u) # 0, g(y,u,T), r(y,u,T) and h(y) denote (multivariate) analytic functions for
ye€D0,p+¢e),l+e>pandu e D(1,v), 1+ v < p. ¢ is an abbreviation for u/p < 1.
If max,ep) |f(u,u)] =r < 1, g(y,u,T) = O(T™) and r(y,u,T) = O(T") uniformly for

some arbitrary but fixed real m, I, we have the uniform bound
lAn(y,u,T)| < CR"

foralln >20.ye D(0,p+¢),r<R<1landT sufficiently large.

Proof: (By simultaneous induction). Let r < R < 1 arbitrary, Cy = maxX,ep(1,,) [h(u)]

and C' = maxX,ep(1,),yen(0.p+)§ [R(Y)], Cilf(y,u)|/r]}. The implied constants of the
O(.)-terms concerning ¢(y, u,T) and r(y.u,T) are denoted by M and L, respectively. We
shall show that

|ho(u,u,T)| < C,R™,
lh’n(yv u7T)' S CRn
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The case n = 0 is trivial; investigating the case n > 0 yields
|hn(u,u,T)] < rCLR" ™ + MT™[%|TCR™ ! + LT!|y|TC, R~
=CirR* 1 4+ C, (Cﬂng + LTY) [T R 1
g 1 :

since (-CMC:F: + LT")|¢|T can be made less than R —r > 0 provided that T is sufficiently
large. Similarily, ' : :

lhn(y, w, D < 1f(y, w)|CLR* ™ + MT™[|"CR™ + LT'jy|TCy R~
{
S CrR™M 4+ CO(MT™ + Qg—)wﬁm“
< CR7,

since (MT™ + Q_%L‘) [WT<R—-rforT sufficiently large. §
The following lemma justifies equation (4.3):

LEMMA 4.4 (EXPANSION OF THE SOLUTION OF A RECURRENCE RELATION). With the
notations and conditions of Lemma 4.3 and the further suppositions f(u,u) # 0, f(p,u) # 0
and h(u) # 0 for u € D(1,v), we obtain

holy,w, T) = ha(p,u, TY(1 + O(1 = y/p))  fory — p

uniformly for u € D(1,v), n > 0 and T — oo.

Proof: By virtue of the Taylor expansion at y = p we may write fly,u) = flp,u) +
fH(y,u)(1 - y/p) (and simililar for ¢ and r) and obtain

oy, T) o [T (0w) + g% (yu, Ty T peetle ) 4 vy o TWT(I -y/p)
ha(p,u.T) floyu) + g(p,u, T)yT gastletdd 4 v(p u T)yT

_ 14 Fw)+ 0T
flpyu) + O(¥T)

uniformly for v € D(1,v) and T — oo. To justify the last step we show (by induction)
that for all n > 0

(L-y/p)=1+0(1—-y/p) fory— p,

hn(p, u, T)
ha(u,u, T)

uniformly for v € D(1,v) and T — oco. The case n = 0 is trivial; for n > 0 we find

=0(1)

hn(pu.T)  flpw)+g(pu, Ty  bamsle D) 4 oy, ) Ty T
ho(u.u.T) f(u.u)-{—g(u.u,T)wT%:fﬁ% + r{u u, THyT f
_ flpw) + 0O(w7)

Fluw + 0Ty ~ O
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This completes the proof of Lemma 4.4. J
Fory=uand y =p let
Hy(u,T) = Z ho(y,u, T).

n>0

Both infinite sums of analytic functions obey a uniform bound K 2o R*=K/(1-R)
according to Lemma 4.3. Hence, each one represents the limit of a uniformly convergent
sequence of analytic functions for v € D(1,v), i.e., is an analytic function itself by virtue
of the Theorem of WeierstraB. They are easily evaluated by sﬁmming up the recurrence
relation for n > 1:

Hy(uvT) - h(y) = f(y7u)Hu(u7T) +g(y7u7T)¢THP(u7T) + T(y, u,T)’(/)THu(U,T)
=v(y,u, T)Hu(u, T) + w(y, u, T)H,(u, T)

where
v(y) = o(y,u,T) = f(y,u) + r(y,u, )7,
w(y) = w(y,u,T) = g(y, u, T)¢T_
We obtain
o LD
H, = Hy(u,T) = 22 H( 1) + hip)
1 —w(p)

which yields

() H, = YR wwh)
(1 vw) s, = PRl g, 20Dy

and finally

w(u)h(p) + h(u)(1 - w(p))
(1= o(w) (1 = w(p)) — wl(u)ol7)
_ h(p)w(w) + h(w) — h(u)w(p)
T v(u) = w(p) + o(w)wlp) — v(p)wla)
h(p)g(u)yT + h(u) — h(u)g(p)ypT
L= flu) =r(u)e? = g(p)T + f(u)g(p)¥T — f(p)g(u)iT + O(%2T)
h(u) h(u) R(plg(w) | r(u)+ flplg(u), 1 o
T Tk T g ) Ow)
as T — oo, uniformly for u € D(1,v). To keep the notation simple, we have used the

abbreviations £(y) = f(y.u), o(y) = gly,u,T), r(y) = r(y.u,T) and $ = u/p as usual,
Similarily, we find

H, =

W plw h )
(1 —w(p)H, = %(—'i——v—((—;f)lffp + %(—f—);(%) + hip)
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and similarily

0 = h(u)v(p) + h(p) = h(p)v(v)
7 1~ v(u) — w(p) + v(w)w(p) — v(p)w(u)
= h(p) + ?—%%’?4»0(;&’-") as T — oo,

uniformly for u € D(1,v), too. Note, that we need a weaker asymptotic expansion for H,
only, cf. equation (4.8). Substituting

hk(ykv u, T) = tk+1(yk+1’ u, T)ukT

for k > 0 and

flyr,u) = alye,u),

9(yk,u, T) = ———7(2‘”\’°/’7r_")’./"-3/2 + O(T™?),

T(ykvuvT) = O(T_2)7
h(y1) = L{agy,)

into the recurrence relation of Lemma 4.3 yields (4.7) times u*=UT_ of course, and estab-
lishes the connection between (4.8) and H,, H,:

Z te(u,u, TYu*T = uTH,,
k>1

Z te(pyu, Tu*T = uTHp.
k>1

(4.9)

It is worth mentioning that, strictly speaking, both remainder terms O(T~?) in the sub-
stitution above denote different functions for different indices k, cf. our remark following
equation (4.7). Thus, we rather should have defined functions 9r(y,u, T) and re(yp, u, T)
in our previouis treatment. However, all (algebraic) operations required are justified for

our simplifying assumption due to the uniform estimations, too.
We obtain

_ L{agu) _ L{agu)y(u,u) , Lagp) a(p,u)
L—alu,u) 2y7(1 - a(u.u)) Llaou) 1 —ofu,u)

)uTT—3/2p—~T+O(uTT-2p—T)

u

and

L{agu)a(p. u)
1 —a(u,u)

H, = L(agp) + +O0uTT™3/2p=T),

Mentioning (4.4) and (4.5) it is easy to obtain

1 1 L(B(u)) - L(agu)

i L(B(w)

~1
L(B(u)) ) = Liaou)

I —afu,u)
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and

Llaop) | _alpu) _ L(aop)  L(§B(w)) —L(aep) L(B(w)) L(£B(u))

L(aou) 1—a(u,u) L(agu) L(B(u)) L(agu) L{agu) -~
In addition, we have
_ b(r — aop) L(r) = L(aou) -y L(7) = L{aou)
Y, u) = (1 = p/u)(t — agu)L(7) < T —agu L(7) T — agp +
L'(r)
m (L(T) it L(aou)))
_ b ((L(r) — L(agu))ag(u = p) (7 = aop)L'(T)L(agu)>
(1= p/u)(r — apu)L(r) T — agu L(r)

and ultimately

_ L(B(u))’y(u,u)L(ﬁ—'B(u))
2\/7—7L(Clou)
H, = L(sB(u)) + O(uTT=3/?p=T),

Substituting the above in equation (4.8) while mentioning (4.9) yields the desired asymp-
totic expression for Br(u):

H, = L(B(v)) uTT325=T L O(uTT2p~T)

and

1w, ¥)L(EB()) 7, 5 _
2v/mL(agu) W Tp7 T

uTT—S/Zp—T + O(uTT—2p—T)

Br(u) = apu + B(u) — agu — (B(u) — aou)

b((7 — agp)L'(7) — L(T))L(fB(u))
2v/m(1 = p/u)L(r)?

= B(u)-
bL(£B(u)) ((B(u) — aou) (L(r) — L(aou))aou(l — pl) |
2v/m(1 = p/u)(r — apu)L(r) L(agu)(t — agu) (
(r - B(u))L(E'T; ap)L'(r) - aou)uTT—3/2p~T+ %
O(uTT=2p=T)

THEOREM 4.5 (ASYMPTOTIC EXPANSION OF ngm)(l))‘ With the notations above. the
first few factorial moments of By(u) have the following asymptotic expansions for T — oc:

+ s

Brl)=1- bL(p) ((1 —a9)(L(7) ~ L{ag))ag(p — 1)
! 2v/lp = 1)(r = a0)L(7) L(ao)(7 = a9)
r—ag - (r - 1)(7‘1:(—7_()10/0)1? (7)>T—3/zp—T +O(T2p"T),
Br(1) = to s +O(T7377),

Béwm)('l) = 0(1) for m arbitrary but fixed
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where B(z) denotes the solution of B(z) = zP(B(z)) and

P(z) = A(L(2))

_ [2P(7)
b= 1/———P"(T).

Proof: The expression for Br(1) is straightforward. Since, roughly speaking, the deriva-
tion of an asymptotic expression is permitted if its domain of validity lies within the
complex plane, the necessary derivatives of Br(u) are most easily obtained: As frequently
mentioned, we have a remainder term which represents a function analytic for u € D(1,v).

The result for B(1) = B'(1)+0(T~/2p=T) follows by differentiating B(z) = zP(B(z))
w.r. t.z. i .

Note, that the remainder in the asymptotic expressions of Br(1) and B%(1) might be
improved to O(T~3/2p=T) and O(T—3/2p=T), respectively, due to our remark on equa-
tion (4.1)!

5. FINAL RESULTS
Now we are able to return to the PGF of SRD(T), which has been evaluated to

cf. equation (3.2). We shall investigate the moments of this distribution, i.e., the quantities

ENT)=E[SRD(T)"] = Y k"sir.
k>0

In addition, we define the n-th factorial moment by

FYT) =) [klasi,r = S7(1),
k>0

where [k], = k(k—1)---(k —n + 1) denotes the falling factorial. Note, that n is assumed
to be fixed: all O()-terms are uniform in T only. Since [k], = k" + O(k"~1), we obtain

FYT)=E"(T)+ O(E"Y(T)).
If we could provide F*~}(T) = O(F™(T)), a simple induction argument shows
EYT)=FXT)+O0(F"~}(T)), (5.1)
hence it seems reasonable to investigate the factorial moments. \We have
St(z) = g(Br(z))
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for g(z) = (1 = Br(1))/(1 — z). An easy computation shows
() = ) - J!
97(2)| = =g (Br(l)) = .
for all ; > 0. Using the formula of Fai di Bruno (cf. [5, p. 50])
(n)
(ba(=)) | _ =

LE n!
Z b(]) (a(t) Z kll(lg)kl — kn!(n!)kn (a(l)(t)) ky .. (a(n)(t)) kn

kitkottk,=j
ky+2ko+-Fnk,=n
k; >0

we are able to express Sgwn)(l) in terms of ¢")(Br(1)) and ng)(l); setting b(z) = g¢(z),
a(z) = Br(z), and t = 1, we find

n z 1 k23 kn
SPW =Y ———— 3 kb (BED) (B (1))
j=0 (1 - BT(]‘)) kitetkn=j
it kj‘;:"—n

with the abbreviation

. = 1]
c]rnyklyk27"-ykn - ]'kll(ll)kl “ e kn!(n!)k" )

Using the fact B(m)(l) O(1) for m > 0 from Theorem 4.5, an overall contribution of the
inner sum of O(1) may be found. Because of

1— Br(1) = O(T~%/?pT)

the major contributions come from (1 — B(1))~7 with j = n. Hence we may discard all
terms of the outer sum concerning Sén (1) except for j = n, i.e., we obtain

n cn nki,k n n - n—
sPm= ¥ L 21 = (Bp(1)™ - (BE (1) + O(T¥n=/2,(n=1)
bitogkn=n (1= Br(1))"
ki4-dnk,=n
k.‘ZO
BL(1) \a ,
=n! T T3(n—1)/2 (n—-1) 5.9
n(——-—-————l_BT(l)) + O( P T), (5.2) E
since the conditions concerning the inner sum hold for k1 = n only. Substituting the E

expansion above, we find :
FM(T) = 57(1) = O(T%/2,°7),

Since F""HT) = O(F™(T)), the condition for equation (5.1) is justified and we may
conclude

E™(T) = F™(T) + O(F"~\(T)).

The remainder above disappears within the remainder term established for St (n )( 1). hence
our final result follows:
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THEOREM 5.1. With the conditions (i)-(vi) from Section 4 and the notations above, the
n-th moment (n arbitrary but fixed) of SRD(T) fulfills

E™(T) =nly(T)"(1+ O(T 1))

with

W(T) = 2y/7(p — 1)(1 — ag)L(7) ((1 —ao)(L(r) — L(ag))ag(p — 1)+

bL(p)(1 ~ P'(1)) L(ao)(7 — ao)

=D —ap)' ()N s 1
() ) e

T — Qg

where P(z) = A(L(z)), p = B and b= ,/%{-37((:—;.

Note, that the remainder 1+O(T~!/?) springs from (1—_%) ". it causes the remainder
of (5.2) to disappear.

CONCLUSIONS

This paper contains a detailed analysis of the successful run duration SRD(T) of a
discrete time single server system with nonpreemptive LCFS task scheduling. SRD(T) is
closely related to the ability of this system to meet the fixed deadlines T of all tasks arriving
at the system, from the time it is turned on to the year 9999, for example. It extends our
analysis of preemptive LCFS scheduling (cf. [2]) and FCFS scheduling (cf. [8]) to the
case of the nonpreemptive LCFS scheduling discipline. Again, we have found impressive
results concerning the expectation of SRD(T'), unfortunately weakened by a large standard
deviation; see (8] for a more detailed discussion.

Comparing nonpreemptive LCFS to FCFS scheduling shows a significantly better dead-
line meeting behaviour of the latter. On the other hand, nonpreemptive LCFS and pre-
emptive LCFS is more difficult to compare; it is devoted to a forthcoming paper. Note
however, that those results are the same for L(z) = z, i.e., constant task execution times
of 1 cycle.

To establish our results we have used a coefficient extraction technique for multivariate
functions which we call asymptotic separation: using a slight extension of well-known
asymptotic techniques it is possible to seperate multivariate analytic functions. We feel
that this method is of independent interest and should be useful in the case of investigating
sequences of random variables X}, which are in some sense “weakly dependent”. In our
case. we had to deal with random variables having a Markov-like property, but asymptotic
separation is not restricted to this case. Note however. that queueing theory provides no
solution to our problem. because we are forced to study non-equilibrium behaviour in order
to obtain our desired quantities. ' '
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