. . i Technische

Institut fiir Automation Uni it

' Abt. fiir Automatisierungssysteme mve.rSI a
Wien

Projektbericht Nr. 183/1-30
Janner 1992

ROOMS
A Case—Based System for Scheduling Study—Courses
A. Bezirgan, J. Dorn

Ausschnitt aus: Salvador Dali, "Die Bestandigkeit der Erinnerung”

ROOMS
A Case-Based System for Scheduling Study-Courses

Adlla Bezirgan,
Technical University Vienna,
Institute for Automation,
TreitlstraBe 3/183/1,
A-1040 Vienna
Fax ++43-1-563260
Phone: ++43-1-58801-8184
email: bezirgan@eiautl.tuwien.ac.at

Jirgen Dorn,
Technical University Vienna,
Christan Doppler Laboratory for Expert Systems,
Paniglgasse 16
A-1040 Vienna
Fax ++43-1-5055304
Phone: ++43-1-58801-6127
email: dorn@vexpert.dbai.tuwien.ac.at

Topic: Scheduling
Category: long

ROOMS
A Case-Based System for Scheduling Study-Courses

Adlla Bezirgan, Jiirgen Dom
Abstract

Case-based reasoning has become a promising concept for a lot of applications where traditio-
nal reasoning techniques fail because of complexity and knowledge elicitation problems. Al-
though, the problems that motivate case-based reasoning exist in scheduling too, no serious
atternpt has yet been made to show its benefits for this domain.

We use a simplified scheduling problem to show how case-based reasoning can be applied
to cope with complexity due to constraint interaction in scheduling. By means of an existing ex-
perimental system that was implemented in Prolog we demonstrate how scheduling heuristics
can be learned by explanation-based techniques. Although our system has only a very small
case base, we show how it will grow with further problem solving experience.

1 Introduction

Scheduling is the allocation of resources over a period of time in order to accomplish some jobs
and it differs from planning in that it does not select the actions that are necessary to accomplish
a job. Resources are typically those materials, tools, and individuals which are to be consumed
or used by an operation. Each resource is associated with a formal specification of its characte-
ristics and capabilities. In production process scheduling a job is usually identified with a pro-
duct which has to meet certain quality requirements [3]. However, in other domains like sche-
duling of crews [12], school classes [10], or vehicles routing [13] a job cannot be identified
with such a product.

With each job a process plan may be given that contains the necessary operations, a set of
explicit constraints concerning the sequence of operations, and a set of resource requirements.
When a number of jobs has to be executed together, the composition of their resource require-
ments imposes additional constraints on the sequence of operations which prohibit simulta-
neous use of nonsharable resources.

In scheduling valid sequences of operations are determined by explicit constraints in the
plans and implicit constraints imposed by the availability of the resources. The task of schedu-
ling jobs and resources is difficult for at least two reasons. First, we have to deal with the
combinatorial complexity due to multiple ways of job accomplishment {4]. Second, conflicting
objectives may hinder the definition of an undisputed optimality measure [15].

First attempts in operations research to overcome these problems were based on formal ma-
thematical models [3]. Models were developed for a wide range of tasks, but each was restric-
ted to applications with small numbers of jobs and resources. Beside the problem of complexity
the effort required to develop a model for a new scheduling task is very high.

As a consequence, many researchers propose heuristics to reduce the complexity. These are
mainly rules of thumb, that can be represented easily in form of production rules as described in
[1]. However, the problem with these heuristics is, that usually no generally accepted domain
theory or formal model exists. Human experts learn them by practising and often they are not
aware of any formal model of their knowledge. In expert system projects it is the most difficuit
problem to elicitate this knowledge [6]. Additionally, the knowledge elicitation process will ne-
ver be complete and therefore expert systems will react strange on the boundaries of their
knowledge. A further problem is the difficulty to maintain these rule-based systems.

Deep modeling of domains were proposed to overcome these problems. The knowledge in
these models is generic and every task may be solved using a causal theory about the domain.

-1-

ROOMS - A Case-Based System for Scheduling Study-Courses

With object-oriented representation [5] the modeling of jobs, resources, and their characteristics
is supported and constraint-based reasoning can be used to represent and process constraints
between jobs and resources as proposed in [2]. These techniques are good in describing physi-
cal knowledge about an application and they are easy to maintain. Nevertheless, the complexity
in search for a schedule is not reduced by them. Heuristics are still necessary.

Case-Based Reasoning (CBR) [14] combines advantages from heuristical and deep mode-
ling. It promises a solution for the knowledge elicitation and maintenance problems, because it
uses old cases to solve actual problems. Cases contain at least a description of a problem and its
solution. One of the main issues in CBR is the possibility to use analogous cases to find a solu-
tion for a problem that was never solved before by the system. In order to achieve such a func-
tionality old cases are stored in a structured way in a case base. Cases are attributed with their
characteristics and links between the cases are established to represent similarities between
them. To solve a problem, the case-based system (CBS) looks for the most promising old case.
Usually, some features of this case must be adapted to the actual problem. Then the system tries
to solve the problem with this adapted case. In contrast to approaches with deep modeling the
evaluation component must not search exhaustively for a solution, but applies the causal do-
main theory only to perform a simulation. If this evaluation is not successful the system ex-
plains the failure and repairs the plan by performing an exhaustive search in the causal model.
The repaired plan and the explanation of the failure are stored in the case base. The latter is used
to anticipate failures in the future.

problem Case case Case adapted case Case | ok
Retrieval Adaptation Evaluatdon !
T successful repaired failure

not repairable] ~ Case 3
Repair [®—————— Failure

Explanation

failure

Figure 1: The General Structure of a CBS

The application of CBR in domains like legal reasoning and diagnosis in medicine appears
straight forward, because these domains are often based on cases. When a lawyer or a doctor is
confronted with a new case, he uses his experience gained from previous cases.

In scheduling theory the concept of cases is unknown and therefore the adaptation of CBR
appears more difficult. On the other hand, we believe that human schedulers use something like
cases to overcome the inherent complexity in scheduling. For example, a human scheduler may
have successfully scheduled several important jobs in the morning. Other important jobs that he
scheduled in the afternoon failed. Without using any causal theory of the domain he will sche-
dule the next important job in the morning by using his experience.

We have developed a CBS that shows what cases can be in scheduling and how the different
components of a CBS could be constructed and interact. We discuss how such a CBS is to be
used to overcome existing scheduling problems. Our CBS operates in the domain of study-
course scheduling and is written in Prolog.

We are not aware of any comparable work in the literature although there are some people
trying CBR for scheduling. SMARTDlan [9] is announced, but no results are known to us.
Some systems like TRUCKER [11] have some scheduling flavor, but emphasize planning.
Clavier [7] as the only serious candidate is not comparable either since a very specialized do-
main is used where cases seem obvious.

ROOMS — A Case-Based System for Scheduling Smdy-Courses

2 The Study-Course Scheduling Problem

Our problem comes from a simplified view of organizing study-courses. The organizer has at
his disposal a number of lecturers and course rooms. In scheduling study-courses he has to
take into consideration constraints on the sizes of and the equipment in the rooms and on the
abilities and the availability of the lecturers. There are five main entities in our domain:

1. We use a bounded, linear, discrete time model with a one hour granularity and a fixed zero
point. Intervals are represented by sorted lists of time points and may have holes in them,
€.g. the zero point being 1.1.1992 00:00, the time point 61 represents 3.1.1992 [13:00~
14:00) and [61, 62, 64, 65] is a valid interval.

2. There is a fixed number of course rooms, each with a unique name, a fixed capacity and
some equipment like a projector or a blackboard, e.g. room(rl, 50, [projector, video}).
Each room has a utilization rate defined as the ratio of the number of hours it has been used
in a given interval to the interval length.

3. There is a fixed number of lecturers, each with a unique name. Each lecturer can teach
certain subjects and has a calendar indicating his availability, e.g. lecturer(amanda),
canTeach(amanda, [math, networking]), hasTime(amanda, [4, 5, 6, 7,...D. Lecturers also
have utilization rates defined like the ones for rooms except that the number of hours of
availability within the given interval is used as divisor.

4. A courses' list contains all the courses already scheduled. Each course entry has a unique
name, the scheduled time, the lecturer and the room used, e.g. [course(mathl_92, [4, 5],
amanda, r1), course(programming_92, [5, 6], john, r3)].

5. A requirement is a triple of constraints that the schedule of a course has to satisfy. There
are time, lecturer, and room constraints, e.g. [tdur(Time, 2), leq(Lect, amanda), rmcapbet-
ween(Room, 20, MAXCAP)], where tdur(Time, 2) means that we have a two hour course,
leq(Lect, amanda) means that the lecturer has to be amanda and rmcapbetween(Room, 20,
MAXCAP) means that the capacity of the room should be at least 20.

An entry in the requirements’ list contains the name of the course for which these are the requi-
rements, the requirement triple and an optional list of search strategies to be used, e.g.
“minimally utilized lecturer first”. The requirements' list contains an entry for the current pro-
blem and a history of all the requirements used in constructing the courses' list. This will be
shown to be needed to do certain analysis on scheduling decisions made earlier.

The constraints used in a requirement are pure conjunctions of constraint primitives. These
primitives for the three constraint classes are given below.

Please note that in the descriptions given below output parameters have an initial upper case
letter and input parameters have an initial lower case letter.

Time: tdur(Timelnterval, dur): The 'Timelnterval' should contain 'dur' time points.

tbetween(TimelInterval, lowerBound, upperBound): All time points in the
'Timelnterval' should lie between 'lowerBound' and
'upperBound'.

tclosed(Timelnterval): The 'Timelnterval should not contain holes.

trepeat(Timelnterval, inTimelnterval, firstTimeInterval, stepTime): The
‘TimelInterval' should contain the 'firstTimeInterval '
and every time point at a distance of a natural multitu-
de of 'stepTime' from any point in the
'firstTimelnterval' within the 'inTimelnterval'.

ROOMS —~ A Case-Based System for Scheduling Study-Courses

Lecturer: leq(Lecturer, lecturer): The 'Lecturer’ should be 'lecturer’.
canTeach(Lecturer, subject): The 'Lecturer' should be able to teach the 'subject’.

Room: rmeq(Room, room): The 'Room’ should be 'room'.
rmcapbetween(Room, capLower, capUpper): The capacity of the '"Room' should
lie between ‘capLower' and 'capUpper'.
rmequip(Room, equipmentList): The 'Room’ should have all the equipment in the
‘equipmentList’ in it.
The domain is described in a subset of Prolog. It contains all the primitive predicates mentioned
above and some other supporting primitive predicates. A conjunction of these primitives may be
used to build clauses for compound predicates. Prolog variable binding is used in parameter
passing and a predicate may have several clauses. There is no ‘cut' and no negation primitive in
the language. Usually no recursion is used at this level of description. All language primitives

are free of side effects.
The task is to find a schedule for a not yet scheduled course so that

« the requirement for it is satisfied,

* the chosen room is not used for two different courses at the same time,

+ the chosen lecturer is not scheduled for two different courses at the same time and
» heis available at the scheduled time.

The main sources of complexity are

* interactions of constraints on valid schedules. Having chosen lecturer and time there
may be no room available.

* influence of a scheduling session on future sessions. Choosing an unnecessarily large
room may make it impossible to schedule a course in future for which this room would
be needed.

These interactions rule out exhaustive search in the space spanned by the dimensions of room,
lecturer, and time as a permanent solution since:

* the search space is to large (O(dim(room) * dim(lecturer) * dim(time_interval))),

* constraint interactions often lead to invalid schedules forcing the search to be continued
(The problem is not decomposable along the three dimensions),

* there is no simple way of optimizing the search process (In our case this is just an as-
sumption. We plan to implement an optimized non-case-based solution for comparison
purposes),

moreover

« exhaustive search doesn't solve the problem of the system influencing itself.

Removing one of the first three characteristics above would lead to an improved performance of
the search process. We try to remove the third property by using domain knowledge for optmi-
zation. The fourth characteristic is dealt with by applymg and learning search heuristics which

we call strategies.

Please note that we have a wcll defined problem and a complete and consistent domain
theory. For now this is the class of problems we consider. We do not deal with problems like
that of open-textured descriptions or incomplete domain theories. Moreover, we are satisfied by
finding any solution and do not look for a good one in any sense.

ROOMS - A Case-Based System for Scheduling Study-Courses

3 The Case-Based Approach

The main idea in dealing with complexity due to constraint interaction is to avoid exhaustive
search by partitioning the search space along dimensions derived from the domain theory. Each
part in such a partition is called a concept. The partitioning we have in mind has the following
characteristics.

* The concepts are not known or not constructible at the time of system implementation, e. g.
because there are too many to be considered manually. So dynamic concept acquisition is
needed.

+ Either the solutions of all problems belonging to one concept are easily transformable into
each other or there is a distinct problem-solution-pair from which the solutions of all pro-
blems belonging to the concept can be easily derived (adaptability criterion).

* Problems for which a solution can be found by the same specific way of applying domain
knowledge, i.e. having the same causal configuration belong to one concept.

We use a CBS to achieve such a partitioning. Each case represents a point in the problem space
to which a solution has been calculated by exhaustive search. Hereby a case contains at least the
description of a problem and its solution. Given a new problem the retrieval component delivers
a case from which the adaptation component can most probably generate a solution. The adap-
tation component performs local search and simple transformations on the old solution in the re-
trieved case [8] to propose a solution to the new problem. The proposed solution is evaluated to
see if it really is a solution to the new problem. If it is, we are finished. Otherwise, the explana-
tion component does a causal analysis to find the reason why the proposed solution failed. The
explanation usually consists of some features of the problem predicting the failure and a con-
straint, whose violation led to the failure. It then finds by exhaustive search a valid solution to
the new problem and alters the case-base so that future cases with the same problem do not lead
to an exhaustive search. It does the latter by using the features in the explanation as an index. It
also puts the violated constraint into the new case to guide local search in adaptation using this
case in future. Note that in our system the repair component is replaced by a component doing
exhaustive search.

From the above description you can see that the concepts to be acquired are implicitly defi-
ned by the adaptation component. Those problems to which a solution can be constructed by
the adaptation component from a certain case build a concept. For the further discussion we in-
troduce a relation r(X, X') which holds between two cases X and X' if and only if X can be
adapted to become X', i.e. r(X, X) = adapt(X, Y, X', Y) and Y e solution(X) and Y' € so-
lution(X") and (X, Y) € case-base. A concept is then defined by ¢(X) = {X' I (X, X")}. The
language to be used in concept formation is the causal language of the explanation component.

Some requirements for the CBS are:

» The frequency of concept reuse should be exploited to improve efficiency and save space,
i.e. cases used often should be found faster (improvement through exercise) and cases not
used frequently should be abolished (forgetting when not used).

* After having been used to solve a certain finite set of problems the system should be able to
adapt successfully for every further problem for a given fixed domain.

* Requirements on the retrieval component:

«IfX e C(X(,]d) then retrieve(X, Xo]d)-
+ The retrieval should be fast.

* Requirements on the relation R and the adaptation component.

* The system should learn from its own problem solving experience. Specially no problem
should be solved twice by exhaustive search. This is tantamount to demanding reflexivity
of the relation R.

ROOMS - A Case-Based System for Scheduling Study-Courses

* Other characteristics of the relation R and hence of the adaptation component are desirable
but hard to guarantee. Having symmetry and transitivity would lead to equivalence clas-
ses of problems and to disjunct concepts. To guarantee these characteristics one would
have 10 redefine R and impose some tough restrictions on the domain and the system. We
did not do this. Thus in our system the concepts are overlapping and the acquired con-
cepts are dependent on the sequence of the problems the system is confronted with.

* The average number of elements in a concept should be large (average concept size =
adaptation breadth big) and the total number of concepts should be small. This is to keep
the maximum size of the case-base small. This is also accomplished if there are many
concepts but only a small subset is required for a certain application environment.

* The adaptation should be fast.

* The old solution should be changed as little as possible to avoid side-effects.

* Requirements on the evaluation component:
* Should support failure explanation by delivering an evaluation trace.
* The evaluation should be fast.

* Requirements on the explanation component:

* To enable the retrieval component to be fast the explanations should preferably be based
on superficial features of problem descriptions using derived features only when necessa-
ry.

* Given X' ¢ c(X,1g) and retrieve(X', Xo14) let p(X) be a predicate characterizing features
predicting the failure. Then p(X) should be such that (V X: X e ¢(Xo1d) = —p(X)) and
p(X") (demanding instead of p(X") (V X: X € ¢(X") — p(X)) would lead to concept
discriminating explanations. However, since we have overlapping concepts such explana-
tions cannot be built).

* The explanation may be slow.

The self-influencing problem is solved to some extent by analyzing earlier cases to learn sche-
duling strategies for avoiding problems due to self-influencing in future. This is a form of ex-
planation-based learning. By this mechanism strategies such as “smallest room first” can be
learned, after being unable to schedule a course because a room of the required size is occupied
by another course for which a smaller room would have been sufficient and available.

4 ROOMS

A case-based system has been designed that satisfies the above requirements. The components
of this system are described below.

The case-base is a structure for organizing a set of cases. ROOMS case-base is organized
as a binary tree, where the internal nodes contain clauses and the leaves contain cases. Arcs
between nodes are marked by true resp. faise. The heads of the clauses have problem descripti-
Ons as parameters, i.e. ‘courseList’, 'requirementList’. The Prolog representation is as follows.
cb(nodeContent, trueBranch, falseBranch) where nodeContent is either a clause or a case. The
predicates in the nodes are pure conjunctions of negated and non-negated primitives defined by
the explanation component. Initially the case-base is empty. The first solution is constructed by
exhaustive search and the first non-empty case-base is a tree consisting of one leaf node con-
taining the first case.

A case contains a scheduled course, the problem description consisting of courses' list and
requirements’ list belonging to the scheduled course, a list of the cases successfully adapted or
adaptable from this case or the number of such cases and the age of the last such case, a list of
the strategies used in finding the solution, e.g. “minimally utilized lecturer first” or “smallest
room first”, and a list of constraints, e.g. “choose only available lecturers” or “if the courses for
a lecturer are subsequent choose only near rooms”. The cases are given sequential case num-

ROOMS — A Case-Based System for Scheduling Study-Courses

bers which reflect the age of a case. A case is represented by case(caseNo, courseList, require-
mentList, resultCourse, supportingCaseList, strategyList, constraintList) where

1. ‘caseNo' is as explained above. This is used in “forgetting when not used”,
2. 'courseList' and 'requirementList' represent the problem,

3. 'resultCourse’ represents the solution to the problem,
4

. 'supportingCaseList' represents a set of problem-solution pairs adapted or adaptable suc-
cessfully from the the current case. This is needed to make it possible to check if a new con-
cept subsumes an old one and can hence replace it. It further serves the purposes of
“forgetting when not used”. If this list gets very large all supporting cases are removed and a
count of the supporting cases plus the caseNo of the last supported case is used instead.
Cases in this list do not have a supportingCaseList component.

5. strategyList is as explained above. Some strategies are predefined and may be used in the
problem description, e.g. “minimal utilization”, others are learned by the system while ex-
plaining failures, e.g. “smallest room first”.

6. constraintList is as explained above. It is created by the failure explanation component and
used by the adaptation component to guide local search.
Note that the calendars of the lecturers are taken to be fixed predicates to demonstrate the dif-
ferent treatment of fixed and variable constraints. These could be included in the problem des-
cription and hence in the cases too.

Each case ever processed by the system is contained at most in one place in the case-base.
An example case:

case(112, [...],
[[c140, (tbetween(Time, 18, 29), tdur(Time, 3), tclosed(Time),
canTeach(Lecturer, math),
rmcapbetween(Room, 160, MAXCAP)),
[min(utilization(Lecturer))])....],
course(c140, [20, 21, 22], amanda, r3), [], [J, []).

Figure 2: A Sample Case

The retrieval component retrieves for a given problem description a case from the case base.
The retrieval is done by a binary search algorithm. In each internal node the predicate found
there is evaluated using the current problem description as the actual parameter. These predica-
tes are constructed by the explanation component. Two problem descriptions both satisfying
such a predicate are similar in some sense (avoiding the same problems, being syntactically
similar in structure and parameters,...). Depending on the result of the evaluation the arc mar-
ked true resp. false is traversed to get to the next node. The process terminates when a leaf node
is reached. The leaf node contains the case that is passed on to the adaptation component. For
example given an appropriate courses' list (e.g. the same as above) and the requirements' list
[[c231, [tbetween(Time, 25, 30), tdur(Time, 2), canTeach(Lecturer, networking), rmcapbet-
ween(Room, 100, MAXCAP), []],...] case 112 given above could be selected for adaptation.

The adaptation component does a fast and mostly syntactic analysis of the new problem
situation and of its differences to the old one. It has rules for changing the old solution depen-
ding on this analysis. The analysis is concerned with the structure of the time-, lecturer- and
room-requirements and with the values of parameters of primitives (structural and parametric
adapration). The adaptation rules are not guaranteed to generate a valid solution to the new pro-
blem. Fig. 3 shows some of these rules.

ROOMS - A Case-Based System for Scheduling Smdy-Courses

ROOM-RULE 4:
IF there are rmmincap and rmequip primitives in the requirement AND
(the room-requirement is not a structural subset of the old requirement OR
the parameters of a primitive in the new and old requirement are not equal)
THEN
IF the room in the old solution fulfils the room-requirements
THEN use it as the new room
ELSE use any room as the new room

TIME-RULE 7:)
IF there is a tbetween primitive in both the new and the old requirement
THEN move the old case temporally to the new time (add the difference of the -
lower bounds of the new and old tbetween to all time points in the old case)
before using any other rules

|
)
:
‘
¢

Figure 3: Adaptation Rules

If there are any search strategies in the requirements’ list or in the old case a local search for the
relevant parameter is performed using these strategies. If by this a strategy conflict arises the
strategy in the requirements' list is used. If there are any constraints in the old case these are
used in local search, too. If there is any parameter value satisfying the constraints, it is found
and used. Otherwise any value is used causing a failure later on and thus triggering the learning
mechanism. Since the search is local this is a fast process.

For example case 112 above could be used by the adaptation component to find a schedule
for the course c231 above. The TIME-RULE 7 would be applied first. One rule saying that if
the old lecturer can teach the required subject than he should be selected for the new solution is
then applied. After several such adaptations we could get the proposed solution course(c231,
[27, 28], amanda, r3).

The evaluation component checks all the constraints on the components of a solution. It
contains the domain theory written in a subset of Prolog and processed by a meta-interpreter.
Given an instantiated solution variable this works as a constraint checker. The explanation com-
ponent calls the same meta-interpreter with an uninstantiated solution variable to do exhaustive
search for solutions. The meta-interpreter also returns derivation paths which are needed for
failure explanation. If the evaluation is successful the case is asserted into the case-base as a
supporting case. '

The explanation component is used to process cases for which adaptation failed. This is
recognized by the evaluation component. First a solution to the problem is found by exhaustive
search. Then the old case and its supporting cases are tested to check if they are adaptable from
the new case. If all of them are adaptable then the old case is replaced by the new one and the
old case becomes a supporting case. Of course this is only possible if the supporting cases have
not yet been replaced by their number to save space in the case-base.

If such a concept subsumption is not possible a set of features that lead to the failure is loo-
ked for. In order to find these features a causal model of the scheduling process is used. The
node in the case-base containing the old case is then split in two, the node itself becoming an
internal node. In this internal node a predicate is asserted that checks a given problem descrip-
tion to find out if it has the features that lead to the failure. The appropriate successor node will
contain the old case the other the new case. A violated constraint found responsible for the fai-
lure is also put into the new case.

If in the first step a solution cannot be found even with exhaustive search, then a trial is
made to develop a search strategy. This is done by looking at possible mistakes made in past
scheduling sessions that lead to the current failure. If a strategy can be developed it is asserted
into the strategy list of the old case in the case-base which is found to be the culprit. If no stra-

_8-

ROOMS — A Case-Based System for Scheduling Study-Courses

tegy is found, no change is made. In any way, since no solution is found to the new problem
an error message is issued and the case-base is left unchanged otherwise.

The case-base is cleaned up regularly, e.g. every time after processing a fixed number of
cases. Cases with relatively few supporting cases and cases which have not been used for a
very long time are deleted from the case-base. This is done by removing the appropriate leaf.
The sibling tree of the leaf is moved up one node deleting the internal father node of the leaf.
Another cleanup operation is the replacement of supporting cases by their number and the
caseNo of the last supported case. This is done when a case has too many supporting cases.

5 Conclusion

We have developed a CBS for a simplified scheduling problem that demonstrates how case-ba-
sed reasoning can facilitate scheduling. The system is implemented partially at the time of wri-
ting this paper and will probably be completely implemented by publication time. The case and
case-base representations, the retrieval component, and the evaluation component are fully im-
plemented, the adaptation component is partially implemented.

Besides the implementation we have shown how cases may look like in scheduling. There
are other scheduling models in which cases would look different. For example, in many appli-
cations it would be necessary to regard requirements for a set of jobs simultaneously.

When such a simplified scheduling system like ours is used, it will soon reach its limits. For
example, if a lecturer is scheduled for two subsequent courses in different rooms, a problem
may occur that the distance between both is too far. In such a case a new concept “distance of
rooms” must be integrated in our domain model. Then the system can learn again new cases,
constraints, and strategies for this extended domain model.

Our system is able to learn new scheduling strategies and constraints. It overcomes thereby
problems that occur in traditional expert systems during knowledge elicitation. If such a CBS is
used for a new application, only the causal domain theory must modeled. Heuristics to improve
the solution process are learned automatically by the system. Moreover, the system only learns
heuristics that are necessary and singular solutions are thrown away if they are not used for a
long time.

In contrast to a general CBS our system is restricted in some aspects. If the CBS should be
applied to a domain such as crew scheduling, it must be extended in a broader sense, because
concepts in our adaptation component are not generic enough to deal with groups of resources
(crews). Another problem that cannot be solved by our system is the deletion and movement of
courses that were scheduled earlier. To solve the latter problem we have to use experience over
a lot of old cases.

One featre that appears very important to us for the retrieval component is the use of fuzzy
logic to represent similarities berween cases. Since we use discrete discrimination of cases, we
do not have a measure how similar two cases are. Another aspect that we will investigate is
how this retrieval component may be implemented on a commercial data base system. A further
not yet studied aspect in the CBS are user interfaces for these systems.

Last but not least an important task will be to make performance tests which compare soluti-
ons implemented in a rule-based system with a solution with our CBS. Beside the advantage of
easier knowledge acquisition, we hope that we also gain the advantage of finding solutions fa-

ster for most given requests.

ROOMS — A Case-Based System for Scheduling Study-Courses

6 References

[1}] G. Bruno, E. Antonio, and P. Laface. A Rule-Based System to Schedule Production.
IEEE Computer, Vol. 19, pp 32-39, 1986.

[2] Mark S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
Pitman, London, 1987.

[3] S.French. Sequencing and Scheduling: An Introduction to the Mathematics of Job Shop.
Chichester, Ellis Horwood, 1982.

[4] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness.Freeman and Co., 1979.

[51 Tim J. Grant. An Object-Oriented Approach to Al Planning and Scheduling. Proceedings
of the Seminar: Expert Systems and Optimization in Process Control, Uxbridge, UK, pp
11-27, 1985.

[6] Frederick Hayes-Roth, Donald A. Waterman, Dou glas B. Lenat.

Building Expert Systems: A Tutorial. Addison Wesley, 1983.

[7]1 Daniel Hennessy and David Hinkle. Initial Results from Clavier: A Case-Based Autoclave
Loading Assistant. Procceedings of the DARPA Case-Based Reasonin g Workshop, pp
225-232, 1991.

[8] Janet Kolodner, Christopher Riesbeck. CBR Tutorial: MA2. 11th International Joint
Conference on Artificial Intelligence, Detroit, Michigan, 1989.

[9] Phyllis Koton. SMARTDplan: A Case-Based Resource Allocation and Scheduling System.
Procceedings of the DARPA Case-Based Reasoning Workshop, pp 285-289, 1989.

[10] Mark Mallett. Sorting out Schedules.

BYTE, No. Dec, pp 263 — 268, 1991.

[11] Mitchell Marks, Kristian J. Hammond and Tim Converse. Planning in an Open World: A
Pluralistic Approach. Procceedings of the DARPA Case-Based Reasoning Workshop, pp
285-289, 1988.

[12] Emesto M. Morgado, and Jodo P. Martins.

Scheduling and Managing Crew in the Portuguese Railways.
Proceedings of the World Congress on Expert Systems, pp 377-384, 1991.

[13] Jean-Yves Potvin, Guy Lapalme and Jean-Marc Rousseau.

Integration of AI and OR Techniques for Computer-Aided Algorithmic Design in the
Vehicle Routing Domain. '
Journal of the Operational Research Society, Vol. 41, No. 6, pp 517-525, 1990.

(14] Christopher Riesbeck, Roger C. Schank. Inside Case-Based Reasoning. Lawrence
Erlbaum, 1989.

[15] Stephen F. Smith, Mark S. Fox and Peng Si Ow.

Constructing and Maintaining Detailed Construction Plans: Investigations into the
Development of Knowledge-Based Factory Scheduling Systems.
Al Magazine 7(4) Fall, pp 45-61, 1986.

-10 -

