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Abstract. In this paper, we develop and analyze a simple interval-based algorithm suitable for
fault-tolerant external clock synchronization. Unlike usual internal synchronization approaches,
our convergence function-based algorithm provides approximately synchronized clocks maintai-
ning both precision and accuracy w.r.t. external time. This is accomplished by means of a time
representation relying on intervals that capture external time, providing accuracy information
encoded in interval lengths. The algorithm, which is generic w.r.t. the convergence function
and relies on either Instantaneous correction or continuous amortization for clock adjustment, is
analyzed by utilizing a novel, interval-based framework for establishing worst-case precision and

expressive power.
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1. Introduction and Overview

One important problem that needs to be addressed when deéaling with distributed
real-time systems is the issue of global time. To support very large —world-wide—
distributed applications, like automatic (instrument) landing systems (ILS), for
example, each computing node in the system should have local access to a reliable
system time satisfying the following two application requirements:

(R1) Accuracy (= maximum deviation of local clock reading from real-time)

Time rules daily life and for that réason most commercial computer applications,
e.g. a flight reservation system. Hence, system time must have a well-defined
relation to the only official and legal world-wide standard Universal Time Coor-
dinated (UTC). It is made publicly available world-wide primarily by means of
radio transmission, most notably by the NAVSTAR Global Positioning System ‘
(GPS), which has changed the world of accurate time and position measurement
completely, see [3] in this spectal issue for an up-to-date overview.

This work is part of our project SynUTC, supported by the Austrian Science Foundation
(FWF) under contract no. P10244-OMA. Further project information may be found under
http://www.au to.tuwienAac.at/~kmschoss/synucc.html
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Providing an accurate global time in distributed systems is usually termed as
the external clock synchronizaiion problem, due to the fact that UTC has to be
provided externally to the system. The probably most well-known solution is
the Network Time Protocol NTP, which was designed to establish a global time
related to UTC in the Internet, see [12], [13]. NTP provides its clients with
am average accuracy below 10 ms, which amply fulfills the modest accuracy
requirements of typical applications.

(R2) Precision (= maximum difference of simultaneous local clock readings)

Algorithms for (fault—tolerant) distributed systems are usually considerably sim-
plified and improved when approximately synchronized local clocks are availa-
ble, see [7], [20] for some examples. Distributed real-time systems depend upon
precise global time even at a very low level of operation. For example, times-
tamping is often employed for establishing a global order of (external) events

Providing mutually synchronized local clocks is known as the internal clock
synchronization problem, and numerous solutions have been worked out (at
least in scientific research) under the term fault-tolerant clock synchronization,
see e.g. [25] for an overview. In fact, there are more than 60 papers listed in
the 1993 bibliography [27] of clock synchronization in distributed systems. The
actual precision requirements of typical applications are in the range below 1 ms,
although increasingly demanding applications like an airborne flight control

Different components (Le., applications) within a heterogeneous distributed sy-
stem have usually different requirements concerning accuracy and/or precision.
However, it should be clear that a “uniform” global time that satisfies both requi-
rements simultaneously is preferable over a solution that provides “translations”
between parts of the system employing their own idea of precise/accurate time,
cf. [6].

Unfortunately, it turns out that establishing a precise global time that also relates
to some external time standard like UTC in fault-tolerant distributed systems is
not a simple matter of combining techniques from (R1) and (R2). Informally, it
is difficult to add accuracy to existing solutions for internal synchronization, since
such algorithms are necessarily reluctant to obey “authoritative” information of a
few UTC time sources due to fault-tolerance. On the other hand, whereas high
precision is of course implied by high accuracy, it is usually not feasible to build a
fault-tolerant time service that is purely based on accuracy, since highly accurate
UTC is not continuously available,

Although it has been recognized early that the problem of fault-tolerant external
clock synchronization constitutes a research topic in its own right, cf. [2], it did
not recetve much attention untij recently. [18] provides a short overview of existing
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earlier work, and the papers in this special issue form a quite representative coll-
ection of more recent efforts. Among the latter is our research on interval-based
clock validation (introduced in [17]), which aims at a solution of the external clock
synchronization problem for large-scale, fault-tolerant real-time systems. Clock va-
lidation algorithms are based on the idea of verifying whether highly accurate but
possibly faulty “authoritative time” provided by UTC time sources is consistent
with some less accurate but reliable “validation time” formed by exchanging infor-
mation of all local clocks in the system. If so, the distinguished time is accepted,
otherwise, it is discarded and the nodes rely on the validation time instead.

There might of course be phases of unavailability of accurate time information
from the UTC time sources. For clock validation, this means that the system auto-
matically undergoes a transition to internal synchronization, and a transition back
to normal operation when UTC is available again. This flywheel operation implies,
however, that the clock synchronization algorithm (employed for computing the
validation time) must not only ensure precision but should maintain high accuracy
as well.

When system time must have a defined relation to external time, there is a pro-
mising alternative to the “one-dimensional” point of view sufficient for internal
synchronization, viz. the interval-based paradigm introduced in Marzullo’s thesis
[9]; see also [11]. Interval-based algorithms represent time information relating to
an external standard like UTC by intervals that are known (better to say suppo-
sed) to contain UTC. Given a set of such intervals from different sources, a usually
smaller interval that actually contains UTC may be determined, even if some of
the source intervals are faulty.

We consider the interval-based paradigm as being exceptionally suitable for de-
aling with fault-tolerant external clock synchronization. Since accuracy 1s maintai-
ned dynamically (“on-line”) here, it provides an average case behavior that is much
better than the worst case one. By contrast, worst-case accuracy bounds for in-
ternal synchronization algorithms are necessarily static in nature, allowing no im-
provement w.r.t. average case at all. Surprisingly enough, however, interval-based
approaches did not receive much attention in research. To our knowledge, there
1s only Lamport’s technical report [6], Marzullo’s work [10] on replicated sensors,
and our paper [18] introducing interval-based clock validation that further exploit
ideas of [9]. However, it is worth mentioning that both DTS, the Digital Time
Synchronization Service of OSF/DCE, and newer versions of NTP are built upon
the interval-based paradigm, see (14] and [13].

This paper provides description and analysis of a simple interval-based algorithm
suitable for being used in clock validation, which is generic w.r.t. the convergence
function employed. Thus, our results are given in terms of some characteristic
parameters of the convergence function, cf. [15}. In order to determine precision
and accuracy of a particular instance of our algorithm, it only remains to determine
the characteristic parameters of the particular convergence function, and to plug
them into the generic results. Lacking space prohibited us from including a sample
analysis in this paper; consult [19] for this purpose.
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The outline of the rest of the paper is as follows: Section 2 introduces the interval-
based paradigm, focussing on both accuracy and precision intervals. The system
model for processors, local clocks, and communications in conjunction with a dis-
cussion of the (generic) fault model is contained in Section 3. Section 4 eventually
provides our clock synchronization algorithm and outlines some of its properties.
The generic analysis of precision and accuracy, along with the definition of internal
global time and the treatment of continuous amortization, is given in Section 6.
Finally, some conclusions and directions of further research are appended in Sec-
tion 7.

2. The Interval-Based Paradigm

To introduce the interval-based paradigm, we have to establish some basic notation
and operations on intervals first. We use bold letters like I to denote a real interval

= [z,y}, z < y, with lower and upper edge r and y, respectively; the empty
interval ) satisfies Bt : t € 0. A set of intervals is denoted by a calligraphic
bold letter like Z. For an interval I = [z,9), Il = y - z denotes its length and
center(I) = (z + y)/2 its centerpoint. More generally, given some 7 = [-7=, 7]
with 77, 7% > 0 and 7~ + 7+ = 7, the (asymmetric) r-center —characterizing
a “centerpoint” according to the proportion of 7~ : x+— of an interval I reads
w-center(I) = %ﬂ The sum of two intervals is defined by [z,y] + [u,v] =
[z + u,y + v], the scalar product by b - [z,y] = [bz,by] for b > 0, and I + aq =
I+[a,a] = [2+a,y+d] for some arbitrary scalar a. For two intervals [z, 4], [u,v],
the intersection reads [z, 3] N [u,v] = [max(z, u), min(y, v)]ifu<yand v >z, or
0 otherwise, and the union is [z, 4] U [u,v] = [min{z, u}, max{y, v}], even valid for
[z, y] N [u, 0] = 0.

Most of the intervals encountered in our setting contain a distinguished reference
point that partitions the interval in a negative and a posilive accuracy. To that
end, we introduce the notation

I=[rta]=[r—ar+a*]=[z,y,, (1)
where
r = ref(I) I’s reference point (also called midpoint),
at = acet(I) >0 I’s positive (upper) accuracy,
a” = acc™(I) >0 I’s negative (lower) accuracy,
z = left(I}) =r—q- I's lower edge (envelope),
y = right(I) = » + o+ I’s upper edge (envelope).

Note that we usually suppress the subscript r in intervals of the form [r—a~, r4at],
for brevity.

When referring to an interval [r + al, a = [~a™,a*] denotes its interval of
accuracies and @ = |a| = at + o~ this interval’s length. For intervals I = [r + al
and J = [s £ B8], we have |I| = at + o~ = a, center(I) = r + (at ~ a~)/2,
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I+J =[r+s4~] where v = a+f8 = [—(a“+ﬂ’),a++ﬁ+], Ita=[r+atdq]
for an arbitrary scalar a, and b = [br + p] with g = b = [~ba~, ba™] for any
scalar b > 0. There is also a notation to express intervals obtained from (1) by
swapping the positive and negative accuracy, namely

T:[r:}:a}:[r;a]:[7'—a+,1'+a‘]:[r:}:&‘] (2)

where & = [~at o).

2.1. Accuracy Intervals

The core idea of the interval-based paradigm introduced in [9] is to represent time
information by a time-dependent accuracy interval. More specifically, an accu-
racy interval A = A(t) representing real-time ¢ is an interval satisfying ¢ € A.
Accuracy. intervals are primarily provided by interval clocks, which are interval-
valued functions C(t) = [L(t), U(t)] with the edges L(t) and U(t) forming lower
and upper envelope, respectively, of real-time ¢. In practice, interval clocks are im-
plemented as an ordinary clock C(t) in conjunction with a time-dependent interval
a(t) = [~a~(t),a*(t)] of accuracies taken relatively to the clock’s value, hence

Ct)=[CM) = a™(1),C(t) + at(t)].

DEFINITION 1 (INTERVAL RELATIONS) Accuracy intervals are categorized as fol-
lows:

(1) Two accuracy intervals I = I(t1) and J = J(t3) are compatible iff they both
represent the same real-time t; = ta = 1.

(2) Two compatible accuracy intervals I and J are consistent FINT #0.

(3) An accuracy interval I = I(t) representing real-time t is accurate ifftel.

Note that two compatible and accurate accuracy intervals are consistent, whereas
two compatible consistent accuracy intervals I, J are not necessarily accurate since
possibly t ¢ TN J. Moreover, consistency is not transitive in general since non-
empty intersections INJ and J N K do not imply I'N K # @. However, we have
the following lemma:

LEMMA 1 (CONSISTENCY AND INTERSECTION) If n 2 2 compatible accuracy in-

tervals Iy, ... I, are mutually consistent in the sense that they are all pairwise
consistent, then (\/_ I; # 0.

Proof: Using induction, we first have I' = I, # @, and provided that I*~! =
ﬂi:; I; # & we conclude non-emptiness for I*: Assuming the contrary, I; would

lie entirely left (or right) of I*~! so that it cannot be consistent with the interval
I, 1 <1<k — 1 whose left (right) edge delimits I*~!. O
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2.2. Precision Intervals

Apart from the requirement of being accurate, a property of a single accuracy
interval, we also have to deal with the precision requirement that applies to (the
reference points of ) a set of accuracy intervals. In the traditional framework, a set
of ordinary clocks is called precise with precision = during some time interval D iff
[Colt) = Cy(t)] < wforte D (and clocks progress linearily with ¢). In our setting,
precision can easily be added to accuracy, since none of the interval relations given
in Definition 1 involves the reference point; it is not required for accuracy purposes
and can in principle be set to any point within the accuracy interval.

Unlike traditional approaches, we utilize a definition of precision that is based on
intervals, inspired by the following lemma:

LEMMA 2 (PRECISION EQUIVALENCE) Given some 7 = (77, 7*] with == =+ >
Oand m=[mw|= 7" 47+, and n > 2 non-negative real numbers T1,...,Ty, we have

lri =7l <7 foralli,j = m[rjj:n']¢0.
i=1

Proof: To show direction <, we note that there is some ¢’ € Nj=y[rj £ 7] so that
immediately = > maxi<ign(ri) — minygj<n(rj) > |r; — ri| for all ¢,j. The other
direction follows from Lemma 1, since [ri — r;] < 7 for all t,j implies that the
intervals [r; + 7] are mutually consistent. 0

DEFINITION 2 (PRECISION INTERVALS) Given = = [-7=,7*]) with =~ =+ >0

and 7 = x| = 77 + 7*, and a set of n > 2 compatible accuracy intervals T =
{I;,..., I} with I, = [r; + a], the m-precision interval I; associated with I; is
defined as

I; =[r; £ x).

The set I is called w-precise ijfﬂ;’zl fj # 0.

Keep in mind that the associated m-precision interval T of an accuracy interval
I is not separately maintained, but rather computed from the reference point of I.
Thus, precision and accuracy are orthogonal issues here. Note also that we cannot
safely assume fp C I, in case of small accuracies.

Our definition of w-precision has several immediately apparent consequences,
most importantly, that m-precision implies precision =

LEMMA 3 (7-PRECISION vs. PRECISION) Given a w-precise set T = {I;,..., I}
of n > 2 compatible accuracy intervals I; = [rj £ oj] and 7 = |x|, then

(1) {f;Ufj! <27 forany 1 <i,j <n,
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(2) Iri=ril <7 forany 1 <4,j < n.

Proof: The first assertion follows from the fact that I; and I; are consistent and
that {I;| <wfor1 <! <n, according to the definition of the associated T-precision

intervals. The second assertion is an immediate consequence of Definition 2 and
Lemma 2. O

LEMMA 4 (PRECISION BY ACCURATENESS) If the n 2 2 compatible accuracy in-
tervals T = {I,..., I} with I; = [r; £ «) are accurate and af <a~, a?‘ <at
for all j, then T is also w-precise Jor any w 2 [—-a™, o).

Proof: Using v D [~a~,a"] in Definition 2, we have I; D I; and the statement

of the lemma follows from ¢ € Ve I; #£0. O

LEMMA 5 (COoMPOSITION oF PRECISIONS) Let T = {I,,...)I,} and J =
{J1,.. JIm} be two sels of compatible accuracy inlervals that are mw-precise and

n'-precise, respectively. [f (ﬂ;’:l L) N (ﬂ:’;l J,) # 0, then the set TU T is

T Un’-precise.

Proof: Since the w-precise set 7 and the n’-precise set J are also 7 U 7'-precise,
the statement follows immediately from Definition 2. O

Our definition of 7-precision is a key issue in our novel interval-based framework
for precision analysis. Nevertheless, there are only a few occasions where we ac-
tually face mw-precise intervals according to Definition 2. In most cases, we employ
the slightly stronger predicate of m-correciness as provided in Definition 3. It cha-
racterizes the w-precision interval I associated with an accuracy interval I as being
accurate w.r.t. an appropriately defined infernal global time 1 = 7(t). Actually,
I = I() is called w-correct iff both r €Tandte I, in other words, iff I is
accurate w.r.t. both 7 and ¢, as shown in Figure 1.
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Figure I. Accuracy and Precision Intervals




8 U. SCHMID AND K. SCHOSSMAIER

At this point there is no need to elaborate on how internal global time is actually
maintained; consult Section 5.1 for details. Intuitively, we exploit the fact that our
clock synchronization algorithm maintains the set C = C(t) of non-faulty interval
clocks Cp(t) so that it is To-precise at {periodic) resynchronization real-times %
characterizing the beginning of the & + 1-st round (k > 0). This property allows
us to define round &’s unique internal global time r* = (1) by 7#(t) = TEERE) 4
(t — tR’%) for any real-time t; the “fixed point” r*(t®*) is some arbitrary value
satisfying r*(¢7%) ¢ ﬂC'jeC éj (tR*) £ 0. For large accuracies, it is likely that
™) # 1, although Lemma 4 justifies that choosing 7(¢) = ¢ is possible if accuracies
are sufficiently small (ie., 7 > a). However, internal global time of any round
progresses as real-time does, so that it can be used interchangeably with real-time
if one is interested in measuring durations only.

DEFINITION 3 (7-CORRECTNESS) For = (7=, 7*] with 7=, 7% > 0,

(1) an'accumcy interval I is w-accurate (w.r.t. internal global time of round k)

iff the w-precision interval I = I(™) = I(7%(t)) associated with I satisfies
R
T™el,

(2) an accuracy interval I is -correct (w.r.t. internal global time of round k)
iff I is both w-accurate and accurate,

(3) a set T of compatible intervals is -correct Y all I €T are w-correct.

LEMMA 6 (RELATION T AND 7) If the intervals Ii(t) = [T £ a;] and Iy(ts) =
(T> + as) are wy-accurate and ma-accurate (w.r.1. internal global time of the same
round), respectively, end r| = 7(ty), 1 = T(ta), then 7y — 75 = ti—toeTy —Th +
™y + -7?2. '

Proof: Since, fori = 1,2, r, i'i(r;) according to the asserted r;-correctness of
Ij, wehave T} — 77 < 1, < T} + Tr. Subtracting those inequalities and recalling
the notion of swapped intervals easily provides the statement of the lemma; note
that 7, — 73 = ¢; — ¢4 since internal global time (of the same round) progresses as
real-time does. 0

In the following we will frequently employ the abbreviation + = T(t) = 75(t) as
above when the particular round # is clear from the context. Moreover, we can
usually unambiguously write I = I(t) = I(+%) for v = 7(t), meaning that I
represents 7*(¢) iff I represents f.

The following lemma is a simple corollary of Lemma 6 for ¢; = ¢, = t:

LEMMA 7 (DISTANCE REFERENCE POINTS) If the compatible intervals I(t) =
[T7 + o] and I(t) = [T» £ as] are wy-accurate and wa-accurate (w.r.i. inter-
nal global time of the same round), respectively, then Ty — Ty em 4+7,. 0

R s o st
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Note that this result, which is of central import}ance for precision analysis, can
be viewed as a consequence of the fact that both I't(7) and I,(r) must contain T,
so that Ty — T\ € [—-(7r§’ + 7y ), w5 + ﬂf] =Ty 4 7o

It should be obvious that a set of compatible 7-correct intervals 7 = {I,,...,1,}
is w-precise due to 7 € ﬂ?:l I; #0. Therefore, Lemmas 3-5 are valid for -
correct sets as well. Of course, since our precision analysis is primarily based upon
those lemmas, it would in principle be sufficient to deal with TT-precise intervals.
Introducing internal global time and m-accurateness, however, allows to reason
about precision by considering each local interval clock separately, i.e., without
explicitly relating it to the other clocks in the system, which greatly simplifies the
analysis.

As a consequence, most of the intervals encountered in our analysis are r-correct
ones, so that it does not make much sense to adhere to a strict separation of
accuracy /precision terminology. In the remaining sections, will use interval as a
standard term of generic meaning, while accuracy interval or precision interval is
only used if we want to stress the particular “instance” of the interval in question.

3. System Modeling

In this section, we will provide the system model and its parameters. Similar mo-
dels are well-known from the analysis of internal clock synchronization and other
distributed algorithms for fault-tolerant systems. However, non-standard featu-
res are incorporated in our discrete clock model, which is interval-based and deals
with non-zero clock granularity, and in the model of the communication subsy-

stem, which contains parameters for broadcast latencies and limited transmission
bandwidth.

We consider a distributed system consisting of n nodes, which may communi-
cate with each other by message passing over a suitable communication network.
Each node is equipped with a processor that executes the clock synchronization
algorithm, an adjustable local clock, and a network interface.

As we will see later on, all computations required for clock synchronization pur-
poses are essentially periodic and require integer arithmetic only. As far as the
execution speed of the processor executing the algorithm is concerned, we assume
the following:

ASSUMPTION 1 (EXECUTION TIMES) A single (periodic) computation required for
clock synchronization purposes at a non-faulty node p is completed within Yp (real-
time) seconds. Let ymay 2 Yps Tmin < Yp be suitable uniform bounds on the execu-
tion time of all (non-faulty) nodes p.

Note that we do not make further assumptions about application tasks the pro-
cessor might perform concurrently with clock synchronization; a fault-free node P
must solely guarantee the bound Yp-
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In the following two subsections, we will develop the system model for local clocks
and for the communication subsystem without considering faults. The fault model
is discussed in the last subsection.

3.1. Discrete Local Interval Clocks

The local clock of a node is assumed to be built upon a physical clock {usually
driven by a quartz oscillator) of non-zero granularity G (micro-)seconds, which
allows adjustment of rate and state. Non-zero granularity implies that the clock is
incremented by G at discrete points in real-time (called clock licks) only, posing a
particular challenge to system modeling.

A clock is usually modeled as a monotonic function C : ¢t — T mapping real-
time t to logical time T = C(t). Note that we use the convention of writing
upper-case names (like T') for logical time and lower-case ones (like t) for real-
time values throughout the paper. Most often, C(t) is assumed to be a continuous
(differentiable) function, although existing clocks are modeled appropriately by
discrete step-functions only. Up to our knowledge, however, discretization and the
adverse effect of non-zero clock granularity has been investigated only in [24].

In our analysis, we employ an alternative discretization that is more suitable
for the interval-based paradigm. Instead of considering clocks T = C(1) in the first
place, we start with inverse clocks ¢ = ¢(T) mapping logical time to real-time. More
specifically, “inverting” the approach of (16], we assume that real-time ¢ advances
instantaneously a (varying) real value g at each logical tick of the clock, and remains
constant everywhere else. Clock ticks take place every (fixed) G > 0 logical time
seconds, modeling non-zero clock granularity,

¢(T) is of course only meaningful for T = kG being a multiple of the clock gra-
nularity G. Unfortunately, when e(T) is actually defined as the inverse of the
step-function modeling clock C(t), it is multi-valued (infinitely many values, re-
presenting the progress of real-time) at T = kG. We enforce a proper function,
however, by defining ¢(kG) to be the value before advancing the clock by g, i.e.,
hmprr_ o(T") = (T) = limpipy ¢(T") — g for T = kG. The following Figure 2
illustrates this.

Note that this definition of ¢(T) calls for setting the clock C(8)’s value at real-time
0, where a tick takes place, to the value after advancing C by G, i.e., limp g C(t")+
G = C(8) = limy_gy C(¢'). This is due to the fact that C(t) and ¢(T) must be
inverse at real-time 6 where C(t) ticks, thus § = ¢(®) for © = C(6). In fact, we
assume that discrete local time approximates continuous local time by a leading
(majorizing) step-function.

In practice, a local clock Cp(t) is primarily characterized by its intrinsic rate
rp = G/g, which gives the amount of logical time seconds the clock advances
per real-time second. More specifically, one usually assumes that there is some
pp+, P, & 1 —accounting for the clock’s rate deviations due to oscillator frequency
offset, aging, temperature dependency, noise, etc.— such that

|
i
i
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g3 I inverse clock ¢(T')

g2 T G
------ ——— R S LT 2
91 T ) G

cont. clock

Figure 2. Discrete Clocks

1
<rp <

1—pf +0(p2?) =
o) = T S S,

=1+4p; +0(p;?). (3)

In our clock model, we will employ the equivalent condition 1 —p, St < 1+ pf
on the intrinsic inverse rate ro1, ie., the rate of the inverse clock, which gives
the amount of real-time seconds the inverse clock ¢p(T) advances per logical time
second.

Unfortunately, granularity G and intrinsic inverse rate Ty ! are not sufficient to
describe completely the behavior of discrete clocks. First, rate adjusiment uncer-
tainities are introduced when local clocks utilize an “artificial” rate generated by
discrete rate adjustment techniques. Since it is difficult to fine-tune the frequency
of an ordinary quartz oscillator (as opposed to a voltage controlled oscillator, where
this is easy), techniques have been developed that allow rate adjustment of a clock
by occasionally tampering with raw oscillator ticks. This type of clocks tick at the
intrinsic rate most of the time, whether they are adjusted or not. However, when
the accumulated deviation between intended and observed local time is about to
exceed some bound u, the next tick is modified: If the clock is to be slowed down
resp. speeded up, the next regular tick is delayed resp. advanced. Of course, this
causes an additional uncertainity in the relation between logical time and real-
time not explained by the intrinsic clock rate, which must be taken into account
explicitly.

In addition, we have to account for the fact that practical clocks cannot be state
adjusted with infinite resolution, but only with a certain clock setting granularity
Gs < G. Whereas G5 = G is easily provided by making the clock register wri-
table, it is considerably more expensive to implement fine-grained clock setting
capabilities (G5 < G). Apart from employing state adjustment controlled by a
continuous amortization algorithim (see Section 5.3), instantaneous state correction
could be implemented directly by utilizing a clock register with higher (internal)
resolution G5 or, alternatively, by delaying/advancing the time of setting the clock.
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In any case, G's should be considered as the “internal” granularity of the clock, as
opposed to the (coarser) granularity G available for external clock reading.

Note that fine-grained clock setting and discrete rate adjustment should not be
considered independent of each other, as it might be the case in a sub-optimal
clock design. More specifically, we assume that the error between intended and
observed local time caused by rate adjustment is added to the initial clock setting
error prior to deciding when oscillator ticks are to be modified. For example, in
case of u = G, if a clock driven by a slow oscillator is set to G 4 (/2, an additional
clock tick should be introduced as soon as the accumulated error of the subsequent
clock ticks becomes G/2, otherwise the total error will exceed u = G by then.

With these preparations, we are ready for stating our basic model of local clocks.
It does not incorporate explicit rate adjustment capabilities required for continuous
amortization, which are added in Section 5.3. However, rate adjustments may
already be incorporated here for fine-tuning of the intrinsic rate.

ASSUMPTION 2 (LocAL CLOCKS) Each node p is endowed with a discrete local
clock Cy(t), which increments by G > ¢ (micro-)seconds at each clock tick and
allows state adjustment with clock setting granularity of at least Gg = G/K seconds,
for some integer K > 1. In the absence of resynchronizations, intrinsic inverse rate
and rate adjustment uncertainity of the clock of a non-faulty node p are such that

(1=p;)(0i = ©1) —u; <6 -6, S(1+p7)(0i ~ 0y) + uf (4)

with ©; = Cp(6;) is guaranteed for any sequence of i > 2 successive clock ticks
0;, 1 <j < i For Py = [—p;,p;,"] denoting the clock’s intrinsic inverse rate
deviation bounds (in [;—i%]) and u, = [—uy, w}t) its mazimum rate adjustment
uncertainily (in [sec]), let p,, = (=Praxs Phan) 2 U, pp with prayx = Pmax F Phax
and Umax = [—ug,,ut ] D Up up with umay = uz,, + Ut = O(G) be suitable
uniform bounds for all (non-faulty) nodes p.

Of course, inequality (4) is also valid for § = 1, although the bounds are not
particularly meaningful, besides from the fact that up can be used to account for
the fractional clock setting value (< G) in case of fine-grained clock setting.

It seems appropriate here to sketch how conceivable clock implementations map
to the above model, i.e., how G, Py, Gs and u, are to be chosen for a certain
implementation. First of all, we note that u; = u} for all discrete rate adjustment
techniques we are aware of. More specifically, although ul bounds the logical vs.
real-time deviation A caused by a fast clock (say, A > 0), whereas u, is meaningful
for a slow clock (A < 0), it is apparent that both A > 0 and A < 0 occurs when
slowing down or speeding up the clock via rate adjustment. In fact, the actual sign
of the deviation A depends on whether a modified tick is at the beginning (j = 1) or
beyond the end (j > i) of the sequence of ticks under consideration. Consequently,

it is the maximum value of any scenario that determines uy = u;'.

The particular clock models considered are as follows:
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Counter Clock: Implemented by means of a fixed-frequency oscillator that in-
crements a counter by G = 1/f,,. (usually, G = 2% for binary counters or
G = 107* for decimal ones) at each tick, it follows that P, is the intrinsic in-
verse rate deviation bound p,,, of the oscillator, Gs = G, and up = {0, 0] since
there are no rate adjustment capabilities.

Voltage Controlled Oscillator (VCO): Replacing the fixed-frequency oscillator
above by a VCO adds (continuous) rate adjustment capabilities, so that G =
1/f3,. for the intrinsic (non-adjusted) oscillator frequency oscr Pp = POye, Uy =

[0,0],and Gs < G provided state correction is done by continuous amortization.

Tick Advancing/Delaying: One technique for discrete rate adjustment, em-
ployed in the CSU of [5], is based on a fixed-frequency oscillator running at a
multiple fo,c = mfoc, m 2 2, of the desired clock frequency feoer = 1/G.
Without rate adjustment, every m-th oscillator tick is used to increment
the counter, so that G = 1/ fetock = m/foe. To speed up the clock, the
m ~ 1-th oscillator tick is used occasionally, that is, when the accumula-
ted deviation between intended and observed logical time is about to exceed
G/m = 1/f,,e. Similarly, the m + 1-th oscillator tick is used occasionally if
the clock is to be slowed down. Therefore, it is immediately apparent that
Pp = Poser Gs = G/m because clock setting may be delayed in multiples of
G/m (both for instantaneous state correction and continuous amortization),
and up, = [-G/m + O(Gpose), G/m + O(Gpose)], where the remainder terms
account for the deviation between real-time and (observed) logical time.

Tick Insertion/Deletion: This approach is very similar to the above one and is
most efficient for f,,, = 2fctock, S0 that G = Y/ fetock = 2/ fose. However, instead
of shifting all (future) oscillator ticks as a consequence of any single correction
instant, it just inserts an additional oscillator tick between two regular ones in
case of speeding up, and suppresses a regular tick if slowing down the clock.
Therefore, future ticks occur at the same instants as they would have occurred
if no rate correction took place. It follows immediately that Pp = Poses Gs =G
(both for instantaneous state correction and continuous amortization) since
slowing down only works in multiples of G (although speeding up would allow
G/Q)v and Up = [—G + C)(GPD.SC)' G + O(Gposc)]-

Adder-Based Clock: This novel clock architecture utilized in our UTCSU-ASIC
(see [22] or [23]) uses a fixed-frequency oscillator that drives an adder instead
of a counter. At each oscillator tick, a high-resolution (Gs <« GS,C = 1/ fose)
clock register is incremented by a programmable register STEP, which usually
contains the intrinsic value GY,c. It can be modified to any value G, +6G5s for
rate adjustment purposes, with 6G's > 0 speeding up and 8Gs < 0slowing down
the clock. Hence, an adder-based clock has in fact variable internal granularity,
equal to the content of STEP. State correction (with clock setting granularity
G's) can be carried out by continuous amortization if STEP holds appropriate
Increments.

s
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The clock’s actual granularity G, which should satisfy G > G2, to be mean-
ingful, is imposed by the fact that the clock register is externally accessible
with resolution G only, resulting in a reading error of up to G. That is, the
“fractional part” with resolution Gs < G is not visible externally, but ne-
vertheless (continuously) maintained internally. It follows that Pp = Py, and
Up = [=G + O(Gpose), G + O(Gpos.)] since the clock register is occasionally
incremented by 2G in case of speeding up the clock (STEP > G), and not
incremented at all in case of slowing it down (STEP < G).

Now we will establish a relation between real-time and logical time intervals as
measured on a non-faulty local clock. Recalling the definition of ¢(T) from the
beginning, we have for any ¢ and T = C(t)

(T) S 1< e(T+G). (5)
Therefore, we easily obtain

o(T)~c(To+G) <t —tg < o(T + G) — ¢(Tp) {6)
for any ¢,fp and T = Ct),To = C(ty). Ift =8 and/or ty = 8y denotes some
real-time where clock C(t) ticks, we can use the stronger relation § = ¢(©) instead

of (5), so that the corresponding G in (6) may be dropped (however, < has to be
replaced by <). The following definition helps in unifying this situation.

DEFINITION 4 (SYNCHRONY) Real-time t is in synchrony with a node’s local clock
C(t) iff t = 0 for some real-time @ where C(t) ticks. Let the indicator function of
non-synchrony be defined as

0 ift is in synchrony with C(¢ ,
Lize = L(t) = { 1 oj;herwise.y ! © (7)

With the help of this definition, we can generalize (6) to
o(T) = eTo + Lio6,G) St — 1o < o(T + Lys G) — o(To). (8)
For a non-faulty node p, (4) immediately provides
(1= p;)AT —u; < (T + AT)—CP(T)§(1+p;')AT+u;,", (9)
for any T', AT being integer multiples of (. Combining this with (8), we easily
obtain the following inequalities estimating the real-time interval { — g in terms of

the corresponding logical time interval T — To = Cp(t) = Cp(to) for a non-faulty
clock in the absence of resynchronizations:

e
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LEMMA 8 (DuraTION EsTiMATIONS) Let ty and ¢ 2 to be two arbitrary points in
real-time and T = Co(t), Ty = Cyplta) the corresponding points in logical time at
node p. If clock C,(t) is non-faulty and if there are no adjustments, we have

t—1 > (T*Tg)(l—p;)—u;—-Ito;ggoG(l-pp_)

t—ty < (T—To)(1+p;)+u;'+Ig;,ggG(l-}—p;") (10)
and the converse
t—tg —ut 1 —tg+u’
——P_-f-—P-—I‘?wGST—TOS - - £ +Ito¢90G' (11)
1+ p5 1—pp

Proof: Due to monotonicity of Cp(t), we always have T > T} since we assumed
t2>to. If T > Ty + G, (10) follows immediately from plugging in (9) at both sides
of (8). Moreover, it is immediately apparent that (10) is also valid for 7 = T, and
T =Ty +'G, although the lower bound is not particularly meaningful. Finally, the
converse relation follows by trivial algebraic manipulations. O

Neglecting terms of order O(p;;’) and O(Gp,) in (11), we easily obtain the common
formula

=)= p) —uf = LG < T =Ty < (t — to)(1 + 05 ) Fuy + Lyze,G;

note that p7, p¥ are swapped here. Apart from uy ,ut, this estimate is the one of
[24] improved w.r.t. the quite usual case where ¢ or/and tg is in synchrony with the
ticks of Cp(t). In that case, there is no need to spoil the appropriate upper/lower
bound by G, actually halving (or even ruling out completely) the adverse effects of

non-zero clock granularity.

We link the above clock model with the interval-based paradigm introduced in
Section 2 by means of the most important drift compensation operation, cf. [6]:
Consider an accurate interval I = J (to) = [To % «] that somehow appears at a
node at some arbitrary real-time to. In order to provide an interval I' = I'(t)
representing some arbitrary real-time t; 2 to based on I locally at the node, one
should move (the reference point of) I to the right by ¢; — ¢, thus providing the
obviously accurate interval I’ = I+ (t; —1tg). Unfortunately, ¢; —tg is not available,
but can be approximated via local clock C(t). Shifting an interval I from 24 to 1
using C'(f) is called dragging; it provides the interval I’ = J + C(t1) — C(ty) =
[Tt + a]. That interval’s accurateness, however, might be violated due to the error
In approximating ¢; — ¢4 by C(t1) — Clto).

Delerioration is required to maintain accurateness of the dragged interval. This is
done by “blowing up” the dragged interval’s reference point to an interval accoun-
ting for the maximum possible approximation error given by (10), which amounts
to enlarge the positive and negative accuracy of interval I according to {12} in
Definition 5. Observe that dragging by a fast clock (accounted for by p~) requires
extending the lower envelope of I’
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DEFINITION 5 (DRIFT COMPENSATION) The result of drift compensation of an ac-
curate interval I = Ifty) representing an arbitrary real-time ¢, (where C(ty) = To)
lo some arbitrary real-time t, > 1y (where C(ty) = T1) by means of a local clock with
intrinsic inverse rate deviation bound P C Py and rate adjusiment uncertainity
u C wmay 15 the accurale interval I' — I'(ty) defined by

I'=1 + Ty — T + (T1 - To)[) +u+ 1:°¢eoa+ [tl¢01 Gp» (12)

where

Gp=[0.G(1+p}, )], G=[-G,0], and G = [0,GJ. (13)

Figure 3 shows an example of drift compensated intervals based upon some initial
interval [Ty + a, at (equidistant) local times 7} = Tj + iAT, i > 1, in case of
p~ > p*, a fast (but deaccelerating clock), and u,G < AT. For accurateness,
deterioration must ensure that the resulting interval I’ intersects with the line
T=t.

real-time T = ¢ (inverse) local clock o(T)

[E— -

tz / / i
ta e o [

= [To o]+ [2AT £ 20AT + u + G + G|

(o 4 C!+

13! — [To o] +[AT £ pAT +u + G + Gp]
at :
to ]
AT AT
T2 T3 T

Figure 3. Drift Compensation

A few remarks on drift compensation are appropriate here:

¢ It is important to realize that the errors due to rate adjustment uncertainities
(accounted for via u) do not add up in a single (unz'nterrupted) drift compensa-
tion operation. Unfortunately, they can add up in subsequent drift compensati-
ons that are separated by some other operation, like network transmission, drift
compensation at another node, or even computation of the convergence func-
tion. Therefore, it will turn out that Umax Spoils achievable worst case accuracy
and precision even more than granularity does(!), ¢f. Theorem 1. However, we




INTERVAL-BASED CLOCK SYNCHRONIZATION 17

should note that it is very unlikely in practice to have executions where the
worst case behavior is actually attained.

e Almost any meaningful ¢, is in synchrony with the local clock, since activities of
the clock synchronization algorithm are usually initiated when the local clock
reaches some predefined value. Therefore, the term involving Gp in (12) is
encountered in our analysis only a few times, for example, when determining
maximum precision, see Theorem 1.

¢ Inequality (12} is valid for T} > Tp, although the negative accuracy of I’ is not
particularly meaningful (unnecessarily large) when T}y = 7p or T =Ty + G,
recall the proof of Lemma 8. Hence, periods of drift compensation lasting at
least 2G are preferable wr.t. tightness of the bounds.

Equipped with those prerequisites, we can eventually introduce the clock model
suitable for the interval based paradigm: Each node p has to provide a local interval
clock Cp(t), which is implemented by an interval of accuracies a, relative to the
nodes instantaneous local clock value Cp(t). In the absence of adjustments (i.e.,
when running at its intrinsic rate), C,(t) must be accurate despite of the fact that
Cp(t) may drift away from real-time. Hence, a, must be maintained according to
(12):

ASSUMPTION 3 (LOCAL INTERVAL CLOCKS) Each node p provides a local interval
clock

Co(1) = [Co(t) - o, (t), Cp(t) + of (O] ift=10isn synchrony with C,,
p(t) = [Cp(0) - a, (6),Cyp(6) + of(8)] for 0 <t < 8+ g otherwise

via a local interval of accuracies a, (1) = [—a; (), a}(1)] of resolution G5 taken re-
latively to the node’s local clock Cy(t), which is maintained by means of the following
operations:

* (Re-)Initializing C,(t®): Cp along with a, can be set atomically to a new
interval (all values, including reference point, being integer multiples of Gs) at
eny synchronous real-time t7.

* Reading C,(¢): Cy along with @p can be read consistently at any real-time t.

¢ Deteriorating C,(6): ay 15 enlarged by Gp, at each clock tick ¢ of Cp. More-
over, at the first tick after (re-Jinitializing Cp (if not already incorporated due
to a reference point not being an integer mulliple of G), an additional u, s
added lo incorporate the rate adjustment uncertainity.

Note that it does not make much sense to maintain accuracies with a resolution
below (s, since the clock setting error spoils accuracy by the same amount it spoils
the clock value. Choosing G's as the resolution for accuracies is also advantageous
due to the fact that all computations of the clock synchronization algorithm can

E
|
;
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be performed by using integer arithmetic, provided that all non-integer parameters
compiled into the algorithm are integer multiples of Gg.

Of course, the clock synchronization algorithm is responsible for periodically reini-
tializing C,(tf) in an accurate way, so that t € Cp(t) for all t > 7 is guaranteed
for a non-faulty node p by accurateness of deterioration, cf. (12). The correctness
of this statement involves a subtle issue, though, if applications are allowed to read
C,(%) at arbitrary (non-synchronous) real-times ¢. More specifically, in implemen-
tations where any reading of the local clock is synchronized to clock ticks, as is the
case when using our UTCSU-ASIC, it is of course sufficient to guarantee accurate-
ness for synchronous real-times (so that only up must be incorporated). However,
in settings that allow reading of the local clock at arbitrary real-times ¢, reading
ap(t) must (explicitly or implicitly) incorporate Gp as well, since C,(t) has to be
accurate for any 8 <t < 6 + g here.

Deteriorating C, can either be performed by adding Gp, at each clock tick or, in
an accumulated fashion, by adding (C(ts) - C'(ta_l))pp at the a-th clock reading
access at real-time t,. For the adder-based clock in our UTCSU-ASIC (cf. the des-
cription following Assumption 2), we implemented an approximation of the former
technique in hardware: Instead of adding Gp, at any clock tick, we add Gg,cpp at
any oscillator tick. This approximation introduces an error of at most O(Gp,) in
«p, which vanishes in the already present remainder terms, see Theorem 1.

3.2. Network Communications

To model the communication subsystem, we first recall that our clock synchroni-
zation algorithm operates in periodic rounds, taking place every P (logical time)
seconds. At the end of each round, clock synchronization messages (CSM) are ex-
changed among the n nodes of the distributed system in a. full message exchange
(FME). More specifically, in a single FME, each node p transmits a CSM consi-
sting of the accuracy interval Ap(tyy) = [Coltd) - ag (t5y), Colt) + af (th)] to
node ¢ at some real-time t;}q. Applying a suitable convergence function to the set
of received and preprocessed accuracy intervals, each node eventually computes a
local clock correction value that enforces precision and accuracy.

The required communication primitive for this setting is a basic (unreliable)
broadcast operation, something that is easily implemented by means of n send
operations in a fully connected point-to-point network, or even provided in hard-
ware by modern broadcast-type networks. The most important requirements are
upper and lower bounded transmission delays, i.e., synchronous behavior.

ASSUMPTION 4 (TRANSMISSION CHARACTERISTICS) We assume a synchronous
data network ezhibiting the following properties:

(1) If @ non-faulty node p of the distributed system initiates iis broadcast at some
arbitrary time t;, there is a uniform bound Amax > 0 on the possible delay up
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to time tf when 1t actually starts the broadeast transmission; Aqay is called the
maximum broadcast latency.

(2) If the broadcast of a non-faulty node p starls at time tf, there is a bound
wp > Z;‘I - tﬁ 2 0 on the delay up 1o time t;‘, when the transmission to the
last node | required for broadcasting is activated. Let Wmax 2 Wp be a suitable
uniform bound called the maximum broadcast operation delay. Moreover, the

“indicator function” of making use of a pure broadcast network is

B= { 1 if wmax = 0 (pure broadcast network),

2 otherwise. (14)

(3) If some node p activates its lransmission to some node q # p at time t;‘q and

no transmission fault occurs, node q receives the message at time 18, with the
transmission delay bpg =10 — tp satisfying

e L mals (15)

where 8,4 represents the deterministic part and e,y = [—-e‘;q,eg'q] the mazi-
mum uncerta'z'nity of &,, (of course, bpg > Epg)e Lel £ppy = [—s;ax,e;‘,',a‘x] >
Upyq# €pg With Emax = e, + Edax and 6oy > bpg, bmin < bpg be suz.table
uniform bounds for all (non-faulty) pairs of nodes P, ¢ # p, with the additional
technical condition

Smin Pmax € €max- . (16)

Note that this condition erpresses the quile reasonable assumption that time-
keeping during transmission by any non-faulty clock is more accurate than ez-
plotting the synchronous network behavior,

(1) The accuracy interval in the CSM is transmitted with limited resolution.

More specifically, we assume that the local clock value C'p(t"f‘q) s iransmitted in
a way thal preserves its granularity G. Both lower and upper accuracy o, (t;,“q)
and a;(t;‘q) are transmitted with finiie resolution R4 = LGs for some integer

L>1; let

G,; = RA - GS (17)

be the loss in resolution,
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We assume that a CSM is “timestamped” with Cp(t},) at the moment of actual
transmission t{,‘q, not at the moment of initiation t;{ of the broadcast or at the
moment ig of actually starting it. This ensures that the relatively large maximum
broadcast latency Amax and/or the maximum broadcast operation delay w,, does
not impair 5;(] and hence achievable precision and accuracy. Therefore, we can
cope with both the extended capabilities provided by our UTCSU-ASIC (see (23]
for details) and with traditional settings (Wmax = Amax = 0 and including any
uncertainity in gp,).

Our model can be adopted to a wide variety of different networks: Amax > 0
and wmax = 0 models broadcast-type networks, whereas Ay, = 0 and Wmax > 0
is appropriate for point-to-point networks without hardware broadcast capabilities.
Note that we can even deal with approaches that stagger CSM transmissions in
time to avoid peak network load, simply by making wpmay large enough to cover the
whole period of transmissions.

In the interval-based paradigm, a delay compensation operation is responsible for
coping with transmission delays (cf. [6]). Basically, delay compensation maintains
accurateness of intervals that are transmitted over a network experiencing variable
transmission delays according to Assumption 4. If an accurate interval I — [T+a]
is sent from node p to ¢ # p, experiencing some transmission delay 6’ € [§ £ €], an
accurate interval I" (which covers the unobservable I’ representing the real-time
of reception at the sender-node p) is constructed at the receiving node ¢ by shifting
the original interval I by §, and blowing up the shifted interval’s reference point
to an interval e in order to compensate for uncertainities in the transmission delay.
In addition, we have to account for the effects of finite transmission resolution Ry
of accuracies. Since accuracies a”, a¥ of the sending node p are always multiples
of G's according to Assumption 3, truncation to R4 = LGy for some integer L > 1
introduces an error of at most G4=Ra-Gs.

DeFiniTION 6 (DELAY COMPENSATION) The result of delay compensation of an
accurate interval I transmitted from node p o node ¢ # p in the absence of faulls
15 the accurate interval

I"=I+2G, + {8pg £ €p4], (18)

where the loss in accuracy resolution during transmission is accounted for via

2G4 = [-Ga,G4).

Note that we did not consider the effect of non-zero clock granularity G at the
receiving node ¢ here, since a drift compensation operation takes place at q later
on. Bear in mind, however, that the real-time of reception t’ at ¢ is usually not in
synchrony with ¢’s clock.

Figure 4 should make delay compensation straightforward. We assume that the
experienced transmission delay is & > § and G4 < €pg- The middle time axis
corresponds to real-time, whereas the upper and lower ones display logical time at
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p and g, respectively. The sender node p’'s rate r, is presumed to be 1, 1.e., its local
clock progresses as real-time does. Interpreting Figure 4, one should consider the
intervals I and I" as “fixed”, whereas the reception time ' and hence the interval
I' may vary with 6’

I'=[T4+d] 5 I'=[T' £ q)
node p ,: .:
— et T
{Sender) | T'=T+¢
f 5
s e
X R e T t
: §
:

§
node g T+6
et T
Receiver
( ) at + Gy

I"= [T+ a+2G4 + ¢

Figure 4. Delay Compensation

3.3. Fault Model

All assumptions in the previous subsections are meaningful for the fault-free case
only. Dealing with fault-tolerant systems, a pertinent fault model is required. Ho-
wever, since we are considering a generic algorithm and its analysis, it does not
make much sense to stipulate a particular fault model here — not even an advan-
ced hybrid one as in [26] or [1]. After all, it is the convergence function that is
primarily concerned about faults. Consequently, we will assume that an abstract
fault model F is provided along with a particular convergence function. F is ab-
stract in the sense that it gives information on faults not in terms of faulty system
components, but rather by classifying the intervals 17; provided to the convergence
function at node ¢ as a result of reception and preprocessing of the broadcast(s) of
node p, see (20).

Eventually, any F must incorporate a (convincing) way of tracing back abstract
faults to component faults in order to be meaningful in practice. The following
issues are to be considered here:

*  Our generic algorithm imposes only a few limitations on the severity of faults.
More specifically, faulty nodes or network components may in principle perform
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arbitrarily, including transmission (and “reception”) of any number of arbitrary
messages without, however, being capable of causing (serious) “global” distur-
bance of system operation, e.g. by

— impersonating other nodes,

- flooding/jamming the network or non-faulty receiving nodes (violating Apax
and/or wyay, or causing excessive transmission delays of other broadcasts).

Note that this is easily guaranteed in a fully-connected point-to-point network,
but is difficult to ensure for a (non-redundant) broadcast channel.

Viewed from a single (non-faulty) receiving node ¢’s perspective, an interval n
resulting from reception and preprocessing of node p’s broadcast(s) during an
FME can be faulty in various ways:

—  Omission faults, caused by an omissive faulty node p or transient errors
during message reception, resulting in n=9.

—  Timing faulls, due to a faulty node/clock p or excessive transmission delays,
resulting in a non-accurate and/or non-w-accurate .

= Clock (value) faulls, caused by a faulty node p or a damaged message,
resulting in a non-accurate and/or non-m-accurate .

Apart from those faults, which arise in traditional clock synchronization as
well, we face additional accuracy faulls that are unique in the interval-based
paradigm. Adopting the terminology of [10], we distinguish three different
types:

~  Truncaled accuracy faulis, caused by accuracies being too small, resulting
in a non-accurate .

=~ Bounded accuracy faults, due to accuracies that are too large but bounded
(usually in a way that makes them indistinguishable from accuracies provi-
ded in a non-faulty broadcast), resulting in an accurate but not particularly
meaningful I,

~  Unbounded accuracy faults, resulting in an accurate but meaningless I‘;,

Obviously, accuracy faults do not affect m-precision intervals, since =« is not
transmitted but rather compi_lgd into the algorithm. However, one has to ac-
count for the possibility that I, is mw-accurate despite of the fact that If; suffers

from a truncated accuracy fault, and also the opposite situation where Iz is not
m-accurate although it is accurate because of a bounded/unbounded accuracy
fault,

Viewed from the perspective of corresponding intervals I, I3 at two (non-
faulty) nodes p and g (for the same sending node s) in a single FME, we en-
counter the following faults:

|
E
!
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= Arbitrary faults covering (almost, see first item) any kind of faulty beha-
vior, including a byzantine (two-faced, “asymmetric”, f, (1]) one. Arbitrary
faults may be caused by nodes sending different messages to different re-
celvers or by excessive transmission delays at the receiving ends. Note that
both faults can also occur in broadcast-type networks, since the elementary
broadcast operation is not assumed to be reliable, see [18]. Of course, some
recelving nodes may experience an omission or deliver a non-faulty interval
in an arbitrarily faulty broadcast as well,

= Depending on the convergence function, there are usually one or more clas-
ses of faults that may be considered as restricied faults, in the sense that
they can be tolerated “easier” than arbitrary ones. For example, tolera-
ting f consistently perceived timing faults (“symmetric” faults, cf. 1,
usually requires n > 2f 4 1 nodes (instead of n > 3f + 1 in case of ar-
bitrary faults). Again, some receiving nodes may experience an omission
fault instead of providing a faulty interval; delivery of a non-faulty interval,
however, usually turns the fault into an arbitrary one.

—  Omission faults are usually perceived differently at different receiving no-
des p and q. Traditionally, they are attributed to sending nodes (“strictly
omissive asymmetric faults”, cf. [1]), although most receive omissions oc-
cur (independently!) at the receiving nodes. Hence, viewed globally, they
cannot be traced back to (a reasonably small number of) omissive sending
nodes.

=~ Crash faults (and other “benign” faults according to the terminology of
(1]) are consistently detectable at all nodes. However, a node that crashes
during a broadcast operation produces (at least) restricted faults due to
inconsistent reception.

Note finally that the four types of faults above, which are well-known from
traditional clock synchronization, are only meaningful for w-precision intervals,
not for accuracy intervals.

4. The Algorithm

This section contains the description of our generic clock synchronization algorithm.
It employs the common round-based structure from other internal synchronization
algorithms. Periodically, every P (logical time) seconds, the algorithm executes the !
following steps:

L. Initiation of a full message exchange (FME) to provide each node with the
accuracy intervals of all other nodes (involving delay compensation operations,
recall Definition 6).

2. Preprocessing of the set of received accuracy intervals to make them all compa-
tible.
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3. Application of a suitable interval-valued convergence function to the set of pre-
processed intervals to compute and subsequently apply a correction value for
the local interval clock.

4. Keeping track of real-time by means of the local interval clocks of the nodes
(involving drift compensation operations, recall Definition 5) up to the next
round.

The abovementioned basic operations, .., delay compensation and drift compen-
sation, are required to make the exchanged intervals compatible with each other
while maintaining m-correctness. More specifically, all intervals gathered at node q
in an FME are preprocessed to represent a common point in time tf as follows: For
an accuracy interval 4, sent by node P # g, delay compensation (18) is applied to
provide the receiver ¢ with an initial interval A7 that estimates A, at the (non-
synchronous) real-time of reception tf, when C, () = T?. That interval A is then
dragged locally by means of the receiver’s clock, utilizing drift compensation (12),
to some common, synchronous point in real-time tf defined by Cq(tf) = TqR. The-
refore, we arrive at the compatible intervals

=L@ = 4, +2G, g Eep + T~ T2 + (TR ~TP)p, +u, + @
(19)

Provided that TqR is chosen large enough to ensure that the intervals of all non-
faulty nodes can be received and processed, it is immediately apparent that I is
accurate —and, as we will justify in Section 5, w-accurate for some suitable 7 as
well— if (1) 4, was accurate, (2) transmission delay was not excessive, and (3)
the receiver ¢ is not faulty; recall our discussion of the abstract fault model F in
Section 3.3.

In addition to the intervals obtained from remote nodes p # ¢, there is also the
accuracy interval of the own node ¢ that needs to be considered. Of course, no
actual transmission is required here, so we just have I = C,(tf = ([T} + af],
Observe carefully that it is possible to compute Cq(tf) in advance by exploiting
knowledge of some C,(6) = [T+a] with T < TqR from the same round and without
continuous amortization being active: Since exactly TqR =T clock ticks must occur
between ¢ and tf, we obviously have Cq(tf) = Cq(t)-i-TqR ——T+(TqR ~T)p, due to
intrinsic deterioration; recall Assumption 3, Therefore, we can imagine a zero-delay
“loop-back transmission” of the accuracy interval Ay = Co(tf) = [TA a] at
the FME initiation, which “arrives” instantaneously at node ¢ (hence T = qu}])

Incorporating this and rearranging (19), we finally arrive at

Ip:{Ap+[TR—T;’+6;,},2:t2GA+qu]+(TqR~Tf)pq+uq+_C3, P#4q,
Pl AT T+ (TR - TY)p,, pP=q.
(20)

Now, given the set of node ¢’s intervals I above, a function that provides a

(small) interval that both contains real-time tf and enhances precision —despite
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of some possibly faulty ones— is required. Adhering to the terminology introduced
in [16], we call such a function a convergence function. The clock synchronization
algorithm defined below is stated (and subsequently analyzed) on top of a generic
convergence function CV, which can be any interval-valued function that satisfies
certain properties stated in Definition 11,

DEFINITION 7 (GENERIC ALGORITHM) With the paramelers required for the in-
stance of the algorithm running af node D,

* total number n of nodes,

* node p’s intrinsic inverse rate deviation bound P, and uniform bound Prax 2
Up Pp with pmax = |py o | = pr + Phax (defined in Assumption 2),

e clock granularity G, clock setling granularity G, node p’s mazimum rate ad-
Justment uncertainity u, = [—u;, u;"], and uniform mazimum rate adjustment
uncertainity wmay D Uy up with umay = Unax Hut., (defined in Assumption 2),

s tlransmussion delay characieristics Osp, €sp for all nodes s, uniform bounds 0 <
bmin < min, 4 bpgs Smax > maXp ¢ 6pg and emay D Up,q €pg With €may = |Emax| =
€max F Ehax, and accuracy transmission loss Ga (defined in Assumption 4),

* computation delay compensation (integer multiple of G) guaranteeing node p’s
maztmum computation lime Yp (defined in Assumption 1), chosen according to

Tr + U;

r, > ,
T -y

and uniform bounds T,y 2 maxp, Iy and 0 < Py < miny [y, usually I, =
Pmax = Lmin s chosen to be the same at all nodes p,

¢ broadcast delay compensation A + Q (integer multiple of G), chosen to satisfy

A+Q> /\max +wmax+U;,ax.

1- Prmax '

i conjunction with A below, it ensures that resynchronization starts only af-

ter all CSMs broadcast by non-faully nodes during an FME have arrived {cf.
Assumption f),

* transmission delay compensation A (integer multiple of G) chosen according
io

A > To + Umax + Smay + (P — T'min + 77 ) Pmax + ’Er‘;a.x
- 1+ Pgax

(defined in Lemma 11), where 7q = |7y| and 7~ (defined in Theorem 1} depend
on the convergence function employed,

(21)
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¢ round period P> A+ + A + Fimax (integer multiple of G),

where all parameters are inleger multiples of G (cf. Assumption 3) unless otherwise
specified, our generic algorithm is defined as follows:

(0) Initial synchronization: Af each node q, the local interval clock C, must
be initialized to the accuracy interval Ag = [Tf - ag’,Tf + aqo‘*’] at some syn-
chronous real-time tqo by some external means. This mitialization must ensure

. ea
o T)EA+Q+A+T,+ )
L4 aggﬂ'o,

where w and wy depend on the convergence function (defined in Theorem 1).
Note that we assume here w.l.o.g. that real-time and logical time start at t = 0
and T =0, respectively, at the beginning of round 0.

(1) Periodic Synchronization: Near the end of each round k > 0, every
node ¢ in the system performs the following operations:

(S) CSM Send: Periodically at times C'q(tg) =T = (k+1)P (the dependency
of T, t;, etc. upon round k is suppressed for brevity), node q initiates a
broadcast. The message Mgyp sent to node p at some real-time t;; during
that broadcast operation coniains the accuracy interval Ay, = [Tﬁ,iaq“‘p] =
Cq(tip). For the zero-delay “loop-back transmission” 1o the own node q,
A 4] A .l _ oy,
tyy =1 so that T, =T =(k+1)P.

(R) CSM Reception: When a CSM Myq from node p arrives at node ¢ at real-
lime ;2’ where Cy(t?) = 17 (with T3 = T; ), the interval given in (20),
namely .

IP:_{qu-{-[TR_TqP+5P%:{:2GA+qu]+(TqR—fl;P)pq+uq+5
At T =T+ (T - TY)p,  forp=g

is compuled and stored in an ordered set I,. For the definition of the
resynchronization time TqR turn to item (T).

(C) Computation: At real-time tAFA defined by Co(tp¥a+dy = pat+a+a
A+ P+A+Q+A in round k, the (generic) convergence function CY (cf.
Definition 11) is applied to the compatible intervals stored in Z,, yielding the
resull Ry, For any node p not present in Iy by time 208 4n omission
fault is assumed; the emptly interval I‘f; = 0 is provided 1o the convergence
function in this case. Finally, T, is re-initialized to the empty sel for the
next round k + 1,

(T) Termination and Resynchronization: At real-time tf defined by C'q(tf) =
TqR =(k+1)P+A+Q+A+ Ty in round k, q’s interval clock Cy 15 set to
R,.




INTERVAL-BASED CLOCK SYNCHRONIZATION 27

A few remarks are certainly appropriate here:

* A number of parameters defined in our system model (Assumptions 1-4) must
be provided (statically or dynamically) to the instance of the algorithm running
at a node p, e.g., rate deviation bound Py, transmission delay parameters bpg,
€pg. and quantities A, A, (, [y, ete. related to A, w, and Yp- The particular
convergence function might also require some parameters. Therefore, our algo-
rithm depends on those parameters not implicitly as traditional synchronization
algorithms do, but rather explicitly; see our comments in Section 6.

e The needed initial synchronization is automatically provided when the algo-
rithm is used in our clock validation framework, cf. Section 1. Clock validation
assumes that there are some primary nodes having their physical clock disci-
plined by an UTC time source of high accuracy, which may, however, fail arbi-
trarily. In normal operation, a primary node p’s local clock C, provides UTC
with some a priori accuracy @ such that ¢t € [Cp(t) = a® Cy(t) + 2, for all
real-times ¢ > 0. Since the analysis of this paper is entirely devoted to phases
of total unavailability of UTC, excluding normal or “mixed” operation, we may
assume that local clocks are initially synchronized when flywheeling begins.

* Steps (S), (C), and (T) of the algorithm are triggered when the local clock rea-
ches some specific point in (logical) time, so that they are effectively sequenced. ;
Step (R), however, takes place asynchronously when a CSM drops in. Note
also that the execution time required for computing the convergence function
is usually smaller when the latter is scattered among the CSM receptions, i.e.,
when performing piecewise computation in step (R). Of course, if v, is chosen
appropriately, our results apply to this situation as well.

* The set Z; is an ordered set, i.e., a vector. Each element of an ordered set has
assigned a unique (global) number permitting total ordering. In our particular
framework, we use the identifier of the node that originated the interval. Note
that most sets in our analysis are ordered ones, so set should usually be read
as ordered set throughout the paper.

* Resetting the local interval clock instantaneously in step (T) of the algorithm
would cause non-monotonicity and non-continuity of local time. This is circum-
vented in practice by means of the continuous amortization algorithm of [21]:
To perform state correction of the local clock, its rate is modified by a fixed ;
amount £¢ for a programmable period until the clock has changed its value
as desired. This algorithm, which is supported in hardware by our UTCSU-
ASIC, is particularly attractive as it does not impair the worst-case precision
and accuracy obtained for instantaneous correction if ¥ is chosen suitably, see
Theorem 2 for details.

In the remaining sections, we wil] analyze worst case accuracy and precision of ;
the algorithm given in Definition 7, stating expressions in terms of characteristic !
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parameters of the convergence function. The major results obtained herein wil] be
summarized in Theorem 1 (instantaneous correction} and Theorem 2 (continuous
amortization).

5. Precision and Accuracy Analysis

From the description of the algorithm in the preceding section, it should be reaso-
nably obvious that accurateness of the local interval clocks Cp(t) of all non-faulty
nodes is maintained during all rounds. In fact, all operations involved (drift com-
pensation, delay compensation, and application of the convergence function) are
explicitly designed to preserve accurateness of the intervals involved. This is not
that obvious for precision, however, so we find it appropriate to give an informal
overview how precision is actually maintained.

First of-all, recall that any local interval clock Cp(t) is defined by three values, na-
mely accuracies ag (1), af (1) and local clock value Cy(t) as reference point. Dealing
solely with accuracy, the lower and the upper edge would be sufficient. Hence, the
reference point can be set appropriately to achieve the orthogonal goal of maintai-
ning the precision condition [Co(t) = Co(t)] < 7 for all non-faulty nodes p and q.
From Lemma 3 in Section 2.2, we know that this is achieved when the interval
clocks of all non-faulty nodes are kept m-precise.

The actual approach taken is particularly attractive due to the fact that precision
during a round is automatically maintained when accuracy is. To understand how
this works, assume that all members of the set C (t) of non-faulty interval clocks
are mo-correct at some real-time ¢ i.e., that their associated y-precision intervals
contain 7(%), and recall that internal global time 7 progresses as real-time does.
When trying to capture real-time ¢ by Cp(t), we must deteriorate (enlarge) the
accuracy interval in order to compensate for the drift of the local clock. However, if
this is done properly to capture real-time ¢/ > t9, it is clear that the associated 7r-
precision interval C,(t') captures internal global time 7(t') > (%) as well, provided
that m is the result of enlarging mo by the maximum amount any C; has been
enlarged. It is important to understand, though, that enlargement of precision
intervals is just a matter of analysis, since the algorithm does not deal with precision
intervals at all. Anyway, it follows that C(t') must be mw-correct.

Whereas enlarging my to 7 guarantees that 7(t) lies in the intersection of the
w-precision intervals of all non-faulty nodes, this cannot ensure bounded precision
for { — co. Periodic resynchronizations are required for that purpose, giving raise
to our round-based algorithm. More specifically, at the end of the k-th round, the
nodes’ current m-correct local interval clocks are reinitialized to newly computed
accuracy intervals that are mq-precise for mo C 7 (= precision enhancement). Note
that we cannot safely assume mp-correctness here, since it may be the case that
internal global time 7* for round & does not lje in the intersection of the new o~
precision intervals. However, if we define a new internal global time 7%+ for round
k + 1, independently of its predecessor 7% we have of course Tg-correctness w.r.t,
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rh+l Consequently, the resynchronization launches the next round & + 1 during

which initial precision o again deteriorates to 7.

Keep in mind that only m-precision intervals C'p are affected by precision enhan-
cement. The local interval clocks C, itself must continuously track real-time ¢, so
that the accuracies could grow. Actually, accuracy in round k can be viewed as
an accumulation of the w-precision intervals during round 0, ..., k. This eventually
explains why ¢ and r will usually be apart, as mentioned in Section 2.2,

5.1. Internal Global Time

When trying to formalize the concept of internal global time, a number of technical
difficulties arise. First of all, we have to establish a notion that allows us to deal
with multivalued local time. Near a resynchronization event at node D, occurring

at real-time tf, one could be interested in local time TPR = Cp(t}f) taken from

the clock before resynchronization, and/or in TPR’ = Cp(t]) read from the already
resynchronized clock. To express this situation unambiguously, we employ the well-
thumbed technical device of virfual clocks: When round k at node p commences
at real-time tf'k =1, a virtual clock C';f Is instantiated that progresses according to
the physical clock Cp up to time tf”‘, when the k + 1-th resynchronization event
takes place. At this instant, a new virtual clock C;'H (initialized with a value
based on the convergence function applied to the intervals taken from the FME) is
instantiated, which then proceeds concurrently with C’; in the same way. Needless

to say, 1t is the set of virtual clocks of round £ that defines the instance 7% = (1)
of internal global time.

The probably most awkward problem when trying to define internal global time,
however, arises from the fact that the contributing intervals reside at different
nodes. After all, resynchronizations at different nodes do not occur simultaneously.
Albeit two nodes are within the same round k most of the time, there are short
periods where one has already resynchronized (and thus started its round k& + 1)
while the other one has not. Nevertheless, accuracy intervals from different nodes
must be made compatible to form a m-precise set. For practical purposes, this
requires dragging by means of the local clock and utilizing drift compensation (see
Definition 5). For the purpose of analysis, however, there is no need to make
intervals residing at different nodes compatible in a practicable way. Rather than
using dragging and drift compensation, it is sufficient to employ a simple, ideal
shift-operation:

DEFINITION 8 (SHIFTING) The result of shifting an interval I = I{t;) to some
point in time t' > ¢, is the interval J = J(t') = shift (I) = T+t' ~t,. For a set of
n 2> 1 antervals T = {I,(t,),.. In(ta)}, the shifted set T of compatible intervals
all representing some arbitrary ¢’ 2 MaXigicnt; is defined by J = shift, (I) =
{Ii(t))+1t — t o In(tn) +8 — ¢, ).

Rt
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Of course, any interval in J above represents t’. However, keep in mind that
they are artificial constructions, i.e., that they could only be provided by dragging
I with an ideal, continuous real-time clock. Note that restricting ¢’ to a point in
time greater than any t;j of the intervals in 7 is not really necessary.

LEMMA 9 (PRECISION SHIFTED INTERVALS) Let T = {Il(tl),...,In(tn)} b
set of infervals with I(t;) = (T £ ] representing real-time ti for 1 < i<
and J = {J(t'),. oIt} = shift, () = {Ii(t) + 1 — 14, eI () +t =
for some arbitrary t/ 2 maxigi<n ti.

€ a
n,
in}

(1) If, for any i, the interval I in T is wi-correct w.r.t. internal global time of
the same round k, then Ji=I; 4+t —t; is also mi-correct, and the whole shifted
set J is w'-correct for n' = U; ™,

(2) if T is w-correct w.r.1. the internal global time of round k, then 7; = ™) €
I;(7;) for any i.

Proof: To prove the first statement of the lemma, we note that Ti-correctness of
I; implies r;-correctness of Ji=I; +t —t;, since Ji = IL++ - 7; due to the
fact that internal global time (of the same round) progresses as real-time does, i.e.,
7' — 7 =t —t;. The asserted U; mi-correctness follows from n — 1 applications of
Lemma 5 to the union of the singletons {I; +t' —t;} forming 7.

'To prove the second statement of the lemma, we use the same argument as before
to derive Ji(r) = L(n) + 1 - 7 for 7/ = r(t'), so that the set of m-precision
intervals associated with J reads 7 = {fl(rl)—l-r’ —-T1,.. .,fn(r,,)+7"— T }. The
asserted r-correctness of J; implies ' € f;(ri) + 7 — 7, hence 1; € L(r;). O

It is helpful to view the precision of shifted intervals as an ideal one, in contrast
to the observable precision obtained by applying drift compensation. We have the
following relation between ideal and observable precision:

LEMMA 10 (SHIFTING Vvs. DRIFT COMPENSATION) Let T = {Ii(ty), ..., I (ta))
be a set of intervals I(t;) = [T,-:ta,»] residing al node p; and representing real-time
ti being in synchrony with clock Cp,. For some arbitrary t' > max;<i<n i, define
' = {I(t), <o I} 1o be the set of compatible intervals Ii(t') obtained from
I;(t;) by applying drifi compensation at node p;.

(1) If the shifted set J = shifl, (T) = {I,(t;) + ¢/ - oo In(tn) + ¥ =t} of
compatible intervals ol representing t' is w-precise, then T' is w’-precise for

= x| T/ - T)p,, +u,, +Gp, (22)

where T) - T; = C,,(t') - Cp,(t;) satisfies
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v —t; —uf V=t +uz
——__:_’l_GST}/__rE_ : _UP:' (23)
L+ pf, 1 —pp,
(2) If, for alli, the interval I, is mi-correct, then I” is w'-correct for
w = Jmi+ (T - T)p,, +up, + G, (24)
i

Proof: Recalling Definition 5 of drift compensation, (22) and also (24) follow
immediately, since (ideal) 7 must be enlarged to capture the maximum deviation
from real-time that can arise when dragging the intervals I; from t; to ¢/ ; recall that
ti is in synchrony with node p;’s clock. The bounds on T} ~T; = Cp,(t') - Cop, ()
given by (23) are obtained directly from (11). o

The above lemma allows us to carry over any result involving shifted intervals to
the situation where those intervals are actually compatible in the real system, l.e.,
when they are read at some common point in real-time t'. Apart from the inevitable
effect of granularity, there is an additional enlargement essentially proportional to
(t' - t,')ppl, . :

With these preparations, we are ready for the precise definition of internal global
time:

DEFINITION 9 (INTERNAL GLOBAL TIME) Let C**! for > 0 be the set of the
non-faulty nodes’ virtual interval clocks C’J"f'{"l(tf"k) of round k+1 at their k + 1-th
resynchronization instants tf’k, when switching from round k to k+1 takes place at
node j. If shift,nx C¥*Y for some (R > maxy tf* is wo-precise, we define internal
global time 7*+1(t) for round k + 1 by

Tk+1(t) _ Tk+1(tR'k) + (t — tR'k) fOr k 2 07
ro(t) =1

valid for allt, where T*+1(1R¥Y ¢ ﬂJes/ziﬁ R CFH J#0.
Note that defining 70(t) = t is justified by applying Lemma 4 to the initial

synchronization assumption given in Definition 7.

5.2.  Generic Interval-Based Analysis

In this subsection, we will provide our interval-based framework for analyzing worst
case precision and accuracy of the generic algorithm given in Definition 7. As
in {16], we will describe convergence functions by a few characteristic parameters
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(functions) and derive expressions in terms of those. To obtain the final results
for a particular instance of the algorithm, it is only necessary to determine the
characteristic functions of the particular convergence function and to plug them
into Theorems 1 and 2.

The general outline of our generic analysis is quite straightforward: We provide
a sequence of lemmas that describe how accuracy/precision intervals evolve in a
single round. Starting from Lemma 11 describing the set of intervals fed into
the convergence function, Lemma 12 guarantees that the precision provided at the
beginning of round k is reestablished at the beginning of round k+1. On top of that,
a simple induction proof can be condycted to establish our major Theorem 1, which
provides results for instantaneous correction. Finally, adopting the achievements of
(21], it follows that those results are also valid in case of continuous amortization.

Our interval-based framework surpasses traditional approaches to precision ana-
lysis due to its conceptual beauty and high flexibility w.r.t. incorporating features
like clock granularity, broadcast latencies, etc. This is primarily a consequence of
our notion of internal global time, which allows to focus on the behavior of a single
clock instead of being forced to consider the whole ensemble. Even more, in our
analysis, there is no need to consider the “position” of intervals (i.e., local clock va-
lues) at all. In fact, any information required is encoded in the interval of accuracies
a (resp. in the associated m-precision interval) of an interval I(t) = [T £ «f, since
all (non-faulty) accuracy intervals must contain real-time ¢ (resp. internal global
time 7) by construction, which thus serves as a “common reference” for relating
them. Of course, the particular reference point may lie anywhere in [t - a+,t+a‘]
(resp. [t — 7%t 4 x7)), according to the actually experienced drift, transmission
delay, and initial accuracy, but we do not have to deal with it explicitly.

The following first major lemma describes how precision evolves during a round,
including local drift compensation and interval dissemination in the FME. Keep in
mind that the resulting intervals I% are fed into the convergence function.

LEMma 11 (FME DISSEMINATION) Let A, = [Tp + ap] = C}(tR*-1) be the ac-
curacy interval of node p’s interval clock at real-time t, = tf”"l, when round k (for
some fized k > 0) starts, and denote by A the subset of the Ap’s of those nodes p
that remain non-faulty during round k. Let TqR =(k+1D)P+A+Q+A+ T, be the
logical time when the k + 1-th resynchronization instant —happening at real-time
tf = th'k and lerminating round k— is scheduled at node g, and let I = If;(tf)
be the interval (20) that is obtained at node q as the resull of delay and drift com-
pensation of a node p’s accuracy interval transmitted during the FME in round k.
If, at the beginning of the round,

0] the accuracies of any A, = [T, + « € A are integer multiples of Gs,
p p P

(1] shift, (A), t > maxp t, arbilrary, is wo-correct for some 7y = [—75, 7f]
with 7o = 75 + 77,
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[2] there is some 7 = [—7~, ] with 7 = 7~ + 7+ > 7y such that

Tpe[kP+A+Q+A+FPi1r] (25)

forany A, € A,

[3] iransmission delay, broadcast delay, computation time compensation, and
round period are integer multiples of G satisfying

o + Umay + Smax + (P ~ Lmin + 7"'_),Dma)( + 5$ax

A > , 26
- 1+ﬂrT1ax ( )
A+Q > DmaxFWmax + Ung (27)
1"',0max
N> 25% o edep (28)
1—pp
Cmax > maxrpa
p
0 < Tmin < minl’,,,
» )
P> A+ Q+ A+ Thay,

we have the following results:

(1) Any non-faulty receiving node q is able to form its set I, of intervals =
If;(tf) = [T;'R + a{”'R] —given by (20)— at least v, real-time seconds before
resynchronization iakes place at time tf. By default, If; =0 if node p’s CSM
did not arrive in time. Any Il e Ny € T, (contained in the subset N, of

non-faully intervals) is accurate with accuracies being integer multiples of Gs,
which satisfy

ab® ¢ A +up+us+ G+2G4 +ep,
+(P~A-—I‘p)pp+(f‘q+A-—6pq)pq
+(A+Q)[- max{p; — pp 0}, max{p} — pE,0}]
+O(T + Ppmax + G + Emax) P (29)

and

g
iy
s

1)

A +up+ug+ G+2G, +¢yp,
+(P—~A-—Fp)pp+(l‘q+£\.-—6pq)pq
- (A+Q)[- max{0,p; - p;}, max{0, p} —~ p}}]
+ O(7 + Ppmay + G + €max) Py (30)

forp+#q, and
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ag'R =gt ug+ Pp, + O(n)p,. (31)
Moreover, any I’; € Ng ts wh-correct with

wh C 7ro+up+uq+5+6pq+(P—A-Fp)Pp+(Fq+A‘ Pe)Pq
+ (A + Q) [-max{p; - 7,0}, max{p? -7, 0}]
+ 0(7" + Ppmax + G+ 5max)pmax (32)

forp#q, and

m =+ u, + Pp, + O(?r)pq. (33)

The whole set N, is nq]{-correci for

7";{ - T + Umax +uq +E+ Emax

+(P-A- Fmin)Pmax + (Fq +A- 5min)pq
+O(7 4+ Ppmax + G + Emax)pmax' (34)

2) The set N = X Ny containing all non-faully intervals I? at all
g non-faulty “V ¢ q

non-faully receiving nodes q has the property that shift,,(N) for some arbitrary
t" satisfying 1" > max, tfis wH-correct for

WH C mo+ 2umax + —C—;—"" E€max + (P + Fmax - Fmin - 6min)pmax

+O(7 + Ppmax + G + Emax)pmax~ (35)
(3) Finally, the set N'? formed by the non-faulty nodes’ “perceptions” I’; of the
accuracy nterval transmitted by a single non-faulty node p has the property that
shift,(NTY fort" > max t® is both wP-correct and T-precise with
7P g To +up +umax +-§+ €max
+(P-A- Fp)pp + (Crmax + A — 5min)pmax
+ (A + Q) [—(pr;ax s p;)vpr-;ax - /-7;-]

+O(T + Pomax + G + €max) Pmaxs (36)
w; C Emax + Bumax + G+ (A +Q+A + I‘max - ‘Smin )Pmax
+ O("?O + PPmax + G + Emax)pmax' (37)

Proof: From the description of the clock synchronization algorithm in Definition 7,
we know that any node p initiates its broadcast in round k when its local clock
reaches time (k+1}P. Due to broadcast latency Amax and broadeast operation delay
Wp < Wmax according to Assumption 4, the CSM to node ¢ is actually transmitted
when the local clock of the transmitting node p reads time T};‘; = Cp(t},) satisfying
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Amax + Wmax + Uy

(k+DP ST <(k+1)P+ S(k+1)P+A+Q, (38)

1- Pr;ax
recall (11) in conjunction with (27). Of course, t;‘q is the real-time when the CSM
(containing the accuracy interval A;fq =[Th+ a.]) is actually transmitted. Com-
bining (38) with (25), we easily obtain

Ta=Tr £ (F+DP+A+ Q= (kP+A+Q+A4T, 1)

= P-A-T,+7" (39)
and similarly
T~ T, <P-A-T,+7. (40)

The CSM from node p is received (we consider non-faulty intervals here) at node ¢
delayed by 61’,q, hence at real-time = t}‘j‘q + 6;,q, when the local clock of node q
reads T7. We will now establish bounds on TP — TA.

Relating the points in real-time involved in the evolution of a round (from the

beginning to reception of the FME) yields
=ty =t —tp ~ (ty —tp) = 7} oy =t = (g —t,). (41)

Since t,, t,, and t;‘q (but not %) are in synchrony with their respective clocks,
applying (10) to t? — ¢, and ta, —t, provides

(T -T)(1-p7) - u; < (Tp'}—Tp)(1+p§)+u;'+5,§q

‘(tq "tp)
T =TI+ + G+ 0] +uf 2 (T ~T) (1= p7) = w5 +6,
"(tq _tP)‘

Some algebraic manipulations produce
(I} = Toa) (1= p7) < (T, =TH) 1~ Py)+ (T = T)(1 + pf)
+ oy = (tg = tp) + uy +ut

Ty =ty = (T = 1) + (T} = Tp)p; +(TH - To)ey
e +ug +uf

IN

and
GO+ pf)+(T7 =T+ 0F) > (T, =T+ pf)
H(T =)L~ p;) + 6,
= (tg—tp) ~uf —u;
Tq =ty — (Tp = tp) - (Y;)f(t] "Tq)/’;_

~ (The = Do)y +6pq ~ €pg — Uy —uy

IV
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Abbreviating 1, = Ty =ty — (T, ~ Ip) and recalling (39) and (40), we eventually
obtain

2 1 —-— —
73——7;: < T:E{;lpq*f-épq'f“(]o“A—Fq‘*‘ﬂ' )pq
+(P—z_\—I‘,,+7r‘)p;"+e;‘q+u;+u;}, (42)
A 1 -\ +
B = T3 2 7 [+ 8y = (P = A= Ty 4 77)p3
1+pq

—(P—A—I‘p+7r')p;—sp'q—u;'—u;J—G. {43)

Since all A; = [T}t o] € A are mo-correct according to precondition [1] of our
lemma, Lemma 6 provides —Tg < Ypg < Mo since my + Ty = {—mo, 7o), so that it
follows from (42) that
TA To + bpq +(P—A—Fmin+7r")(p; +o5) +¢f, +u +ut

P 1—p7

IA°

TP

q

IN

F+DP+A+Q+A—A
+ 70+‘Smax+(P"‘A"Fmin +7r_)pmax +€$ax+umax

1‘ ~ Pmax

(k+1)P+A+Q+A
+ To + 6max + (P = Lmin + W—)pmax +5:.1ax + Umax

1- Pmax

—A[-—”‘L*_"—H]
1“Pmax

< (k+1D)P+A+Q+A:

the last step is confirmed by plugging in the definition of A according to (26).
This result eventually assures that If from any non-faulty node p # ¢ is available
for computing the convergence function at node ¢ at latest when ¢’s clock reads
k+1DP+A+Q+ A, leaving a logical time duration Iy up to time TqR when
resynchronization will take place. This is also true for the interval Ig from the own
node, which can in fact be (pre-)computed at any time, recall the remark following
(19). Remembering (28), this means that at least v, real-time seconds are available
for computing the convergence function, as asserted in item (1) of our lemma.

Apart from that, inequalities (42) and (43) may be condensed into the more
conveintient form

T} = Ty = bpq + O(70 + Pprmay + G + £ma). (44)

where we used umax = O(G) according to Assumption 2.

With this preparatory work, we can attack the results given in item (1) of the
lemma. According to our expositions in Section 4, each receiving node ¢ relies on
(20) to compute the interval
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I =It]) = A} + (TR~ TP 46, 2, + 2GA+ (T = TP)p, + v, + G
(45)

from the accuracy interval A;‘q received from node p #q. Incorporating the term
that accounts for local deterioration (cf. Assumption 3) at node p from local time
T, where the round started (with the accuracy interval A, = [T, + o)) up to
transmission of the CSM to node ¢ at time Tp’;, we easily obtain an expression for
the interval of accuracies ab Bof IP = (TR + ol B from (45):

oG = ay + (T ~Th)p, +u, + €09 +2GA + (T - TP)p, + u, + &
= aptup+u,+ G+ 2G, + &pq
T = Loy + (TF = Th)p, = (T~ Tf)p,. (46)
Since we assumed in Definition 7 that all parameter values appearing in (46) are
integer multiples of Gis, which is true for ap according to precondition [0] of our

lemma as well, a’;ﬂ is also an integer multiple of Gs as asserted in item (1).
Considering

(o o (Cmax — a)ry + (b — Cmax)rq if rp > 1y,
fle) = (c a)rp + (b C)7q < { (Croin — a)rp + (b Cmin)rq if rp < 1q

for rp, 7y > 0 (and similarly —with ¢;ay and Cmin €xchanged— for the lower bound),
which follows immediately from fle) =¢(rp —ry) - ary + bry, we obtain

fle) < (emax — a)rp + (b~ cmax)ry + max{ry — 5, 0}(cmax — Cmin )
fle) > (cmax — ajrp + (b— Cmax )7y — max{0, p = T¢ }{Cmax — Cmin ) (47)

Using the above upper bound in equation (46) for ab® and recalling (39), TR =
k+DP+A+0Q+A+ L'y in conjunction with (38), and relation (44), we obtain
the upper bound

' C oy tu, +u, +G+2G ¢,
+(P=A=Ty477)p, + (T, + A)p,
+(A+Q)[- max{p; — Py, 0}, max{p} ~ pr,0}]
= 6pgpy + O(mo + Ppryay + G + €max)Py; (48)

remembering that 7y < 7 according to precondition (2] of our lemma, the re-
sult stated in (29) follows. For (30}, we just have to employ in the lower
bound (47) instead of the upper bound in the derivation above, which amounts
to replacing the term (A + Q)[—ma.\:{pq‘ - pp",()},max{pj ~ pF.0}] in (48) by
~(A + Q)[—max{(),p; = p7 }ymax{0, pF ~ ri.

We still have to investigate ab ™ in case of p = ¢. Incorporating the term (15 -
T,)p, + wy, which accounts for deterioration at node ¢ from local time 7, up to
Tq“f] = (k+1)P, the instant of the virtual “loop-back transmission”, in the expression
for I in (20) provides
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ag'H = oy + (TqR - Tq)pq + uy,

from which (31) follows immediately.

The above derivations for accuracy immediately carry over to wh-correctness ofIf;
for a suitably chosen 7h: Given that A, was wo-correct at the beginning of round &
(at real-time t,), we only have to add the maximum uncertainities caused by the
drift and delay compensation operations. Recall that internal global time for any
fixed round progresses as real-time does, so that maintaining accuracy w.r.t. real-
time by enlarging the interval automatically maintains “accuracy” w.r.t. internal
global time as well. Note that the term 2G4 accounting for limited accuracy
transmission resolution (see Assumption 4) can be ignored here, since precision
intervals like 7y are not handled by the algorithm but rather computed in our
analysis. Adopting (46) appropriately, literally the same derivation that lead to
(29) resp. (31) provides (32) resp. (33).

Moreover, by virtue of Lemma 5, we find that the set A/, of all non-faulty y i
at node ¢ is wf-correct for nf = Upz, 7. Straightforward majorizations of (32)
easily confirm the value given in (34); note that setting Pp = Pryay causes the term
involving [— max{p; — Py 0}, max{p} —~ i, 0}] to vanish. Finally, ) Cwllis
also true by virtue of the technical condition SminPmax  Emax according to (16),
so that genuinely = = U, 7 as required.

To prove item (2), we note that the asserted mH-correctness of the shifted set A/
is a straightforward consequence of Lemnma 5 applied to Uq won-tautty SHiftyn A . The
bound stated in (35) follows from

H _ H
T “U’rq
q

C 7o+ 2umay +§+5max .
+(P—-A-~ Pmin)pmax + (Pmax + A = 5min)Pmax
+ 0(7" + Ppmax + G+ 5max)pmax-

Finally, drawing our attention to the set A/? of intervals obtained at different
(non-faulty) receivers for the same broadcast (of non-faulty node p), Lemma 5
applied to U#p shifttn{F;} yields o? = [ £p T4, and trivial majorizations easily
provide (36). Again, wd C wP by virtue of {16), so that #? = Uq nh as required.

In addition, it is clear that almost the same accuracy interval A;‘q appears in
I7qJ of any receiver ¢q. More specifically, the only difference is the deterioration
that occurs at the sender p between T} in = min, T, and the particular T/, under
consideration. Conceptually, this may be viewed as if node p has commenced with
an interval [TP. -+ o] of length 0. Starting from an equation adopted from (45) in
a similar way, we obtain

T C U [(Tp"q - mqinTp’;)pp + (8 - u, + €pq
9.p#q
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IR =)oy~ (T7 = T)p, 4] + ©

rq

S emax+ Buma + G+ | J (T - min T3)Prmax = Semin Prnas
9.p&g
+ (9(71’0 + Ppmax + G+ €max)pmax

by majorizing Pp: Py bY ppay and using (44). Note that Tp’;—minq 7;,“; = 0 in case of
a broadcast network (B=1,cf Assumption 4), so that no deterioration occurs here.
The result stated in (37) follows from recalling that TqR—minq 7},’; S A+Q+AHT ax
by virtue of (38) and the definition of the logical resynchronization time TqR. Note
that the contribution (TqR —(k+ I)P)pq =(A+Q+A+ Tq)p, of the own node ¢
to w! is again covered by expression (37) due to the technical condition (16). This
eventually completes the proof of Lemma 11. O

It is important to understand that the set A? is wH_correct and T [-precise, but
not necessarily m;-correct. After all, we cannot assume that internal global time
75(t) of the current round k lies In the intersection of the (quite small) 7r;-precision
intervals associated with the elements of A/7.

Next we will provide the abstract properties of the class of convergence functions
considered in this paper. We start with the following definition:

DEFINITION 10 (TRANSLATION INVARIANCE, WEAK MoNoToNICITY) Given
twe sets T = {I,,... . I,} and J = {J1,...,Ja) of n 2 1 accuracy intervals,
an interval-valued function F() of n > 1 interval arguments s called

(1) weakly monotonic W I; CJ; with refl;) = refld;) for all 1 < J<n
implies f(I) C f(7),

(2) translation invariant F I+ A, I, + A) = f(I,,. o In)+ A for any
real A. :

Note that a weakly monotonic function satisfies this property for both accuracy
intervals and associated #-precision intervals, hence I; C J; with ref(I;) = ref(J ;)
for all j implies £(Z) C £(77).

DEFINITION 11 (INTERVAL CONVERGENCE Funcrion) Let 7, = {I},,...,I}',‘}

and T, = {I;, o I7} be two ordered sets of n compatible intervals representing t
each, which are in accordance with a gven abstract fault model F. Provided that

[0] the accuracies of any non-faulty 1; = [T}f =+ a;] are integer multiples of Gg
satisfying o, C By, € B, for a given set of accuracy bounds B, ={B},... By}
(and analogous for IZ, with set of accuracy bounds B,),

[1] any non-faulty I;; is w;-correci for 7‘1’; E P, = {7:'},,...,71'}’,’} denoting a
given set of precision bounds (and analogous forl’; with set of precision bounds
P, = {7!';,,..,7!':;}),

T A M e
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(2] P={x' ... ="} with U 7, Cn' Cwf | for some suitable 7w denotes
a set of uniform precision bounds ensuring w -correctness of both I; and 1';
(provided that they are non-faully),

3] any pair of non-faulty intervals L, I' is also w-precise for some wp C wH
define

R, = CV(Z,) = [T;ia;],
R, = CV(T,) = [T;:{:a;].

The generic convergence function CV is assumed 1o be translation invariant and
weakly monotonic, compuling accurate intervals with reference point and accuracies
being integer multiples of G'g, characterized by

(1) weakly monotonic (w.r.il. any interval argument) accuracy preservation
function R(), which ensures that a, C R(B,,Pp,w" 7)) and a, C
N(Bq,’Pq,-irH,‘rr[),

(2) weakly monotonic precision preservation function ®(), which guarantees
that R, is ®(P,,wf wp)-correct and R, is $(Py,wH wp)-correct, with
|8(P, nf =) = O(=") for z¥ = fwf ],

(3) (weakly) monotonic precision enhancement function (), which ensures that
the set {R,, R} is wo-precise for some (=any) wo satisfying |mo| = mp =
(P, =", x;), with (P, n¥ 7)< 2 = |wH].

Note that it is possible to provide additional arguments to any of the characteristic
functions. For example, the set of accuracy bounds B, could be provided to &() as
well; we reduced the number of arguments for brevity.

It is worth mentioning that our precision preservation function &() replaces “ac-
curacy” « in the (non interval-based) characterization of convergence functions of
(16]. Informally, &() quantifies how well a new clock fits to the clocks of the current
round, which seems to be the core property characterized by «.

The following lemma describes the result of applying the generic convergence
function to the intervals resulting from an FME as set forth by Lemma 11:

LEMMA 12 (PRECISION PRESERVATION) Let Ap = [Ty £ ap] = C (1741 be the
accuracy interval of node p’s interval clock at real-time t, = tf'k‘l, when round k
(for some fized k > 0) starts, and denote by A the subset of the Ap's of those
nodes p that remain non-faully during round k w.r.i. q given abstract fault model
F. Let TQR =k+DP+A+Q+ A+ Ly be the logical time when the k + 1-
th resynchronization instant —happening at real-time t = tf'k—- ts scheduled at
node q, and let I = If;(tf) be the interval (20) that is obtained at node q as the

result of delay and drift compensation of a node p’s accuracy interval transmitted
during the FME in round k.
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Assume that the set Z, of intervals If?’ available at node g is subsequently fed into
a convergence function CV characterized by accuracy preservation R(), precision
preservation ¥(), and precision enhancement ().

If, at the beginning of round k,

0] the accuracies of any A, = [T, 4+« € A are integer multiples of G bounded
P pLTp
according {o

a, CB, €B (49)

for a given set of accuracy bounds B = {B1:--..8.},

(1] shift,(A), t' > maxp ty arbitrary, is wh-correct w.r.i. internal global time of
round k for some mo C wo, where 7y is a solution of the equation

lmol = (P, w#  7p) (50)
for the set P = {x!. -7} of uniform precision bounds 7P C o defined by
nf = o+ Up + Umay + E+ €max

TP =A=Ty)p, + (Fmax + A — bmin ) Prmax
(A 4+ D[~ (b7ax = £7)s Phax — 7]

+O(7T+Ppmax +G+5max)pmaxs (51)
o = x4 2Umax + G + €max + (P 4 Tmax ~ Timin — bmin ) Prmax

+ O(Ppmax + G + €max) Prax (52)
T1 = Emax + Bumax + G+ (A + Q+ A+ Tray — bmin) Do

+ O(Ppmax + G + €max) Prmaxs ‘ (53)

[2] any A, € A satisfies T, €kP+A+Q+A+ Ip £ 7] for o' C m defined by

™= 5(7)» va 771) + Ty + Ppmax + Umax + O(Ppmax + G + Ema)()pmaxy
(54)
where 3() denoles the resull of ¥() with swapped positive and negative accuracy,

[3] broadcast delay A +Q, transmission delay A, computation time compensation
Iy, and round period P are as defined in ilem [9] of Lemma 11,

then the set R of intervals
Ry = Ry(t]) = [T} £ )] = CV(T,)

provided by the application of the convergence function CV to the set I, of compa-
lible intervals (20) resulting from the FME at g non-faulty node q satisfies
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0) R, is accurate with accuracies being integer mullinles of Gs bounded accor-
] g g 14
ding to

a:, - R(qu’an "H»T"I)y

where the set B, = {B;, . ,ﬁ;’} of node ¢’s accuracy bounds is defined by
By = Byt upy+u, + G+ 2G4 +e,,
H(P=A=Ty)p, +(Ty + A~ 6,0)p,
+(A+Q)[- max{p; ~ p-’,0}, max{p} ~ pt, 0}]
+ O(Ppmax + G + €max)Prmax (55)
forps#q and

By =By +ug+ Pp + O(r)p, (56)

with B, € B; the set P, = {11';,...,7:';‘} of node ¢’s precision bounds wh C
wP C ol s defined by

= 7r0+up+uq+5+epq+(P—A-Fp)pp+(Fq+A~5pq)pq
+(A+Q)[- max{p; — Pp 0}, max{p} ~ py,0}]
+ O + Ppmax + G + Emax)pmax (57)
forp# g and

™ =0 + uy o+ Pp, + O(n)p,. (58)

(1) R, is B(Py, mf wr)-correct w.r.1. internal global time of round k,

2) shift,(R), t' > max, t® arbitra , 18 mwo-correct w.r.t. the newly defined
internal global time of round k + 1,

(3) two non-faulty nodes D, q resynchronize within real-time tf - tf satisfying

tf—tf g Fp —Fq+[-770‘770}+P(pp +.ﬁq)+up+iq
-+ O(Ppmax + G+ Emax)[‘ﬂmaxypmax] (59)

for my = |mo,
(4) the mazimum clock adjustment T, applied to the clock of any non-faulty
node q satisfies T, € g for wy, C 7 defined by
7Tq = 5{’})(]‘ 7rHv 71']) + 7T0 + qu + uq + O(Ppmax + G + 5max)pmax» (60)

hence T;E[(k+l)P+A+Q+A+I‘q:twq]foranquE’R.

E
i
E
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Proof: First of all, we establish some coarse a priort bounds on the various pre-
cision values given in precondition (1] of our lemma, which will be required for
applying Lemma 11: Since 7y satisfies (50}, it follows from I < =% according to
item (3} of Definition 11 that =5 >0 =Ca¥ for C < 1. Therefore, (52) reveals
(1=Cyr¥ = O(Ppmax + G + €max), 50 that this remainder term applies for =#
and 7o as well. Moreover, plugging in [B(P,, 7)) < [2(P, = wp)| = O(=H)
—as justified by weak monotonicity of () and the bound from item (2) of Defini-
tion 11— into (54) resp. (60) reveals that Tp 7= O(Ppmax + G + Emax) for any
p as well.

Now, since our preconditions are the same ones as required by Lemma 11, it
follows from (29) resp. (31) that the accuracy of a (non-faulty) interval NeN,C
I, is bounded according to (55) resp. (56), which defines the set of accuracy bounds
B, required for CV. Similarly, we know from (32) resp. (33) that any I eN,is
wh’-correct for b C 74 given by (57) resp. (58). In addition, (35) implies that
any Iy € N is wf'-correct with ##' C x# defined in (52), and (36) establishes
that any I € M is wP'-correct for nP’ C 77 given by (51); note that O(x’) <
O(7) = O(Ppmax + G + £max), as shown above. Moreover, from (37) it follows
that A7 is also m-precise with m; C 7w given by (53); again, O(mp) < O(mg) =
O(Ppmax +G+ Emax)-

‘Therefore, we have established bounds on all the arguments of the characteristic
functions of CV. Hence, the statements asserted in item (0) and (1) of our lemma
follow immediately. Note that weak monotonicity of CV (and R() as well) is required
here to carry over bounds on the source intervals to bounds on the result. Since (50)
in conjunction with item (3) of Definition 11 implies that shift, (R), t > max, tf
arbitrary is mwo-precise, we can define internal global time 7#+1 = 7E+1(p/) for the
new round k£ +1 to be an arbitrary point that lies in the intersection of the intervals
in shifty/(R) (recall Definition 9), so that this set is actually mo-correct w.r.t, 7F+1
as asserted in item (2) of the lemma.

To prove the statement of item (3), we recall that node p resynchronizes at real-
time ¥ when the virtual clock C¥ used in round  displays TR=(k+1)P+A+
Q24+ A +T,. Since round k started when Cf read T, > FP+A+Q+A+T, -7~
according to precondition [2] of our lemma, our usual argument provides that the

initial precision my has deteriorated to

Top = 7ro+(TpR“Tp)pp+“P§"0+up+(P+7r_)PP
C To+up + Pp, + O(7)ppay (61)

when tf is reached; that is, the virtual clock Cﬁ(tf) = [TPR + af] of a non-faulty
node p is w, p-correct. Therefore, Lemma 6 immediately provides

=t ST = TR o, 47,

for all non-faulty nodes p and q. Plugging in the definition of the logical resyn-
chronizaton times TPR and TqR and (61) while recalling = + 7 = [—n, 7] for any =,
item (3) of our lemma follows.
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Turning our attention to item (4), we recall that the new virtual clock C;‘“(if)
at node g is initialized to Ry =[T; £ a}], so that it is S(Py, wH wp)-correct wr.t.
7% by virtue of item (1) of our lemma. On the other hand, the virtual clock C’g(tf)
was established above to be To,q-correct w.r.t. 7¥ according to (61). Lemma 7 thus
vields

Yy =T -Tf en,  + (P, =7 =) (62)

Using $(P,, w 7;) C P(P,wH x;) due to weak monotonicity, (60) and also
7y & = follows, which in turn justifies our choice of (54). The bound on T, given

in item (4) is an immediate consequence of T, = T - TqR, eventually completing
the proof of our lemma. O

By virtue of the Lemma 12, it is not difficult to provide the major result of this
section:

THEOREM 1 (PRECISION REF. ACCURACY INSTANTANEOUS CORRECTION)
Running in a system complying to Assumplions 1-4, the clock synchronization algo-
rithm of Definition 7 using the generic convergence function CV —characterized by
accuracy preservation R(), precision preservation @(), and precision enhancement
II() subject to a given abstract fault model F— guarantees accuracy and precision
for all rounds as follows:

(0) The accuracy interval Astt = [T7 + o+ provided by the local interval
clock of a non-faulty node q at the beginning of round k + 1, k > 0, satisfies
a§+l - ﬁ§+1 for

Bt = R(BYL Py w np), (63)
B, = af,
where B:,'“ = {[3;’“'1, . ,,Bg'kﬂ} is defined recursively by

ﬁ’;'k“ = ﬁ; tuy+ug+ G+2G, + Epq
+(P“A-Fp)9p+(rq+A° pe)Py
+(A+ Q)[—— max{p; - p;,()},rna.x{p;’” - p;', O}]
+ O(Ppmax + G + €max) Prmas (64)
forp# q and

B =g Ly, 4 Pp, + O(m)p,. (65)

(1) The interval clocks of non-faulty nodes are synchronized to the (observable)
intial worst-case precision (i.e., the precision af the beginning of each round of
the last non-faulty clock)

Tomax = o+ Umax + G + (Fmax - Fmin)pmax

+ O(Ppgmx + Gpmax + Emameax) (66)
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with mo = |y, where g is a solution of the equation

lwo| = (P, w¥ =) (67)
for the set P = {x!, ... ="} of uniform precision bounds P C wH defined by
wf = To + Up + Umayx + —G_‘*‘ Emax

+ (P A Fp)pp + (Fmax +A- 6min)pmax
+ (A + Q)[_(px:]ax - p;)vp;;ax - P;]

+ O(7 + Pprax + G + €max)pmax! (68)
T = 70+ Qtmax + G+ emax + (P + Toay — Lmin = 8min ) Prma

+ O(Ppmax + G + €max) Prmans (69)
T = Emax + BUumax + G+ (A+ Q4+ A + Lmasx = 8min ) Pmax

+ (’7(Ppmax + G+ €max)pmax' (70)

(2) The (observable) worst-case PTECISION Tay Salisfies
- - + T —T.. +
Tmax = Mmaxym + umax + ( max min )pmax’

™+ Ui+ (Do = Do) o, 70+ timas + P
+ G+ O(Pphay + Gpmax + Emaxfmax) (71)
with
T = B(P.w" 7p) + 70+ Umax + Pp
+ O(Ppmax + G + £max) Prays : (72)
where 5() denotes the resylt of $() with positive and negative accuracy swapped.

(3) Resynchronization of any two non-faulty nodes D, ¢ occurs within real-time
tf - tf salisfying

tf-—th cr,-r, +[—7r0,7ro]+up+ﬂ'q+P(pp+ﬁq)
+ O(Ppmax + G+ 5max)[_Pmax; Pmax]; (73)

where adjustments of af most T, € 7y C 7 defined by
my = E(’Pq,‘]\‘H' )+ + u, + qu + O(Pppay + G + €max ) Pmax
are applied to the clock of a non-faulty node q.

Proof: The above results are established by conducting an induction proof on the
round k: Assuming that the accuracy intervals Ap =Tt a,] = Clﬁ(tf"“l) of all
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non-faulty nodes p are mwy-correct at the beginning of round &, in the sense that [}
shift;/(A), t' > max, tF* =1 arbitrary, is mo-correct, (2] T, € (kP + A+ Q+ A +
Ip £ 7], and (3} a, C B;f, we show that the accuracy intervals A, = Ty £a)] =
C:;'“(tf"") at the beginning of the succeeding round & + 1 satisfy these precision
properties (and the accuracy bounds a, C ,B;’“) as well. However, this —and
hence most results stated in our theorem— follows directly from Lemma 12. The
initial case k =0 is immediately implied by the initial synchronization assumption
in the algorithm’s Definition 7. More specifically, the recursive definitions (63) and
(64) follow directly from item (0) of Lemma 12; af,’ denotes the initial accuracy of
node g at the beginning of round 0 according to Definition 7. Similarly, item (3) of
our theorem just combines item (3) and (4) of Lemma 12.

It only remains to derive the expressions for the observable precisions g max
and Tmax given in item (1) and (2) of our theorem. Let C be a certain set of
Just resynchronized non-faulty virtual interval clocks C;“(tf) at their respective
resynchronization times t# = t*. From item (3) of Lemma 12 in conjunction
with 7o = O(Ppmax + G + £max) established in its proof, it follows that tf ~ tf <
Finax = T'min + O(Ppmax + G + €max) for any two non-faulty nodes p and ¢, so that
item (2) of Lemma 10 provides us with the precision Ty mayx of the clocks in C at
real-time t® = max, t7 when the last non-faulty node in the system resynchronizes:

Provided that any C,ﬁ’“(tﬁ) € C is m-correct, we obtain
tf —tf s

Temax & e +U 1,7 Ppp+up+Gp
; ~ pp

M

T + (Ciax — Fmin)ﬂmax + Unax + G
+ @(Ppmax + G+ smax)pmax; (74)

recall umax = O(G) from Assumption 2 and the definition of Gp in (13).

To establish T0,max, We have to consider the set C of all non-faulty virtual clocks
Cﬁ“(tf). Since shift;rC is wq-correct w.r.t. internal global time 75+1 due to
item (2) of Lemma 12, we have to plug in 7, = mg in (74), which provides (66).

Before we can attack overall precision myay, we need some technical preparations.
Consider some tg, ¢, 2 g being in synchrony with a node’s clock C(t), and denote
by I'(¢) the interval obtained by drift compensation of a mo-correct (initial) interval
Iy = I(tg) dragged from tg to t at that node. Then, it is not difficult to see that
I'(t) for anv t within to <t <ty is w-correct for

7T:7T0+(T1 —To)p+1L+Gp, (75)

where Ty = C(to) and T} = C{ty). In fact, monotonicity of C(t) implies T} > T so
that (75) follows immediately from (12) for t; = t. However, note the subtle fact
that we cannot always infer m-correctness of I'(t) for any ¢ < ¢, from m-correctness
of I'(ty). Whereas this is justified when ¢, is not in synchrony with C(t), we

H
L
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must explicitly account for clock granularity (which amounts to adding Gp) if t;
1s synchronous.

Returning to our problem of determining the maximum observable overall pre-
cision, we know from (61) that the virtual interval clock C:(tf) = [T+ af] of
a non-faulty node p is m, ,-correct at tf. Therefore, by using majorization in {(61)

and recalling (75), it follows that C;(t) of any non-faulty node p, for any ¢ < tf in
round £, is 7, _-correct with

Wy, = g + Ppmax + Umax + Gp + O(Ppmax +G+ Emax)pmax- (76)

Assuming that the last resynchronizing node [ in round & actually attains this
maximum, we niow consider the set C containing just a single virtual clock C;H(tf),
of any non-faulty node p # I. From item (1) of Lemma 12 and weak monotonicity
of &(), we know that C:“(‘tf) is sP(’P,ﬂH,‘Jr;)-correct w.r.t. internal global time
of round k. Plugging this into (74) provides the observable precision

7TM = Q(’P’ WHv 771) + (Fmax - rmin)ﬂmax +Umax + G

+ O(Ppmax +G+ Emax)pmax (77)

of C}f"'l(tﬁ) at time ¢*, when the last node / is about to resynchronize. Of course,
by the above reasoning, this precision is in fact valid for C;j +1(t) for any ¢ satisfying
tf <t < tf as well, since granularity compensation Gp is already incorporated in

M
M,

Applying Lemma 7 to C{(t) and C;’Ll(t) while using (76) and (77) reveals that
the distance Y(t) = ref(C’ﬁ‘*’l(t))—ref(Cf(t)) for any t with ¢& < ¢ <t is bounded
by

T(t) € To,. +3I'_M
o+ Ppray + Umax + G+ S(P, wH | 7r)
+ (Fmax - I‘mirl)ﬁma.x + ﬁmax + —é
+ O(Ppmax + G + 5max)(Pmax + ﬁmax)
T+ (Fmax = Lrin )ﬁmax + Unax + [—G, G]
+ O(PPmax +G+ Emax)["'/’max’ Pmax]y
recall the definition of = in (72).

Of course, the maximum of the positive and negative accuracies of the interval
above gives the maximum observable precision for the “mixed” case, where virtual
clocks of round k and k + 1 are simultaneously alive. Thus, to determine Trnax,
it only remains to find the maximum observable precision for the case where all
nodes are still in round &, and to take the maximum of both cases. However, we

established already that Cﬁ(t) and C:(t) for any t < min{tf,tR} are at most
To,.-correct, so that Lemma 7 in conjunction with (76) provides

O(t) = ref(C;j(t)) — ref(C (1))

N

E
|
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€ [“770, 770} + P[‘pmax» Pmax] + [“‘umax: umax] + ["Gv G]
+ O(Ppmax +G+ 5max){"ﬂmax; Pmax}~

Taking the maximum values of positive and negative accuracies of Y(t) and U(1)
eventually provides (71), completing the proof of our theorem. O

5.3. Continuous Amortization

Theorem 1 provides results for instantaneous correction, where the local inter-
val clocks —displaying C:(tf"‘)~ are re-initialized to Cﬁ“(tf*") at the end
of round k. Since this simple approach could cause non-continuity and non-
monotonicity of local time, applications usually demand some kind of continuous
amortization. Such techniques are based on the idea of smoothing out the difference
C'}f'*'l(tf'k) - C}f(tf'k) by means of a suitable rate “boost”. Continuous amortiza-
tion has been studied in some detail in [16] and, in particular, in (21}, where the
non-interval based variant of our algorithm has been introduced and analyzed.

Adopting existing continuous amortization techniques to the interval-based fra-
mework involves intricate issues. First of all, continuous amortization only app-
lies to the reference point Cp(t) of a local interval clock Cp(t) = [Lp(1), U, (2)] =
[Cpolt) - a, (1), Cp(t) + af(t)], whereas the upper and lower envelope can be set
instantaneously. However, since the envelopes are not maintained explicitly but
rather implicitly via o, () and af (1), it is necessary to compensate any change of
Cp(t) caused by continuous amortization by changing o, (t) appropriately.

Apart from that, it might also happen that instantaneous setting of lower or
upper edge cause “negative” values of the accuracies o, or a;' , since the reference
point is not changed to its new value simultaneously with ap. Of course, eventually,
accuracies will become positive again, but one should ensure that applications read
“negative” accuracy values as zero. F urthermore, the worst case accuracy bounds
for the beginning of a round provided by Theorem 1 are not particularly meaningful
anymore, except for the total length ap = oy + a;,".

Since general applicability of our results would be sacrificed if we tailored our
considerations to a particular continuous amortization algorithm, we utilize the
following abstract specification:

DEFINITION 12 (CONTINUGUS AMORTIZATION ALGORITHM) Setting node p’s lo-
cal interval clock C (1) displaying [T+a] at real-time t 10 [T'ta’) (with T = T+7T
betng an integer multiple of Gs) is accomplished by

(1) adjusting the (intrinsic) inverse rate 1';1 of the local clock Cyp to (1 — Lb)rp_l
for the next A clock ticks (according to the amortizing clock), where the amor-
tization rate deviation v and (local time) duration 4 . G of the amortization

period are related by

T

¢=ZE»
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(2) instanianeously setting the clock’s interval of accuracies to a, =T+ a' =
[ =T1), " + T], and modifying (intrinsic) deterioration, clock reading,
ete. appropriately to keep away any effect of continuous amortization from the
envelopes Lp(t) = C,(t) + ap (1) and Uy(t) = Cpt) + af(t).

A few additional comments are appropriate here;

¢ Real-time duration t, —t, and logical time one 7}, =T, = AG of the amortization
period are related by the adjusted inverse rate rp”’(l - ¥), namely, AG =
T:%(te_ts)- It thus follows immediately that rp(te~t,) = AG(1—-vy) = AG-T,
so that the amortizing clock gains T w.r.t. the non-amortizing clock during
t. —1,.

e T can have higher resolution than G, since we assume rate adjustment capabi-
lities providing a clock setting granularity of at least Gs £ G, of. Assumption 2.

¢ The way intrinsic deterioration is to be modified to satisfy item (2) of Defi-
nition 12 depends on the implementation of the rate adjustment capabilities.
If the non-adjusted clock is also available during continuous amortization for
maintaining the envelopes, as is the case with the adder-based clock in our
UTCSU-ASIC (see [23]), it suffices to subtract the additional G4 put on any
clock tick from e,. For settings that provide the amortizing clock only, e.g., for
a VCO-based architecture, it is also necessary to modify the intrinsic deterio-
ration of a, by replacing Gp, with G(1 - ¥)p,, cf. Assumption 3.

Continuous amortization requires that local clocks are fine-grained rate adjust-
able. The local clock model introduced in Assumption 2 was provided without
discussing the impact of explicit rate adjustment. Adding the required features,
however, is relatively straightforward: We simply assume that a local clock guaran-
tees (4) for all sequences of clock ticks, whether being adjusted or not.

ASSUMPTION 5 (RATE ADJUSTED LocaL CLocks) For any number R > 1 of
successive periods of rate adjustment with rate deviation Yr during A, > 1 suc-
cesswve clock ticks, 1 < r < R, the local clock Cp(t) of a non-faulty node p satisfies

R

bin =00 2 (1= p7) ) (1-9.)(0;, —0;,_,) - u3, (78)
r=1
R

Pin =00 < (14 50) 3 (L= w)(61, = 04, _,) + uf, (79)

r=1

where ig = 1, i, = 1 4 Dor<ier At for1 < r S R, and ©; = C,p(8;) for clock tick
05, 1 <j <ig. o

Note that we actually face alternating amortization periods (¥ # 0) followed by
a period where the clock runs at its intrinsic rate (¢ = 0). The rate adjustment
uncertainity in case of 9 # 0 should be viewed as the maximum real-time deviation




50 U. SCHMID AND K. SCHOSSMAIER

of a tick 6; from the ideal one (as produced by an ideal continuous clock —running
at (inverse) rate r~! = ]1—y— when reaching ©;). Since all discrete rate adjustment
techniques discussed in conjunction with Assumption 2 are using the intrinsic (non-
adjusted) clock for tick modification, we assumed up to be independent of 1. Note
that rate adjustment uncertainities do not add up during consecutive periods of
rate adjustment.

The following lemma is our basic tool for investigating continuous amortization.
In what follows, we will denote the amortizing local clock (controlled by the con-
tinuous amortization algorithm) by C’;f, to distinguish it from the instantaneously
set clock C, employed in the previous sections.

LEmMMA 13 (DURATION EsTIMATIONS) Let the synchronous real-times t, and ¢,
delimil a single amortization period of an amortizing clock C’;f’, and let ty < {,,
t > t, be arbitrary, possibly non-synchronous real-times, with T, = C;;"(t,) and

similarly for T,, Ty, T denoting the corresponding poinis in logical time. If C;;” 15
non-faulty during t — o, we have

t=to 2 (T=T)(1~p;) = (T2 =~ T))(1 - p} )b
= oz G(L = pp (1 = ') — uy,

E=to < (T=To)(1+pf) = (TL ~ T)(1 + 5t)9
HlezoG(L+ pf (1= 9") + ut,

where T! = max{Ty, T3}, T! = min{T,T.}, ¢ = ¢ fTo>T, or 0 otherwise, and
V' =% if T < T, or 0 otherwise.
The converse relations are given by

t B to - u;- '/ i/ 1
T-Ty > 1o T =T)% - Lize(1 ~ 96, (80)
L+pp '
t—to+u;
T=To S =B b (T = T 4 La, (1 - 911G (81)
= Pp
the (equivalent) conditions Jor ¥ = ¢ and ¢ = Y the real-time domain are

to 2ty and t < t,, respectively.

Proof: Using R = 3 with Y1 =0, ¥y = ¢, and %3 = 0in Lemma 13 and rewriting
(78) and (79) accordingly provides
gis -0 > (1~ pp—)(@ia - @1) ~(1- p;)(ely - eil)w - u;7
9,'3 -0 < (1+ p:)(@,-s - @1) —(1 +,D;)(@;‘3 - @ix)d} + U;..
Recalling 0;, — 0, = e(0ix) ~c(©) and substituting the notation of our lemma, it
1s not difficult to verify that

+ ligoy G(1 = 7 )! — (82)

oT) = e(To + Ly0,G) > (T~ Ty - Loza, G) (1 = p;7) — (T7 = TH(1 —pp )V
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and similarly
AT+ LizgG) ~ o(Tp) < (T + LizeG — To)(1 +oh) = (T -TH1 + P
— Lo G(L+ pf )" + ut (83)

Plugging this into (8) provides the lower and upper bound given in the first state-
ment of our lemma. The converse relations (80) and (81) are easily established
by a simple algebraic manipulation; the equivalent conditions for ¢ and 9" in the
real-time domain follow from (5). O

Using this lemma, it is easy to show that an amortizing clock C';” satisfies the
same drift bounds as an instantaneously corrected clock. Note that this implies
that an amortizing clock is “indistinguishable” from an instantaneously corrected
one as far as worst case drift is concerned.

LEMMA 14 (AMORTIZING vs. INSTANTANEOUS CLOCKS) Let CY(t) be an amorti-
stng local clock makes a state correction T during an amortization period of A clock
ticks, so that ¢ = T/(AG). Ift, < ts denotes some synchronous real-time not later
than the time t, when amortization commences, with Ty = C';f’(tg) = Cplto), we
have for any real-time t >t

t—to —ut t—1o+u;
= LG < CPlt) = C, (1) < L
T3 o7 126G < CP (1) = Cp(to) < e

in case of T > 0, and

+T (84)

t—to—-u;,}' "
T+ T = LxG < CYt) - Cylt) <
L+ p;

for T < 0.

Proof: By a trivial minorization of (80) and by using (7" =T =(T) - Ty <
AGY = T > 0 in (81), relation (84) follows immediately. 'Applying majorization
of (81) in case of ¥ < 0, the upper bound in (85) is also easily established. For
the lower bound, we distinguish two cases for (80): For t > t,, we have " = 0
so that (85) follows immediately. For ¢ < t,, we have ¥ = ¢ < 0 but also
T, - T, < (A - 1)G, so that

(T = T )Y = Lize(1 - /)G

t—t0+u;
l—py

(85)

[(A-1)oy - T +7T- LizeG + L1y Gy
=T~ Iixo G — (1~ Lixe )G >7T - Ii2G.
This confirms (85) also for this case, completing the proof of the lemma. O

Now we are ready for our final theorem. It establishes that continuous amor-
tization does not impair worst cast precision and accuracy provided that ] =
[T|/(AG) is chosen large enough; note that the other results provided by Theo-
rem 1 are not affected by continuous amortization. Therefore, our theorem Imposes
an upper bound on the length of the amortization period A. Note carefully that
this makes it impossible to conceal the impairment of clock rate from applications
completely.




52 U. SCHMID AND K. SCHOSSMAIER

THEOREM 2 (PRECISION REF, Accuracy CONTINUOUS AMORTIZATION) Given
the clock synchronization algorithm of Definition 7 employing the continuous amor-

tization algorithm of Definition 19 for setting the local interval clock wm step (T),
with

[1] amortization rate deviation Yp of any non-faulty node p’s clock satisfying
1 > l'{f/)p{ 2 pmax:

[2] P Z A + Q -+ A + Fmax +~4maxG with

max{r~, 77"'}'!’

Avs 2 | Gl

(86)
where |ymin| = min, [¥p] and 7 = [—7~, 7%} is the mazimum adjustment app-
lied 10 a non-faulty clock given by (72),

we obtain

(1) mazimum precision T« given by
wmaxumax

';T;f)a = Tmax + + @) G ax /sy 87
* " (1 - pr:xax)(l - ¢max) ( pm X) ( )

for Yiax = maxp ¥y, where myay defined in (71) is the mazimum precision of
the instantaneously corrected variant of the algorithm. The additional terms
vanish in the remainder f Ymax = O(pmax ).

2) The accuracy interval AR*+! _ TREHL 4 gRE+] provided by the local
q g

q .
interval clock of a non-faulty node q at the end of (and during) round k + 1,
k>0, satisfies

aqR'k+l c EI;-H -+ qu +tu,+ G+ O(Ppmax + G+ €max)

pmax’

where B;“ s given by (63). Note that this is the same bound as obiained for
the instantaneously corrected variant of the algorithm.

Proof: It should be clear that continuous amortization can only impair precision
if instantaneous correction would bring the clocks of two non-faulty nodes p and
q closer together, ie., if the (instantaneous) correction value T applied to the
larger clock is negative or the one applied to the smaller clock is positive: Since
continuous amortization delays clock correction, improving the clocks’ precision is
also delayed in this case. On the other hand, if clock correction happens to occur
in the opposite direction, continuous amortization can at most improve precision
w.r.t. instantaneous correction. After all, Tmayx is the maximum of both the precision

|
|
|
|
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achieved when all clocks are still in round k (defining maximum precision in the
former case) and the “mixed situation” (defining maximum precision in the latter
case), where some clocks are already in round &k + 1. In any case, when continuous
amortization has terminated. the resulting clock values are indistinguishable from
the ones obtained by instantaneous correction according to Lemma 14.

Therefore, it suffices to investigate the growth of the difference of the amortizing
clocks C}b’ (), C;’L"(t) of two non-faulty nodes fand ! for ¢t > t}q, where tf <t
denote the respective real-times of resynchronization {i.e., when switching from
the virtual clocks of round & to the ones of round & + 1 —and hence beginning of
amortization— takes place). More specifically, defining the clock differences D(t) =
C'}z)’(i) = Ci(t) and D'(t) = C}p’(t) - Clw'(t) with the abbreviations Ci(t) = CH@)
and Cy(t) = C}‘(t), We can restrict our attention to the case where the correction
values T, = C}‘*’(tf) —CtFy and 1y = CH Ry - CF(t) satisty

sgnY; = —sgnD(tf), (88)
sgnT; = sgnD/(tfY); (89)

note that C}” (t8) = ¢ (tf) and CP' () = Cy(eR).

Given the way we established Tmax 11 Theorem 1 in conjunction with the reasoning
above, we can deduce that overall precision is not impaired if D(t) -sgnD(tf) 1s
monotonically decreasing for ¢ > tf (and analogous w.r.t. D'(t) for t > t). Note
that there is no need to consider the case where a clock difference changes sign and
grows in the opposite direction; Lemma 14 guarantees that this cannot go beyond
the difference of the new (corrected) virtual clocks and hence remains within ..

Now we will establish an expression for the worst case difference of amortizing
clocks. First of all, setting ¢t > ¢, and t < te in Lemma 13 implies T, =T,
T, <T! =Ty, and ¢ = ¥’ = 4, so that (80) may be rearranged to

t—tg —ut

(T-To)(1 - v) > T+ oF =~ Lige(1 - 9)G.

Combining this with a similar rearrangement of (81) easily provides

t—tg—u;,"

t—t0+u
o — L4 G < i—Cwi <
(1 ;.)(l d)) [ ARSI p() p(o)_

T A=) * e
(90)

Note that this relation is of course the one of (11) in case of ¥ = 0. Subtracting
{90) for Cf’(t) from the same expression for C,“b‘ (t) and applying straightforward
majorizations yields the upper bound
CH ) - Cly < CY (to) = C¥(ty) + 26
uy u

MO TR Sl s o e
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+(t—io)[ — : }

(L= )1=%r)  (1+p7)1 =)

= c}”f(to)-cf'(to)+zc+u; +uf (91)
uy Yy uf Yy

OGmax
(l—-p;)(l—lbj)+(1+pl+)(1‘1/)1)+ (Goms)

P1++Pf’+¢j-¢’1—P;7/ff-P1+¢1J
(=o)L= )1+ pH) (1= 4) |

+(i—io)[

where we used the simple identity

u _ pu Yu
O-p0=9) " " 1 Tsn s

in conjunction with Umax = O(G) according to Assumption 2. Similarly, we obtain
the lower bound

CH W) = CP() > C¥ (o) = C¥ (to) - 26

+ -
_ Uy _ U,
A+p))=%y)  (1=p)(1 =)
1 1
- “’)[(1 -4 0= —zm]
= CY'(to) ~ C¥'(t0) - 2G - uf - (92)
_ uj¢! U P

- +O G max
o0 =0) " T prya =gy + O (Coms)
-p -P}'—¢’1+¢j+p}h¢f +pf1/iz}
L+ D) =) (1= p )1 =) I

For D(t), we have to set tg = tf and ¥; = 0 in the bounds above. Now, the
terms in the first line in both the upper bound (91) and the lower bound (92)
are covered by mq., according to our earlier expositions; 2G and also the rate
adjustment uncertainities are of course included. Hence, we Just have to ensure
that the bracketed term in (91) and (92) is < 0 and > 0, respectively. Recalling :
(88) and sgnY, = sguyy, it is apparent that we only have to consider Yy <0
for the upper and ¥y > 0 for the lower bound, respectively, since e.g. the upper
bound is only meaningful if D(t) is positive. Hence it follows that Yy < —pf = Py

resp. ¥y > p; + p;’; choosing [1] > prmax guarantees both conditions to hold. For
ZJR <t < tfl, we thus obtain

+(t-10)[

UmaxPmax
OIS o+ 7 s L= Gi) O\ GPmax)
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Similarly, for D'(t), we have to = tf and y, # 0 (irrespectively of Yy, which can
be taken out of the brackets and included in mpay if it has the “wrong” sign). By
virtue of (89), we only have to consider ¥y > 0 for the upper and ¥ < 0 for the
lower bound, respectively. The same reasoning as above shows that [91] > pmax
is sufficient here as well, which finally justifies the lower bound given in precondi-
tion [1] of our theorem; note that the upper bound [, | < 1 given there comes from
1 — 1y arising in the denominator iy the bounds involved. Similar as above, we
easily obtain

Umax ¥max
! t < max 0 max /»
’D(”-? +(1_Paax)(1_¢max)+C(GP )

which is valid for all ¢ > ¢/ within the amortization periods of interest. This
eventually confirms (87).

Finally, recalling the bounds 7 on the maximum clock adjustment T applied to
a non-faulty clock from item (3) of Theorem 1 in conjunction with the relation
Y = T/(AG), the condition on Amax In precondition {1] follows; note that T is
actually an integer multiple of G. This completes the proof of the precision part of
our theorem.

For the accuracy part, we assumed in the definition of the continuous amortization
algorithm that the envelopes of the accuracy interval are not affected. Hence, total
length of the accuracy interval a’q""‘l present at the beginning of round k + 1 is the
same as for the instantaneous correction case. However, since the reference point is
not set simuitaneously with the edges of the interval, it is not possible to give useful
bounds on positive resp. negative accuracy. However, when continuous amortization
has finished, the situation of instantaneous correction is reestablished, according to
Lemma 14, so that the worst case accuracy interval at the end of round k +1is
the same for both continuous amortization and instantaneous correction. Now, a
round (as measured at node ¢’s clock) has length L € P+x according to (54), hence
L=P+O(Pppax + G + €max) by virtue of the order term established for 7 = ||
in the proof of Lemima 12. Applying (75) established in the proof of Theorem 1
easily provides (2), completing the proof of Theorem 2. O

6. Conclusions and Further Research

We introduced and rigorously analyzed a simple interval-based algorithm suitable
for external clock synchronization. Unlike usual internal synchronization approa-
ches, our convergence function-based algorithm (dynamically) maintains both pre-
cision and accuracy w.r.t. an external time standard like UTC. To that end, each
node keeps track of time by means of a local interval clock C(t), which is made up
of an interval of accuracies taken relatively to the ordinary local clock’s value. Our
algorithm periodically exchanges local interval clock readings among all nodes in
the system and employs an interval-valued convergence function to obtain and sub-
sequently apply a clock correction valye that enforces precision and accuracy. Clock

i
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correction can be done either instantaneously or by means of a certain continuous
amortization algorithm,

The comprehensive analysis presented in the previous sections is generic w.r.t.
the particular convergence function and provides results that are immediately ap-
plicable in practice. It relies on a system model that incorporates many aspects
usually abstracted away, like non-zero clock granularity, rate-adjustment uncertai-
nities, and broadcast latencies. Technically, the analysis is based upon a novel,
interval-based framework for providing worst case bounds for various parameters
In terms of the characteristic functions of the convergence function. It manifests
a striking conceptual beauty and expressive power, primarily by utilizing a suita-
ble notion of internal global time. The results obtained include worst case bounds
for initial and maximum precision, accuracy, maximum clock correction, and re-
synchronization tightness, for both Instantaneous correction and linear continuous
amortization. One of the surprising facts revealed by our analysis is the worse
effect of rate adjustment uncertainities —arising when discrete rate adjustment
techniques are employed— as well as clock granularity upon all parameters.

Current theoretical work is primarily devoted to the analysis of particular in-
stances of our generic algorithm. Apart from the orthogonal accuracy algorithms
dealt with in [19], we are also working on a promising generalization of the fault-
tolerant midpoint algorithm of (8]. In addition, we are investigating interval-based
algorithm(s) operating in conjunction with on-line measurement /control of charac-
teristic system parameters, like rate deviation bounds or transmission delays: After
all, interval-based algorithims have the inevitable shortcoming that they depend on
certain system parameters explicitly. Most Importantly, rate deviation bounds Py
transmission delay hounds €pg and appropriate maximum values p_ . ema.y are
required for the instance of the algorithm running at node.p. However, this does
not mean that such parameters can only be provided by compiling them statically
nto the algorithm — on-line Ineasurement is in fact the most appealing alternative,

Future theoretical research will be primarily devoted to the problem of integrating
our algorithm(s) in the clock validation framework, which raises issues ranging from

of optimality w.r.t. precision/accuracy and the most challenging task of providing
an average case analysis of precision and accuracy.

As far as practice is concerned, we are currently working on a fully engineered
implementation (software -+ hardware) on top of our UTCSU-ASIC, which will
be mainly used for experimental evaluation. Besides confirming theoretical results
experimentally, it will help us not to have overlooked important practical issues.
Moreover, demonstrating the suitability of our concepts is mandatory for a certain
industrial pilot application that could be carried out by using our approach.
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