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The Average CRI-Length of a Tree Collision Resolution Algorithm
in Presence of Multiplicity-Dependent Capture Effects

ULRICH SCHMID

Abstract. We investigate the average length L, of a collision resolution mterval of a simple
tree collision resolution algorithm in presence of capture effects: In opposition to the common
model, thereis a (non-zero) probability ac®, ¢ < 1 that exactly one of the packets involved in a
collision of multiplicity n survives. Our analysis is based on the application of complex Mellin
transform techniques to ordinary generating functions, leading to an asymptotic expansion
of the ordinary generating function L(z) of L, near its dominant singularity z = 1. The
application of a simple transfer lemma eventually provides an asymptotic expansion for L., .

1. INTRODUCTION

In the past, a large amount of theoretical (and practical) work has been devoted to
the analysis of distributed algorithms suitable for controlling the transmission activities
of stations (i.e., transmitting/receiving units) sharing a single broadcast communication
channel. Applications of such algorithms may be found in certain computer networks,
e.g., in wide area networks based on (satellite) radio channels. Starting from the famous
ALOHA system of the Univerity of Hawaii in the late 1970’s, a number of different al-
gorithms offering much better characteristics (e.g., throughput, stability, ...) have been
developed, of. [GA] for a nice survey.

The appropriate analysis usually relies on a model similar to the following:

(1) A (infinite) population of identical transmitters is supposed to have access to a
common time-slotted, noiseless, collision-type broadcast channel, without any cen-
tralized channel arbitration mechanism.

(2) Data are transmitted in the form of fixed size packets, which fit into one time slot.

(3) For the whole population of stations, new packets are generated according to a
Poisson process with a fixed rate ).

(4) If n > 2 stations transmit in the same slot, a collision of multiplicity n occurs
and all packets involved in that collision are completely lost. The channel feedback
(e.g., collision/no collision) is supposed to be identical for all stations.

A very important class of collision resolution algorithms are tree algorithms, see [MF)
for details. We restrict ourselves to the so-called Q-ary tree algorithm with the obvious
blocked access protocol, which works as follows:

(1) No collision resolution.
If the whole system is in an idle state, each transmitter presently having generated

a new packet transmits it in the very next slot.

(2) Collision resolution.
If the system performs the resolution of a previous collision. each transmitter in-
volved flips a fair Q-sided coin with values from 1.2....,Q. This value determines
the (relative) number of that slot where the packet should be transmitted. For
example, all stations with 1 flipped transmit in the very next slot. If a new collision



occurs, it is resolved immediately by the same method, thus suspending the resolu-
tion for the other values. Note that transmitters not involved in the current collision
(but having already a value flipped) have to keep track with the current resolution
process, e.g., to add @ — 1 to their relative slot number in order to determine their
actual transmission slot,.

On the other hand, all transmitters not involved in the initial collision (which
has terminated the idle state of the whole system) remain blocked, that is, inactive,
until the whole system is idle again. They may contend for the idle slot following a,
collision resolution Interval, probably forcing a new initial collision.

A crucial parameter for the performance of a collision resolution algorithm (of this type)
Is the (average) length of a collision resolution interval. This random variable denotes the
number of slots necessary for resolving an initial collision of multiplicity n, and is clearly
independent from the packet generating process due to the obvious blocked access protocol.

Our intention is the derivation of the average CRI-length L,, for our simple tree algorithm
when capture effects are present. In many real communication systems, the “strongest” of
the actually colliding packets is able to capture the receiver und thus be received without
error. That is, in case of a collision there is a non-zero probability that exactly one of
the packets involved survives. To handle this subject, we have to change (4) of the usual
model stated above.

In [S], we used a very simple approach for modelling capture: In case of & collision, we
assumed a fixed probability 1 — p that exactly one packet survives. The major difficulty
with this idea is the unrealistic assumption of a capture probability which is independent of
the multiplicity of the collision. For example, in a radio network, the signal of a dominating
packet has to be more powerful than the sum of the signals of the other packets in order to

of a collision. It is therefore more realistic to assume a geometric capture probability ac™
for some ¢ < 1. Obviously, 1 — ac™ is the probability that all packets involved in a collision

of multiplicity n get lost.

2. FUNCTIONAL EQUATIONS

According to [MF}, a collision resolution interval of a tree algorithm with the obvious
blocked access protocol may be modelled as a @-ary tree. Each slot is represented by a
node in the tree; the root of the tree corresponds to the initial collision slot. Since the
coin-flipping process splits the set of transmitters involved in a particular collision into
exactly () subsets, each node corresponding to a collision slot has exactly @ successors.
Empty slots or slots where only a single transmission occurs form the leafs in our tree.

It is possible to adopt this correspondence to suit our needs. We consider Q)-ary trees
with two types of nodes. C-nodes (Capture-nodes, representing a successful transmission
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of a packet in a collision slot, or a single transmission ), and NC-nodes (NonCapture-nodes,
representing a collision slot with the destruction of all packets involved, or an empty slot).
Each node is additionally labelled with the multiplicity of the corresponding conflict; 0 is
the label for empty slots, 1 for a slot used by a single transmitter.

If we examine the trees generated by the application of these rules, we obtain the fol-

lowing properties:

(1) For each collision resolution interval of a conflict of multiplicity n, there exists a
unique tree representation of the resolution process with exactly n C-nodes. The
appropriate CRI-length L, is reflected by the total number of nodes in the tree.

(2) Traversing the tree in preorder, we obtain the traffic on the channel; each C-node
represents a slot with a successful transmission.

(3) Leafs correspond to empty slots (label 0) or to single transmission slots (label 1).

(4) Internal nodes correspond to collision slots of multiplicity equal to their label.

Those trees may be viewed as a certain “mixture” of digital search trees and a radix

search tries, cf. [FS] for a survey. Therefore, it is not too surprising that we succeded with
an analysis based on a novel technique for investigating characteristic parameters of such

trees proposed in [FR].
We consider this approach important enough to preceed our detailled derivations with

a sketch of the general idea:
Starting from the obvious recurrence relation for L,, we derive a functional equation for

the exponentially generating function (EGF) {(z), namely

() = (Q = e C=1D1(=/Q) 4 =12 /g
+ acezc(l_l/Q)l(zc/Q) - acezc(l_l/Q)l'(zc/Q) +e’ - Q.

Using A(z) = e~%I(z), a functional equation for h(z) is easily found:
h(2) + &'(2) = Qh(z/Q) + h(z/Q) - ace™ 1IN/ (2c/Q) + 1 - Qe+

Now, the major idea is the transition to ordinary generating functions (OGF) H(z)
and L(z), respectively. Using the Borel-transformation (or equivalently, extracting the
coefficients and summing up), we easily obtain a functional equation for I(z) = H(z) -
ho = hyz, namely

_ a@ z¢/Q Q=2

Since I(z) = e*h(z) transforms into

IH(z)’

-z 1—2z

L =
(2)= 1
it is clear that an asymptotic expansion of L(z) for = — 1 may be obtained by inves-
tigating the asymptotics of H (#) for = — oco. The latter is done by means of complex

Mellin-transform techniques (as already used in [FP], for example). Provided there is
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an (admissible) unique solution I (2) of the functional equation above, it is clear that the
fundamental strip of the transform of

T(z) = 1[( ze/Q )

I1+2(1-¢)
is (~2,1) due to its order as z — 0 and 2 — oo, respectively; note that I(z) = O(22) as

z = 0. Similarily, it is easily verified that the transform of 22/(1+2)%is (s + 2)I(=s),

yielding the fundamental strip (—2,0).
We therefore obtain the following equation for the transform I () = M[I(z); s]:

Py = LG+ 2ir_(-;)+: aQT*(s)

The appropriate fundamental strip is (=2, —1). The “first” singularities to the right of
the fundamental strip are obviously simple poles sz = —1 + xx for integers k, where
Xx = 2kwi/log @, caused by the vanishing denominator. The appropriate expansion reads

Q . 1

* I — v.) — -1 C ——— -1 .
I*(s) IOgQ(F(1+Xk)F(1 Xk) = aQT*(—1+ xi)) P p— for s — ~1 4 xz
Continuing the search for further singularities, we obtain a simple pole at s = 0 next,

which is caused by I'(s).
It is well-known, that such singularities conveniently translate into the asymptotic ex-

pansion of I(z) on a term-by-term basis. We therefore obtain

—aT*(—
I(z) = Q(1 logQ< 1))z+ lOngP(logQ z)+ O(1)

for z — oo, where P(u) denotes a periodic function with mean 0 and small amplitude, as
usual.

Note that the term T(z), which is not explicitely expressible since it depends on the
unknown function I(z), contributes only constant factors 7%(—1 — Xk) to the major terms
of the desired asymptotics of I (2) for z — co! Actually, it is possible to provide asymptotic
expansions of T*(—1 — y;) as ¢ — 0 by means of a direct evaluation of the appropriate

Mellin integral.
However, remembering the relation between L(z) and H(z), we find

Q-aT(-1)) 1 g 1 1 1
log @ (l-z)2+logQ(1__z)2P(logQl_z)‘f‘o(?‘_“;) for z — 1,

L(z)=

and the application of a simple transfer lemma finally yields the desired asvmptotic ex-
pansion of L, as n — oo,

We are convinced that this method should be applicable to other functional equations
involving a certain mixture of “harmonic” arguments (e.g., I(2Q~')) and more compli-
cated ones (e.g., I(f(z)) with f(z) = 2Q~1/(1 + z)), provided that the order of the “un-
tractable” terms guarantee a fundamenta] strip which is sufficiently large. It is therefore
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very conveniently applicable in general; however, a numerical evaluation of the appropriate
contributions is not always possible.

We start our detailled derivations by providing the basic recurrence for the average total
number of nodes in a tree with exactly n C-nodes, i.e., the average CRI-length L,, n > 2:

n -n < n -1 —-n J
Ln:1+(1_ac)z<' --nwiQ)Q ;LikJrac 2 (il,n.--,iQ)Ql gLik

3
Li=n 1 Ch=n—1

The latter is justified by the following straightforward facts: F irst, the root node, i.e., the
(initial) collision slot, contributes 1 to the sum above. The second term handles the case
without capture, where a node with label n has to have @ successors with label S T
and ), it = n; note the appropriate multinomial splitting probability. Finally, the third
term covers the case of an actual capture, where the label-sum of the Q) successors has to
be n — 1.

By virtue of the simple identity

n -_n Q e = n —n n -— ik
Eﬁzzn (?:1, - ,2q>Q ;Lik = ,;2;0 (ik)LikQ 2i1§—ik (il, . ,Z‘k_.l, ik+1, ey ZQ)
Q n
£ 5 (e
k=1 ip=0
=0y (7)ea-ver-i,
=0

we may rewrite the initial recurrence in order to obtain

Ln=1+Q(1-ac") Z @Q“"(l ~1/Q)" 'L,

=0
n—1
+ Qac™ Z (n z— 1) Q"‘"(l ~ 1/, forn > 2, (2.1)
=0
Ly =1,
Ly=1

It is convenient to proceed with some well-known techniques from the formal operator
calculus. Let D denote the ordinary differential operator, I the identity operator and
N the 0-substitution operator, all with respect to a variable t. Now, if I(t) denotes the
EGF of L,, it is clear that L, = /D" « I(t); the star characterizes the application of the
operator(s) on the left hand side to the function on the right.

Rewriting our recurrence relation (2.1) accordingly, we obtain for n > 2

Ln=14+Q(1 ~ac™)N(1-1/Q + D/Q)" + [(t) + Qac"M(1 - 1/Q + D/Q)"~ « I(¢).
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Multiplying both sides by z"~1/(n — 1)! and summing up for n > 2, we find by using the
fact Ne*? « f(t) = f(z)
U(z) = Li =€~ 14+ QN(1-1/Q + D/Q)[e*1-1/Q+D/Q) _ I« 1(¢)
=~ QaeN(1 -1/Q + D/Q) [e*=1/@+P/Q) _ 7] 4 114
+ QacN [ex(1-1/Q+D/Q) _ I] = 1I(t)
= = 14(Q = Ve 1 YDU(2/Q) — (Q - 1)L + -1/ (2 /Q) - I,
= ac(@ = D™ Di2¢/Q) + ac(Q - 1)L,
— ace*(1~1/Q) I'(z¢/Q) + acL,
+ Qace™ =V ¢/Q) ~ QacL,

= (Q = DU HI(/Q) 4 -1/ (z/)
-+ acezc(l‘l/Q)I(zc/Q) — ace“(l—l/Q)l'(zc/Q)
—{-ez-l—-(Q-l)Lg — Ly —acLg + acL,

and therefore

I(z) =(Q =) ~YU(2/Q) + & -1/Ap (1)
+ ace“(l_l/Q)l(zc/Q) - acezc(l“'l/Q)l'(zc/Q) +e* - Q. (2.2)

Introducing the Poisson generating function (PoGF) of L,, namely
h(z) = Zhn.i—'; = (z)e~?, (2.3)
n>0
which implies the inverse pair
no "o
hy = k};ﬂ (k)(-n"-’w:k and L, = ; <k> hs, (2.4)

we have hg = 1, by = 0 and e”*l'(z) = h(z) + A'(z). Thus. multiplying equation (2.2) by
e”* yields a simpler functional equation for h(z):
=)+ h(2) = (Q = Dh(=/Q) + h(2/Q) + h'(2/Q) — ace”*"Uh!(z¢/Q) + 1~ Qe
= Qh(=/Q) + K'(2/Q) = ace™*0~OW(z¢/Q) + 1 — Qe (2.5)

The major idea for treating this equation, as proposed in [FR], is the transition to
ordinary generating functions. If

L(z)=> L.z and H(z)= N hosn

n>g n>o




denote the appropriate OGF's, (2.4) implies the following relation:
—_ - n no_ n n __ k n + k‘ n
=YY (Hme =Y he Y ()= e >("r)-
n>0 k=0 k>0 n>k k>0 n>0

=1 B2 (2.6)

1—2 1 -z

Translating the functional equation (2.5) for the EGF into the corresponding one for
the OGF is simple. We use the Borel-transformation In a more or less “formal” manter;
alternatively, one might extract the coefficients and sum up as well. Providing

*° 1 [ H(a)—-h
/ e"'h'(at)dt = —hg/a + —/ e th(at)dt = Hla) = ko
0 @ Jo a

and Y h
o oo 2 Y

/ e PR at) dt = —— e R () ds = H(zt5) ~ho

0 1408 J,

we obtain by substituting z = 2t in (2.5), multiplying by e~* and integrating
H(754%5) - ho Q

Introducing

I{(z) = H(z) ~ hyz — hg = H(z) ~ 1, (2.7)
cf. equations (2.4) and (2.1), we find

zc/Q ) Q

T +1/2) = Q1100 +1/2)+ @ - Lr(72L ) - @

some straightforward algebraic manipulations finally yield

aQ) zc/Q Q2*
Iz) = QI(=/@) - 1+ zI(l +2(1 — c)) (142)% (28)

In order to show that the functional equation (2.8) has indeed a suitable analytic solution,
it is possible to employ similar techniques as in [FFH] to prove the following

LEMMA 2.1 (EXISTENCE OF AN ANALYTIC SOLUTION). Lett(z), 71(2), 12(2), 01(2), 0o (z)
denote analytic functions defined on a (possibly open) domain D of the complex plane.
Let H be the semigroup of substitutions generated by o, and o, under the operation of
composition of functions: The identity of H is ¢ = &(2) = z; any member o = o(z) € H
can be written in the form o = 0i\0iy ... 0i,, lol=n>0and i € {1,2} for 1 < k < n.

If (1) 01(z) and 04(z) are such that oi(D) € D (and therefore ro(D) C (D) for any
7,0 € H) and |oy(z)| < |z| for i = 1,2, and (2) for some m > 0 arbitrary but fixed

@ = sup m(e(z))],  ap= sup 172(0(2))]

lej=m o|=m




satisfy the contraction property aq + @z < 1, then the functional equation
J(z) =t(z) + 71(2)J (o1(2)) + 72(z)J(Ug(z))

has an analytic solution

J(2) =) Iy, 7l (2) t(o(2))

o H

on D, where

i 7)(2) = v, (04, .. 02, (2)) - YVin-1 (70, (2)) 71, (2)
[71,7216(2) = 1.

Proof: Since H satisfies the decomposition H = {¢} U Ho, U Ho,, we easily obtain that

J(z) = 2[71,72]"(2”(‘7(3))

o&H

=1t(z) + Z [71772}7(01(2))71(3)t(TUI(Z)) + Z [’)’1,72]7(0’2(2))72(2)t(Taz(z))

o=y o=reo,

reH reH

=1(z) + y1(z) Z[’yl,72]"(01(2))t(7'(o*1(z))) + 72(2) Z[71,72]7(02(2))t(7-(02(z)))

T€EH r€H
= 1(z) + 1(2)7(01(2) +72(2)J (02(2))

1s actually a (formal) solution of our functional equation. Defining

w(z) = sup |t(w)]

lwI%ZI

we

a(z) = sup |y(w)]  and  ay(z) = sup [r2(w)]
lw|<]z] !wl%zt
weD we

for any z € D with bounded modulus, condition (1) ensures that ‘t(a(z))z < u(z) and
}'y,'(ar(z))’g ai(2),71=1,2,for any o € H. Moreover, for any o € H with lo} = | we have

Fiime(2) | @i(z)

1[71,72]”(3)! < a, e, 'aiz-m+1(z)"'ai;(3) =a; - - = -
L T t

i

Denoting M(z) = max{1,a;(z)/a, az(z)/az }, we eventually find

Z[hl,*fz}”(z')t(o(ﬂ)f <ul2) Y I, 72)7(2)]

oEH oc€H

Su(z)M(z)m Y% (Z) ayagy*

n>0 k=0
_ ue)Mz)
l-a; —ay’
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which reveals that our solution is represented by an uniformly convergent sum of analytic
functions and hence analytic itself. This completes the proof of Lemma 2.1. J

Lemma 2.1 is not directly applicable to the functional equation (2.8) since the required

contraction property is violated. However, remembering definition (2.7), it is obvious that
I(z) = 2%J(z). Rewriting (2.8) accordingly, we obtain

T = Q) - Yy s/ Ly, o

(I+2)(1+2(1-¢) \1+z(1-¢)) " T +z22
It is easily checked that this equation fulfills all requirements to apply Lemma 2.1 for
D={z:|Arg(z+2/3)| <} N {z: | Arg(z + 1)| < ¢) (2.9)

for some 3 > ¢ > 7/2; the reason for that (somewhat artificial) region will become clear
in the following section. Note that 72(2) < 1/Q (Q > 2) is only valid for ¢ small enough
(72(2) attains its maximum on D at z = —2/3). However, using the “feature” m >1lin
our Lemma, it is possible to handle arbitrary ¢ < 1 as well.

Thus, Lemma 2.1 states the existence of a solution J(z) (and hence I(z)), which is
analytic on D. Moreover, the fact that the coefficients of I(z) are uniquely defined (which is
immediately apperarent from the functional equation (2.5); cf. the recurrence relation (4.4),
too) implies that this solution is uniquely determined.

In addition, it is easy to see that the order of I () for z — +00 is smaller than the order

of I(z) as z — 0: Dividing equation (2.8) by 23/2 we find

I{z - Iz _
dm (57 -0 1""(;%?}2—} =I1-Q 1=y,

which implies I = 0. Thus, we have the (very coarse) first estimation

I(z) = O(z%/?) for z — +o0. (2.10)

3. MELLIN TRANSFORM TECHNIQUES

As we shall see, equation (2.8) is tractable by Mellin transform techniques. The well-
known Mellin transform is a powerful tool in asymptotic analysis, and is applicable to a
wide variety of problems; see [DOJ for the very complete theory and [VF] for application-
oriented details. First, we supply a short summary of appropriate theorems (without any

proof ):

DEFINITION 3.1 (MELLIN-TRANSFORM). The Mellin-transform of a continuous, real val-
ued function f(z) is the complex valued function f*(s) defined by

() = Mlf(2); 5] = / " f@)e dn,

9




provided that the integral is absolutely convergent in the region a < R(s) < b. This region
is called the fundamental strip of f*(s) and is denoted by (a, b).

‘THEOREM 3.2 (EXISTENCE AND ANALYTICITY). If there are two complex numbers a, b
with R(—a) < R(—b) and the property

O(z*), forz —0
O(z%), forz — oo,

)= {

e.g., if the order of f(z) near zero is larger than the order near infinity, then the trans-
form f*(s) exists on the fundamental strip (~a,~b), and is analytic within the whole
region.

LEMMA 3.3 (TRANSFORM OF HARMONIC FUNCTIONS). If the transform f*(s) of the
function f(z) exists on the fundamental strip (a,b), we obtain for a real ¢ > (

M[f(cz);s] = ¢ f*(s) within the fundamental strip (a, b).
THEOREM 3.4 (ASYMPTOTIC EXPANSION). If f*(s) exists on the fundamental strip {a, b},

and satisfies certain smallness-conditions towards ico for b < R(s) < M (to the right of
the fundamental strip), a pole of the transform

N

* dn,k

f(s)wi W fOFbS%(bk)(MandS“-Pbk
=0

translates into a term of the asyvmptotic expansion for r — oo according to

“dn
E "k (—logz) "zt for z — .
n!

n=0

Moreover, the complete expansion of f(z) evaluates to

flz) = ZTerm resulting from by + O(z~M) for z — co.
k

The last theorem is a consequence of the classical inversion theorem

1 C+100
)= 5= fr(s)z™" ds,
g =100

where ¢ lies in the fundamental strip of f*(s). The idea behind the proof of Theorem 3.4
is to extend the contour by a large rectangular one in the right halfplane, and to take
into account the residues of the newly enclosed singularities. The requested smallness-
conditions ensure vanishing contributions resulting from the horizontal segments when
expanding the contour to +icc. Note that the smallness-conditions are always satisfied
within the fundamental strip.
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The classical theory of the Mellin transform is based on real functions f(z). However, our
theorems (especially Theorem 3.4) are valid for (certain) complex functions f(z) as well.
Though a rigorous theoretical treatment of the sub Ject is still lacking, there is a number of
strikingly elegant applications (cf. [FP] or [FR], for example) which demonstrate the power
of this approach. We, too, shall use this technique to attack the functional equation (2.8).

First of all, equations (2.7) and (2.10) in conjunction with Theorem 3.2 guarantee that
the Mellin transform I*(s) of our desired solution I (2) exists. Abbreviating

_ { O(z*)  for z — 0,
1 0@z for 2 — 00;

1 ze/Q

T(z) = 1+ zI(l +2(1 - c))

the appropriate fundamental strip of T*(s) is (—2,1) by virtue of Theorem (3.2).
Regarding the last term of (2.8), we have

oo za-}-l
/0 T & =Bls+2,-3) = T(s + 2)0(~s)

according to [AS, p.258]; B(z,w) denotes the Beta function. Since ['(s+2)I'(~s) is analytic
within the strip —2 < R(s) < 0, we obtain the fundamental strip (-2, 0).
Now, using Theorem (3.3), the Mellin transform of I (z) evaluates to

I'(s) = QI'(s + 211:(_—51);; aQT*(s); (3.1)

the appropriate fundamental strip is obviously (-2, ~1).

According to Theorem (3.4), the desired asymptotics for z — oo are trivially connected
with the singularities of the transform to the right of the fundamental strip. The “first”
singularities encountered are simple poles at —1+ x, xx = 2k7i/log Q for all integers k,
which are caused by the vanishing denominator. Applying de I’'Hospital’s rule, we find

1 1

1
1—-Q1+’_—IogQ's+1—x

+ 0(1) for s — ~1+ x;
k

and therefore
1

I*(s) = -—EgQ—a(F(l +X6)D(L = x&) = aT* (=1 + xz)) - s+l for s — —1 + x».

The next singularity is a simple pole at s = 0, caused by I'(s). The expansion is simple:

I*(s):—»-—g—- ! +0(1)  fors—0.

Q-1 s

Further singularities lie on the vertical strip R(s) = 1. But, since we have to expect a
singularity caused by the (not explicitely known) function T*(s), there is no easy way to
state the appropriate expansion. However, to obtain an asymptotic expansion of I(z) up
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to O(z7'%¢) for 2 — oo, it suffices that there are no additional singularities within the
strip 0 < ®(s) < 1 — ¢ for some ¢ > 0.

It is not hard to show that I*(s) is indeed small towards tico within the strip —3/2 <
R(s) < 1—e¢, as required by Theorem 3.4: [ *(s) involves T'(s), which is well-known to be
small for large imaginary parts of s, and T*(s), whose fundamental strip covers the region
of interest (because smallness-conditions are always satisfied within the fundamental strip).

Therefore, we may apply Theorem (3.4) and obtain

1 —aT*(-1
1) = & = Q( ) L. Eg‘@ . 2P(logg z) + E)%I +0(="14)  (3.2)

for z — o0; € > 0 denotes an arbitrary small positive constant, and

P(u) = Z(I’(l +Xk)F(1 ~ Xk) — aT*(—-l + Xk))e-ririu
k#0

is a periodic function with period 1, mean 0 and small amplitude, caused by poles with

non-zero imaginary part.
Note that the term 7T'(z), which is not explicitely expressible since it depends on the

unknown function I(z), contributes a constant factor to the major term of the desired
asymptotics of I(z) for z — oo! We shall provide an asymptotic expansion of this factor
as ¢ — 0 1n Section 4.

However, using relation (2.6) and (a weaker form of) expansion (3.2) yield

L(z) = l—l—zl(liz)+1—1—z
_Q-al*(-1) 1 Q _ 1 : 1
- log @ (1—2)2 logQ(l—-z)2P(1ogQ I—:;)Jra(l—-z)

for z — 1. In addition, since z=X* = 1 + O(z—1)for z — 1 uniformly in k and therefore
P(logg 7%) = P(logg t&) + O(z — 1), we eventually find
1—-al*(~-1 1 1
o= QU=eT 1) 1 g
log @ (1-2)?  logQ(1-=z

The desired coefficient L, = [2"]L(z) is most easily obtained by a simple transfer lemma,
cf. [FOJ for a very complete treatment of the subject. For applicability, we need the
analyticity of L(z) in a closed domain Alg,n) ={z:]z] <1+, |Arg(z = 1)[ > ¢,z # 1}
(an indented disk with radius 1 + 1, sparing out the singularity z = 1). This, however,
is a straightforward consequence of Relation (2.6) and the region of analyticity of I(z)
according to equation (2.9), as may be seen by considering the image of A(¢,n) under the
mapping z/(1 - z).

Thus, we obtain

_ QO —aT(-1)) Q
= oz 0 n + 1Oanp(IogQ n)+ 0(1) for n — oo, (3.3)

1 1
)2P(logq *1'—:—;) + O(i—:——Z-) for z — 1.

L,
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where

_ P(1+Xk)r(1 —‘Xk)""ClT*(“l +Xk)e-—2k1riu
_ Z Xk(=1 + x0T (=1 + xe)T(1 ~ x4) — aT*(~1 + X/C)e——2k7riu
(1= xx)T(1 = x&)

k#0

_ L _ aT*(—1 — xx) J2hmiu
——k;(“r(l xi) (1+Xk)F(1+Xk)) .

Note that we restricted ourselves to the computation of the major terms of the asymp-
totic expansion for L(z) and hence L, in order to preserve the essentials. Nevertheless, it
would be easy to extend the derivations above to obtain a more accurate expression up to

a remainder term of order O(n=(1-¢)),

4. EVALUATION OF A MELLIN INTEGRAL

At last, we shall derive an asymptotic expression for T*(~1) as ¢ — 0, thereby providing
a means for computing the major term of L,, numerically. Our point of application is the

Mellin integral
-2

(-1 = /0001(1 +ic(/1Q— c)) 1z+ ;& (4.1)

The fact that the argument of I (.) in the integrand above remains small, i.e., O(c), over
the whole path of integration, enables us to operate with the first few terms of the Taylor

expansion

2)=H(z) ~ho—hiz = > hpyyz*+?
k>0

instead of I(z); remember definition (2.7). That is, using the substitution

zZC

= ———
14+2(1-¢)

such that
P . and dz = cdt > = c2? /12 dt,
c—#1-c) (c—-t(l-c))
we obtain

-1 ~c¢)cdt =CQ_2/1~= I(t/Q)1+t+t/cdt
0

T*(—1)=/0 I/Q)———=5 (t/Q2 1+¢

14t —t/c
=cQ~? Z hep2Q* / ‘T;?Zﬂfk dt.
k>0 0
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Since it is not hard to establish that

=T ¢k ¢ v k-1 dy ¢ vk
_/; 1+¢ /(;v(l-v) (1-v)? /0(1-—1))"“‘1 v
m+k m+lc+1
- Z( )m+k+1

m>0

and therefore

= - k+1 = k1
/1 14¢ t/ctkdt::: 1 ( c ) _1/1 t &t
0 1+t k+1 1"-C (44 o l+t
_ [(m—}-k) Patas! (m-{—k-}—l) cmtEt+l J
A m k41 m m+k+2
_Z m+ k\ ¢kl 1 m+k+1
"m ‘\ m k+1 m+k+2
- m+k cMtkt1
_mz>0< m )(k+1)(m+k+2)’

some algebraic manipulations eventually yield

. B m+k m+k+1
T(-1 =@ Y bt 3 (" )(Hl)(m+k+2)

< S
=cQ’ ; g hicy2Q™F @ (k+ il): +2)

=cQ™? ; (IC:I‘Z) ; (D s ’?;1

=" 2 T Ty > GHEEA

e ;z(wl) Z( )h"“Q - -

What remains to do is to compute the first few hi. This is accomplished by extracting
the coefficients from the functional equation (2.5): For n > 1, we find

n

hn + hn+1 = th-—(n-—l) + hn+lQ~n - GCZ (:) ("'(1 - C))n—khk-l-l(c/Q)k - Q(_l)n

k=0

and hence

b1 Q™) 4 (1= Q1) = ~Q(-1)" — ae(~1)" 3" (,’Z)hk+1(~c/cz>’°(1 ok,
k=0
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Multiplying the equation above with (=1)™"" and summing up for 1 < n < m, m > 1
while remembering h; = 0 yields a telescoping sum on the left hand side and therefore

a1 =Q7") = =mQ-1" —ae (1) 3 () hura(-e/@)4(1 - o=+

k=1

= QU™ 4 a1 Y han(-e/ @) 3 (7)1 - o
k=1

n=k

=mQ(=1)"™" + ac(=1)"*' > b1 (~c/Q) ¥t i(c). (4.3)
k=1

Evaluating tm, (c) involves some standard identities concerning binomial coefficients and
yields

womE(P)i-a-E ()£

nz=0 n=0 j=0

S E0I0-E-E )

Jj= na=j n=j

e () ()

“Sea(H( )

=0

Using tmm(c) = 1 for all m > 1, some straightforward algebraic manipulations of
equation (4.3) establish

m—1

hm+1 (1‘Q~m+acm+lg‘mtm,m(c)) = mQ("l)m+l +ac(“1)m+l Z hk+l(“c/Q)ktm,k(c)
k=1

and therefore

mt1MQ = aQ 3 hi(—c/Q) ¥t 41 (c)
hmt1 = (=1)™* 1_;5-11(’{%@“) ey (4.4)

For ¢ — 0, we most easily get

- Q __Q
he =1z Q(1—ack) 1-g1 o)
_ 2Q + 0(c?) 20, 0()

1-Q%(1—ad®)  1-0-2
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using these values in equation (4.2) finally establishes

T(-1) = o [ P22 4 CEMOTA QT o)

c? o 3 4
= hg(g@?-}-é—@?) +h36‘Q—3-+O(C )
2 3

c C 3

C
T2QT-Q) 30— 300

+ O(c*).

It is obvious that more accurate asymptotic expansions are most easily computed.
Thus, remembering equation (3.3), we are able to state our major result

THEOREM 4.1. The average CRI-length L, of the Q-ary tree algorithm with obvious
blocked access protocol in presence of multiplicity-dependent capture with probability ac®

18

1—aT*(-1
an( Ing( ))n+lo§an(loan)+O(1) for n — co.

The constant T*(~1) is approximated by

C3 3

02 ¢ .
200-Q) T3g-g) s@a_g7 AN frc—o,

T*(-1) =

the function p(u) is periodic with periode 1, has very low amplitude, mean 0, and its
Fourier expansion is given by

1

plu) = J;(Xkr(—l ~ Xk) = (14 x&)T(1 + xz)

5. CONCLUSIONS

Using complex Mellin transform of ordinary generating functions in conjunction with a
transfer lemma, we analyzed the average CRI-length of a Q-ary tree algorithm in presence
of multiplicity-dependent capture effects. Relying on a geometric capture probability of
ac™, ¢ < 1 in case of a collision of multiplicity n, our investigations extend the somewhat
unrealistic assumption of a constant probability a =1 —p (i.e., c = 1) pursued in [S].

However, we should admit that even our improved approach is not able to cover all
possible varieties of capture effects sufficiently. For instance, in communication networks
without a central receiver, capture is often a local phenomenon, i.e., concerns not all
receivers in the same way. Our assumption of all stations agreeing on the channel feedback
is therefore too optimistic. The consideration of local phenomenons, however, is not at all
simple and requires a substantial redesign of the model and the whole analysis.
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