Technische

—— Institut fir Automation Universitat
Abt. fur Automatisierungssysteme Wien

Projektbericht Nr. 183/1-58
August 1995

Project Proposal SSCMP:
Sequenced Synchronized Clock
Multicast Protocol

Ulrich Schmid, Dietmar Loy and Wolfgang Kastner

Salvador Dali, "Die Bestandigkeit der Erinnerung”

Project Proposal SSCMP
Sequenced Synchronized Clock Multicast Protocol

ULRICH SCHMID

Technical University of Vienna
Department of Automation 183/1
Treitlstrafie 3, A-1040 Wien
Email: s@auto.tuwien.ac.at

DiETMAR Loy

Technical University of Vienna
Department of Computer Technology 384
GuBhausstrafle 27, A-1040 Wien
Email: loy@ict.tuwien.ac.at

WOLFGANG KASTNER

Technical University of Vienna
Department of Automation 183/1
Treitistrafie 3, A-1040 Wien
Email: k@auto.tuwien.ac.at

July 1995

Abstract

This proposal describes a project devoted to development and analysis of a novel reliable
data transmission protocol, called the Sequenced Synchronized Clock Multicast Protocol
(SSCMP), providing timely delivery of messages and atomic broadcasting. Our protocol
differs from existing ones by the fundamental role dedicated to time in all the algorithms
employed. In particular, contrasting usual approaches hased on pure sequence numbers,
SSCMP provides sequenced at-most-once delivery of messages by means of the new timer-
based connection management protocol Sequenced Synchronized Clock Message! Protocol
relying on messages incorporating timestamps; a first description and analysis of the
latter has already been accepted by Computer Networks and ISDN Systems ([SP95]).
Since timestamped messages are required for timely multiplexing/transmission scheduling
algorithms and synchronous atomic broadcasting (and usually needed at the application
level anyway), SSCMP offers conceptual coherence and improved performance at the same
time.

Keywords: computer communications, distributed real-time systems. timer-based con-
nection management protocols, sequenced at-most-once message delivery, real-time coni-
munication scheduling, multi-access channels, atomic broadcast, synchronized clocks.

"We just changed the meaning of the letter "M’ in the connection management protocol SSCMP of
[SP95] from message to multicast to arrive at the SSCMP of our proposal.

Contents
1 Introduction

2 Related Work
2.1 Connection Management Protocols
2.2 Multiplexing and Scheduling for Timely Delivery
2.3 Atomic Broadeast

2.3.2 Synchronous Protocols
2.4 Synchronized Clocks T
2.5 Selected Bibliography
3 Project Definition
3.1 Project Goals and Basic Approaches
3.1.1 Concepts and Implementation (Software)
3.1.2 Concepts and Implementation (Hardware)
3.1.3 Theoretical Research
3.1.4 Experimental Evaluation
3.2 Project Implementation
4 Required Support
4.1 Location
42 Staff oo
4.2.1 Available Staff
4.2.2 Required Staff
43 EBEquipment
4.3.1 Available Equipment
4.3.2 Required Equipment
4.4 Required Material
4.5 Travelling Costs
4.6 Other Costs
A Paper to appear in Computer Networks & ISDN Systems
B International Cooperation with INRIA
C Curriculum Vitae
D Official Forms, Offers

2.3.1 Asynchronous Protocols

32

33

34

35

1 Introduction

This project proposal originates in the problem of providing a high-performance dis-
tributed real-time system required for building the research prototype of our monitor-
ing system Versatile Timing Analyzer VTA?. To save development cost and time in the
VTA project, it was quite natural to rely on standard hardware and software technology
where possible, e.g. VME-CPUs running the pSOSY™ multiprocessor operating system
kernel, and to add lacking features: (1) high-accuracy synchronized clocks, and (2) a
high-performance, real-time communication subsystem for Ethernet.

To provide synchronized clocks, the authors initiated their research project SynUT(C?
alming at the development of hardware and software implementing high-accuracy (ps-
range) local clocks by means of incorporating GPS receivers, see [Sch95] for related issues.
We may say that this project is getting on very well, both w.r.t. to theory and practice,
see Section 3.2 for a brief report on the current status.

When exploring possible solutions for the real-time communication subsystem- re-
quired, we became more and more unsatisfied with the incoherency that resulted from
putting together things like Le Lann’s Deterministic Ethernet (cf. [LeL87]), a 802.x data
link layer protocol, and Cristian’s atomic broadcast protocol (cf. [Cri90]), for example.
Therefore, we started looking for an approach that allows to deal with such diverse issues
as timely delivery, reliable data transmission, and atomic broadcasting in a coherent way.

The unifying entity, timestamped messages, eventually materialized when we learned
about the (unsequenced) Synchronized Clock Message Protocol (SCMP) of [LSW91]. We
soon realized that this idea was the missing link for devising a coherent solution to our
original problem, and a promising direction of research as well. In fact, in the course
of setting up the proposal, we discovered and analyzed the core of a novel timer-based
connection management protocol called Sequenced Synchronized Clock Message Protocol
(SSCMP), which has a number of advantages over existing connection management pro-
tocols. Most notably, it provides sequenced at-most-once delivery even in the case of
clock synchronization failures and is strikingly simple, see Section 2.1 for more details.
The actual merits and novelty of our approach should be judged by the fact that a pa-
per on SSCMP was readily accepted for publication in the well-respected international
journal Computer Networks and ISDN Systems. Even more important, Gerard Le Lann
from INRIA Rocquencourt has expressed his interest in establishing a cooperation on the
SSCMP project, which will certainly have major impacts on the quality of our work.

Of course, as pointed out by the referees of [SP95], much work —i.e., the project
in question— remains to be done to convert our core idea to a fully engineered and
analyzed protocol. More precisely, it is the purpose of this project to develop software
and hardware for a fully-engineered and proven-correct atomic broadcast protocol suitable
for high-performance, fault-tolerant real-time systems built on top of existing technology.
Needless to say, the results of the abovementioned SynUTC-project are an ideal basis
for the SSCMP-project, and it is even possible to exploit certain synergies between both
projects. Note that we deliberately delayed submitting this proposal up to now, in order

*Supported by the Austrian Science Foundation, grant no. P8390-T.I'3C,
3Supported by the Austrian Science Foundation, grant no. P10244-OMA.

S

to be certain that the results of SynUTC will be available when we actually need them in

SSCMP.

The combined results of SSCMP and SynUTC should be immediately applicable in
practice, both for implementing our VTA and, most importantly, for industrial real-time
applications (where similar technology is often employed?).

However, note carefully, that targeting this project to fault-tolerant real-time appli-
cations is dictated by our desire to limit the amount of work to be done within a single
project. Past experience has shown that reasonable self-denial contributes much to a
projects success. Nevertheless, much more research could (and should) be performed on
SSCMP. For example, we are planning a future project devoted to extending SSCMP by
guaranteed QoS (Quality of Service) on top of very-high speed networks as required for
multimedia applications.

In fact, we are reasonably convinced that the ideas underlying SSCMP are well-suited
for distributed multimedia systems (see [NS95] for an introduction) as well. After all,
multimedia systems are real-time applications, so that most features of SSCMP should
be suitable here anyway. Relaxing the guaranteed delivery of SSCMP to guarantees
appropriate for multimedia transmission should be relatively straighforward. Of course,
devising an appropriate resource management for guaranteed QoS (see [Kur93], [Tow93])
1s a separate issue. However, even resource management tasks like monitoring of actual
QoS may greatly be helped by synchronized clocks and timestamped messages as used in

SSCMP.

2 Related Work

2.1 Connection Management Protocols

Connection-oriented protocols are important for several tasks in distributed computing,
ranging from classical remote procedure calls and reliable data transfer up to transmission
of multimedia data streams. Traditional connection management protocols as used in
TCP (see [Pos81}) employ initial handshaking for setting up connection: To ensure that
a message is not a duplicate, sender and receiver must exchange setup messages before
actual data transmission can take place.

Initial handshaking is perfectly reasonable for infrequently setup but heavily used
connections found in former generation computer networks, since the setup-overhead is
effectively spread over all the messages sent via a connection. This is no longer true for
the communication patterns found in today’s (client-server) distributed systems, where
frequent connections to numerous servers with only a few (often two) messages exchanged
per connection are common, cf. [CW89]. In fact, the overhead of initial handshaking 1s
one round-trip time, which is primarily determined by the signal propagation delay. It is

‘Supporting industrial practice does of course not mean that we ignore the fact that the current state-
of-the-art is largely based on unsuitable approaches, cf. [SR93]. However, in view of the incoherent state
of research, we think that a tabule rasa philosophy —abandon everything in favour of something new—
is Inappropriate by now.

therefore not decreased by the dramatically increasing transmission speeds and becomes
in fact more and more unbearable as high-speed network technology evolves.

Timer-based connection management protocols like the pioneering Delta-t ([Wat81])
avoid that connection setup overhead completely, providing a promising alternative. The
basic idea underlying such protocols is to remember “recently” received messages in order
to detect duplicated setups. This is made working by somehow enforcing a marimum
packet life/validity time, and the few existing timer-based protocols differ in how this
is actually accomplished. Any timer-based protocol relies on a common “idea” of time
among all the nodes of the distributed system, and it has been realized early that such
protocols may be both considerably enhanced and simplified by assuming that nodes are
equipped with synchronized clocks; see [Che89], [LSWO1], [BF93].

The pioneering Delta-t ([Wat81]), the first timer-based connection management pro-
tocol available, is a fully engineered transport protocol designed for system architectures
without special hardware like synchronized clocks and stable storage. Connection records
(abbreviated CR) are created “on demand” and become automatically (i.e., timer-based)
released when it is guaranteed that no old packet is alive. This is made working by incor-
porating a time-to-live field into each message sent, which is appropriately decremented
as the message travels through the network and intermed;ate nodes. To that end, some
(reliable) link-transit-time protocol is required; the one presented in [Slo83] assumes that
all node’s clocks are running at approximately the same rate (although Delta-t does not
need synchronized clocks). The receiver node retains a connection record just long enough
to guarantee that any duplicate of a message generated during the lifetime of a connection
has its time-to-live expired, exploiting the fact that any node that encounters a message
with zero time-to-live must discard it.

Another fully engineered transport protocol relating to our SSCMP is VMTP de-
scribed in [Che86], which employs a timer-based connection management scheme very
similar to the one used in Delta-t. However, it exploits properties following from intro-
ducing T-stable addressing for duplication detection purposes also. In its original version,
VMTP relied on a time-to-live field incorporated in each message; in its revised version
(cf. [Che89]) it employs end-to-end timestamps to enforce maximum packet lifetimes.
Hence, it requires synchronized clocks and also some sort of stable storage in order to
generate T'-stable identifiers valid even across node crashes.

A particularily carefully engineered and versatile “next generation” transport protocol
is XTP described in [SDW92]. Targeted to high-speed networks. much emphasis has heen
laid upon easing implementation in hardware. However, as far as timer-based connection
management is concerned, it does not provide novel ideas but relies on the mechanisms of
Delta-t. Nevertheless, we should note that X TP actually uses a certain mixture of timer-
based and handshake-based mechanisms, supporting a quick graceful close and hence
speeding up connection release time. Note that the primary disadvantage of timer-based
protocols with respect to handshake-based ones is the fact that a connection record is
usually released later; nevertheless, even completely handshake-based protocols like TCP
require some non-zero connection release time. cf. [Wat81].

The CMSC protocol described in [BF93] follows the approach underlyving the revised
VMTP ([Che89]) to remove the dependence of the protocol from the underlying network.

4

More specifically, an expiration time (instead of a time-to-live field) is added to each
message, making the maximum packet lifetime enforcement purely end-to-end by means
of synchronized clocks. Actual message transmission is governed by an ordinary shiding
window protocol. Although CMSC is not a fully engineered protocol in the sense of
Delta-t, VMTP, or XTP, it deals with a connection oriented interface in some detail.

Finally, our Sequenced Synchronized Clock Message Protocol as described in [SP95]
employs messages carrying a timestamp and a sequence number in an integrated fashion.
Connection records are only retained for some suitable period of time after transmission
activities have ceased. However, the timestamp of the last message that arrived over a
connection that is reclaimed is used to update a global upper bound that may be used
for duplicate detection after releasing the connection record. Therefore, SSCMP requires
synchronized clocks and some non-volatile mermory.

Contrasting previous work ([Wat81], [Che86], [SDW92], (BF93]), which primarily ad-
dresses transport layer protocols supporting connection open, transfer, and close phases
explicitly, we adhere to a both simplified and more abstract point of view, which hides
away even the concept of connections from the service specification (cf. [Sha9l]) of our
SSCMP protocol: We view our protocol as being responsible for providing timely, reli-
able, sequenced, packet-oriented but otherwise unstructured data transmission on top of a
necessarily imperfect communication system. Of course there are connections involved in
the protocol (entity) specification of SSCMP, but they are internally managed and hence
invisible from the outside. Note that this may be viewed as building a reliable datagram
service. Thus, the usual dichotomy between connection oriented and datagram services
is relaxed by SSCMP.

Our approach has several advantages: First of all, dealing with timer-based protocols
invented to avoid connection setup overhead, we feel that adhering to a connection-
based interface would —in some sense— give away some of those advantages. Moreover,
relying on a low-level interface makes our basic protocol applicable for data link layer and
transport layer protocols as well; constructing a proper transport layer interface dealing
with important details like adressing is more or less straightforward. Last but not least,
a protocol providing reliable, sequenced communication is a necessary basis for more
advanced features, like atomic broadcast.

As far as correctness is concerned, SSCMP surpasses the core of any of the other pro-
tocols since it guarantees at-most-once delivery even in the case of clock synchronization
failures. Note that a violation of the clock synchronization condition is a rather likely
event, in particular in systems employing probabilistic algorithms (like NTP), but also in
deterministic ones, where at least the possibility of faulty clocks exists. Unlike protocols
like Delta-t, SSCMP also tolerates any (very) late message (arriving when the connec-
tion record has long been released), and its correctness does not depend on bounds on
the transmission rate since there are no implicit timing constraints involved (as in se-
quence number wrapping/reuse or T-stability in other protocols). By the way, devising
comprehensive correctness proofs might benefit from the fact that the SCMP protocol of
[LSW91], the ancestor of our SSCMP, is amenable to formal verification, see [Lam93] for
details.

Viewed from an “engineering perspective”, one observes that SSCMP is purely end-to-
end since it does not require support from the underlying network. Moreover, it allows for

5

multiple outstanding messages (beyond stop-and-wait), does not require static allocation
of connection records, allows immediate resumption after reboot, and accepts messages
generated during a long lasting receiver crash. Finally, its striking simplicity should be
judged in view of the fact that packet losses in modern networks are mainly caused by
receiver overrums, i.e., performance problems caused by complicated protocols, and not
by transmission errors. It is understood, however, that SSCMP —unlike most of the
abovementioned protocols— is of course not a fully engineered connection management
protocol by now, in the sense that it does not deal with addressing and dozens of other
“practical” issues.

To conclude, the following table provides a summary of the more detailled comparision
of the protocols given in [SP95].

Protocol | Clock fault | Timer CR.size | CR.release Resumption | Complexity
Delta-t | not tolerated 3 small 26 not immediate medium
VMTP | not tolerated 3 small > 26 immediate medium

XTP not tolerated 3 small (<)26 not immediate medium
CMSC | not tolerated | 3(5) | > small 26 immediate high
SSCMP tolerated 3 small 268 immediate low

2.2 Multiplexing and Scheduling for Timely Delivery

Timely delivery of messages, lLe., delivery of messages by some specified deadline, is of
course mandatory for any protocol designed for real-time applications. The problem
to be solved here internally is how to multiplex (= schedule) packets originating from
multiple connections in order to guarantee timely delivery for each connection. For fully
connected (point—to-point) networks, this involves (multiple) classical, non-preemptive
real-time scheduling problems.

In multi-access channels like Ethernet, the resource to be scheduled —the channel—
is shared by all connections existing in the whole system, not only by the ones established
at a single node. Needless to say, there is usually no centralized control of channel access.
Therefore, we face a non-preemptive global scheduling problem that needs to be solved
with locally available information. An overview of existing research may be found in

[MZ95] and [KSY84].

Categorizing the work relevant for our purposes, it is important to note that we are
going to follow the so-called “on-line school” in real-time systems design, which is a
promising alternative to the well-established “off-lige school”. It is argued by prominent
researchers in the field that it is the former one that will be able to satisfy the require-
ments of next generation real-time systems, cf, [LeL94], [HLR95], [SR93], for example.
Actually, we do not see any reason to employ clearvoyancy assumptions underlying off-
line approaches when they are in fact not needed to provide a solution. So why should we
consider a protocol that works only for periodic/sporadic messages when there is one that
can deal with fully aperiodic ones (in the sense that if messages are timely deliverable at
all, the protocol will deliver them on time)?

Consequently, we will not consider the numerous papers dealing with guaranteed syn-
chronous message communication, utilizing ideas like ordinary TDMA as in the TTP of

6

[KGY94], combining rate monotonic scheduling with priority driven protocols as employed
in the IEEE 802.5 token ring (see e.g. [SM89]), or synchronous bandwidth allocation
schemes for the timed token protocol as used in FDDI, for example (see e.g. [ACZ93]).
The same is true for approaches based on periodic servers for handling asynchronous (spo-
radic) messages (see [SMLSS8]). It is most interesting to note that all these approaches
have been shown to be inappropriate w.r.t. the abovementioned goals in [HLR95].

Also not appropriate for our purpose are most of the so-called best-effort schemes.
Among them are virtual time protocols like the ones described in [ZR87], which try to
approximate some (optimal) centralized scheduling algorithm like minimum laxity first
(MLF) by CSMA/CD with selectively delayed initial channel access, and approaches that
assume multiversion messages and employ some version selection scheme to control the
amount of data transmitted, see e.g. [MZ91].

What we are looking for are algorithms suitable for implementing the abstraction of
real-time virtual circuits® (RTVC, see [ARS91]), which guarantee timely delivery for all
messages accepted for transmission. That is, when a message is submitted for transmission
to a RTVC, there must be an admission test to check whether timely delivery is possible
(without endangering previously guaranteed messages). If the admission test fails, the
transmission request is rejected. Note that this approach is not at all inferior to off-line
guarantees offered by static system designs: If message arrivals obey some (maximum)
periodic/sporadic arrival law a priori, then no rejection will ever take place if proper
algorithms are used. Suitable on-line guarantees are in fact superior to off-line ones, since
they work even in the case when periodic/sporadic assumptions are violated.

The basic idea underlying suitable implementations of RTVCs is to adopt a deadline-
driven real-time scheduling algorithm like earliest deadline first (EDF) or minimum lazity
first (MLF) to select the next message that must be transmitted over the channel, in a
distributed way. Synchronized clocks at all nodes of the distributed system are of course
required for that purpose. A common notion of time, however, is not enough since the
problem is primarily made difficult by the fact that knowledge about waiting messages is
distributed among the nodes of the system.

There are basically two different ways to solve this problem, cf. [MZ95]: dynamic
reservation and conservative estimation. The former method operates on system-wide
reservation information made available locally by querying/ informing other nodes for/of
local reservation requests, see [MZB90], for example. Since local reservations must be
observed consistently at all nodes, a synchonous reliable atomic broadcast (see Section 2.3)
must be utilized for information dissemination if faults are to be considered. Although
being time- and bandwidth-consuming, this method allows acceptance tests to be based
on the actual system load.

Algorithms suitable for the alternative conservative estimation technique do not ex-
change reservation information. The algorithms employed here must admit worst case
bounds on message delivery times (based on local information only) to support the accep-
tance test. This idea seems particular attractive to us, although it might reject messages

*Since SSCMP relaxes the usual dichotomy between virtual circuits (connections) and datagrams, the
notion of real-time virtual circuits is somewhat unsatisfactory in our context —we have to deal with
something like reliable real-time datagrams instead.

-3

that could have been accepted.

For algorithms supporting conservative estimation, exchanging local information is
usually replaced by exploiting the channel feedback of normal (message) transmissions.
For example, in a bus network like Ethernet, a node starting transmission at time ¢ learns
from the occurence of a collision that some other node started its transmission as well.
This little piece of global information is already sufficient to accomplish that in case of
multiple simultaneous transmission attemps (originating at different nodes) only one node
—that one that would have been selected by a fully centralized scheduler— (eventually)
wins. Using channel feedback is of course a well-established technique for multiaccess
channels, cf. [Gal85] for an excellent survey.

Several different methods how to use this technique in real-time communications have
been proposed. Apart from (already “abandoned”) virtual time algorithms like [ZR87],
which try to avoid collisions by delaying a node’s initial channel access according to its lax-
ity or deadline, there is an efficient collision-free technique sometimes called forcing head-
ers introduced in [RW77]. It exploits the inherent wired-or property of broadcast busses:
If multiple transmitters transmit their messages starting with certain (priority-)field si-
multaneously, they will clash bit-for-bit. Therefore, only the transmitter with the highest
priority value will read its priority information back from the channel; all others will ob-
serve feedback which is different from the value written out to the channel, forcing them
to give up. Note that this technique is used in the MAC layer of the rapidly emerging
CAN (controller area network) fieldbus.

There are also two interesting collision-based techniques, which should be suitable for
our purposes. Window protocols are based on adopting the idea underlying the splitting
algorithm of Gallager / Tsybakov and Mikhailov (cf. [Gal85]) to work on latest-time-to-
send (LTS) instead of message arrival times. More specifically, collisions are resolved by
maintaining a (consistent) time window at each node, which governs transmission rights
of a node. If a node’s LTS is within the current window, it may transmit, otherwise
it has to remain silent. If a collision occurs, the window is split and only transmitters
having their LTS in the lower half may proceed. Splitting is repeated until a successful
transmission takes place. Therefore, window protocols like the one described in [Zna9l],
[ZSR90] effectively implement MLF scheduling.

A promising alternative to window protocols is based on adopting Deterministic Eth-
ernet ([BFR87], [LeL87]) to implement EDF scheduling. This DOD-CSMA-CD (deadline-
oriented deterministic CSMA-CD protocol introduced in [LR93] is particularily interest-
ing, because (1) EDF was shown recently to be optimal not only for preemptive but also
for non-preemtive tasks, see [GMRY5], and (2) EDF does not require a prior: knowl-
edge of message transmission times as does MLF. Moreover. there is a complete worst
case analysis of the protocols’ behaviour that provides a simple acceptance test based on
conservative estimation.

[v.4]

2.3 Atomic Broadcast

Atomic broadcast® is one of the most central issues in fault-tolerant computing. For ex-
ample, if servers (e.g. file servers) are replicated to increase reliability and availability of
operation, it is usually crucial that all replicas obtain all the service requests (e.g. trans-
action messages) consistently; otherwise, replica inconsistency might occur. Moreover, re-
liable delivery must be ensured even when some system components fail. If fault-tolerant
real-time applications are to be considered, it must be guaranteed that any broadcast ter-
minates successfully within some known time. Note that timely transmission multiplexing
and channel scheduling is a neccessary prerequisite here.

There are several different types of reliable broadcast?, imposing certain restrictions to
the order messages are received by different servers. Reliable broadcast is the weakest form,
allowing arbitrary order of reception. FIFO broadcast guarantees that messages broadcast
by the same sender are delivered in the order they were broadcast. If broadcasts of two
senders are causally related, the strongest causal broadcast ensures that the reception
order respects the causality relation. Protocols implementing causal order were published
by [BJ87], [PBS89], [SES89], [BSS91], [SB91], [FT92] and [APR93]. Note that causal
broadcast is also easily provided on top of FIFO broadcast, cf. [HT93]. Finally, atomic
broadcast guarantees that receptions at all receivers are in exactly the same order; FIFO
atomic broadcast and causal atomic broadcast combine the appropriate constraints.

Two classes of protocols for atomic broadcast have been proposed to date: asyn-
chronous protocols, which use message ackowledgements, and synchronous protocols, which
rely on synchronized clocks to enforce total order by means of chronological order (of
course consistent with causality). In the following subsections, we give a brief survey of
existing broadcast specifications and protocols.

2.3.1 Asynchronous Protocols

Though being implemented quite differently, all varieties of (asynchronous) atomic broad-
cast protocols guarantee at least the following properties:

o Agreement: All correct nodes agree on the set of messages they deliver.

o Validity: All messages broadcast by correct nodes are delivered.

o Order: All correct nodes deliver messages in the same unique order, even though
this order is not determined in advanve.

Among the protocols that claimed to provide this service are the protocols introduced
in [CM84] for Ethernet or satellite networks, differing mainly in the degree of fault-
tolerance that they provide. Their algorithms work centralized: All sources transmit
to a central site, called the token site, which assigns sequence numbers to the messages

®This communication service is variously termed reliable [CM84] or atomic [CAST85). We will refer
to it as atomic broadcast.

"Usually, one distinguishes broadcast addressing all nodes of a distributed system from multicast
addressing all nodes within a certain process group. The major difference comes from the fact that
managing process groups requires a membership protocol. We will not deal with managing membership
within the SSCMP-project, so multicast and broadcast are used synonyimously.

9

and forwards them to the destination sites. An elegant token-passing protocol is used to
detect failures at the token site, to select a new token site, and to retransmit messages
affected by the failure. This early protocol inspired the research of Garcia-Molina and
Spauster, see [GS89], [GS91]. Instead of ordering all messages at a central side, their
algorithm orders them by a collection of nodes structured into a message propagation
graph. The graph indicates the paths messages should follow to get to all intended
destinations. Instead of sending the messages to the destinations and then ordering them,
the messages get propagated via a series of sites that order them along the way by merging
messages destined for different groups. The protocol described in (KTH™*89] resembles the
protocol of [CM84] that cannot recover from processor crashes, yet is optimized for the
common case of no communication failures. The design of a simple reliable totally-ordered
broadcast service (cf. [Oes91]) is based on [KTH*89] and implemented on a standard Unix
system using the standard TCP/IP protocol family.

The ISIS distributed programming environment (cf. [BJ87], [BJSS]) supports a wide
range of multicast protocols from causal orderings (CBCAST) to total orderings (AB-
CAST) relying on two-phase commit mechanisms. Each site maintains a priority queue
per process. The sender multicasts the message to the various destinations which each
assign it their own priority number. The message is marked “undeliverable” and put on
the queue. Each receiver returns the priority number to the sender, which in turn picks
out the highest one and sends it back to the receivers. The receivers replace their orig-
inal numbers with the new one and tag the message as “deliverable”. After reordering
a message may be delivered if it is the first one in the queue. Dasser showed in [Dasy2]
how this protocol may even he enhanced by reducing the latency time between marking
the message as “deliverable” and its delivery. Finally, the “second generation” of ISIS
protocols (cf. [BSS91]) supports highly concurrent applications and scales to systems with
large numbers of potentially overlapping process groups.

Quite close in the concept to Birman’s and Joseph’s approach are the Trans and To-
tal protocol described in [MMA90] and the Psync protocol introduced in [PBS89]. The
Trans protocol piggybacks acknowledgments for old broadcast messages on new ones and
guarantees that all processes eventually construct the same partial order of broadcast mes-
sages. The Total protocol is even able to establish a consistent total order. However the
efficiency of Trans and Total depends on the use of a broadcast communication medium.
Psync is a low-level protocol designed to support a variety of high-level protocols and
distributed applications. It maintains only the partial order among messages represented
in the form of a direct acyclic graph, called the context graph. A collection of “higher”
routines which may be applied on this graph enforces various ordering disciplines. Mo-
tivated by the Trans algorithm and the Psync algorithm [ADK*92] provide services for
membership and so called basic-, causal-, agreed- and safe-multicast resembling the ISIS
approach, however differing in design and implementation.

Luan and Gligor [LG90] devised a promising protocol based on a variation of three-
phase commit that uses voting to avoid blocking. Finally, Nakamura and Takizawa pre-
sented a cluster concept —an extension of the conventional connection concept to multi-
ple service access points (SA Ps)— and built a selectively partially ordering protocol SPO
(cf. [NT91]) and a totally-ordering protocol TO (cf. [TN89]) on top of it that works under

10

distributed control.

2.3.2 Synchronous Protocols

The atomic broadcast protocols mentioned so far use message acknowledgements to en-
sure the listed properties. However, they cannot guarantee timeliness: If a message 1s
delivered at all, it has to be delivered within a bounded time after it was broadcast.
Thus, synchronous protocols relying on a round-based model, can be used to update syn-
chronously a distributed storage that displays the same contents at every correct process.
They ensure the existence of a time constant A such that the following properties are
satisfied:

o Agreement and Validity: If any node processor delivers an update by time U on its
clock, then that update was initiated by some node and is delivered by all correct
nodes by time U on their clocks.

¢ Order: All correct nodes deliver messages in the same order. ‘

o Termination: Every broadcast initiated by a correct node at time 7 on its clock is
delivered by all correct nodes by time U = T' 4+ A on their clocks.

Synchronous broadcast protocols may be applied for critical real-time applications
which must enforce bounds on response times even when failures occur. These failures
may be classified in increasing severity as follows (cf. [BB93)):

Crash failure: A component stops participating in the protocol prematurely.
Omussion failure: A component fails to send some of its messages.
General omission failure: A component fails to send or receive some 1nessages.

Timing failure: A component either omits to respond or responds too early or too

late.

o Authenticated byzantine failure: A component shows arbitrary behavior but there
1s a message authentication scheme that prevents the component from forging the
messages of correct components.

® Byzantine failure: A component shows arbitrary behavior.

The problem of atomic broadcast in the presence of faults was first studied by Christian
et al. [CAS*85] (see also [CDS*90]). They developed synchronous protocols proposed for
point-to-point networks managing failures up to authenticated byzantine failures. The
protocols are based on simple message forwarding: a processor forwards any new message
it receives from a link on all other links as soon as it receives the message. The main draw-
back of this prompt forwarding technique is that message forwarding always takes place
even when no failures occure. Improvements of their protocols proposed for redundant
broadcast channels that do not forward messages when there is no need to do (following
the lazy forwarding rule) may be found in [Cri90].

[BD85], [BSD8S] describe a protocol based on message rounds and exactly svnchro-
nized clocks in which all receiving processors know the time a sending processor broad-
casts. They studied the execution time of their protocol for any communication graph.

11

including familiar structures such as fully connected point-to-point graphs, rings, busses
and broadcast networks, and obtained lower bound results identifying a time gap between
systems where processors may only fail to send messages, and systems where processors
may fail both to send and to receive messages.

Within the project Mars [KG94] developed and implemented a practical multicast pro-
tocol for time-triggered architectures that uses a TDMA broadcast medium with simple
algorithms and low overhead. Based on the assumption that the communication chan-
nel have only omission failures and that the nodes support the fail silent abstraction
their protocol TTP integrates services like message transport with predictable latency,
membership service and support for rapid mode change.

Last but not least the work of [VRB89], [VM90] should be mentioned, which occupies
a special position between the two main approaches (i.e., asynchronous and synchronous
protocols) using properties of the underlying network to enforce known and bounded
execution times without the existence of a global clock.

2.4 Synchronized Clocks

Our previous expositions should have made clear that synchronized clocks are required for
reliable (FIFO) data transmission (connection management), timely delivery, and atomic
broadcast. Actually, it is well known that a common notion of time among the nodes of a
distributed system greatly simplifies the design of most distributed services, see [Lis93] for
an overview. Combining this fact with the trend towards integrating (large) distributed
systems into daily life, which is governed by universal time coordinated (UTC), we think
that it is not unreasonable to predict that future generation computer systems will be
equipped with accurately synchronized clocks.

In fact, much effort has been devoted to the development of (inexpensive) techniques
for clock synchronization (see [SWLY0], [RSB90] for an overview and [YM93] for a bibli-
ography), and high-accurate, inexpensive sources of (UTC) are worldwide available now
via the NAVSTAR global positioning system GPS (see [Wel87]). The development of
the network time protocol NTP (see [Mil91]) has pushed synchronized clocks even into
Internet-reality. Last but not least, there is our well-advanced research project SynUTC,
which will provide hardware and software implementing high-accuracy synchronized clocks
by incorporating GPS receivers, see [Sch95] for related issues. The results of SynUTC are
of course ideally suited to be used as a basis for the SSCMP-project.

2.5 Selected Bibliography

References

[ACZ93] G. Agrawal, B. Chen, W. Zhao. Local Synchronous Capacity Allocation
Schemes for Guaranteeing Message Deadlines with the Timed Token Proto-
col, Proc. INFOCOM 93, 1993, p. 186-193.

[ADK*92] Y. Amir, D. Dolev, S. Kramer, D. Malki. Transis: A Communication Sub-
System for High Availability, 20th FTCS, 1992, p. 76-34.

12

[APRY3]

[ARS91]

[BBY3]

[BDS5)

[Bel76]

[BF93]

[BFRS7]

[BJS7]

[BJ8S]

[BSDSS)

[BSS91]

[CAS*85]

[CDS*90]

[Che86]

[Ches9]

R. Aiello, E. Pagani, G. Rossi. Causal Ordering in Reliable Group Communi-
cations, SIGCOMM’93, 1993, p. 106-115.

K. Arvind, K. Ramamritham, J.A. Stankovic. A Local Area Network Archi-
tecture for Communication in Distributed Real- Time Systems, Real-Time Sys-
tems, 3(2), 1991, p. 115-147.

P. Berman, A. Bharali. Quick Atomic Broadcast, Distributed Algorithms, 1993,
p. 189-203.

0. Babaoglu, R. Drummond. Streets of Byzantium: Network Architectures for

Fast Reliable Broadcasts, IEEE Transactions on Software Engineering, SE-
11(6), 1985, p. 546-554.

D. Belsnes. Single-Message Communication, IEEE Transactions on Commu-
nications, COM-24(2), February 1976, p. 190-194.

E. Biersack, D. Feldmeier. 4 timer-based connection management protocol with
synchronized clocks and its verification, Computer Networks and ISDN Sys-
tems, 25, 1993, p. 1303-1319.

J. Boudenant, B. Feydel, P. Rolin. An [EEE 802.3 Compatible Deterministic
Protocol, Proc. IEEE Infocom 87, 1987, p. 573-579.

K. Birman, T. Joseph. Reliable Communication in the Presence of Failures,
ACM Transactions on Computer-Systems, 3(1), 1937, p. 47-76.

K. Birman, T. Joseph. Reliable Broadcast Proteols, Lectures Notes of Artic 88,
1988.

0. Babaoglu, P. Stephenson, R. Drummond. Reliable Broadcasts and Com-
munication Models: Tradeoffs and Lower Bounds, Distributed Computing, 2,
1988, p. 177-189.

K. Birman, A. Schiper, P. Stephenson. Lightweight Causal and Atomic Group
Multicast, ACM Transactions on Computer Systems, 9(3), 1991, p. 272-314.

F. Cristian, H. Aghili, R. Strong, D. Dolev. Atomic Broadcast: From Simple
Diffusion to Byzantine Agreement, 15th FTCS, Ann Arbor, Michigan, 1985.

F. Cristian, D. Dolev, R. Strong, H. Aghili. Atomic Broadcast in a Real-Time
Environment in: S. Simons, A. Spector (ed.). Fault-Tolerant Distributed Com-
puting, Springer Verlag, 1990, p. 51-71.

D. Cheriton. VMTP: A Transport Protocol for the Neat Generation of Com-
munication Systems, Proc. SIGCOMM 86, 1986, p. 106-415.

D. Cheriton. SIRPENT™: A High-Performance Internetworking Approach.
Proc. SIGCOMM 89, Austin, Texas. September 1989, p. 158-169.

13

[CM84]

[Cri90]

[CWS89]

[Das92]

[FT92]

[Gal85]

[GMRYS5]

(GS89)]

[GS91]

(GTO1]

[HLR93]

[Hor94]

[HT93]

[JLS7)

J. Chang, N. Maxemchuk. Reliable Broadcast Protocols, ACM Transactions on
Computer Systems 2(3), 1984, p. 251-273.

F. Cristian. Synchronous Atomic Broadcast for Redundant Broadcast Channels,
Journal of Real-Time Systems, 2, 1990, p. 195-212.

D. Cheriton, C. Williamson. VMTP as the Transport Layer for High-Perfor-
mance Distributed Systems, IEEE Communications Magazine, June 1989, p.
37-44.

M. Dasser. TOMP - A Total Ordering Multicast Protocol, Operating Systems
Review, 26(1), 1992, p. 32-40.

G. Florin, C. Toinard. A New Way to Design Causally and Totally Ordered
Multicast Protocols, Operating Systems Review, 26(4), 1992, p. 77-33.

G. Gallager. A Perspective on Multiaccess Channels, IEEE Transactions on
Information Theory, IT-31(2), 1985, p. 124-142.

L. George, P. Muhlethaler, N. Rivierre. Optimality and Non-Preemptive
Scheduling Revisited, INRIA Research Report no. 2516, April 1995.

H. Garcia-Molina, A. Spauster. Message Ordering in a Multicast Environment.
Proc. 9th International Conference on Distributed Computing Systems. 1989,
p. 354-361.

H. Garcia-Molina, A. Spauster. Ordered and Reliable Multicast Communica-
tion, ACM Transactions on Computer Systems, 9(3), 1991, p. 242-271.

A. Gopal, S. Toueg. Inconsistency and Contamination, Proc. 10th ACM An-
nual Symposium on Principles of Distributed Computing, Montreal, 1991, p.
257-272.

J.-F. Hermant, G. Le Lann, N. Rivierre. 4 General Approach to Real-Time
Message Scheduling over Distributed Broadcast Channels, Proc. INRIA/IEEE
Conference on Emerging Technologies and Factory Automation, October 1995,
Paris.

M. Horauer. Entwicklung einer Network Timestamp Unit fir einen Versatile
Timing Analyzer zum Monitoring von verteilten Echtzeitsystemen, Diplomar-
beit Dept. of Computer Technology. Technical University of Vienna, 1994. (in
german)

V. Hadzilacos, S. Toueg. Fault- Tolerant Broadecasts and Related Problems, in:
S. Mullender (ed.). Distributed Systems. 2nd ed., Addison Wesley, 1993. p.
97-145.

P. Jain, S. Lam. Modelling and Vertfication of Real-Time Protocols for Broad-
cast Networks, IEEE Transaction on Software Engineering, SE-13(8), 1987, p.
924-937.

L4

[KG94]

[KSYS4]

[KTH+89)

[Kur93]

[Lam93]

[LG90]

[LeL87)

[LeL94]

[Lis93]

[Loy95]

[LR93]

[LSW91]

[Mil91]

[MMA90]

[MMSa]

H. Kopetz, G. Griinsteidl. TTP — A Protocol for Fault-Tolerant Real-Time
Systems, IEEE Computer, January 1994, p. 14-23.

J. Kurose, M. Schwartz, Y. Yemini. Multiple-Access Protocols and Time Con-
strained Communication, ACM Computing Surveys, 16(1), 1984, p. 43-70.

F. Kaashoek, A. Tanenbaum, S. Hummel, H. Bal. An Efficient Reliable Broad-
cast Protocol, Operating Systems Review, 23(4), 1989, p. 5-19.

J. Kurose. Open Issues and Challanges in Providing Quality of Service Guaran-
tees in High-Speed Networks, ACM Computer Communication Review, 23(1),
January 1993, p. 6-15.

B. Lampson. Reliable Messages and Connection Establishment, in: S. Mullen-
der (ed.). Distributed Systems, 2nd ed., Addison-Wesley, 1993, p. 251-281.

S. Luan, V. Gligor. A Fault-Tolerant Protocol for Atomic Broadcast, IEEE
Transactions on Parallel and Distributed Systems, 1(3), 1990, p. 271-285.

G. Le Lann. The 802.3 D Protocol: A Variation on the IEEE 802.3 Standard
for Real-Time LANs, INRIA Technical Report, 1987.

G. Le Lann. Scheduling in Critical Real-Time Systems: a Manifesto, Proc.
3rd Int. Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, Germany, September 1994, Springer LNCS 863.

B. Liskov. Practical uses of synchronized clocks in distributed systems, Dis-
tributed Computing, 6, 1993, p. 211-219.

D. Loy. GPS-Linked High Accuracy NTP Time Processor for Distributed Fault-
Tolerant Real-Time Systems, Dissertation Faculty of Electrotechnics, Techni-
cal University of Vienna, 1995. (forthcoming)

G. Le Lann, N. Rivierre. Real-Time Communications over Broadcast Nel-
works: the CSMA-DCR and the DOD-CSMA-CD Protocols, INRIA Rapport
de Recherche 1863, 1993.

B. Liskov, L. Shrira, J. Wroclawski. Efficient At-Most-Once Message Based
on Synchronized Clocks, ACM Transactions on Computer Systems, 9(2), May
1991, p. 125-142.

D. Mills. Internet Time Synchronization: The Network Time Protocol, IEEE
Transactions on Communications, 39(10), October 1991, p. 1482-1493.

P. Melliar-Smith, L. Moser, V. Agrawala. Broadcast Protocols for Distributed
Systems, IEEE Transactions on Parallel and Distributed Systems, 1{1), 1990,
p.- 17-25.

MUMM e.V.: Basic M-Modules Specification, Nurnberg, Germany.

15

[MMSb]
[Mul93]

IMZ91]

[MZ95]

[MZB90]

[NS95)

[NT91]

[Oes91]

[PBSS9]

[Pos81]

[Pus95]

[RSBY0]

[RW77)

[SBY1]

[Sch95]

[SDW92]

MUMM e.V.: M-Module Directory, Niirnberg, Germany, August 1993.

S. Mullender. Interprocess Communication, in: S. Mullender (ed.), Distributed
Systems, 2nd ed., Addison-Wesley, 1993, p. 217-250.

N. Malcolm, W. Zhao. Version Selection Schemes for Hard Real-Time Com-
munications, Proc. IEEE Real-Time Systems Symposium, 1991, p. 12-21.

N. Malcolm, W. Zhao. Hard Real-Time Communication in Multiple Access
Networks, Real-Time Systems, 8, 1995, p. 35-77.

N. Malcolm, W. Zhao, C. Bacter. Guarantee Protocols for Communication in
Distributed Real-Time Systems, Proc. IEEE Infocom 90, 1990, p. 1078-1086.

K. Nahrstedt, R. Steinmetz. Resource Management in Networked Multimedia
Systems, IEEE Computer, May 1995, p. 52-63.

A. Nakamura, M. Takizawa. Reliable Broadcast Protocol for Selectively Par-
tially Ordering PDUs (SPO Protocol), COMPSAC’91, 1991, p. 239-246.

D. Oestreicher. A Simple Reliable Globally-Ordered Broadcast Service, Oper-
ating Systems Review, 25(4), 1991, p. 66-76.

L. Peterson, N. Buchholz, R. Schlichting. Preserving and Using Context [n-
formation in Interprocess Communication, ACM Transactions on Computer
Systems, 7(3), 1989, p. 217-246.

J. Postel. DoD Standard Transmission Control Protocol, DARPA-Internet
RFC 793, 1981.

A. Pusterhofer. NTSU Network Timestamp Unit: Ein Modul fur Eventtimes-
tamping und Uhrensynchronisation via LAN, Diplomarbeit Dept. of Automa-
tion 183/1, Technical University of Vienna, 1995. (in german)

P. Ramanathan, K. Shin, R. Butler. Fault-Tolerant Clock Synchronization in
Distributed Systems, IEEE Computer, 23(10), October 1990, p. 33-42.

E. Rothauser, D. Wild. MLMA-A Collision-Free Multi-Access Method, Proc.
IFIP Congress, 1977, p. 431-436.

P. Stephenson, K. Birman. Fast Causal Multicast, Operating Systems Review,
25(2), 1991, p. 75-80.

U. Schmid. Synchronized Universal Time Coordinated for Distributed Real-
Time Systems, Control Engineering Practice, 3(6), 1995. p. 877-884.

W. Strayer, B. Dempsey, A. Weaver. XTP — The Xpress Transfer Protocol,
Addison Wesley, 1992.

16

[SES89)

[Sha91]

[SLL93]

[Slo83]

[SM89]

[SMLSS]

[SP95]

[SR93]

[$595]

[SWL9O]

[Tan81]
[TNg9)

[TN89]

[Tow93]

A. Schiper, J. Eggli, A. Sandoz. A New Algorithm to Implement Causal Order-
ing, Proceedings of the 3th International Workshop on Distributed Algorithms,
1988.

A. Shankar. Modular Design Principles for Protocols with an Application to
the Transport Layer, Proceedings of the IEEE, 79(12), December 1991, p.
1687-1707.

J. Sogaard-Andersen, N. Lynch, B. Lampson. Correctness of Communication

Protocols: A Case Study, MIT/LCS/TR-589, November 1993.

L. Sloan. Mechanisms that Enforce Bounds on Packet Lifetimes, ACM Trans-
actions on Computer Systems, 1(4), November 1983, p. 311-330.

J. Strosnider, T. Marchok. Responsive, Deterministic IEEE 802.5 Token Ring
Scheduling, Real-Time Systems 1(2), 1989, p. 133-158.

J. Strosnider, T. Marchok, J. Lehoczky. Advanced Real-Time Scheduling (Us—
ing the IEEE 802.5 Token Ring, Proc. IEEE Real-Time Systems Symposium,
1988, p. 42-52.

U. Schmid, A. Pusterhofer. SSCMP: The Sequenced Synchronized Clock Mes-
sage Protocol, to appear in Computer Networks and ISDN Systems, 1995. (23

pages).

J. Stankovic, K. Ramamritham. Advances in Real- Time Systems, IEEE Com-
puter Society Press, 1993, p. 1-25.

K. Schossmaier, U. Schmid. UTCSU Functional Specification, Technical Re-
port Dept. of Automation, Technical University of Vienna, no. 1-56, 1995.

B. Simons, L. Lundelius-Welch, N. Lynch. An Overview of Clock Synchroniza-
tion, B. Simons, A. Spector, editors: Fault-Tolerant Distributed Computing,
Lecture Notes on Computer Science 448, 1990, p. 84-96.

A. Tanenbaum. Computer Networks, Prentice Hall, 1981.

M. Takizawa, A. Nakamura. Totally Ordering Broadcast (TO) Protocol on the
Ethernet, Proceedings of the IEEE Pacific RIM Conference on Communica-
tions, Computers and Signal Processing, 1989, p. 357-364.

M. Takizawa, A. Nakamura. Totally Ordering Broadcast (TO) Protocol on the
Ethernet, Proceedings of the IEEE Pacific RIM Conference on Communica-
tions, Computers and Signal Processing, 1989, p. 357-364.

D. Towsley. Providing Quality of Service in Packet Switched Networks, Proc.
Joint Conference Performance’93 and Sigmetrics’93, Lecture Notes on Com-
puter Science no. 729, Springer, 1993, p. 560-586

17

[Tur93]

[VMY0]

[VRBSY]

[Wat81]

[Wel87]

[YM93]

[ZH95]

[Zna91]

[ZSR90)

[ZR87]

K. Turner. Using Formal Description Techniques: An Introduction to ESTEL-
LE, LOTOS and SDL, Wiley Series in Communication and Distributed Sys-
tems, 1993.

P. Verissimo, J. Marques. Reliable Broadcast Jor Fault-Tolerance on Local Com-
puter Networks, 20th FTCS, 1990, p. 54-63.

P. Verissimo, L. Rodrigues, M. Baptista. AMp: A Highly Parallel Atomic Mul-
ticast Protocol, SIGCOMM’89, 1989, p. 83-93.

R. Watson. Timer-Based Mechanisms in Reliable Transport Protocol Connec-
tion Management, Computer Networks, 5, 1981, p. 47-56.

D. Wells. Guide to GPS Positioning, Canadian GPS Associates, 1987.

Z. Yang, T. Marsland. Annotated Bibliography on Global States and Times in
Distributed Systems, ACM SIGOPS Operating Systems Review, 27(3), July
1993, p. 55-72.

P. Zhou, J. Hooman. Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, Real-Time Systems, 9, 1995, p. 119-145.

P. Znati. Deadline-Driven Window Protocol for Transmission of Real-Time
Traffic, Proc. 10th IEEE International Conference on Computers and Com-
munications, 1991, p. 667-673.

W. Zhao, J. Stankovic, K. Ramamritham. 4 Window-Protocol for Transmuis-
sion of Time-Constrained Messages, IEEE Transactions on Computers, 39(9),
1990, p. 1186-1203.

W. Zhao, K. Ramamritham. Virtual Time CSMA Protocols for Hard Real-
Time Communications, IEEE Transactions on Software Engineering, SE-13(8),
1987, p. 938-952.

3 Project Definition

In this section, we will describe the envisioned goals of the SSCMP project and the
intended ways of approaching them. It is our purpose to provide a fully engineered
implementation of our SSCMP protocol for several different classes of networks, including
a complete theoretical and also experimental evaluation of the protocol’s properties. The
implementation of SSCMP will consist of software in conjunction with elaborate hardware
support built on top of existing technology. Therefore, the project should be classified as
oriented basic research with strong emphasis on immediately applicable results.

3.1 Project Goals and Basic Approaches

Basically, there are four different (but obviously intimately related) tasks to be performed
in SSCMP, which are described in the following subsections.

3.1.1 Concepts and Implementation (Software)

Numerous issues are to be considered in order to develop a fully-engineered protocol pro-
viding timely delivery and atomic broadcast on top of the novel connection management
protocol of [SP95]. The most important issues are as follows.

o Improving flow/rate control

There are several ideas of how to improve the SSCMP-variant presented in [SP95].
For example, SSCMP is modular in the sense that different protocols for flow/rate
control may be plugged in; the existing variant uses a sliding window protocol
(see [Tan81]) for that purpose. The underlying acknowledgment-based flow-control
scheme, however, is inappropriate for very high speed networks. Rate control or
credit-based algorithms should be employed here. cf. [SDW92].

o Connection duration agreement

One topic should be to find improved strategies for connection record expiration
and (re-)initialization; the ideas used in the SSCMP of [SP95] are not as robust
as we would like under exceptional circumstances. There should also be a way
for the application to control how long SSCMP holds its externally invisible con-
nection records; this might include measures for a quick graceful close as used
in XTP, cf. [SDW92]. Note that keeping connection records unnecessarily long
wastes (non-volatile) memory: releasing it too early may cause frequent connection
record (de)allocations to take place. However, care (i.e., multiple B.upper instances.
see [SP95]) must be taken to avoid unrelated connection releases to influence each
other.

o Bidirectional communication

To improve the protocol’s performance (in particlar for low-capacity networks), pig-
gybacked acknowledgement techniques must be devised to reduce network load.

19

et

o Implementing real-time virtual circuits (RTVCs)

We must provide (1) a suitable algorithm for multiplexing multiple connections at
a single sender and (2) a proper channel scheduling algorithm for the broadcast
channels considered to implement RTVCs as introduced in Section 2.2. This will
eventually guarantee timely delivery of messages transmitted by SSCMP. Of course,
SSCMP is exceptionally suitable to be used with all varieties of deadline-driven
scheduling algorithms (like earliest deadline first), since the protocol depends on
timestamping of messages.

In principle, we think that forcing header protocols, window protocols, and DOD-
CSMA-CD are all suitable for praviding timely delivery in SSCMP. However, it
calls for considerable research efforts to make those algorithms really applicable,
e.g., as fault-tolerant as they should be. For example, the latter two (collision-
based) protocols require that all nodes —even idle ones— maintain a consistent
view of the transmission window; therefore, collision resolution may fail if a station
wrongly senses a collision as idleness or successful transmission.

Observe that we are aiming at a uniform approach, that is, something which may be
adopted for very different networks, ranging from fieldbusses up to very high-speed
networks. This implies research on improved algorithms, in particular modifying
the forcing header scheme employed in CAN in order to make it suitable for guaran-
teed delivery. Finally, much theoretical research has to be done to establish sound
acceptance tests a la DOD-CSMA-CD for the other algorithms.

Atomie broadcast

It is our purpose to build a timely FIFO or maybe causal atomic broadcast protocol
on top of the connection management core of SSCMP. Although it is primarily the
novel reliable connection management (that is, data transmission) protocol and not
the atomic broadcast algorithm employed that we think will contribute to umproving
the state of the art, there may be room for novel results in the latter area as well.
Note that the timer-based structure of our connection management protocol sup-
ports 1 : n transmissions automatically, probably opening up new ways of handling
the acknowledgment problem.

In order to achieve sufficient fault-tolerance, redundant broadcast channels are usu-
ally mandatory, cf. [Cri90], [BD85] for example. Again, the basic protocols’ timer-
based duplication detection feature is capable of handling redundant channels auto-
matically. However, we have to be careful to avoid problems with channels/senders
exhibiting byzantine faulty behaviour, cf. [CAS*85]. To that end, we should con-
sider providing message authentication (i.e., encryption) at low (hardware) level,
cf. Section 3.1.2.

Protocol interface

Since SSCMP will provide service not normally found in standard protocols, we need
a non-standard interface to its functionality. Remember that SSCMP relaxes the
usual distinction of connection oriented (COS) and connectionless services (CLS)
by providing something like a timely reliable connectionless (datagram) service.

20

Interfaces built upon real-time variants of COS and CLS, as proposed in [ARS91],
are therefore not really appropriate for our purposes. Note that we will also provide
services required for network maintenance and testing, something that is required
badly in practice.

Nevertheless, in order to being able to use SSCMP as the basis of a TCP/IP protocol
stack, we should provide a standard 802.x (data link layer) interface for our protocol
as well.

3.1.2 Concepts and Implementation (Hardware)

We think that the protocols’ full advantages show up only with hardware support, in
particular in case of (very) high speed networks. The following issues call for being
implemented in an ASIC (possibly in conjunction with standard devices, e.g. dedicated
processors and memories):

e Connection identifier = connection record mapping

SSCMP does not provide the notion of a connection-oriented service in its service
specification. Moreover, it does not need statically allocated storage for connection
records but allows dynamic allocation /deallocation (based on the progress of time)
instead. This opens up the possibility to use “real” datagran messages, carrying
full (logical) sender/receiver identifiers instead of dynamically allocated connection
identifiers. This “stateless” approach should considerably simplify the design of the
protocol and also improve robustness and performace in case of faults.

To exploit this property, there is a need of mapping sender/receiver identifiers to
the appropriate connection records in real-time. This may be done either by using
some special virtual memory management technique or by hashing. In any case,
locating the connection record is necessary every time a message is submitted to
the protocol for transmission, and every time when a message is received. That is,
mapping must keep pace with data transmission speeds, making hardware support
mandatory.

e Monotonicity enforcement for sequenced timestamps

SSCMP is based on an integrated representation of timestamps and sequence num-
bers, called sequenced timestamps. In [SP95], monotonicity of sequenced times-
tamps —even across node crashes— has been shown to be a necessary precondition
for correctness of the protocol. Of course, sequenced timestamps must be gener-
ated every time a message is to be transmitted. Therefore, generating monotonic
sequenced timestamps should be performed in hardware.

e Stable storage for connection records

Uncorrupted connection records are of vital importance for correctness of the pro-
tocol. Since the performance of SSCMP in case of crashes is considerably improved
when connection records for existing connections survived the crashes (although
this is not mandatory, see the next item), it is advantageous to organize memory for
connection records as a stable storage built upon non-volatile RAM. To that end,

21

checksums (like CRC) for data written into memory are required. Given the quite
frequent memory accesses, this must be done in hardware.

¢ Maintaining reinitialization information

There is a simple way of reinitializing SSCMP to a safe state after a catastrophic
crash where connection records get corrupted. This requires only a single data item
(called R.latestin [SP95]), which must be kept in stable storage. Since it experiences
frequent periodical updates, this should be done in hardware.

Of course, any specialized hardware support for SSCMP must be integrated with the
network controller that implements the lowest layer(s) of the network protocol. Moreover,
in order to provide accurately synchronized clocks, the UTCSU-ASIC developed in our
SynUTC project should be utilized. Fortunately, there is a relatively efficient way of ac-
complishing this: We will develop a revised version of the Network Clock Synchronization
Coprocessors (NCSC) developed in the SynUTC-project that adds the SSCMP support
mentioned above. :

Building an NCSC does of course not mean just assembling some standard network
controller chipsets with our SSCMP- and UTCSU-ASIC. The following issues need careful

consideration:

e Encryption

Contrasting ISO practice, there are arguments in favour of providing encryption at
the data link layer in order to being able to reject deliberately injected packets upon
decryption, cf. [Mul93].

o Multiplexing and channel scheduling for timely delivery

Dealing with timely transmission usually requires much support from the MAC
layer, remember Section 2.2. One should carefully consider whether it is possible to
implement such mechanisms on top of existing (programmable) controllers like the
68EN360; otherwise, development of VLSI network controllers from the scratch is !
inevitable.

o Functional addressing and demultiplexing

To increase flexibility of a distributed system, one should avoid exporting node
internals where possible (information hiding). Therefore, functional addressing is
often used to accomplish that a client must not know the actual process 1D of
a server process it wants to connect to. Of course, some sort of mapping of the
(usually large) domain of functional IDs to actual process IDs upon reception is
required here. More yet, the network controller should be capable of demultiplexing
based on functional IDs: A packet should be received into a buffer that can be
mapped quickly (without copying) into the virtual address space of the appropriate :
(receiving) process, cf. [Mul93]. Note that those features might be dealt (or at least
integrated) with the connection record mapping support mentioned earlier.

e Maintenance services

b
8]

One should consider to provide (or, at least, exploit) maintenance features like
time domain reflectometry for locating breaks/short circuits in network cabling,
and support diagnosis by a promiscuous reception mode, for example. Such fea-
tures are often provided by state-of-the-art chipsets, like Intel’s 82596 Ethernet
controller. Moreover, special attention should be laid upon plug&play features
(auto-configuration, live-insertion, etc.).

In order to assess SSCMP’s suitability for networks with totally different capabilities,
we are planning to develop at least two different NCS(’s:

e (dual/triple redundant) NCSC-CAN for the CAN-bus
e (dual/triple redundant) NCSC-Ethernet (possibly a fast, e.g., 100 Mbit/sec variant)

Given our basic approach to timely message delivery outlined in Section 3.1.1, there is
no real alternative to the CAN bus; note that it has been showed in [HLRY5] that media
access strategies based on token mechanisms are not suitable for our purposes.

Of course, it might be argued that a protocol like SSCMP, which replaces small
sequence-numbers by means of a long timestamp, is of questionable use in a fieldbus.
However, remember that “real” real-time applications require timestamps anyway!

Since we are aiming at immediate applicability, we will build our NCSCs for widely
used, standardized processor bus systems. Depending on the size of the resulting board,
this will result in VME-modules or, preferably, in small-sized M-modules. Initiated by
the companies MEN, Philips, and others, and promoted by the german MUMM e.V., the
low-cost, multi-vendor M-modules piggyback I/O-system now provides dozens of different
process interface modules, see [MMSa] and [MMSh] for details.

3.1.3 Theoretical Research

Apart from the theoretical analysis that needs to be done to prove the suitability of the
concepts underlying the protocol’s software and hardware, there are also two more or less
seperate issues to be considered:

e Protocol behaviour under failure conditions

It is important to explore systematically the performance/correctness penalties as-
sociated with failures and to conceive measures for improvement —a problem, which
has been generally neglected in the research work surveyed in Section 2. For ex-
ample, a question of particular importance is how long an earlier failure may affect
the execution of the protocol after it has ceased to exist. Contamination and in-
consistency due to atomic broadcasts initiated by faulty nodes also require special
attention, cf. [GT91].

o Formal correctness proofs

Designing a protocol suitable for fault-tolerant —possibly safety-critical— real-time
applications makes it mandatory to devise correctness proofs. That is, certain safety
and lifeness properties must be proven to hold for the specification (conceptual basis)

23

-

of the protocol. Formal methods based on assertions have successfully been applied
for that purpose, see [ZH95] and [JL87] for only two examples. However, since the
ancestor of our SSCMP (the SCMP of [LSW91]) has sucessfully been analyzed by
means of abstraction functions in [Lam93], we will adopt this approach —actually
some extension, the timed automaton model of [SLL93]— for our purpose.

Ultimately, a formal proof for the actual implementation would be required; how-
ever, it is rather questionable whether such a proof is manageable. What might

possibly be done here is to apply protocol verification techniques supported by tools
like [Tur93].

3.1.4 Experimental Evaluation

Experimental evaluation of the properties of the hardware and software implementation
of SSCMP is of course mandatory. Apart from the fact that a formal correctness proof
of the actual implementation is not likely to be provided, experiments are usually the
only means to assess the performance of the implementation. We are planning a two-step
approach here:

1. Simulation

The implementation of the protocol should first be tested and evaluated in a suitable
simulation framework. Modelling the behaviour of the underlying distributed system
by means of a powerful discrete-event simulation system and performing initial
implementation tests on top of it is necessesary for primarily two reasons:

e We cannot afford to delay initial software testing until all hardware develop-
ment is completed; this would intolerably impair concurrent project work.

® Performing initial testing/evaluation of the combined hardware and software
implementation would contradict the most elementary principle of testing, i.e.,
modularity.

2. Ezperimental evaluation of NCSCs in a dedicated testbed

As soon as the implementation has passed the simulation phase, it is possible to test
and evaluate the combination of software implementation and NCSC in a suitable
testbed. Actually, we will build a distributed system comprising several CPUs
equipped with an NCSC each, running a distributed testing application.

To reduce the development work associated with testing, we will use the same testing
application for all NCSCs. More specifically, we will develop this application to run
under the pSOS*™ operating system. pSOS*™ is easily extended to support the
NCSC in question by providing a specific device driver software; note that the
detailled concept of this driver has already been developed in [Pus95].

3.2 Project Implementation

In this section, we will describe how we are going to implement the project in order to
approach the goals listed in the previous section. Before presenting our actual workplan

24

Gpadin e

we will briefly survey the major reasons why we think to be able to perform this project
successfully.

o We consider it most encouraging that [SP95] has been accepted for publication in
the leading international journal Computer Networks and ISDN Systems: all referees
of the paper agreed that SSCMP is novel and worth to be explored further in more
detail.

e We have already a quite clear idea how most issues of Section 3.1 can be attacked.
After all, the results of [SP95] were obtained some time ago.

¢ Performing research on SSCMP may exploit several synergies with our —by now
well-advanced— project SynUTC, not only by using the project’s primary results
but also by reusing (parts of) the testbed.

By the time of submission, we have already completed the functional specification
([SS95]) and also the most important parts of the design ([Loy95]) of the UTCSU-
ASIC. The concepts underlying the software part of SynUTC (interval-based clock
validation, see [Sch95]) are resonably complete and sound; we are currently working
on proofs of precision and accuracy bounds. There is also a prototype version of an
NCSC-Ethernet ([Hor94]) and, most importantly, the detailled concept ([Pus95]) of
a pSOS*™ device driver for this NCSC; the latter is currently being implemented and
may be reused for the SSCMP testbed. Finally, we are about to start experimental
evaluation of GPS satellite receivers.

e Earlier reseach done by the authors establishes the necessary scientific basis for the
project (cf. the attached lists of publications):

— U. Schmid (Dept. of Automation) has been working on several related problems
in the field of computer communications and distributed real-time systems
for several years, in particular on collision resolution in random multi-access
channels and scheduling in real-time systems.

— W. Kastner (Dept. of Automation) areas of research are distributed systems
and formal verification.

~ D. Loy (Dept. of Computer Technology) has considerable expertise in ASIC
design and testing, in particular in the area of fieldbusses.

® The basic conditions to perform the project in question are nearly optimal:

— Working together on the SynUTC-project for some time, we may say that
the cooperation bewteen our departments works fine. In fact, our individual
capabilities and experiences are complementing one another almost optimally.

— Exploiting the abovementioned synergies with the SynUTC-Project is efficient
and cost saving.

— The Department of Computer Technology participates in ESPRIT Eurochip
(and will certainly participate in the following Furo-practice programme as
well), so that developing and manufacturing an ASIC is easy and costs a small
fraction of the usual fees only.

We have good connections to the french research lab INRIA in Rocquencourt, in
particular to the group of Gerard Le Lann, who invented Deterministic Ethernet
and, most importantly, DOD-CSMA-CD, cf. Section 2.2. In fact, G. Le Lann has
consented to cooperate with us on this project. Needless to say, this should help us
considerably in dealing with the topic timely delivery of messages.

Last but not least, we have a clear picture of the how to implement the project, i.e.,
the following workplan:

1

2.1

Development of SSCMP concepts: all participants, 6 months (U. Schmid)®

We first need a comprehensive picture of how all the different features of SSCMP
listed in Section 3.1.1 are to be provided. Although there is no need for full proofs of
suitablility at this stage, we have to be reasonably certain that the concept chosen
for each issue will work. In particular, we have to explore all the details underlying
the different networks supported (CAN, Ethernet, cf. 3.1.2) in order to judge the
suitability of a certain design decision. Note that we will begin exploring those
issues prior to the official start of the project.

A major result of this first step is the functional specification of the SSCMP hard-
ware support. This specification is the primary interface between the computer
science and electrotechnical part of the project, which may then work quite inde-
pendently of each other.

Developing detailled concepts: NN1, NN2, 1 year (U. Schmid, W. Kastner)
In this phase, detailled concepts for

e (improved) connection management including atomic multicast (NN2),

o real-time virtual circuits for timely delivery (NN1),

must be provided, possibly including sketches of formal proofs of correctness. If an
1dea initially considered appropriate is found to be unsuitable at this stage, it should
still be manageable to change the design of SSCMP hardware support accordingly.
Both issues listed above involve considerable research, conceptual, implementation,
and (simulation) testing work and should be honoured by a full contract of employ-
ment each.

Developing the SSCMP hardware support: M. Horauer, 1 year (D. Loy)

Based on the functional specification, an ASIC providing the functionality outlined
in Section 3.1.2 is to be designed. It seems that the required features are pretty
non-standard, so that there is not much hope of being successful with off-the-shelf
devices. Detailled concepts of the NCSCs (CAN, Ethernet) must also be developed
during this phase.

This work obviously needs an expert in the field of hardware design. Fortunately,
we have such a person at hand: Martin Horauer (supervised by Dietmar Loy)

8The supervisor responsible for coordinating/directing the appropriate phase is given in parantheses.

26

3.1

3.1

is currently implementing the UTCSU-ASIC and also the NCSC-Ethernet in our
SynUTC-Project. The value of his experience and, in particular, the benefits of his
familiarity with the issues relevant for SSCMP cannot, be overstated.

Development of evaluation testbeds: NN3, 1.5 years (NN1)

Concurrently with 2.1 and 2.2, experimental evaluation must be planned and built,
cf. Section 3.1.4. It is also necessary to define evaluation criteria and to implement
hardware and software for

e simulation (in particular, the SSCMP hardware support and network controller
needs to be simulated for multiple nodes),

o NCSC testbed,

¢ evaluation and interpretation of measurement results (should ideally be the
same for simulation and testbed).

Implementation can be done by a verv good student working on his/her diplona;
however, (half) a research stipendium is certainly necessary to compensate for the
unusual amount of work.

Developing detailled proofs and implementation: NN1, NN2, NN4c, NN5c,
6 months (W. Kastner, U. Schmid)

At this stage, detailled proofs of correctness must be worked out and the final
implementations (for CAN, Ethernet) must be provided.

Implementation of the SSCMP protocol software will be done primarily in C++ or
C, which is suitable for being used in simulation and for incorporating SSCMP in a
pSOS*™ device driver according to the concept developed in [Pus95]. However, it
is most likely that there is also some low-level (microcode) programming required
for implementing MAC algorithms suitable for timely delivery of messages, cf. Sec-
tion 3.1.1. This work can be performed by very good students within their diplomas,
supported by (half) a research stipendium to compensate for the difficult work.

Development of NCSC hardware: NN4e, NN5e, 6 months (M. Horauer)

In this phase, which should reasonably overlap with the actual development of the
SSCMP hardware support, the NCSCs (CAN, Ethernet) must be built. This may
be done efficiently by students (NN4e, NN5e) working on diplomas, who can rely
upon the specification worked out in the previous phase. However, the considerable
amount of work calls for support by (half) a research stipendium.

Experimental testing and evaluation in the NCSC testbed: NNI1, NN2, M.
Horauer, NN3, 6 months (W. Kastner, D. Loy, U. Schmid)

In this last phase, the implementation of SSCMP must be tested and evaluated
by means of the NCSC testbed; completing formal correctness proofs and (tool-
supported) protocol verification may take place at this stage as well.

SN
-1

Note that implementing the above workplan —which does not provide any slacktime—
takes 2.5 years. We will try to start the first phase of the project before the official start
in order to arrive at a funded period of 2 years. However, it might well be the case that
we will need some additional time for completing the work.

4 Required Support

4.1 Location

The computer science and electrotechnical part, respectively, of the project will be per-
formed at '

e Department of Automation (E183/1, headed by Prof. Schaldt),
® Department of Computer Technology (E384, headed by Prof. Eier),

both at Technical University of Vienna. The departments heads’ declaration of consent
for using the departments’ infrastructure are enclosed.

4.2 Staff
4.2.1 Available Staff
e Univ. Doz. Dr. Ulrich Schmid (Dept. of Automation)

o Univ. Ass. DI Wolfgang Kastner (Dept. of Automation)

o Unwv. Ass. DI Dietmar Loy (Dept. of Computer Technology)

4.2.2 Required Staff
According to the workplan in Section 3.2, we will need the following additional staff:
e 1. year

— DI Martin Horauer: full contract of employment for 1 year
— DI NNI: full contract of employment for 1 year
— DI NN2: full contract of employment for 1 year
— NN3: research stipendium for 1 vear (ATS 5.000,-/month)

e 2. year

— DI Martin Horauer: full contract of employment for 1 year

|

DI NN1: full contract of employment for 1 year

DI NN2: full contract of employment for | year
— NN3: research stipendium for 1 vear (ATS 5.000.-/month)

[
03]

— NN{c: research stipendium for 6 months (ATS 5.000,~/month)
— NNé5c: research stipendium for 6 months (ATS 5.000,-/month)
— NN/e: research stipendium for 6 months (ATS 5.000,-/month)

(

= NNb&e: research stipendium for 6 months (ATS 5.000,~/month)

The following table summarizes the costs:

#| X |1.Y]|2Y|item ATS (incl.)-
1] 2 1 1 | employment DI Horauer, ATS 282.000,~/year 564.000,~
212 1 1 | employment DI NNI, ATS 282.000,-/year 564.000,~
3| 2 1 1 | employment DI NN2, ATS 282.000,-/year 564.000,~
4 | 2 1 1 | research stipendium NN3, ATS 5.000,-/month 120.000,~
5105 - 0.5 | research stipendium NNjc, ATS 5.000,—/month 30.000,-
6 105 - 0.5 | research stipendium NN5c, ATS 5.000,~/month 30.000,-
7105 - 0.5 | research stipendium NNje, ATS 5.000,-/month 30.000,~
8 105 - 0.5 | research stipendium NN5e, ATS 5.000,-/month 30.000,-

4.3 Equipment
4.3.1 Available Equipment

The departments’ infrastructure and equipment may be used by the project to a reasonable
extent. In particular, there is a powerful Sun workstation running Cadence ASIC design
software available for the project at the Department of Computer Technology. VME-
racks for mounting the VME-Modules and pSOS*™ operating system licenses for M630xx
processors are provided by the Department of Automation. Moreover, a Sun workstation
running a pSOS*™ software development environment for C and C++ used in the project
SynUTC (P10244-OMA) may be (sharedly) utilized in the SSCMP-project as well.

4.3.2 Required Equipment

In order to perform the simulation described in Section 3.1.4, we need a powerful discrete-
event simulation software for a Sun workstation. However, since an evaluation of the
numerous existing simulation systems is a time-consuming task, we do not know by now
which simulation software will suit our needs best (we estimated the resulting costs based
on our experience with software of similar size).

We will also need a suitable software for evaluation and interpretation of measurement
results (for an existing Sun workstation). The well-known Mathematica software, which
may be obtained cheap from the campus software support, should suit our needs quite
well.

Finally, there is a need for purchasing a microcode-development environment for the
programmable network controller (e.g., the 68EN360) that will eventually be utilized.
Again, the resulting costs have been estimated. If it should happen that we cannot utilize
a programmable controller at all (due to our special requirements), we have to develop
suitable VLSI network controller chips instead; manufacturing costs will replace the costs
for the development environment in that case.

29

In order to build the testbed for experimental evaluation of the full SSCMP imple-
mentation, in particular, the NCSC M-Modules (see Section 3.1.2), we need four powerful
VME CPU-Modules capable of carrying at least 2 M-Modules. The latter requirement
comes from the fact that a single NCSC will likely consume two standard M-Modules
in size. Each CPU should also have an ordinary Ethernet Controller on board, which
1s needed for connection to the software development workstation, and a few digital 1/0
lines for testing purposes. Four CPUs are required (at least) due to the fact that we
have to cope with byzantine faults, and it is well-known that, in order to mask only &
single byzantine fault, at least 4 nodes are required in the distributed system. Finally, in
order to run our pSOS operating system on the CPUs, a board support software package
(containing drivers for the onboard I/O devices) is required.

The following table summarizes the expected costs (1 DFL = 6.5 ATS):

#|12]1Y |2Y |item ATS (incl.)
9 |1 1 — | Discrete-event simulation software for Sun .80.000,~
101 1 ~ | Mathematica for Sun 7.500,~
111 1 — | Microcode-development software 50.000,-
12141 1 3 | VME M-Modul CPUs, a DFL 6.304 - (excl.) 212.285,~
1311 1 ~ | pSOS Board Support Package, & DFL 3.500,— (excl.) 27.300,-

4.4 Required Material

Material is primarily required for building two different NCSC-boards (redundant CAN,
redundant Ethernet):

® Manufacturing of (4-8 layers) multilayer printed circuit board will cost about ATS
20.000,—; however, one redesign has to be considered.

e Components and SMD assembly for 5 NCSC-boards (1 prototype+4 hoards for
evaluation after redesign); costs are estimated to be ATS 7.000,~ per board on the
average.

The following table summarizes the resulting costs:

#|X|1.Y|2Y |item ATS (incl.)
1415 - 9 | 5 boards NCSC-CAN 75.000,-
1515 - 5 5 boards NCSC-Ethernet 75.000,~

4.5 Travelling Costs

Travelling costs are required for two purposes, namely (1) presentation of project results
at conferences and (2) visiting INRIA Rocquencourt (G. Le Lann’s group) for cooperation, ;
see Section 3.2. Whereas it does not make sense to us to make any plans for conferences f
now (we will apply for funding when the need arises), it is possible to estimate the costs :
arising from cooperating with INRIA.

30

First of all, it is certainly necessary for the project head to pay a one-week’s visit to
INRIA at the beginning of the project in order to negotiate actual cooperation, acquire
latest results, and present our work. Second, funding is needed for travelling and lodging
of employee NN1 (working on timely transmission) for a 1 month visit during the first
year. Planning for the second project year is of course more difficult in advance, but
we think that two visits for two weeks each should be appropriate. One APEX flight
Vienna-Paris-Vienna costs ATS 9.050,~, and boarding and logding in an average hotel
is FI' 450,~ per night. Official refunding per day is ATS 285,-. The resulting costs are
summarized in the table below (1 FF ~ 2 ATS).

#|X|1.Y|2Y |item . ATS (incl.)
16 1 4| 2 2 | costs for visiting INRIA Rocquencourt 94.855,~

4.6 Other Costs

We need support for manufacturing a small batch (20 units) of the SSCMP-ASIC de-
scribed in Section 3.1.2. The costs include:

e Chip complexity (= die size) is certainly high (based on the experience with the
UTCSU-ASIC in the SynUTC-project, we think that 20000 gates will be appropri-
ate). Currently, the Austrian manufacturer AMS offers 0.8 wm CMOS technology
with 800-900 gates/mm?, at the price of 120 ECU/mm? (incl. 20% VAT) for ES-
PRIT Eurochip participants (and 342,- ECU/mm? for commercial users). Note that
the Austrian AMS is considerably more expensive than foreign manufacturers (like
ES2, for example, which is however likely to leave the Eurochip business). Our
requirements amount to approximately 25 mm? die size.

o Implementing boundary scan increases chip space by approx. 10%.

¢ Large PGA package required in order to provide 100+ pins, which become necessary
due to the required mapping of logical sender/receiver ids (324 bit) to physical ones
(324 bit). Additional 12.5 mm? of die size are required for bonding here.

¢ One complete redesign of the whole chip, which is inevitable when ASICs of this
complexity are designed.

The following table summarizes the costs (I ECU = 15 ATS):

#
17

1.Y | 2.Y | item ATS (incl.)
1 1 | manufacturing ASIC. a ATS 72.000.- 144.000,~

(1l

31

A Paper to appear in Computer Networks & ISDN
Systems

B International Cooperation with INRIA

33

|
;
|
?

C Curriculum Vitae

34

D Official Forms, Offers

35

