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Abstract

Monitoring concurrent systems by observing certain well defined events with respect to
their occurrence order is an accepted way of investigating their behavior. To analyze real-
time systems it is necessary to keep track of the occurrence times and possibly additional
information (called attributes), which is extracted from the system at occurrence time.
To accomplish this task, we introduced Timed Attributed Fvent Traces (TATs) as a means
to describe the observed system behavior in a concise form ([St593]).

In this paper will introduce sematics and syntax of the specification language GOLD
MINE which allows to define operations on TATs in a flexible but nevertheless simple
way. Using GOLD MINE, a user can specify particular high-level viewpoints on the system
activity appropriate for the analysis of a certain timing problem. This task is accomplished
by filtering out meaningless events and by combining certein sets respectively sequences
of events to form new events. The semantics of GOLD MINE is defined strictly formally
by using the calculus of TATs introduced in this paper. (This work is part of the project
VTA (Versatile Timing Analyzer')).

ISupported by the “Fonds zur Forderung der wissenschaftlichen Forschung™ under grant P8390-PHY
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1 Introduction

Designing both hard and soft real-time systems is a responsible job and the intimate
knowledge of the timing properties of existing real-time systems is essential (c.f. [Sch93]).
To obtain the necessary information, which cannot be derived in an analytically way
because a determination is not possible, the system in question has to be monitored.

Monitoring can be defined as extracting dynamic information concerning a (compu-
tational) process, as this process executes. This can be performed by identifying, observ-
ing, and (possibly) recording characteristic events in the system under study. Therefore,
monitoring provides an indication what happened, thus serving as a prerequisite to as-
certaining why it happened.

The analysis of the timing behavior of real-time systems can be performed in a three

step approach:

1. Monitoring the system’s behavior during normal operation by observing the events
occurring (called primitive events). To allow a meaningful analysis attributes can
be attached to each occurrence of such an event. This monitoring yields an event
trace containing low level information characterizing the observed activity;

2. Transforming the representation of the observed behavior by constructing new events
on the basis of the events already in the trace, i.e. change the level of abstraction
from primitive events and raw data to a suitable point of view.

3. Analyze the event traces with a suitable tdol, e.g., a data-flow systems. This in-
cludes the computation of moving averages, determine statistical measures like mean
values, standard deviations, or distribution functions.

This approach is known as FEvent Based Behavioral Abstraction (EBBA) invented
by Bates and Wileden ([BW83]) to debug concurrent systems. Applying this method
produces information describing the system under study at various levels of abstraction
each of them adequate for the analysis of certain characteristics.

To analyze real-time systems it is not sufficient to keep track only of the relative
ordering of events but also their occurrence time and possibly additional information
(called attributes), which is extracted from the system at occurrence time, has to be
observed. To accomplish this task, we introduced Timed Attributed Event Traces (TATs)
as a means to describe the behavior of the monitored system in a concise form ([St593]).

In this paper we will show, how Timed Attributed Event Traces can be used in com-
bination with the ideas of the Event Based Behavioral Abstraction Approach to analyze

L f Projekt VTA { j Institut fiir Automation, TU Wien TU




1 Introduction , 3

timing properties of real-time systems. In order to integrate the two approaches, a calcu-
lus of TATs (to obtain higher levels of abstractions) has to be defined. This framework
should meet the following requirements:

Flexible. There should be no (meaningful) operation on a TAT that cannot be specified.

Portable. The elements of the calculus should be independent of particular applications,

hardware-, or software-platforms.

Reusable. Any specification of a transformation represents a measurement specification
(e.g. interval duration) which should be reusable with other applications.

User friendly. Using the calculus of TATs should be easy to learn and easy to use.

We will introduce the specification language GOLD MINE which allows to define
operations on TATs in a flexible but nevertheless simple way. Using GOLD MINE, a user
can specify particular high-level viewpoints on the system activity appropriate for the
analysis of a certain (timing) problem. In this paper we will show that GOLD MINE meets
the requirements listed above. The paper is organized as follows:

In Section 2 we will investigate related models and their contribution to this paper.
Section 3 discusses the requirements of an event-specification language as a consequence
of Section 2. In Section 4 the basic concepts of our approach (state-transition systems
with memory) are introduced. The notion of Compound FEvent Gencrators, which is the
object-oriented extension of the system described in Section 4, is defined in Section 5.
The specification language GOLD MINE, which is a realization of these concepts, and its
applications are discussed in Section 7.

’ f Projekt VTA t } Institut fiir Automation, TU Wien TU




2 Related Work

Many papers on the topics trace theory and monitoring and dcbugging of concurrent
systems have been published in recent years. They span a range from pure theoretical
work to very specific application oriented publications. A good survey on debugging and
monitoring systems can be found in [MH89]: some of the following trace-transforming
systems are discussed there, also.

This section provides an overview of the publications on trace theory and system
monitoring relevant to our work. We present the approaches and investigate how they
fit to our requirements. Most of the space is dedicated to the Event Based Behavioral
Abstraction Approach and the corresponding event definition languages which serve as
base for our specification language GOLD MINE.

2.1 Trace Theory

Trace Theory emerged from the need of a formal description of concurrent systems.
The basis of this theory, called the alphabet (A), is the set of events the system under
study can engage in. A trace is a sequence of symbols of this alphabet each standing for
a particular observed occurrence of an event. Not all words over the alphabet (denoted
by A*) are traces of a particular system.

C.A.R. Hoare introduced in [Hoa85] a formal system, called Communicating Se-
quential Processes (CSP), which allows to describe the behavior of every single processes
of a concurrent system by the events it may engage in. A system of concurrent processes
cannot be described in terms of a single trace but by a set of possible traces. The de-
scriptions of all participating processes together with formal rules of synchronization can
be used to produce the corresponding traces of a particular system.

Trace Theory introduced by A. Mazurkiewicz (see [Maz86] or [AR83] for a survey)
attacks the problem of transforming traces with respect to the characteristics of the un-
derlying system. In this theory equivalence classes of traces are identified by using a
equivalence relation induced by the independence relation. According to Mazurkiewicz
a system is characterized by its alphabet A and an independence relation /. Like in
the theory of CSPs the alphabet A is the set of all events the system can engage in.
The independence relation [ is a binary, svmmetric relation and a pair («.b) of events
a,b € Ais element of [ if and only if they are independent in the system under study.
The equivalence relation =; is defined in the following way:

{ [ Projekt VTA [ } Institut fir Automation., TU Wien TU
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ab=rba = abe Aand (a,b)el (1)

and two traces 1, 7 € A™ are equivalent (7, =; 72) if and only if there exists a finite

sequence of traces

(t17t27"'7tn)5 n Z O, (2)
such that r, = ¢; and ¢, = 7 and for each ¢, (1 < 7 < n) there are traces u,v € A*
and symbols a,b € A with (a,b) € [, with

tiy = uabv, wubav =t;. (3)

The quotient algebra (A*,0,€)/=; with the concatenation operation o, which may
be commutative for some symbols, is a monoid.

Although, trace theory provides a formal and well understood system for investi-
gating the behavior of concurrent processes, it is not quite realistic because of the lack
of attributes. We think that in many cases the independence relation I (and as a result
of this the dependence relation D = A x A\ [) cannot be formulated without respect
to certain attributes of events. For example, the sending of a message must happen be-
fore the receiving of the same message, but sending and receiving different messages is
independent. Consider the following example:

Example 1
A producer task issues s-events every time it sends a message to a consumer task, which

produces a r-event on the reception of each message. The following two traces may be
observed while this system is executing:

(srssrsrr) and (ssssrrrr)

The traces could be produced by different executions of the tasks given above using
the same set of input data! The first trace may be interpreted as the result of running
the two tasks in round robin fashion and the second trace may be caused by running the
producer task at a higher priority than the consumer task.

Although these traces are obviously equivalent in their effect in the real world, they
are not equivalent in trace theory because the pair (s, r) must be in the set D! This
problem is imposed by the lack of attributes. Only those (s, r) pairs concerning the same
message are causally related and therefore must not be swapped! a

Not only because of the lack of attributes and timing information in the model but
also because their is no means of abstraction (creating new events on the basis of existing
ones) these two theories are not suitable for analyzing real-time systems.

’ ( Projekt VTA } J Institut fir Automation, TU Wien TU




2  Related Work 6

2.2 Event Based Behavioral Abstraction

A more practical approach is used by Bates and Wileden (Event Based Behavioral
Abstraction [BW83], [Bat88]) to debug concurrent systems. They invented an FEvent
Definition Language (EDL) to specify transformations on an existing event trace. The
aim of their approach is to allow the user to look at a system from different viewpoints
appropriate for analyzing a particular problem. To accomplish this task, already existing
events are combined (clustered) or filtered to obtain suitable event traces. The trace-
transformation operations are specified in EDL, which allows the user to formulate the
clustering and filtering operations using an is-clause, a with-clause and a cond-clause.

In the is-clause the user specifies the timing dependencies of the events constituting
the high-level event. This is done by using an event expression which combines events

with the following operators ([BWS83]):

catenation | ' | a’b | a b-event must follow an a-event.

shuffle " | a"b | both events a and b must occur, but the ordering is not
relevant.
alternation | | | a| b | either an a- or a b-event must occur.

repetition * a® | event a may occur zero, one, or more times.

repetition + | at | event «a may occur one or more times.

In [Bat88] a slightly different notation for event expressions (with the same meaning
as the one above) is introduced.

In the with-clause the user specifies the attributes of the event being defined. The
attributes bound to the instances of event expression (is-clause) constituents are used as
operands in the assignment expressions which determine the values of the new attributes.

The cond-clause is used to define relational expressions over the attributes of event
expression constituents to places constraints on them. Only events satisfying the re-
strictions in the cond-clause take effect in the event-expression. This realizes the above
mentioned filtering mechanism.

In addition to the problems discussed by Bates and Wileden themselves, there are

the following unanswered questions:

® When does a high-level event specified by an is-clause like @’ b* occur? In general,
every event expression ending with a repetition operater is not determined. Event
expressions like ¢* can occur never or even ever!

o [t is not specified if the event sequence ach satisfies the EDL expression a’ (b | (¢’ d)).
In {Bat88] the notion of anonymous subexpressions, which are matched against the
event trace simultanousely by the recognizer, is introduced. Therefore, the example
expression can be divided into («’S;) with S; = (b | S2) and Sy = (¢’d). In this
case the sequence ach matches S and thereby (¢’ S,). With this definition there is

no chance (if neccessary) to define that the sequence (¢’ d) should be *atomic".

{ f Projekt VTA ’ } Institut fir Automation, TU Wien TU
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Another problem arises with the access to attributes. If there are more instances of
one particular event are required i an is-clause, they must be indexed to distinguish
their attributes in the with-clause. It is not specified what happens if two {(or more)
events occur at {exactly) the same time, 1.e. they have the same timestamp.

e Moreover, it is not defined. how the attributes of an event with an repetition operator
can be accessed. The indexing operator works fine with single occurrences like
a[l]" b’ a[2] but how can the attributes of the last (first) occurence of the event & in
the expression @’ b*’ ¢ be addressed in the cond-clause or the with-clause? There are
neither syntactical rules to specify the desired attributes nor semantical definitions
to solve this problem.

e Event definitions written in EDL are not portable because they are formulated using
specific events existing (probably) only in the actual system.

e The implicit timestamping of instances looks rather mystical. It is allowed to read
the timestamps to determine new attributes, but it is not mentioned if it is legal in
EDL to assign a value to the timestamp attribute of a high-level event. The ability
to determine the timestamp of a newly generated event instance would introduce
tremendous problems (probably impossible to solve) to the event recognizer.

Although this list looks rather long, we think that this is an excellent approach and.
therefore, we adopted it for our system.

The approach presented in [WHS88|, [HWS88], and [HW90] is based on the one of
Bates and Wileden. Primitive events produced by the monitored system and global events
defined by the user are distinguished. Although only the relative timing of the events
(according to Lamports happend-before relation, [Lam78]) is observed, primitive events
are tumestamped with a virtual occurrence-time. By definition, a global event inherits
the occurrence-time of the last event satisfying it. The event specification language is
augmented with a negation operater @ to indicate that an event should not occur in a
sequence of other events.

In [Ros91] the Task Sequencing Language (TSL) is used to specify concurrent sys-
tems. TSL is an event description language like (and inspired by) EDL of Bates and
Wileden. As an additional feature properties (global monitor variables) can be set or
tested at the occurrence time of events. The problem of concurrent testing and setting of
the same properties in different event descriptors is solved by the definition that all test-
ings must be performed before new values are assigned. In TSL only the happend-before
relation ([Lam78]) is relevant for the ordering of events, no timing information is available
(at least not to the user). The language is designed to be integrated in Ada source code

and during runtimte the monitor checks the real system behavior on the specification.

Data Path Erpressions (DPFs) are used in [HK90] and [PHK91] to model the in-
tended behavior of concurrent systems. In this approach there are two sequencing oper-
ators: one for sequences of events which are causaly dependent and another to express
that one event preceeds the other one but both events are independent of each other. The

} { Projekt VTA l 1] Institut fir Automation, TU Wien TU




2 Related Work 3

model is designed to preserve only the relative ordering of events according to Lamports
happend-hefore relation; no timing information can be accessed.

A similar approach is presented in [RRZS8]. A composition language for defining
compound events using a Boolean predicate interrelating the state of several other events
1s provided. According to Rubin et al. this language gains the full power of path rules.

2.3 Event-Action Paradigm

Lumpp et al. view the act of monitoring as the association of (process level) events
in the monitored system with actions to be taken in the monitoring system ([LCSM90]
and [MLC90]). This imposes the (useful) distinction between active processes (in the
target system) and reactive processes (in the monitoring system). The reactive processes
perform one or more actions in response to an event occurrence.

The user specifies which events are to be observed, the actions to be taken upon
the detection of events, and optionally a binding of events to actions. This binding may
be changed dynamically. The montoring system also allows to define compound events
using the sequencing operators unordered, sequential, strictly sequential. and and.

For the monitoring system of their instrumented testbed Bhatt et al. (in [BGR87])
followed the event-action paradigm, too. They also consider compound events as a suitable
mechanism of abstraction, but this is not amplified.

The syntax introduced in [HK90] provides a construct to attach a statement block
to every event. These statements are treated as one action which is to be exectuted on
every occurence of the corresponing event.

From our point of view, the idea of a strict seperation of testing an event expression
and executing actions on the occurrence of events is essential. This enables the user of
a monitoring system to specify arbitrary changes of the monitor variables (representing
the actual state) with every single occurrence of an event and, therefore, eliminating the
problem of accessing attributes of events with a repetition operator mentioned above.

2.4 Relational and Logical Approaches

Snodgrass argues ([Snod8]) that a historical database, an extension of a conventional
relational database, is an appropriate formalization of the information processed by a
monitor of a complex system. In this approach the user is not dealing with data actually
stored in a database, moreover, the user is presented the conceptual view that the dynamic
behavior is available as a collection of historical relations.

A global clock in the system is assumed. so that every event can be timestamped on
its occurrence. Events are viewed as relations in the database and can be divided in event
relations and interval relations. For each relation Snodgrass distingnishes between implicit

l l Projekt VTA f [ Institut fiir Automation, TU Wien TU




2 Related Work 9

(time) and explicit (user defined) attributes. The mechanism of abstraction is to derive
new relations from existing ones using Snodgrass’ augmented version of the relational
tupel calculus query langnage Quel called TQuel. TQuel provides a more comprehensive
semantics by treating time as an integral part of the database.

In TQuel the occurrence time of an event/relation can be specified with the valid
at-clause. This imposes problems to the monitor because the time of validity of an event
can be defined to be the occurrence time of the first constituing event of a sequence of
necessary events. The monitor can produce the compound event if the last event in the
sequence has occurred and, therefore, must generate a new event with a timestamp of the
‘past’. This implies that all other relations depending on this event have to be kept in
the database for a long time (possibly forever). For such relations the database can no
longer be conceptual.

Unlike a conventional database query which refers to stored data a TQuel qurey
operates on dynamic data. It is possible to formulate and start a query at every moment
in time while the monitor is running, but it is not defined how a (already started) query,
which is no longer of interest, can be stopped.

In [GYK90] a monitoring system using linear time temporal logic is presented. The
temporal operators O (always), ¢ (eventually), o (next), and ¢ (until) are available to
specify assertions which are checked by the Temporal Assertion Checker on the program

history.

We think that both approaches do not meet the requirement of userfriendlyness
because not all users of debuggers are familiar with the relational tupel calculus and even
less operators of monitors are used to express their ideas of a system in terms of temporal

logic.

2.5 Other Approaches

Lin and LeBlanc present in [LL89] an event based debugger designed for the Clouds
Oprating System (any object/action system, resp.). They argue that the event seems to
be the superior primitive to use and, therefore, no mechanism of abstraction is provided
with their monitor. Debugging of concurrent systems is claimed to involve two phases:
(1) observing the system from a general view to identify suspicious objects and (2) take
a closer look at these objects.

A more versatile approach is taken by Joyce et al. ([JLSUS7]) who developed a
monitor for the message-based operating system Jade. Events are messages sent to mon-
itoring processes called channels. Controllers (also part of the monitoring system) are
responsible to obey the correct ordering of the observed events. And, last but not least,
the event stream is passed to presentation processes called consoles. Compound events
can be realized by implementing a suitable console and connect it to the monitor.

l i Projekt VTA [T Institut fir Automnation, TU Wien TU




2  Related Work 10

Hofmann et al. introduce in [HKLM87] an Event Trace Description Language (EDL)
which allows to describe types and order of attributes of each individual event. This
language provides neither means to specify higher-level events as combination of existing
ones nor means to define analysis functions.

{ fL Projekt VTA } ' [nstitut fir Automation, TU Wien TU




3 Requirements for Event-Specifi-
cation Languages

In this section we try to characterize our ideas of a monitoring system and a corre-
sponding language which provides methods for abstracting and analyzing the information
extracted from the system under study. As stated in the introduction and in [St693] TATs
are a suitable and comprehensive form of representing the observed system-behavior. For
this reason we will introduce the specification language GOLD MINE as an appropriate
means to define transformations on TATs with the aim to obtain TATSs characterizing the
monitored system at a higher-level of abstraction.

Apart from the fact that we consider TATs as a suuitable form of abstraction of
an observed event stream and, therefore, as basis for our language, every specification
language intended to realize the EBBA-Approach should meet the followin g requirements
(excepted the last one). This list is an extension to the list given in Section 1.

Abstraction. Obviously, the language should provide an appropriate method to define
higher level events as a means for obtaining a more abstract point of view. Morcover,
the ability to construct multiple levels of abstraction at the same time is desirable.
In order to realize these different points of view, it is neccessary to combine events
iteratively, using both primitive events and already defined compound events as
constituents.

Flexible. There should be no (meaningful) transformation from low level events to a
higher level of abstraction that cannot be expressed. This includes the possibilities
of computing new attributes as well as clustering event sequences to form a new
event. EDL ([BW83]), e.g., does not meet this requirement because it is not possible
to access the attributes of events with an repetition operator (* or *, see Section 2.2).

Userfriendly. The language should be easy to learn and easy to nse. This can be
achieved, for example, by augmenting an existing and well known programming
language with the neccessary constructs.

Problem oriented There is no need for a new general purpose programming language;
moreover, the language should be designed only for specifying event transformations
following the EBBA-Approach and the event-action model (see below).

Portable. Like in any other (programming) language all dependencies of the specifi-
cation langnage on the underlying system (monitored and monitoring) should be
avoided. No re-coding should be neccessary if a measurement specification is used
with different hardware/software platforms.

[ [ Projekt VTA f J Institut fiir Autornation, TU Wien TU




3 Requirements for Event-Specification Languages 12

Reuseable. Trace transformations represent measurement specifications {e.g. interval
duration) which should be reuseable with the same or other applications. This
implies, that specifications must not be formulated with respect to application ori-
ented information (for example. names of existing events). Most of the languages

mentioned in the previous section violate this rule and are therefore not reuseable.

Event-action model. If an action can be specified for every constituent event in a com-
pound event description. problems with the access to event attributes (like in Bates’
EDL) can easily be avoided. The user specifies exactly when to store event attributes
in monitor variables and when to use the values of this variables. The actions change
the monitor state, which may be tested in conditional clauses of event specification.

Independency of the monitored system. Each transformation specification can be
interpreted as a measurment description and for this reason, the specification lan-
guage should not depend on the monitored system and its application. This includes
all parts of the observed system: hardware, software, and operating system(s).
There should be a strict seperation between the language for defining the primi-
tive events, which must depend on the monitored system to a certain extent, and
the language for specifying high level events (compound events).

Besides these general requirements, we demand the following two features concerning

the application of the specification language.

Application oriented presentation. Although the language itself should be indepen-
dent of the monitored system to keep it reuseable, it should be possible to assign
(dynamically) user defined names to events. This makes it easier for the user to
keep track of the different levels of abstractions and allows an application oriented
presentations of the results using names the user is familiar with.

Interactive controlable. The system should be designed to allow measurements to be
started and stopped during runtime, so that the user has the possibility to interact
with the monitoring system. Activating and deactivating of transformations recon-
figures the observing system without any interferrence with the observed system.

The last requirement is implied by the special issue of our application. but it seems
to be important for other analysis problems, too.

Real-time capability. Because our aim is to analyze real-time systems, it is obvious.
that timing information has to be attached to the event traces. This timing infor-
mation has to be preserved and processed by the event transformations.

Note. that some of the entries listed above look contradictory. And in fact. designing
an event specification language is a process of deciding which requirement is more (or less)

important.

The language GOLD MINE was designed to specify transformation rules for TATs.
In [St593] it was shown, that Lisp programs could be used to do this job. but we think.
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3 Requirements for Event-Specification Languages 13

that Lisp is not a well known programming language and, therefore, violates the rule
entitled ‘userfriendly’. The fact that GOLD MINE only operates on TATs is due to the
rule ‘independence of the monitored system’; there is no way to define primitive events in
GOLD MINE, but a TAT containing only primitive events is treated exactly in the same
way as a TAT consisting of compound {and primitive) events.

[ TProjekt VTA [ ] Institut fir Automation, TU Wien TU




4 Basic Concepts of GOLD MINE

When we decided to design a new event description language, which should com-
bine the advantages of the EBB-Approach and the Event-Action Model, we choose state-
transition systems as basic element. The special merits of these systems are their simple
semantics, their flexibility, and that they are better known than query languages for rela-
tional databases or regular (event) expressions. In the following section we will introduce
the special kind of state-transition systems we use.

4.1 State-Transition Systems

Before we start: Because of the fact that the state-transition system is not the only
element in our approach and because we will introduce the different mechanisms step by
step, some of the following explanations will leave open questions which, however, will be
answered 1n subsequent sections.

Definition 1
A state-transition system or automaton® is defined by the tuple (S, T, s¢, Sierm, Cond,

Act, F,) where

e S is the set of states,

o T'is the set of transitions (T' = {(s,e,¢,a,s') | s,s’ € S,e € E,,c € Cond,a € Act}).
e 50 € 5 is the start state,

® Sirm € 5 is a set of terminal states,

e Cond is a set of conditional functions (returning one of the Boolean values TRUE or

FALSE),
e Act is a set of actions,

o F, is the set of event identifiers the automaton will accept.

3 ) —
“We will use the terms state-transition system and automaton as synonyms.
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Definition 2

The

semantics of these definitions are as follows (we refer to a transition t € T with

t = (s.e.c,a,s). which is shown in a simple graphical notation in Figure 1):

Figure [: Simple automaton

o

<t

:\]

tie:

. A state-transition system accepts only events which have identifiers which are ele-

ments of the set F,.
An automaton is always in a particular state s € 5.

A state-transition system changes from state s to state s’ if and only if the event
identifier of the input element (which is an event consisting of an identifier and an
attribute list) is ¢, there is a transition ¢ € T with t = (s, ¢, ¢, a,5), and the condi-
tional function ¢ € Cond applied to the attributes of the input element evaluates to
TRUE.

When the transition from s to s’ ((s,e,¢,a,s’) € T is performed, the action a € Act
is executed (the attribute list of the event which caused the transition is passed as

parameter to the action).

If the system changes to state s’ and s’ € Sterrm, a new event is produced and inserted
in the output list (which contains only newly produced occurrences).

If there is no transition from the actual state marked with the particular event
identifier or if the conditional function named in the transition evaluates to FALSE,

the input element is ignored.

If either steps 3 to 5 or step 6 are performed the automaton reads the next input

element.

Obviously, we have to claim that the state-transition systems must be determinis-
this fact is expressed in Formula (4). Moreover. only finite automata are useful as

specifications which can be (directly) implemented.
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V(s,e.d a',s), (s e.c" a" s") € T.is_occurrence(w), first(w) = e. (4)
c(sec(w)) = TRUE — ¢'(sec(w)) = FALSE

The following example illustrates how a state-transition system may be used to
specify that every time the sequence abe (of the three events a, b, ¢) is detected a new
event « should be produced. Every time the a-event occurs the action a, should be
executed (analogous on the occurrence of b the action as, on ¢ action a. respectively).
The state-transition system z is defined by the tuple

({50 51,82, 83}, {(s0,@a,true, a,,s1), (s, b, true, ay, $2). (S2, ¢, true, a., s3),
(83, a,true, aq,51)}, so, {33}, {true}, {a.,as,a.}, {a,b.c})

(where ‘true’ is a constant function which always returns the value TRUE). Figure 2 shows
a graphical representation of this automaton (the conditional function ‘true’ is omitted,
the terminal state s3 € Sieprn is emphasized by a bold-faced frame).

89 S2

a, ay a.

a

g

Figure 2: State-transition system accepting the event sequence abe

4.2 The Augmented State of State-Transistion Systems

Any state s € S of an automaton reflects the history of events already occurred.
but says nothing about their attributes. In the example above. being in state s, means
that the events a and b occurred and the state-transition system is waiting on a c-event
now. There is no information about the attributes of the events occurred so far or, e.g.,
if the state-transition system is processing the first or the n-th sequence of the form abe.

For this reason we augment our system to refine the information on the current state
of an automaton. Each state-transition system comprises an additional memory m where

t J Projekt VTA ’ I Institut fiir Automation, TU Wien TU




s

4 Basic Concepts of GOLD MINE 17

attributes, statistical data. or timing information can be stored. The actions (a € Act)
executed on the occurrence of events are allowed to change the contents of this memory
and the conditional functions (¢ € Cond) might test the memory as well as the attributes
of the actual event.

Using the memory m to store relevant data at occurrence time enables information
exchange without referring directly to the attributes of the events. Morcover, this method
removes the problems induced by the repetition operator mentioned in Section 2.2. Every
action a € Act may change the values stored in the memory and actions of conditional
functions executed on subsequent occurrences (of the same or other events) can use this
information.

We consider the memory m to be an array of variables, each of them capable of
storing a value and each of them indicated by a unique identifier. We introduce the
following notation to refer to the contents of a variable in the memory m: If ¢d is an
identifier than m/id refers to a specific variable in the memory. Using m/id in actions and
conditional functions, values can be assigned to variables (using the assignment operator
:=) or the memory contents may be tested (with the usual relations =, #, >, ...).

Moreover, we define actions as a sequence of operations on the memory m of an
automaton. The fact that the execution of an action act changes the contents of the
memory permanently, will be denoted by [m'] = act (attrib_list)[m] where [m] is the
merory after executing action act with attrib_list as parameter and the memory [m].

Definition 3
In general, we will use the bracket-notation to denote that a function f changes a state-

vector sv, which may consist of several parts.

f(param)[sv] = [sv']

means that applying f with the parameters param and with the actual values of [sv]
results in the changed state-vector [sv']. O

This notation simplifies the definition of recursive functions when some parameters
are to be passed unchanged and others are determined by applying the function itself. To
define that two functions f, ¢ change the state-vector sv iteratively, we use the following

notation:

Definition 4
We define now the sequencing operator * which enables us to apply functions f, ¢ itera-

tively:

gp2) * flp)lsv] = g(po)lse’] with [s0] = f(pr)fsv].

Note. that both functions must use the same type of state-vector. 0
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fn the following example we will show the solutions to the problem explained in

Section 2.2.

Example 2

Consider the events a. b. and ¢; to each of them an integer value attribute is attached.
At first we like to find sequences of the form ab®c with the condition that the attribute
of the c-event should have the same value as the attribute of the first b-event. Figure 3
shows the graphical representation of the state-transition system defined by the tuple

{50, 51, 52, 33}, {(S0, a.true, null. sy}, (s1, b, true, ap. $2). (52, b, true, null, s,),
(8o, ¢, co,null, s3), (83, true,null, 1)}, so, {83}, {true, ce ), {null, @}, {a,b,c}).

. ‘ b
% * null
a b ¢ Ce
null ap null
S 53
a
null

Figure 3: State-transition system accepling the event sequence abtc

The actions and conditional functions® are defined as follows (null is not really a
function, but indicates that no action is executed on the transitions labeled with it):

ay(b_attrib_list)[m] E i /bovalue = first(attrib list)
TRUE if m/bvalue = first(attrib_list)

colcatirib list)im] =
FALSE otherwise

Simply replacing the null-function at the transition (s, b. true, null, $5) by the action
ay changes the effect of the automaton. With (sq, b true. as, s2) the first c-event following

, fef . :
3We use the symbol = to denote that functions are procedures which alter the contents of the memory
(denoted by the assignment operator :=) but do not return any value.
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4 Basic Concepts of GOLD MINE 19

the sequence abt must have the same attribute value as the last occurrence of the b-event.
This fact is due to the (side-)effect of the action a, which changes the memory every time
it is executed. (Figure 4 shows the graphical notation of this state-transition system).

b
s 3
0 2 @
7} b ¢ Ce
null ap null
y
S1 53
a
null

Figure 4: State-transition system accepting the cvent sequence abt ¢

a

To describe the semantics of an automaton « = (S,, Ty, so,, Sterm., Condgs, Act,,
FE,,) (currently in the state s € S, and with the memory m) consuming one occurrence
w, we define a function f_(w)[s, m, o] which may change the state, the memory, and the
output o (which is a list of event occurrences produced by this state-transition system:
we use the operator o to insert new occurrences in this list)*:

(

[s',m/, o], if (s, first(w), cond, act, s') € T,
Acond(sec(w))[m] = TRUE
A[m'] = act(sec(w))[m]
As" & Sierm.,

[s,m/ nool, if (s,first(w), cond, act, s’y € T,

falw)ls, .ol = Neond(sec(w))[m] = TRUE

Am'] = act(sec(w))[m]

As" € Sierm.

and n is the newly produced occurrence.

[s,m, 0], otherwise.

i rest(list) # {} the function sec({ist) is defined as first(rest(list})
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With the definition of the x-operator (see Definition 4) we can define the semantics
of analyzing a time slot /s (a list of occurrences) with an automaton: we call this function

P, !

Folrest(ts;))« f (first(ts;))[s.m.ts,]. if rest(ts;) # ()
Folts)s.m, ts,] = (6)
folfirst(ts;))[s. m,ts,], otherwise.

Formula (6) shows that a state-transition system consumes a list of occurrences
entry by entry. Each time an occurrence is processed, the automaton may change its
state consisting of the automaton-state s, the memory m, and the output list 0. The new
state forms the basis for the next operation of the state-transition system, i.e. the next

input element is analyzed.

4.3 Creating New Events

One of the questions left open by the preceding sections is, how identifier and at-
tribute list of the newly generated event are determined. To provide a flexible but still
simple way to generate different events with one automaton, we extend the notion of our
state-transition systems with a labeling function £: S;..,, — E. where E. is the set of
identifiers of the new events to be created.

Definition 5
Therefore, an automaton is defined by the tuple (S, T, so, Sterm, Cond. Act, E,, E.. L)

where

o 5. T, 80, Sterm, Cond, E,, and Act are defined like above (see Section 4.1, Defini-
tion 1),

e F. is the set of event identifiers which the automaton uses to produce new occur-
rences (with £, N E, = @),

o L is a labeling function (L£: Sierm + F.) which defines the identifier of the event to

be created when the automaton reaches a state s € Sjop,.

The semantics of the state-transition systems described in Section 4.1 has to be
changed slightly, but before we do this we have to specify, how the attributes of the new
occurrences are determined. As stated in [St693] we assume the number of attributes for
every event to be fixed (and determined by the function attrib#()). Hence. for each event
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€ € L. an array of attrib#(e) variables can be reserved in the memory of the automa-
ton. The actions can access the attributes with the identifiers m/e.first, m/e.second. . . ..
m/e.n-th (if n = attrib#(e)). It is on behalf of the user to define actions assigning values
to the attributes before a terminal state s € S,.,,, is reached.

For convenience. we define that m/e refers to the whole attribute list in such a way
that is_attriblist((m/e}) holds. Step 5 of the semantics of state-transition system (see
Section 4.1) must be redefined as follows:

Definition 6
Redefinition of step 5 of Definition 2.

5 If the system changes to a state s’ € Sy, then a new event is generated and
inserted in the output list. The identifier of the new occurrence is determined by
the labeling function £(s") and its attributes by accessing the corresponding value
list in the memory m/L(s"). Using the list notation (used in [St593]) the new
occurrence is of the form (L(s") (m/L(s")).

In a more formal notation we can rewrite Formula (5) to define the semantics of the
automaton o = (S,, 1., so,, Sterma, Conda, Act,, E,, E.,, L,):

[s',m’, o], if (s, first(w), cond, act, s’y € T,
Acond(sec(w))[m] = TRUE
A[m'] = act(sec(w))[m]
/\3, ¢ Stermo,

o [s",m',nool, if (s, first(w), cond, act,s’) € T,
Jalw)ls,m. o] = Acond(sec(w))[m] = TRUE (7)
Alm'] = act(sec(w))[m]

/\SI € Sterma

An = (Lo(s") (m/La(s")))

[s,m, 0], otherwise.

Note. that all actions € Aet, and condition functions € Cond,, use only a reduced
state-vector: they are not able to access the state s or the output list o.
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While the preceding section was concerned with the basic concepts of augmented
state-transition systems which we use to analyze TATs, this section is dedicated to ad-
vanced topics like the notion of time, which is an integral element of our investigations.
Furthermore, we will introduce the notion of Compound Event Generators (CEGs), which
stands for an object-oriented and very flexible method to define analyzing functions on
TATs. In this section, the semantics of GOLD MINEwill be defined in a rigorous and formal

way.

5.1 The Ordering of Events in a Time slot

Although, the ordering of event-occurrences in a time slot is not relevant when two
time slots or two TATs are compared with each other, the ordering may be important
when a TAT (a time slot, resp.) is analyzed. Consider, for example, a state-transition
systemn which produces a new occurrence every time the sequence ab (with the events a, b)
is detected. If this automaton is in the state of awaiting the next a-event and the time
slot ((b{(.)) (a(.))) is investigated (the attributes are not relevant here), the ordering of
the events affects the creation of a new event. With the given ordering and the assumed
state of the automaton the b-event is ignored and the following a-event causes the state-
transition system to change to the next state (and than wait for a b-event). But if the
equivalent time slot {(a (.)} (b (.))) is analyzed by the same automaton (in the same state,
of course), the state-transition system will reach the terminal state mdlcatmg that a new
event has to be inserted in the output list.

This simple example illustrates the necessity of a method which enables the user
to specify how events in a time slot should be ordered, before this particular time slot is
analyzed by a state-transition system. Moreover, it must be possible to define an ordering
concerning multiple occurrences of the same event in one time slot (this may be the fact
especially for compound events, but also for primitive ones; although, the latter case
indicates that the granularity of the underlying digital clock may be to coarse).

For this purpose we introduce the priority function

pri:O0 — Ny x I[N, (8)

with @ is the set of all occurrences
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O = { (id{attriblist)y |1 de X A is_attriblist(attriblist) ,
A length(attrib list) = attrib#(id)} (9)
and Ny is the set of all positive integers including 0. The function pri maps every
occurrence to a pair of integers which serve as major and minor priority indicator. The
major priority depends only on the event identifier and the minor priority is determined
by the attribute list of the particular occurrence. Therefore, the function pri comprises
two other functions. namely major_pri:% — Ny and minor_pri:R" — Ny (with n € Ny is
the number of attributes of the event considered and R is the set of all real numbers):

pri(w) = (major_pri( first(w)), minor_pri(rest(w)}) (10)

Definition 7
Using the priorities of occurrences the following relations can be defined (assuming that

the occurrences wy,w; € ) are assigned the priorities pri(wi) = (P1.maj> Pr.min) and

p?"l(u)z) = (p?.vn(zjsp?..min)):

W <wy (P1.maj < P2.maj)
Vv (pl.maj = P2.maj AN Mmin < p2.min) (1j)
w1 j Wy (pl.maj < pQ.maj)
v (,pl.maj = P2.maj A P1omin < p?.mm) (]2)
vV (pl‘maj = P2.maj A P1r.omin = p').min)
W X wy & (pl.maj = p‘Z.maj) A (pl.min = p2.min) (13)
d

We use the symbols <. <, and ~ to distinguish relations defined by priorities from
relations defined by the (injequality of occurrences (e.g., occurrences wy = wy «» wy =
(idy {alisty)) Nwy = (1dy lalisty)) Nidy = ady A alisty = a.lists).

To make priorities an efficient mechanism, we require for two occurrences wy, wz € O

with w; = <l(ll <>> and pf“?(wz) - (pi,majapi‘min) (Z = 1~2) that

Wy X wy 7 (idl = Z'd-zk) A ('7)1 min = szm) (14)
and
wdy #idy — wy Fws. (15)
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Equations (14) and (15) say that two occurrences with the same priority must be
occurrences of one specific event and that they cannot be distinguished by their attributes.
Or in other words, if two occurrences differ in their identifiers, they must have different
priorities.

Making use of this prionity function we can define a sort function fulfilling the

following requirements®.

Vis_timeslot(ts). is_timeslot(sort(ts))
Ats =, sort(ts) (16)
A is_sorted(sort(ts))

Vis_timeslot(ts). is_sorted(ts) « ((length(is) < 2)
V((length(ts) > 2) — (Vw In rest(ts). w < first(ts) A is_sorted(rest(ts)))))
(17)

The sort function rearranges the occurrences in a time slot in such a way that the
occurrences with higher priorities are located before those with lower priorities. This
allows to order the occurrences in a time slot before it is analyzed by a state-transition
system. With this method any ambiguity is eliminated and the designer of a state-
transition system can rely on a canonical ordering of the occurrences in time slots.

5.2 Compound Event Generators

We will now introduce another level of abstraction which combines state-transition
systems with the priority property described above. We call this system, which serves as
shell for automata, a Compound Event Generator (CEG). The basic idea of a CEG is to
define a function which keeps track of the time slots in a TAT and uses a state-transition
system to analyze the (sorted) time slots. In other words, a CEG is like a shell which

houses an automaton.

Definition 8
A Compound Fvent Generator is defined by the tuple (E,, F., pri, a) where

e [, is the set of accepted events,
o F. is the set of events which are to be created,

o pri:F, v Ny x Ny is a priority function according to the definition in Section 5.1,

and

>The predicates and relations used are defined in [St593]
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o o= (5T 50.5m,C, A E,. E.,L) is an automaton defining the functions /_() and
Fo() according to Formulae (7) and (6).
J

Each CEG v = (F,, E., pri, o) defines the functions g, and G:TAT +— TAT in the

following way (note, that g uses another type of state-vectors than f.0 and F,():

G,(7;) = 7,, where 7, is part of the state-vector
(s, m', 1] = g (7:)[s0,m, ()], (18)
with sq is the start state of a

[s,m, 7], if 7, = ()
& (7i)ls,m. 7] = g, (rest(m;))[s",m’, 7,7 (ts)] otherwise (19)
with [s',m/, ts] = F,(sort(first(r;)))[s, m, ()]

As can be seen from the definition in Formula (19), the function 9., uses the function
Fa to analyze each (sorted) time slot of a TAT. Formula (18) defines, that the state-
transistion system starts in its start-state and an empty TAT as output list; after applying
g., recursively the newly created TAT is stored in this output list.

The function F, returns a list of newly created event occurrences if the state-
transition system reaches terminal states while the input list of occurrences is scanned.
This output list £s is inserted as time slot in the new TAT (denoted by 7, (ts) in the
state-vector of the CEG). Therefore, the TAT to be analyzed and the newly created TAT
are synchronized (see [St693]). As side-effect, the function F, changes the state of the
automaton (to s’ and m’) which must be passed to the analysis of the next time slots

(g, (rest(T))[s,m', 77 (1s)]).

Note, that a CEG allows the creation of new occurrences only at the recognition
time of the last occurrence required to reach a terminal state s € S,.,., of the automaton.
This is due to the fact that new occurrences are inserted into a time slot with the same
index as the time slot currently under investigation. Thereby, ante- or post-dating is
prohibited explicitly.

Example 3

Using the state-transition system shown in Figure 2 (page 16) and the definition of CEG-
systems introduced above, it is not possible to create a new event (say x) after the
recognition of a sequence abe but in the time slot corresponding to that of the occurrence
of the a-event.
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Only at the time of detection of the c-event the z-occurrence can be inserted into
the output time slot (as shown in the following illustration).

5.3 CEGs and Time

As mentioned in the previous section, the only time slot into which a new occurrence
can be inserted is the one corresponding to the time slot containing the occurrence which
forced the automaton to change to a terminal state. But, by now, CEG-systems are not
sufficient enough to measure durations or simply to remember the time when the first
occurrence of a certain sequence has been detected.

It 1s impossible to define actions which update a variable in the memory of a state-
transition system to realize a logical clock because actions are only executed when the
corresponding events occur and the transition-conditions are satisfied. Therefore, an
action cannot determine how many time slots have been passed since the last update of
the clock-variable. Because of this fact, we need to introduce another mechanism which
keeps track of the actual time and makes it available to conditional functions and actions.

For this purpose, we supply some functions with a second parameter ¢l (clock),
which represents the actual time and is passed to actions and conditions. The clock
advances always after a time slot has been analyzed by the state-transition system. Again,
the CEG serves as shell for the automaton because the CEG system is in charge of
advancing the clock. This leads to a redefinition of the Formulae (18) and (19); a CEG
Y = (B4, B, pri, a) defines the following functions g, and Gege:

G,(r;) = 1,, where 7, is part of the state-vector
[s".m/ 7] = g.,(7:,0)[s0,m, ()], (20)

with sg 1s the start state of

[s,m.7,] if =)
gw(fi’d)[‘s’m’%] = gh,( rest (7-2) cl + at)[s'.m’ 7,7 (ts)] otherwise (21)
with [s",m/ ts] = F,(sort(first(r;)), el)s.m. ()]

In Formula (20) the initial value of the clock is set to zero. Formula (21) shows that
for each iterations the clock's value is incremented by at which should be equal to the
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granularity of the underlying digital clock (if af = 1 then the clock just reflects the index
of the actual time slot-—starting with 0).

Obviously, we have to redefine the behavior of state-transition systems to introduce
the clock value ¢l (Formulae (6) and (7) are to be replaced by (22) and (23)); each
automaton a = (S,, Ty, 80, Stermps Cor Aas Fay Eo, o L) defines:

Falrest(ts),cl) = f (first(ts), cl)[s,m o] if rest(ts) # ()
Falts.el)[s,m, o] = (22)
fa(.ﬁ")St(t*S%c”[Sv m,o}, otherwise

[s',m/; o], if (s, first(w), cond, act,s') € T,
Acond(sec(w), el)[m] = TRUE
A’} = act(sec(w), cl)[m]
A" & Sterma

som',nool, if (s, first(w), cond, act,s’) € T,
falw, el)s,m. o] = | | /\cond(sec((w),cl)[m] = TI)RUE
Alm'] = act(sec{w), cl)[m]

As" € Sierm.,

An = (La(s') (m/La(s)))

(23)

[s,m, 0], otherwise.

Maintaining a clock and making its value available to the actions introduces the
possibility of saving the occurrence time of certain events in the memory m. This time-
value can be retrieved by other actions (at a later time) to compute, e.g., the duration
between two occurrences. Having the chance to compare the actual time (the value of ¢/)
with time values stored in the memory opens up a new dimension for enabling or disabling

state transitions.
The following example illustrates how the clock ¢/ can be used in actions.

Example 4

Measuring the length of intervals is one of the most important application when analyzing
real-time systems. We will now specify a CEG v, which inserts an occurrence into its
output TAT every time an interval starting with an a-event and ending with a z-event is
detected. The new event (r) has the duration of the interval as attribute. The CEG is

defined by v = ({a. 2}, {z}, pri, . o,,) where

(1,0), if first{w) = a

pri, {w) =
(0.0), otherwise
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and the automaton oy, = ({so,s1,52}. T so. {52}, {true}, {start. term}, {a.z}, {x}, L)
with the transitions T defined in Figure 5, and the actions start and ferm:

siurt(utirib_list)[m,cl] e m/st = cl

term(attrib_ list){m, cl] = m/[a. first ;= cl — m/[st

S0

start

S1

term start

Figure 5: State-transition system recognizing the interval s —t

As can be seen from the definition above, the action start saves the actual clock
value, which is the occurrence time of start event a, in the memory location m/st. The
action term computes the duration of the interval using the occurrence time of the ter-
mination event z (clock value ¢l) and the start time saved in the memory (m/st). The
duration is saved in the memory cell m/z. first which is by definition the attribute for
occurrences of the event . a

Analogous, the clock ¢l can be used in conditional functions to express time depend-
ing conditions. Consider, for example, a conditional function which returns only TRUE
when the corresponding event has been detected within (or following) a certain interval

after the preceding occurrence.

The CEG systemn introduced so far is a very flexible mechanism to analyze TATs
and we think that the basic structure, namely the state-transition system, 1s well-known
and easy to understand. But with the definition of CEGs given so far, it is not possible
to solve all analysis problems. For example, to recognize coending intervals (determined

by two particular events) requires multiple occurrences of the event to be created (see
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Figure 6), but (by definition) reaching an terminal state is associated with inserting just
one new occurrence into the output list. Therefore, the notion of a CEG will be extended

in the next sections.

events: a
{7

Figure 6: Ezample of coending intervals determined by the events s —t

5.4 Templates and Instances of Automata

Facing the analysis problems explained above, we decided to follow the object-

oriented paradigm with automata.

Definition 9
A CEG will no longer be the shell for a single automaton but of a variable set of state-

transition systems. A CEG is specified by a set of templates of automata

Ar = {a | a= (54, Ta, 30, Stermas Cos Aay Fay, Ee,, Lo) defines a state-transition system
according to Definition 5 (see page 20}).

A template of an automaton is just the specification of the behavior of a state-transition
system. In addition to this, there is another list to be included in the definition of a CEG,
namely the list of instances Aj,, which determines which templates initially contribute to
the behavior of the CEG. Therefore, a CEG is defined by a tuple (E,, E., pri, Ar, Ap).
Obviously, the following statements hold

E.= ] E., (24)
a€Ap
Ee= ] E., (25)
aEArp
0
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Wherecas an template is just the formal specification of a state-transition system.
an mstance of an automaton is a concrete ‘incarnation’ of such a specification which is
in a certain state ([s.m]). In the following forumlae we define the predicates is_state.
s_instance, and ts_instlist which test wether a expression is a valid state of an automaton.
an instance, or a list of instances. Therefore, the predicate is_instlist(Ap,) evaluates to
TRUE.

Vo € Ar.is.state(r,a) « (2 =[s,m]As € S,) (26)
Vis list(x). is_instance(x) < (first(x) € A A is_state(sec(z), first(x))) (27)

Vislist(x). z = () — is.instlist(x) (28
Vis list(r). is_instlist(r) « (is_instance(first(z)) A is_instlist(rest(z))) )

Now, the function of a CEG is no longer determined by only one automaton, but
by all state-transition systems in the list Ay (is_instlist(Ay)), which is initially equivalent
to the list A7, During operation a CEG may change the list of instances A; by adding
new instances. Every newly created instance of a state-transition system is in its initial
state and has an empty memory. Therefore, the list A; is extended in the following way:

Al = A" (e, [0, m])) with «a € Ap
A 8¢ is the start state of «
A m 1s an unused portion of memory

The dynamic creation of new state-transition systems and the distinction between
templates and instances affects the definition of the functions f,, F., gcpa, and Gegg
(Formulae (20), (21), (22), and (23)). But we will postpone the redfinition of thos formulae
until we have introduced the mechanism of parameter passing in the next section.

5.5 Passing Parameters to Instances

To enhance the benefits of the object-oriented approach presented in the previous
section, we introduce a mechanism to pass parameters to each instance at creation time.
Without this means. the profits of dynamically creating automata would be rather small.
Consider, for example. the problem illustrated in Figure 7. It is conceivable that one is
interested in the duration of intervals which are determined by a starting event a and a
terminating event = and the additional requirement that the values of certain attributes

must match,
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time

evenls:  a-1 -2 a-.
|
li
i

Figure 7: Measuring intervals determined by events and altributes

To solve this problem, it is not sufficient to instantiate a particular state-transition
system every time an a-event occurs. [lach new automaton waiting for a z-event rather
must know which value the attribute of the occurrence should match. Hence, we have to
introduce a possibility to pass parameters to cach instance.

For this reason we augment the state of a state-transition system ([s, m]) to [s.m, p].
where p is an array of parameters, which are supplied at creation time of each automaton.
Similar to reading variables in the memory m, each parameter can be read or written by
specifying p/id (with id is an identifier).

In order to determine the parameters of an instance which is to be created dynam-
ically, we have to change the labelling function £ (P is the set of all possible parameter
types: obviously, this set depends on the implementation).

L : Sierm — {create} x E. U {inst} x Ay x P".

The first kind of labels defines that the particular event ¢ € E. occurs when this
state is reached. Labels with the keyword inst indicate that an instance of the named
automaton has to be created and the parameters given have to be passed. If the instance
which will be created accepts no parameters, the number n is equal to 0 which indicates
that the label is of the form (inst, («)). Parameters in the label can be supplied as
constants or as identifiers referring to memory locations of the actual instance. The latter
allows to determine the parameters dynamically during the analysis procedure.

The functions (L4 Sierm = {create, inst} and L£.:S;,,, — E.UAr x P")introduced
in Definition 10 enable a selective access to the type t and the contents ¢ of a label.

Definition 10
For every state s € Si.,., with the labelling (1.¢), where t € {create, inst} and ¢ €
E.U Ay x P" (with n > 0) we define

Los) = (20)
Ls) = ¢ 30
.
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In analogy to the parameter passing mechanism for automata. we allow CEGs to
be parameterized. also. These parameters can be passed to the instances in the list 4y,.
We are now ready to redefine the functions G,, g.. F,. and f . thereby replacing
Formulae (20). {21). (22). and (23). We start with semantics of a CEG v = (FE,, E., pri,
A Ay the effect of applying the function Grpg:TAT v+ TAT defined by the tuple

given above can be specified using the function g

G.(7i,p.) = 7. where 1, is part of the state-vector (31)
[,‘1],7'9] - g’y(TivO)[A[o’o}' V’

Each element in the list Ay has the form (o, [s.m.p,]), where o is an automaton
template and [s.m, p,] is the initial state of this automaton instance. The values of
parameters palpha may be specified by using constants or by referring to parameters p,
of the CEG (using identifiers).

Formula (32) shows the definition of the function g, which recurs into the TAT 7,

and collects the new time slots in 7,.

[A[. TO] lf T = <>

gﬁ'(’Tl'., Cl)[f"[, To] = (32)

g (rest(7:), cl + at)[A), 7,7 (1s")], otherwise

The (not necessarily) changed list 4} and the time slot ts’ are determined by the
function H; (which will be defined subsequently) in the following way:

[A]. ts") = H(sort(first(7:)). c)[ Ay, ()]

The function H; is just used to split each (sorted) time slot into its constituent

occurrences: Formula (33) shows its definition.

[,41, fso]. if 1s; = <>
7‘(](1555,(:/){.4],/,30] = (33)
Hy(rest(ts;), cl)[A], ts" o ts,], otherwise.

Again. the list Af and the time slot 1" are determined by applying another (lower

level) function. namely h;. which has the purpose to compute the contribution of every

instance [ which is an element of the list A;:

(AT "] = hyfirst(ts). A e[ O]

The function iy accepts a single occurrence. a list of antomaton instances, and the
clock-value as parameters and uses a state-vector with another list of instances which has

u Projekt VTA IT Institut fiir Automation, TU Wien TU




5 The Semantics of GOLD MINE 33

the purpose to save the changes (of the state-vector) of each instance and to accumulate
newly generated instances. While the [unction /i) iterates through the elements of the list
of automaton instances given as parameter. the newly created occurrences are collected
in the second element of the state-vector. This leads to the following definition of the

function hy:

(A ts]. iy =0
hi(w. Ap.el)[Ap, . ts] = (34)

fep(w. rest(Ap), el)[ AT 15™]. otherwise

Ny

where A7 = rest( A )" (e [s',m/,p')) "0 il first(Ay) = (o [s.m. p]) and s
[s".m’. V.o ilistheresulto feomputingf (w.cl)[s.m,p. (), (1.

In the defimtion given above the function f, which is the function defined by the
automaton a 1s used to determine the effect of the oceurrence w. Applying this function
can result in the creation of a new occurrence o or a new automata instance 7 or just in a
simple change of state [s',m’. p/] of the current instance (first{A;)). We have to redefine
Formula (23) f, to satisfy the new needs caused by introducing multiple instances and

= ts o if

parameter passing:

[s.m/' . p'. o], il (s, first(w), cond. act,s"y € T,
Acond(sec(w), c)[m,p] = TRUE
As' Q ‘qterm,)
Am!, p'} = act(sec(w). ¢l)im. p]

[s',m'.p'.nooil, if (s first(w), cond. act,s’y € T,
Acond(sec{w), el)[m,p] = TRUE
As' E Sterm,
ALy (s") = create
An = (L") (m/LA)))
folwoe)[s,m, p,o.l] = Am’ Pl = act(sec(w), cl)[m. p] (35)

(s".m’.plooi I, if (s, first(w), cond. act,s’) € T,
Acond(sec(w), cl)[m,p] = TRUE
Ns' - Sterm,l
NL{(s") = inst
ALASY = (@pew- Prew)
A= (e (S0 Monew Prca)
Al p'l = aet(seclw). cl)[m. p]

[s.m.p.o]. otherwise.

Formula (35) concludes the definition of the semantics of a CEG. It shows that every
single occurrence affects every instance to either generate a new instance or to create a
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new occurrence or just to change the state or to do nothing. The function F, is no longer

needed because it was replaced by the functions H; and A;.

Having defined the semantics of state-transition systems and Compound Event Gen-
erators (CEGs) in a rigorous and formal way, all the problems mentioned in Section 2 (e.g.
"When does an event defined by a'b” occur?”) could be eliminated. Section 7 will present
the syntax of GOLD MINE which is a specification language exactly implementing this
semantics. In the following section we will discuss some characteristics of the approach

presented above in general and especially in connection with its practical use.
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This section provides a discussion of the characteristics of Compound Event Gener-
ators and a few examples to illustrate the capability of this approach. '

In the previous section we showed that the combination of the event-based be-
havioral abstraction approach and the event-action paradigm forms a powerful basis for
analyzing distributed real-time systems. Describing event sequences in terms of deter-
ministic finite state-transition syvtems and adding the opportunity to instantiate such
automata dynamically limits the number of necessary basic elements in the approach
with no restriction on the capabilities.

6.1 State-Transtion Sytems — The Basic Elements

In Section 2 we discussed some event definition languages (like EDL by Bates and
Wileden) and their advantages and disadvantages. The reasons tor taking state-transition
systems as basic notion to describe event sequences are:

e they are a well known and powerful means to describe sequences;

e it is easy to angment the notion of a traditional automaton with the necessary
elements like additional conditions, actions, or labeling functions;

e they are simple to understand and, therefore, easy to use.

Another—very important—advantage of our augmented state-transition system is
the ability to remember facts of the past by using the state-vector, which consists of a state
every automaton is in, parameters, and a memory which serves as data store for dynam-
ically acquired information. Taking a closer look at the semantics of a state-tranistion
system defined in Formula (35), it becomes obvious that the memory is necessary to
remember characteristics of already analyzed occurrences and time slots for the use in
subsequent actions and/or conditional functions.

Each state-transition system is just a partial system which makes no sense without
the notion of the surrounding CEG. But on the other hand. each C'EG contains one or
more automaton instances and the bhehavior of a specific CEG is defined by the sum
of these objects. Fach instantiation alters the behaviour of the CEG because a special
aspect is observed by the new antomaton. At every point in time. the list of instances of
a C'EG represents the history of the TAT analvzed so far. Both the number of antomaton
instances and their individual states reflect the current state of analysis.
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Because of the fact that state-transition systems do not maintain their own clocks,
1t Is possible to instantiate automata at any random time during the analysis phase. As
can be seen from Formula (35), which defines the semantics of an state-transition system
a. each automaton instance analyzes simple occurrences and relies on the clock value
passed as parameter. Each state-transition system is in charge of monitoring particular
characteristics of the “rest of the TAT™ and to create new occurrences and/or instances
if distinguished properties are recognized. It is legal to instanitiate automata at random
points in time and to monitor just a “rest of the TAT” because the properties to be
monitored are only of interest after the occurrence of some other characteristics (remember
that Vis_tat(r).7 # () — is_tat(rest(T)); morcover, Vis_timeslot(1s), is_tat(r).ls # (H —
is_tat{rest(ls)o 7).

[t is important to note that new instances are to be created whenever different
characteristics have to be observed concurrently. For example, for some kinds of intervals
one (or more) automaton instance(s) observe(s) the occurrences of opening events and
other state-transition systems wait for the corresponding closing events. The possibility
to dynamically instantiate new automata simplyfies the realisation of a wide range of
measurements. respectively, actually enables to formulate them using augmented state-

transition systems as basic elements.

6.2 CEGs in Practical Use

As shown in the previous section, Compound Event Generators are an appropriate
means to transform and, thereby, analyze Timed Attributed Event Traces. A CEG is a

system consisting of

e a set of automaton templates,

e 4 list of instances of automata,

e two distinct séts of events (accepted and generated),

e and a priority function ordering the set of accepted events.

Which automata are to be applied on the input TAT is determined by the set of
instauces. Initially, at least one instance consisting of the automaton template and its
initial state-vector (including the parameters) has to be in this set. And. as can be
seen from Formulae (33) and (34). each occurrence of every time slot of the input TAT is
analyzed by every instance. This analysis may result in the generation of new occurrences
or the instantiation of new state-transition systems, which will start to contribute to the
overall effect of the CEG when the next occurrence is investigated.

Note. that this is a very important point. It is necessary that newly generated
instances can take effect in that time slot which the occurrence causing the instantiation
is in. But on the other hand. it would not be correct to analyze this particular occurrence

with the new instances which are direct products of it.
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Because all occurrences of a time slot are sorted according to the priority function
of the CEG, appending newly created instances to the list of automaton instances so that
they will take effect with the next occurrence in the current time slot (if there is one
left) is a deterministic and correct solution. We will show this mechanism with the next

example.

Example 5
Consider the following TAT (we introduce indices for time slots to make it easier to refer

to a particular onej:

(((a o € 0 O (@) ) Wz )y (s (@) {2 ()); ({2 {M)e )

If the event a marks the entry into a certain (recursive) procedure and the event z
the corresponding return to the calling function, we could be interested in the duration
of each procedure call. But, as can be seen from Figure 8, we assume that the granularity
of the underlying clock is to coarse to obtain correct values.

Figure 8: Measuring the duration of stacked intervals

It is very important that a new event with the duration 0 as parameter is created
while analyzing time slot number 7. The two reasons are:

. Missing one of the constituing events (a, =) will cause erroneous results for the rest

of the measurement.

2. The user must be informed about the unsatisfactory granularity of the clock.

This problem can be solved by using the following CEG ~, and by applying the
semantics defined in the previous section.

ve = Ha, 2} {a ) prig, {an aa}, (e [s1, ma, pi])) )

We will show the (more illustrative) graphical notations of the two state-transition

systems ap, ay in Figure 9 rather than define them formally:
The states s;, and sq, are the start states of the corresponding automata. The

labels of the two terminal states sy, and s,, are:
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a , zan
S1q - 524 P
mnerp decrp
a z out
decrp
r—
511 .921
a

Figure 9: Automaton templates recognizing stacked intervals

L(sy,) =inst (g, (1, cl)) and L(s2,) = create ()

Note, that we use the notation m/z.l and p/1 to refer to the memory location
number | respectively the parameter number 1. This notation seems to be convinient
because we do not have to deal with names for memory locations or parameters when
defining the functions.

The condition functions in and out used in the graphical specification of the au-
tomaton templates are defined as follows (note that this functions test parameter p/1
which is set by the actions incrp and decrp which are also defined below):

TRUE ifp/l > 1 TRUE if p/1 <1
in = out = ,
FALSE otherwise FALSE otherwise
ey e . o def p/l = p/l—1
merp = pfli=p/l+1 decrp = [ A P

The priority function pri, is defined as follows:

(1.0). if first(occ) = a
priy(oce) =
(0.0). otherwise
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This CEG comprises two state-transition systems which realize the required behav-
tor. Automaton «;, which is instantiated once as initial state-transition system. creates
on every occurrence of event a an instance of system «y,

All instances of automaton «; nse two parameters supplied by the creating system

g
p/1 reflects the level of occurrence (1 stands for the innermost level).

p/2 is the start time of the procedure: this value is necessary to compute the duration

of each procedure call (interval).

All instances of the state-transition system «y assign the computed duration time
to the memory location m/z.1, which is the only attribute of the occurrences of the event
.

Let us now take a closer look at the activities of this CEG when it analyzes a given
TAT 7,,. The following table shows the input TAT 7,,, the state of the CEG (columus
‘cl’and ‘Aj (list of instances)’, and the output TAT 7,,, as they change (step by step).

In the list A; we will show memory locations and parameters as list surrounded by
paranthesis. For this reason, the parameters of instances of automaton ay are displayed
in the form (p/1,p/2). In the memory of az-instances only the location (1n/x.1) is used.
If the contents of m/z.l is not determined (because it was not set by an action), the

memory will be displayed as (.).
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[ Tin el | A (list of instances)

( {{ar, {515, O, OD) {
{al)) | 0 Uon s, 00D {aa, [s2,, (), (L,0)])) ()
() L e [su 0.0 (oo, [52, (), (1,001)) ()
() 2] (e [51,. 0.0 {aas 59 (), (1,0O)])) ()
al) (e [s51,, 0, 0D (a2, (525 (), (2.0)])
S (a2, 525, (), (1,3)]) Y
0 4 (s (31, 0, 0 (e, [8255 (1), (2,0)]) ()
<Q27[5207(')?(1?3)]>>
N . ({1, {51, (), O (@2, [s24, (5), (1, 0)]) 20
((=()) (s, [521(2), (0 3)]) {(z(2)))
(e, [510, 0, 0) (a2, [520, (5), (1, 0)])
Vo (o L5, (20, 0,30 | "
({1, [51,, (O, O (@2, [32,, (5), (2,0)])
{{a()) | 7 (as, [52,,(2),(0,3)]) {
(s, [325, (1), (1, T)]))
((en, [51,, 0, O (ea, [324,(7), (1,0)])
| 7 (a2, [52,,(2),(0,3)]) (z(0)))
(crz, [52,,(0),(0,7)]))
<<(11,[511,(),()}> <a27[3217(8)7(0’0)]>
(= | 8 (az, [52,,(2),(0,3)]) (z(8)))
(az, [32,,(0), (0, 7)]))

This example shows that stacked intervals can be found easily with a CEG consisting
of two simple state-transition systems. The first one («aq) generates an instance of the
second kind (a3) every time a start event occurs. Each instance of the second kind keeps
track of the level of recursion and creats one occurrence of the compound event when the

end of the corresponding interval is detected.

O

As can be seen from Example 5, the notion of a CEG is based on the idea of
independend instances of automata. These instances might work in parallel because there
1s no way for one automaton to influence the course of events or even to change the
memory in another instance. Fach antomaton instance in confronted with the sequence
of occurrences and may create a new instance or a new occurrence in the output TAT of
its C'EG. but there is no communication between state-transition systems.
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6.3 Towards an Event Recognizer

With the notion of a CEG we are able to create TATs on the base of an input TAT.
This new TATs are synchronized with the original one and. therefore, can he merged
(using the operator +, see [St693]) and different CEGs which use compound events as
well as primitive events as input elements may analyze these TATs again. Exploiting this
property, we can construct an Event Recognizer which has the capability to create TATSs
providing events at different levels of abstractions. Such an event recognizer implements
the event-based behavioral abstraction approach mentioned in Section 2.

If CEGs are iteratively applied in the way bescribed above, one must pay attention
to the precedence relation imposed by the events which are consumed and produced by
the different CEGs. Consider, for example, a TAT 7 containing occurrences of the events
a, b, and ¢ and the two CEGs v; and 7, where

o CEG vy consumes the events @ and b and produces an occurence of the event z
always when a b-event is preceded by one or more a-events.

o CEG v, consumes the events ¢ and z and produces an occurrence of the evnt y on
every occurrence of either ¢ or x.

Obviously, the CEG 7, has to be applied first to the original TAT r:

Tnew = Gy (’gm (T) + T) + 7

The new TAT 7., contains occurrences of all events a, b, c, x, and y.

The fact that characteristics of the already analyzed occurrences is represented by
the state of the automata in a CEG and the restriction that newly generated occurrences
can be inserted in actual time slots only (post- or ante-dating is prohibited) are essential
for the implementation of an on-line event recognizer. These two properties imply that
every time slot which has been analyzed by all automaton instances of all CEGs can be
discarded. The information of already analyzed time slots is no longer of interest because
there is no way of referring to occurrences and their attributes in these time slots.

This leads to a simple and effective implementation of the event recognizer. Every
time slot is investigated by all CEGs which keep track of the history by changing the state-
vectors of their automaton instances and possibly the number of automaton instances
itself.
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In this chapter we will focus on the object-oriented event specification language
GOLD MINE, which was designed to implement the semantics introduced in the previous
sections. GOLD MINE is intended to be

o independent of the VTA-system, easy to be ported to other hard- or software plat-
forms,

e casy to learn and simple to apply, and

¢ a problem-oriented, i.e. not a general purpose programming language.

For this reasons GOLD MINE realizes only those parts of the problem domain which
deal with the definition of CEGs or state-transition systems. The actions and conditional
functions are to be expressed in a general purpose programming language, such as C,
C++, or Ada.

The following sections introduce the object-oriented concepts and the syntaxt of
GOLD MINE. To discribe the semantics of the various syntactic constructs, we will refer
to formulae of previous chapters. The syntax will be introduced in an extended Bakkus
normal form using the following meta-symbols and font faces:

standard Non-terminal symbols.

bold face | Terminal symbols.

‘{"and ‘{’ | The terminal symbols { and }

| brackets | | Options surrounded by brackets may be omitted or choosen once.

{ braces } | Options surrounded by braces may be omitted or choosen

a random number of times.

= Substitution.

Seperates options, one of them has to be choosen

. Marks the End of a substitution. J

The non-terminal symbol Identifier is not specified because of its intuitive usage in
GOLD MINE (it 1s a sequence of characters and some other symbols like in any general
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purpose programming language). A summary of reserved words (the terminal symbols),
which must not be used as identifiers of CECGs, automata, variables. or types can be
found in Appendix B. Appendix A presents a survey of all productions introduced in this
chapter.

A correct GOLD MINE definition has the form:

gold_mine n= {tvpesection ceg_definition} e

We will take a closer look at the type_section in the following section, whereas the
ceg_definition will be presented in detail in Section 7.2.

7.1 The Host-Language Concept

As mentioned above, GOLD MINE was designed to be an event specification language
realizing the semantics introduced in Section 5. Therefore, our main stress was to keep
the definition of CEGs and state-transition systems as simple as possible. But on the
other hand, there is a need for traditional programming language constructs like if-then-
eles or loop statements to implement the actions and couditional functions. As a result of
these considerations we decided to combine elements of our specification language with
the merits of a traditional programming language which we call the host-language and
which can be choosen freely (as already mentioned). Hence, a complete CEG specification

comprises

® a GOLD MINE module,
® a host-language module, and

¢ a type-definition module.

The type-definition module serves as interface between the two other parts of the
specification:

In practice, the integration of the host-language module and the GOLD MINE module
is realized by simply calling the specified functions from within the GOLD MINE part in a
host language independent way, using parameters and return values to exchange values.
Since GOLD MINE is strongly typed. it is necessary to have a common type system on
both sides of the interface to guarantee consistent use of values. Note that simply using
the typing concepts of a particular host-language in the GOLD MINE part would have been
contradictory to the goal of independency of a specific programming language.

Our solution to this problem is the use of GOLD MINE specific data types which
are mapped to the corresponding host-language tvpes using a translation table which is
contained in the type-definition module. Therefore. changing the host-language does not
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Host-Types

Q Host language 1
GM-Types
L

—

@ Host language 2

GM-Types

GOLD MINE | om-Types

Frgure 10: GOLD MINE typing concept

affect the GOLD MINE specific part of a CEG definition as long as the type-definition
module 1s adapted to the new situation (see Figure 10).
A correct type_section has the form:

type_section = {typestatement} e
type_statement = typegm_typel [derived from gm_type2]= type_def body; e
type_def body == simple_type
| event_type e
simple_type = (host_language_type) e
event_type n= ‘{’host language_variable_definition‘}’ e
gm_typel = Identifier e
gm_type2 == Identifier e

‘As can be seen from the definitions above, the type-definition module just maps
GOLD MINE-types to tvpes of the actual host-language (host-types). Note that GOLD
MINE distinguishes between simple types (host_language_types) and so-called event types
(host language _variable_definition). This is due to the fact that an event can have more
than one attribute. In this case the correct host-language construct is a record type which
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comprises all attributes®. These record types (grouped by braces {}) are associated with
a GOLD MINE-event type.

The inheritance mechanism (introduced by the keywords derived from) is dis-
cussed in Section 7.4.

To reduce the efforts to be undertaken in implementing the GOLD MINE-Compiler,
we decided to realize it as precompiler with the host-language as target-langnage. Because
of this fact, compiling a GOLD MINE source is a two step process:

1. Precompile GOLD MINE code to host-loanguage statements.

2. Compile these parts together with the actions and conditional functions (already
defined in the host-language) obtaining executable object code.

At the moment, a GOLD MINE (pre)compiler for the host-language C++ is imple-
mented as part of the VTA-project (see [Zei93]).

The advantage of this approch is twofold:

o The user of GOLD MINE needs not learn a new language to define procedures and

functions.

e Using a widely distributed programming language as host-langnage makes it easy
to port GOLD MINE to other (hardware) platforms and, as additional effect, the
optimization features of the host-language compiler can be directly exploited.

A disadvantage of this approach may be the management of the various parts of
a CEG. Therefore, a graphical user interface was developed and implemented using the
operating systemn UNIX and X-Windows (see [Hol94]). The purpose of this user interface
is to simplify the specification of state-transition systems and to support the user in the
management of the different files (which may be reused, also).

7.2 Specification of a CEG

As defined in Section 5, CEGs are elements specifying how event traces are to be
investigated. According to this definiton a CEG is a tuple with the elements (F,, F.. pr.
A7. Ap). Every element in this tuple has its counterpart in the GOLD MINE-language,
but the syntax of GOLD MINE distingnishes between the

interface elements:

o the set of acceped events [,

®Actually, for internal reasons the GOLD MINE-compiler adds some other components to all event types

but not to simple types.

[ J Projekt VTA J ] Institut fiir Automation, TU Wien TU




7 The syntax of GOLD MINE 46

e the set of events to be created E.. and the
implementation elements:

e the priority function pri.
o the set of automata templates Ap, and

o the list of initial automata instances Ay,

For this reason the specification is split up into the two parts interface and imple-
mentation.

ceg_definition = ceg cegnamel [(generic params)] [derived from ceg name?]
[interface]
[implementation]
end ceg . e
ceg namel = Identifier e
ceg_name? = Identifier e
generic_params = variable list {; variable list} e
variable list = gm.type variable name {, variable name} e

In the sense of the object-oriented language GOLD MINE a CEG is a class (the
meaning of the keyword derived from will be discussed in Section 7.4) which may be
instantiated one or many times. Therefore, the definition of the interface and the CEG and
its automata bases on formal events which are mapped to real world events in the trace
when a new object is created (this process is called binding). Using the generic parameters
(generic_params) every instance of a CEG class can be initialized in a particular way.

The definition above shows that only GOLD MINE-types (which are mapped to host-
language types in the type-definition module) are used to define the types of the generic
parameters. If the host language is changed, only the mapping file has to be adapted but
the CEG specification is still valid.

INTERFACE SECTION: The interface section defines the type of events a particular
CEG will accept and create. From this point of view, a CEG can be seen as black box with
well defined interface and function (Formula (31)) which is defined by the implementation
part. The following defintions show the syntax of the interface part of a CEG:

interface == [accepts (accepted_events});]
[generates (generated_events);] e
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accepted_events = variable list {; variable list} o

generated_events = variable_list {; variable list} o

Although the two sets (I, and E.) are not reallv optional. the former definition is
correct because a CEG class may be derived from another one without changing these
sets.

Despite the fact that the defintions above request only general varaiable_lists. the
GOLD MINE-types used have to be event types, of course.

IMPLEMENTATION: The implementation of a CEG comprises the priority function, the
definition of automaton templates, the initialition of the automaton instance list, and a
section describing the functions (defined in the host-language) imported into the CEG.

implementation = [prototype_section]
[priority section)
{automaton }
[ceg_initialize] e

The prototype section contains a list of declarations of host-language functions im-
ported into the CEG. These functions may be used as actions, conditional functions, or
priority functions (as we will see later) or in the constructor of the CEG object.

To keep GoLD MINE simple and independent of any host-langnage, function calls
are defined by the keyword call followed by the name of the function. For this reason
any function is allowed to accept no or just one parameter (which may be a record type
in the host-language, of course).

prototype_section ::= prototype
{prototype list };
{prototype list}; e

prototype_list = gm.type methode name (gm._type) e

method_name = Identifier e

[n the priority section the priorities of the events which are accepted by the CEG are
defined. Formula (10) shows that the priority function is split into two parts which define
a major and a minor priority. In GOLD MINE the major priority is simply expressed by
listing all events defined in the accepts-statement seperated by > signs. This list assigns

the highest priority to the left most event and the lowest priority to the right most event.
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priority section = priority
event_name [:priority _method]
{> event_name[:priority_method]} e

priority method = Identifier e

As mentioned in Section 5, the minor priority function defines the ordering of oc-
currences of a certain event based on the attributes of this event. The priority methods,
which are optional, map the values of attributes of occurrences to a (floating point) num-
ber which is interpreted as priority by GOLD MINE (higher return values are assumed to
reflect higher priority). A priority method is an identifier of a function declared in the
prototype section. Any priority method must accept an event type and must return a
floating point value (predefined GOLD MINE-type PRIORITY).

Because the automaton section will be discussed in the following Section 7.3, the
next defintion shows the initialization part of a CEG specification. The GOLD MINE-
compiler as it is implemented now does not accept a list of of initial automaton instances
but only a single instance. This restriction will be eliminated in one of the next releases
of the GOLD MINE-compiler.

ceg-initialize = initialize instantiate auto_name[(params)]; e

auto.name = Identifier e

7.3 Automata

The fact that state-transition systems are defined as templates, which may be in-
stantiated many times but always are contained in a surrounding CEG. suggests that
automata are realized as nested classes.

Nested classes are defined in the context of another class. Moreover, they are hidden
from the outside like other implemenation details. As a consequence of this, objects of
nested classes can only be instantiated and acessed in the context of the surrounding class.
Furthermore, deriving new classes from nested ones is only possible if the superclass is
contained in the same surrounding class or in one of the superclasses of the surrounding
class.

Because of the fact that state-transition systems accept and create events according
to their definition, the specification of automata is split into the parts interface and
implementation like a CEG.
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automaton n= auto autonamel [(params)] [derived from auto_name?]
linterface]
[auto_implement)]
end auto e

Whereas the interface section defines the sets £, and £, (see Section 7.2). in the
implementation section all other elements of the tuple o = (S, T, so, Sterma Coy Ag,
E... E.,, £,) which defines an automaton a are specified.

[variable section]
[prototype_section]
[state section]

auto_implement =

[directive section]
[auto_initialize]
[cleanup section] e

variable_section = variable
variable_list;
{variable_list;} e

Again, a prototype section must be used to import the host-language functions used
as actions and conditions (sets A, and C,). Local variables defining the memorv m of
the state-vector may be declared in the variable section.

The sets S, and S, as well as the labeling function £, are defined together in

the state section (see below).

state_section = state
state_name [label clausel;
{state_name [label_clause];} o

state_name = [dentifier e

label clause = is start
| raise event_name {, event_name}
| instantiate auto_name [(params)] e

The state section lists all states of the set S, in random order seperated by semi-
colons. Additionally, all states of the set S, and the start state are marked with one

of the following kevwords:

is start marks the start state sq,.
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raise is the GOLD MINE synonym for the label create. which marks a state of Sierm,. . I
such a state is reached, the specified events are inserted to the output TAT.

instantiate is equivalent to the label inst. Every time such a state Sterm,, 18 reached.
the specified automaton is instantiated.

The transitions comprising a start state. an event, a target state, a condition, and an
action are defined in a simple and intuitive way in the directive section of an automaton

specification.
directive section :i= directive
transition_clause;
{transition_clause;} o
transition_clause = state_name -4 event_name —> state_name
[cond condition_method)]
[call transition_method]; e
condition_method ::= Identifier e
transition_method ::= Identifier o

All methods (functions) which are called in the directive section (i.e. all identifiers
following the keywords cond or call) must be declared with the appropriate types (return
types: GOLD MINE-types BOOL for conditional functions and VOID for actions) in the
prototype section.

To initialize the local memory m at creation-time of every automaton instance. a
particular method specified in the initialization section can be called. Moreover, to clean
up dynamically created data structures another dedicated function may be called when
the automaton instance is destroyed.

auto_initialize = initialize call method_name; e

cleanup section = cleanup call method name; o

7.4 Object Oriented Mechanisms

As already mentioned. CEGs are classes and. therefore, new CEGs may be derived
from other ones. As usual in the object oriented paradigm, new classes inherit all aspects
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from their superclass (also called parent class), but it is possible to add new elements to
the following parts of a CEG:

o the list of generic parameters.

the list of accepted events,
o the list of created events,
o the priority rules, and

the set of automaton templates.

Except for automaton templates (which are discussed in detail below) no redefinition
of elements of the superclass is allowed. Therefore, all additional elements must have

unique and new identifiers.
If the list of accepted events is extended and no new priority statement is specified,

the GOLD MINE-compiler assumes the priorities of the new events (in the order of their
appearence) to be lower as the priority of the events defined in the superclass. For more

details see [Zei93].

Because of the fact that automaton templates are (nested) classes, they may be
derived from superclasses. too. But with the current implementation of the GOLD MINE-
compiler the following restrictions have to be observed:

e Automaton templates can only be derived inside a (derived) CEG. It is possible to

derive an automaton template from

— a superclass inside the same CEG or
— a superclass inside a CEG which is a superclass of the CEG housing the con-

sidered template.

e As a direct consequence of this, it is not possible to inherit of an automaton template
or to import one from a CEG which is not an ancestor of the actual CEG.

The following elements of a superclass may be extended in a derived class:
e generic parameters,
e accepted events,
o generated events,
e set of states. and
o set of transitions.
In addition to this extensions the following elements may be redefined also:

o the labeling function in the state section and
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e the transitions in the directive section.

This section discussed only a part of the possibilities of the object oriented mech-
anisms of GOLD MINE. A complete introduction to GOLD MINE and its features may be
found in [Zei93]. Moreover. [Zei93] also discusses some details of the implementation of
the GOLD MINE-compiler and illustratres the power of GOLD MINEwith various examples.
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{type_section ceg_definition} e

type_section

{tvpe statement} e

type_statement

type gm_typel [derived from gm _type2] = type_def_body; e

type.def_body

simple_type
event_type e

simple_type

(host_language_type) e

event_type

{host_language_variable_definition} e

gm_typel

Identifier e

gm_type2

Identifier e

ceg_definition

ceg ceg namel [(generic_params)] [derived from ceg_name?]
[interface]
[implementation]

end ceg. e

ceg_namel

Identifier e

ceg_name?

[dentifier e

generic_params

variable list {; variable list}

variable list

gm_type variable name {, variable name} o

interface

[accepts (accepted events);]
l[generates (generated_events);]
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accepted_cvents n= variablelist {; variable list} o
generated_events = variablelist {; variable list} o
implementation = [prototype_section]
[pnonty_sectlon}
{automaton}

[ceg_initialize]

prototype_section 1= prototype
prototype_list;
{prototype_ list;} e

prototype_list = gm_type methode name (gm_type) o
method name n= Identifier o
priority section = priority

event_name [:priority method]
{> event_name[:priority_method]} e

priority method m= Identifier e

ceg initialize = initialize instantiate auto_name[(params)]; e

auto_name = Identifier e

automaton = auto auto_namel [(params)] [derived from auto_name?]
[interface]

[auto_implement]
end auto e

variable section]
prototype_section]

auto_implement =

[
[
[state section]
[directive section]
[auto_initialize]
[cleanup_section] o
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variable_section

variable
variable_list;
{variable list;} o

state_section

state
state_name [label_clause];
{state_name [label_clause];} e

state_name

[dentifier e

label clause

is start
raise event_name {, event_name}
instantiate auto_name [(params)] e

directive_section

directive
transition_clause;
{transition_clause;} e

transition_clause

state.name -+ event_name —> state_name
[cond condition_method]
[call transition_method]; e

condition_method

Identifier e

transition_method

Identifier e

auto_initialize

initialize call method name; o

cleanup section

cleanup call method_name; o
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B Reserved Words

The following table contains a summary of all reserved words of the specification

language GOLD MINE.

accepts auto call
ceg cleanup cond
derived directive end
from generates initialize
instantiate is priority
prototype raise start
state type variable
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