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Abstract. High-accuracy external clock synchronization can only be achieved with adequate
hardware support. We analyze the requirements and present the specification and implementation
of an ASIC running under the acronym UTCSU dedicated to that purpose. It is built around an
elaborated local clock, which is based on an adder driven by a fixed-frequency oscillator. This
novel clock design allows a fine grained rate adjustability apt for maintaining both local time

synchronization data packets, interfaces to couple GPS receivers, some application support as well
as sophisticated self-test machinery. Apart from addressing design and engineering issues of the
chip, we also provide a basic pProgramming model.

Keywords: Real-time systems, external clock synchronization, Universal Time Coordinated
(UTC), Adder-Based Clock (ABC), linear continuous amortization, accuracy intervals, Applica-
tion Specific Integrated Circuit {ASIC), Very high speed integrated circuit Hardware Description
Language (VHDL), Global Positioning System (GPS).

1. Introduction

Dealing with time is inherent to the real-time computing domain, since applica-
tions need to interact both correctly and timely with the environment. In order to
meet specified time constraints, activities like timestamping external events, sche-
duling resources, and initiating actions require an advanced time service. A clock
is the physical basis of such a service, usually composed of a quartz oscillator that
drives a hardware counter. Although small-scale systems are content with a cen-
tral clock, modern large-scale real-time systems become necessarily distributed due
to their spatial outspread and fault-tolerance requirements (Stankovic, 88). Exem-
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(FWF) under contract no. P10244-OMA. For further project information take a look at
http://www.auto.mwien.ac.at/~kmschoss/synutc.html
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plary applications that exhibit such characteristics include transportation (e.g. avio-
nics), manufacturing (e.g. rolling-mill), energy-providing (e.g. nuclear power plant)
or scientific (e.g. radio-astronomy) systems. The distributed nature aggravates the
installation of a time service considerably, because autonomous running clocks have
a tendency to drift apart or might fail grossly in their rate or state. Hence clocks
need to be synchronized by virtue of a suitable algorithm executed on each node.
Usually, both performance and correctness of the system is vitally affected by the
degree of synchrony, cf. (Liskov, 93).

Synchronizing an ensemble of distributed clocks comes in two flavors: Internal
clock synchronization aims to keep the deviation between clocks bounded, i.e., if

i(t) and C;(t) denote two fault-free clocks within a system, the worst case precision
7 satisfies |Ci(t) — C; ()| < 7 V¢ > ty. External clock synchronization relates to the
problem that clocks are required to follow an external reference like UTC, the only
legal standard of time. The maximum deviation towards UTC is called accuracy
a, formally |Ci(t) — t] < o V¢ 2 to. Reaching both goals jointly turns out to be
a non-trivial research problem, as already pointed out in (Lamport, 87), since a
certain tradeoff seems to be involved, cf. (Fetzer and Cristian, 96) in this special
issue.

Internal clock synchronization is a well-established field in the distributed com-
puting domain, see (Simons, Lundelius-Welch and Lynch, 90) for an overview and
(Yang and Marsland, 93) for a bibliography. Most internal synchronization algo-
rithms are purely software-based, i.e., they run on off-the-shelf processing and
networking hardware, providing a precision in the 10 ms-range only. A consi-
derably better precision can be achieved with dedicated hardware support. In
the fieldbus area, for instance, there are some more recent research activities,
like ESPRIT OLCHFA (Feldmann and Solvie, 95) or the CAN-Bus project by
(Gergeleit and Streich, 94), that target a few ms. A time service with precision in
the 10 ps-range can be built on top of the pioneering Clock Synchronization Unit
(CSU) described in (Kopetz, 89). Similar ideas are exploited in the hardware assi-
sted clock synchronization scheme of (Ramanathan, Kandlur and Shin, 90). Even
smaller precisions can be attained by means of clock voting with phase locked loops,
cf. (Ramanathan, Shin and Butler, 90), but we do not consider such solutions be-
cause of their extra clocking network.

The most widely used external clock synchronization scheme is undoubtly the Nei-
work Time Protocol (NTP) designed for disseminating UTC among workstations
throughout the Internet, see (Mills, 91) for an overview. Under realistic condi-
tions, worst case accuracies of approximately 20 ms were observed by (Troxel, 94).
There are also some recent solutions of the external synchronization problem in
the LAN domain, cf. (Fetzer and Cristian, 96), (Schmid and Schossmaier, 96) or
(Verissimo, Rodrigues and Casimiro, 96) all in this special issue. The latter des-
cribes a software-based approach that “sprays” external time obtained from GPS
satellites into broadcast-type LANs with accuracies in the 10 ps-range.

In our SynUTC project, outlined in (Schmid, 95), we focus on external clock
synchronization for large-scale distributed real-time systems and aim 1 s as both
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precision and accuracy. Of course, such ambitious goals can only be achieved with
proper hardware support. We packed most of it into an ASIC, termed Universal
Time Coordinated Synchronization Unit (UTCSU) !, which is the main concern of
this paper.

The outline is as follows: After a brief introduction of the overall system archi-
tecture in Section 2, we present a functional specification of the required hardware
support in Section 3. It encompasses features of in the UTCSU, like our novel
adder-based clock, and the embedding hardware. The UTCSU is decomposed into
physical units in Section 4, along with an explanation of implementation details. A
programming model of the chip is given in Section 5, and Section 6§ rounds off by
discussing design methodology concerns. Finally, we conclude by reviewing UTCSU
centerpieces and by pointing out future developments. '

2. System Architecture

From an abstract point of view, modern real-time systems are physically distributed
networks of nodes hosting hard- and software resources for providing application-
specific services that exhibit predictable behavior. Our focus rests on the time
service, a basic subsystem of any real-time system, that offers its pertinent timing
features to a number of higher-level services.

2.1. Synchronization Subnets

In order to cope with the complexity of a typical real-time system, we decompose
it into so called Synchronization Subnets (SSN), similar to (Mills, 91). Each SSN
comprises a collection of nodes interconnected by a packet-oriented data network.
Regarding the contribution to the time service and considering cost-performance
tradeoffs, we can distinguish between four types of nodes:

o Client-nodes execute the synchronization algorithm in a passive way. More
precisely, they merely glean synchronization data from the attached SSN and
adjust their local clocks accordingly.

¢ Secondary-nodes execute the synchronization algorithm in an active way by
pertodically exchanging synchronization data among other non-Client nodes
within the SSN. Their purpose is to provide fault-tolerance, most importantly,
guaranteed precision even in case of total loss of external time (aka. flywheeling).

¢ Primary-nodes behave like Secondary-nodes but provide access to external time,
e.g. GPS receivers, as well. Multiple Primary-nodes are useful for increasing the
fault-tolerance level w.r.t. faults of external time sources.

¢  Gateway-nodes act as Secondary-nodes in two or more SSNs, making time dis-
semination between SSNs feasible. Such nodes have additional functionalities
to control the system-wide flow of synchronization data.
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An example of a simple system architecture is given in Figure 1, showing three
SSNs linked by a single and a double Gatewa -node connection. Note that, irre-
gardless of this example, a tree-like hierarchy is not mandatory for our approach.

SSN |

Primary-node
Secor;dary-node , \:
G |
Gateway-node ' . SSN3
f :
1

Client-node

B @ 7

Figure 1. System Architecture

2.2. Node Hardware

Although nodes may have different functionalities, their hardware architecture
remains to be uniform. Figure 2 shows a node’s components appertaining to the
time service.

We restricted ourselves to use a customary packet-oriented data commu-
nication subsystem as the only means to exchange synchronization data,
hence excluding hardware clocking systems relying on dedicated channels,
cf. (Ramanathan, Shin and Butler, 90). A DMA-type communication coprocessor
(COMCO) provides access to the network, exchanging clock synchronization packetls
(CSPs) and communicating with the CPU via local shared memory. The CPU,
which can either be the node’s central processor or, preferably, a dedicated micro-
processor or microcontroller, is responsible for running the clock synchronization
algorithm. The last component in Figure 2, the UTCSU, contains the bulk of
hardware support required for clock synchronization. We defer its description to
subsequent sections.

At this point, it only remains to explain why we impose a DMA-type communica-
tion coprocessor. A major concern in highly accurate/precise clock synchronization
is exact timestamping of CSPs at both sending and receiving side. In fact, the well
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Figure 2. Components of a node

known result of (Lundelius and Lynch, 84), saying that even n ideal clocks cannot
be synchronized closer than ¢ {(1-1/n)in case of packet delivery time uncertainty e,
Justifies this requirement. Hence, the challenge is to insert a timestamp on-the-fly
into a CSP that minimizes the variance of transmission /reception latencies. To
accomplish this, clock synchronization hardware must be placed as close to the
network as possible. Ideally, a CSP should be timestamped at the sender resp. re-
ceiver exactly when, say, its first byte is pushed on resp. puiled from the medium.
However, this would require support from the interior of the network controller,
which is usually not available.

In order to make our approach compatible with existing network technology, we
employ a refinement of the widely applicable DMA-based coupling method proposed
in (Kopetz and Ochsenreiter, 87). It is based on a modified address decoding logic
for the local memory, which

® generates timestamp request signals when a certain byte within the trans-
mit/receive buffer of a CSP is read/written, and

¢ transparently maps certain registers of the UTCSU containing the sampled
timestamps into some portions of the transmit /receive buffer.

To illustrate the process of packet stamping, we briefly discuss one possible scena-
rio depicted in Figure 3. In order to send a CSP in the course of executing the
algorithm, the CPU puts the packet into local memory and signals the COMCO
to take over for transmission. The COMCO in turn fetches CSP data from local
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memory, performs the required parallel to serial conversion, and pushes the bit
stream onto the medium. Having completed those steps, which are performed con-
currently with further CPU operations, the CPU is notified about completion of the
transmission. What matters is that whenever the COMCO fetches data from the
transmit buffer, it has to read across the destination address causing the decoding
logic to generate signal TRANSMIT. The UTCSU puts a transmit timestamp into
a sample register upon occurrence of this signal, which is inserted into a dedicated
portion within he packet by transparently mapping the register holding it into the
transmit buffer.

By the same token, when the COMCO on the receiving side writes across a
predefined address within the recejve buffer in local memory, signal RECEIVE is
generated by the decoding logic, making the UCTCSU to sample the receive time-
stamp. It can be transferred into the receive buffer or, alternatively, to a dedicated
memory partition later on when the received packets are processed.

UTCSU: TRANSMIT

—

l don’t care l User Data
]
—

Transmit buffer: Dest. Adr.

Packet: | preambie l Src.Adr. ' Dest Adr. I , Transm, TS[ ,zl(m t carel l;éfﬂm l CI{?’
{f

{{.

Receive buffer: SrcAdr, ' Dest Adr. l [ Transm. TS.I l Rec. TS, ‘ ?.v—e:;"gata j
i§

UTCSU: RECEIVE

Figure 3. Packet timestamping

DMA-type communication coprocessors are available for a wide variety of net-
works, ranging from fieldbusses (e.g. CAN or Profibus) over Ethernet based net-
works up to advanced high-speed FDDI or ATM networks. Unfortunately, most
advanced CAN-controllers provide on-chip storage for whole packets, making them
unsuitable for our approach. Moreover, we should mention that proving suitability
usually means experimental evaluation due to the fact that most controllers utilize
internal FIFOs, which introduce uncertainties in the time between fetching a byte
from local memory and putting it on the medium. Whereas adjusting the triggering
position of transmit/receive timestamp could help in circumventing FIFO impair-
ments, it is nevertheless not easy to find and justify a suitable choice. In general,
we should point out that numerous technical hurdles have to be surmounted to
make this approach working properly, see (Horauer, 94) for the twisted details of a
particular prototype implementation 2.




SPECIFICATION AND IMPLEMENTATION OF THE UTCSU 7

3. Functional Specification

Modularity, flexibility, performance and other reasons as argued in (Schroetter, 92)
influenced us to realize the UTCSU in F igure 2 as an ASIC. The subsequent sections
will shed more light on its interior, first by means of a functional specification,
see (Schossmaier and Schmid, 95) for a comprehensive version, and later on by
documenting the development process, see (Loy, 96) for meticulous details.

3.1. Interfacing

During requirement analysis of the chip we took much care to keep all interfaces
as straightforward and general as possible. Our first step to specify the UTCSU is
done by giving an interface outline guided by Figure 2.

Coupling the UTCSU to the System-Bus enables communication with the other
components. A wide range of existing bus architectures, employing data bus widths
of 8, 16 or 32 bits, big/little endian byte ordering, different bus access times, in-
terrupt schemes, etc. should be supported without additional glue logic. Note that
the connection to the System-Bus is also a prerequisite for transparently mapping
UTCSU-registers containing sampled timestamps into transmit /receive buffers in
local memory, as required for exact timestamping of CSPs.

Meeting accuracy requirement of 1 #s, we decided to use GPS technology for
injection of external time, hence the UTCSU must be able to interface various GPS
timning-receivers 3. For applications with only moderate accuracy requirements or to
increase fault tolerance, other sources of external time, like receivers for DCF77 or
WWYV, of. (Lichtenecker, 96) in this special issue, can be connected to the UTCSU
via the same interface.

To support applications, there should be at least means to trigger actions at
programmable points in time and capabilities for event timestamping. Moreover, to
ease the implementation of more elaborate timing features, like the proposed timing
processor of (Halang and Wannemacher, 96), without changing the UTCSU, we
export time/accuracy information via a local unidirectional NTPA-Bus for external
processing.

Depending on the type of node, these interfaces will have different significance.
For instance, only Primary-nodes make use of the GPS interface, whereas Gateway-
nodes utilize the interface to several COMCOs extensively. In summary, we give
the first rather loose specification rule

SPECs 1 (INTERFACES): The UTCSU must provide a versatile interface to commer-
crally available system-busses and GPS timing-recetvers, and additional tnierfacing
facilities to timestamp and generate external pulses. Furthermore, it should export
local time/accuracy information on a dedicated NTPA-Bus.
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3.2. Maintaining Local Time

The maintenance of local time at a node will be the core function of the UTCSU.
In the first place, a format has to be established to encode local time. We use a
straightforward binary coding scheme, closely following the NTP-time format from
(Mills, 91), where the upper 32 bits are interpreted as standard seconds relative to
UTC and the lower 32-bits give the associated fractional part. For specification
purposes we will use the following notation to denote a specific part of this for-
mat: (u,v) covers bits ranging from the most significant bit position u to the least
significant one v, thus affecting a quantity given by ¥ b; 2%, where b; ¢ {0,1}.
An optional prefix “+” denotes a signed value. Table A.1 in the Appendix defines
NTP-bit numbers and their time equivalents for the ease of reference. For example,
NTP-range (-1, —8) pinpoints values up to slightly less then a second in multiples
of 3.81 ms.

The clock synchronization algorithm is responsible for computing adjustments for
both state and rate in order to meet accuracy and precision requirements. State
adjustment means to add /subtract/set instantaneously a particular amount to local
time, and rate adjustment means slowing down/speeding up its progression. Thus,
we need to incorporate a clock in the UTCSU that represents local time in the
NTP-based format and is adjustable in both rate and state.

SPECS 2 (LoCAL TIME): The UTCSU needs to host a digital clock representing
local time over the NTP-range (+31, —24), which is arbitrarily state adjustable for
mitialization purposes and rate adjustable not coarser than 1078 s5/s.

As mentioned earlier, UTC is going to be our reference timescale, because of its
worldwide availability through GPS technology and its legal character. However,
UTC should be carefully considered in conjunction with real-time systems due to
its non-chronoscopic nature, cf. (Kopetz and Ochsenreiter, 87) The Bureau Inter-
national de I"Heure (BIH) inserts or deletes leap seconds at predefined points in
time in order to harmonize it with astronomically derived timescales, e.g. Univer-
sal Time (UT) versions. Strictly speaking, chronoscopic time standards, such as
Temps Atomique International (TAI) or GPS-Time, should be given preference to
establish a time service for real-time systems. Notwithstanding that, we proclaim

SPEGCS 3 (LEAPS SECONDS): The clock for local time inside the UTCSU has to be
equipped with facilities to handle leap seconds by either inserting or deleting pending
ones at programmable points in time.

3.3. Maintaining Accuracy Intervals

Dealing with the accuracy requirement means that local time has to follow UTC
as close as possible. Unfortunately, UTC is neither directly observable nor per-
manently accessible, so only a range can be determined where UTC currently lies.
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More specifically, in our setting we use an accuracy nterval A(t) capturing UTC
in the sense that ¢ € A(t) V¢ 2 to. This interval-based approach was introduced
in (Marzullo, 84), (Marzullo and Owicki, 85) and continued in (Lamport, 87). The
OSF/DCE time model (OSF, 92) and newer versions of NTP (Mills, 95) make use
of this notion of time as well.

Our UTCSU is tailored to support external clock synchronization using the
interval-based clock wvalidation technique proposed in (Schmid, 95), see also
(Schmid and Schossmaier, 96) in this special issue. The algorithms employed her-
ein rely on accuracy intervals that are maintained locally at a node by an upper
accuracy a*(t) and a lower accuracy a” (t) meant relative to the local clock c(),
such that A(t) = [C(t) — o~ (1), C (t) + a™*()]. Observe that accuracies are always
understood as maximum UTC deviations, otherwise we would be clairvoyant. The
reason to make accuracies time-dependent is to enlarge them properly in order
to account for maximum oscillator drifts, hence sustaining UTC inclusion. This
process of linear deterioration would 80 on perpetually, however, periodic resyn-
chronizations executed by a clock synchronization algorithm aim to shrink A(t), by
exploiting knowledge of UTC provided by GPS receivers.

SPECS 4 (Accuracy INTERVAL): The UTCSU needs to maintain an asymmeitrical
accuracy interval over the NTP-range (-8, —23), which is arbitrarily adjustable and
performs deterioration in the range of 1078 .. 10-4 s/s.

A few supplements to maintain accuracy intervals need to be brought to attention.
The accuracy values should be permanently compared against bounding registers,
generating an interrupt whenever the former exceeds the latter. Furthermore, a
wrap-around during deterioration is undesirable; actually, in such situations we re-
quire that accuracy registers stay at their maximum value and trigger an interrupt.

SPECS 5 (ACCURACY INTERVAL OVERRUNS): The upper and lower accuracy values
inside the UTCSU need not wrap-around, and in case of ezceeding the cerresponding
(—8, —23)-register BOUND+ a dedicated interrupt should be raised.

3.4. Adder-Based Clocks

Meeting the specified rate adjustability for local time or the deterioration dyna-
mics for accuracies with ordinary clocks consisting of an oscillator pacing a hard-
ware counter turns out to be a challenging task. As a matter of fact, conventional
discrete rate adjustment techniques, like tick advancing/delaying employed in the
CSU of (Kopetz and Ochsenreiter, 87), would require very high oscillator frequen-
cies (around 100 MHz) for a smooth rate adjustment of 10~% s/s. Moreover, our
NTP-based time representation would enforee a binary oscillator frequency. One
alternative pursued in (Mills, 92) replaces the fixed-frequency oscillator by a vol-
tage controlled one (VCO) that is put into a carefully engineered phase-locked loop
(PLL).
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We propose an adder-based clock (ABC) in order to maintain local time, where
each oscillator tick entails an addition of a particular amount clock-step to a register
holding local time. Any rate change can easily be achieved by varying clock-step,
which goes into effect instantaneously and retains linearity. To make this approach
working properly, however, we have to expand the registers holding local time and
clock-step on the less significant side to accumulate minute time amounts. Targeting
a nominal frequency of 22* Hz, it becomes necessary to extend the NTP-range of
local time to (+31,—51) in order to reach the demanded rate adjustability, since
2731/272 % 7.45.107° 5/5. Of course, timestamps derived for local time are only
predicative in the NTP-range (+31, —~24), so that the smallest meaningful unit of
time becomes to 59.6 ns, called time granularity. Bits (~25, —51} are concealed
from the outside and solely used for rate correction purposes, whereby the smallest
perceivable unit of time becomes to 444.1 as, called clock granularity.

Beyond that, the adder-based approach allows us to use a non-binary oscillator
frequency, e.g. 10 MHz from GPS timing-receivers. However, the NTP-range of local
time has to be further extended to preserve the usually excellent quality of such
frequency sources. We found it sufficient to append 8 bits on the less significant side,
thus yielding a range of (+31, —59), since truncation errors are limited to 2759 s per
oscillator tick. In particular, for a 10 MHz input frequency, the truncation errors
impair the frequency by approximately 0.6 - 10-11.

SPECS 6 (ABC FOR MAINTAINING LOCAL TIME): The UTCSU needs to imple-
ment an adder-based clock, composed of a (431, =59)-register NTPTIME represen-
ting local time, an external oscillator wnput designed for frequencies in ihe range
of 22°...2* H: and « (=20, —59)-register STEP to hold the tncrement for each
oscillator tick.

For a better understanding of adder-based clocks, let us briefly examine their
operation in more detail. As mentioned above, a particular clock-step is added at
each oscillator tick, which can be separated into the reciprocal of the nominal oscil-
lator frequency and a fractional correction value. Since our clock exhibits a much
coarser time granularity than clock granularity, an accumulation of correction values
may cause discontinuities in the sequence of clock states, More specifically, when
the correction values run up to the time granularity at a particular tick, the adder-
based clock makes either no advancement or advances by twice the time granularity,
depending on the accumulation nature. When correcting an oscillator drift of say
1 ppm with our clock specified in SPECS 6, such effects occur roughly every 60 ms
for using a nominal input frequency of 2°* Hz. For an in-depth treatment of gra-
nularities entagled in clock synchronization consult (Schmid and Schossmaier, 96)
in this special issue.

The adder-based approach is also well suited for maintaining the upper accuracy
a*(t) and the lower one a”(t). In fact, each accuracy quantity can be tracked
by an ABC similar to the one for local time, where one register is playing the
accumulating role and another one is holding the deterioration for each oscillator
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tick. In the sequel we denote ABC components for the lower resp. upper accuracy
by adding the suffix “” resp. “+”, or “+” to capture both.

The registers for an ABC representing accuracy span 45 bits internally, including
a sign bit, thus ranging over (-8, -51). Note that only the upper 16 bits are
considered by the clock synchronization algorithm. Targeting accuracies smaller
than 272 5 ~ 120 ns appears unrealistic with our approach. Nonetheless, it is
facile to scale accuracy values externally as much as desired.

The deterioration registers are 16 bit wide, including a sign bit, covering the NTP-
range £(—-37,—51). This arrangement allows a minimum deterioration of about
10-% s/s, by the same line of justification as for the local clock, and a maximum
deterioration of 2738 s/tick or approximately 244 us/s for a nominal oscillator
frequency of 2%* Hz, which should be sufficient even for worst quartz oscillators.
The necessity of sign bits arises from continuous amortization, as explained in
Section 3.5.

SPECS 7 (ABCs FOR MAINTAINING AN ACCURACY INTERVAL): The UTCSU
needs to implement two adder-based clocks for the maintenance of an asymme-
trical accuracy interval, composed of +(—8, —51)-registers ALPHAZ, an ezternal
oscillator input designed for frequencies in the range of 220, 924 [, (the same as
for local time), and +(-37, —51)-registers LAMDBA to hold the deterioration for
each oscillator tick.

The UTCSU is designed for a maximum operating frequency of 22* Hz. Trading
ASIC production costs against time service qualities and considering downsizing the
chip for specific applications, we allow to run the UTSCU with lower frequencies as
well. Changing the frequency impacts clock characteristics as shown in Table 1. A
lower operating frequency increases the clock rate adjustability {expressed as how
long a 1 ps correction takes by applying the smallest non-zero clock-step change),
renders the maximum accuracy deterioration smaller, and reduces the meaningful
timestamp range.

Table 1. UTCSU characteristics for customary operating frequencies

nominal oscillator rate adjustability maximum accuracy meaningful time-

frequency [Hz] [max s for 1 ps] deterioration [us/s] stamp range

2%% = 1,048.576 2148 15 {+31, —20)

221 = 2,097.152 1073 31 (+31, ~21)

222 = 4,194.304 537 61 (+31,-22)

223 = 8,388.608 268 122 (+31,~-23)
10,000.000 255 146 (+31,-123)

224 = 16,777.216 134 244 (+31, ~24)
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3.5. Continuous Amortization

Periodically, the clock synchronization algorithm becomes active and computes ad-
Justments for both rate and state in order to achieve internal/external synchro-
nization. Enforcing these adjustments deserves special attention, since real-time
applications dictate specific properties. In particular, timestamps obtained from
local clocks need to be monotonic and free of discontinuities of predefined extent.
A technique called linear continuous amortization 1s used to carry out state ad-
justments, cf. (Schmuck and Christian, 90). As a novelty, the UTCSU provides
hardware support for this clock setting method.

The basic principle is rather simple: Instead of adjusting the clock state instan-
taneously, we achieve the same effect by modifying the clock rate for a specific
amount of time, called amortization period tamore. During this time we say that
the local clock is in its amortization phase, whereas the remaining period is known
as pure phase. As an obvious consequence, these two phases alternate perpetually,
controlled by the clock synchronization algorithm.

On the other hand, accuracies are allowed to change instantaneously, since they
are kept relative to the local clock. However, deteriorations must be modified during
the amortization phase due to the clock rate set forth by state adjustment.

Figure 4 gives an example to illustrate both phases. The period before ¢; shows
clock C(t) in its pure phase, advancing with pure rate C(t) = w, and accuracies
a*(t) growing with pure deterioration a*(t) = A*. Before kicking off continuous
amortization, the parameters for both amortization phase and successive pure phase
need to be computed. The amortization phase commences at ¢;, which entails a
reduction of a*(¢) by the accuracy adjustments a*, clock C(t) advances from now
on with the amortized rate &, and finally o¥ (t) deteriorates with A\*. A counter
times out tamere at 1y, causing the transition to the new pure phase.

In our example, a*(¢) shrinks during the amortization phase, and o~ (t) happens
to be negative at the beginning, which Justifies the sign bits introduced in SPECS 7.
To remedy the passage with negative accuracy, the externally accessible accuracy
1s set to zero during this time, which obviously implies a valid accuracy interval.
Recall that we have to maintain the invariant that UTC is permanently enclosed by
envelopes ™ () and e*(t) defined by C(t) — a”(t) and C(t) + a*(t), respectively.

Having explained the mechanism for continuous amortization, we specify additio-
nal UTCSU elements separated in issues concerning local time and accuracy.

SPECS 8 (CONTINUOUS AMORTIZATION REF. LOCAL TIME): The adder-based
clock for local time has 1o carry out state adjusiments by continuous amortiza-
tion. To that end, features to switch between pure/amortized clock rates need io
be implemented, to commence the amortization phase at a programmable point in
time, and a (+8, —24)-counter AMORTTIMER fo earmark the end.
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Figure 4. Pure and Amortization Phase

SpECs 9 (CONTINUOUS AMORTIZATION REF. ACCURACY): The two adder-based
clocks for the accuracy interval must switch in lock-step with the clock for local
time between pure/amortized deterioration. Additionally, registers ALPHA+ need
to be relative adjustable by +(—8, —38)-registers STATESET+, and negative accu-
racies during the amortization phase have to be suppressed by forcing the externally
accesstble part (—8,—23) to zero.

If T denotes the amount that clock C(t) gains during continuous amortization
w.r.t. the non-amortized clock, the previous pure rate w, the amortized rate w, and
the start value Thmor of counter AMORTTIMER are related by

T

=0 —w= .
Tamort
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Apparently, there is one degree of freedom involved. Making Tumort large entails
a smooth transition but might Jeopardize the precision/accuracy of the local clock.
However, we showed in {Schmid and Schossmaier, 96) that there exists an upper
bound on T,pop given by ¥ > pra.y, where Pmax denotes the sum of the maximum
positive and negative drift of any clock in the system, such that results obtained
for an instantaneous clock adjustment can be carried over to the continuous amor-
tization case.

3.6. Event Timestamping and Generating

Hitherto we have specified elements to maintain local time and accuracies, which
will eventually be used for event time/ accuracy-stamping and event generating
purposes. These two features play an important role in several domains.

The first one assists in exact CSP timestamping at both sending and receiving
side. As argued in Section 2.2 this feature is crucial for tight clock synchroniza-
tions. Extending the pioneering work of (Kopetz and Ochsenreiter, 87), CSPs are
stamped with local time and accuracy just at the moment when they are actually
leaving the node, and with local time when arriving at the peer node. This neces-
sitates coordinated support from the UTCSU and the embedding hardware. The
UTCSU obtains the CSP transmission /reception events via dedicated input lines
for latching time/accuracy in dedicated registers, and further the embedding hard-
ware is in charge of mapping them transparently into the CSP transmit /receive
buffer, as already elaborated in Section 2.2.

Considering Gateway-nodes and the need to cope with fault-tolerant communica-
tion architectures (i.e. triple redundant), we have to accommodate multiple units
supporting independent CSP stamping.

SpEcs 10 (CSP STAMPING): The UTCSU needs to be equipped with siz units each
capable of sampling the (+31, —24)-range of register NTPTIME and the (-8, -23)-
range of registers ALPHA+ on a CSP transmission, and the (+31, ~24)-range of
register NTPTIME on a CSP arrival. Both types of events are announced by special
polarity programmable input lines TRANSMIT[1..6] and RECEIVE(l1..6].

In a similar way, an external time reference is linked to the UTCSU. We decided
to use the GPS system to inject UTC due to our high accuracy and availability
requirements. GPS is an earth orbiting satellite based navigation system operated
by the US AIr FoRCE under the direction of the DEPARTMENT OF DEFENSE, see
(Dana, 96) in this special issue for an overview. It includes a Standard Positioning
Service (SPS) for a worldwide civilian use. When Selective Availability (SA) is
enabled, the horizontal position can be obtained within 100 m (95 percent) and
GPS-Time with a maximum error of 340 ns (95 percent). Note that GPS-Time is
steered to be within 1us of UTC, without taking leap seconds into account. It is
derived from atomic clocks both at ground stations and on board the satellites.
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There is a large number of different GPS timing-receivers available. Nearly all
of them output an on-time pulse at 1 pulse per second (aka. IPPS), and more
expensive models also provide a 10 MHz reference frequency disciplined to GPS-
Time. The associated information identifying the pulse along with other data is
provided some considerable time after the IPPS, usually via a serial interface. We
exempt the UTCSU from processing this information and defer it to the CPU.
Finally, a few GPS timing-receivers even tell their status on-line (e.g. data valid,
satellites out of view) by means of special output lines.

For redundancy purpose and for the sake of testing several receivers against each
other, it appears appropriate to equip the UTCSU with multiple units for coupling
GPS receivers.

Specs 11 (GPS CoUPLING): The UTCSU needs 1o be endowed with three inde-
pendent units capable of sampling the (+31, —24)-range of register NTPTIME and
the status of the connected GPS timing-receiver whenever the corresponding 1PPS
becomes active. Polarity programmable input lines 1PPS[1..3] resp. STATUS[1..3]
mediate these events resp. report the receiver status.

Most clock synchronization algorithms periodically invoke a routine that broad-
casts local time/accuracy via CSPs to the other nodes within the SSN. Hence, the
UTCSU has to provide one duty-timer (DT) for starting a CSP transmission and
one for terminating the reception period. A duty-timer consists of a writable regi-
ster and a comparator to check whether local time is equal or greater, which will
be reported by a dedicated interrupt. Special care is required to arm/disarm such
DTs to avoid programming pitfalls, cf. Section 5.2.

SPECS 12 (DUTY TIMERS): The UTCSU needs to provide two freely programmable
duty-timers for each SSN attachment to support the protocol for CSP ezchange, in
total DUTYA[1..6] and DUTYB(1..6] all ranging over (+31,—16). If they equal or
exceed the current local time then a dedicated inderrupt should be raised.

Indeed, application requirements on a time service can vary considerably. The
conceivable spectrum ranges from basic features, e.g. reading the local clock or
providing a programmable frequency output, over more advanced ones, like a time-
stamp FIFO as required by the distributed event-based monitoring system VTA
of (Schmid, 94), up to elaborate timing support, such as the high-precision timer
developed by (Halang and Wannemacher, 96).

We decided to provide only basic on-chip application support. It includes
atomic readings of local time and accuracy, time/accuracy-stamping of external
application-related events, and generation of interrupts with the help of a duty
timer. Future advanced application features can be realized externally by tapping
the NTPA-Bus, which exports local time and accuracy as showed in Figure 2. The
following specification rule reveals more details about all those UTCSU features.
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SPECS 13 (APPLICATION SUPPORT): First, register NTPTIME in the (+31,-24)-
range and registers ALPHA+ in the (-8, —23)-range must be atomically readable
by simple read operations. Second, the UTCSU needs to be Jurnished with nine
independent units dedicated to application-support for stamping events that occur
on polarity programmable input lines APP[1..9], with local time/accuracy in the same
ranges as above. Third, a dedicated NTPA-Bus has to export local time/accuracy,
again in the same ranges. Finally, a (+31, —16)-duty-timer APPL is 1o be provided
for generating ezternal pulses and application-specific nterrupts.

3.7. Self-Test and Debugging Features

To ease system development and implementation of applications depending on a
time service, most test- and debugging-features should be supported by hardware.
A classicadl method is to guard register NTPTIME with additional control bits,
providing a means to detect/correct flipped bits to some extent.

SPECS 14 (CHECKSUMS): The UTCSU must protect the (+31, —24)-range of regi-
ster NTPTIME by computing an appropriate 8 bit checksum to enforce a Hamming
distance of 4.

Another well known self-checking mechanism is based on compression functions
over a sequence of time/accuracy values. More specifically, the UTCSU should
compute two functions over a certain time frame: blocksums, which are summati-
ons over a specified range, and signatures, which employ a generator polynomial
akin to CRC-checksums. These calculations can be done in parallel by a redundant
UTCSU or by a general purpose CPU, occasionally verified against the values de-
rived inside the UTCSU. Note that one has to trade (low) checking frequency for
(high) detection latency.

SPECS 15 (BLOCKSUMS AND SIGNATURES): The UTCSU needs to compute
blocksums and signatures of the (+31,-24)-range of register NTPTIME and the
(+8,—23)-range of registers ALPHA+ over q start/stop prearranged period of time.

A snapshot denotes a mechanism that samples relevant internal registers to get
a glance of the current UTCSU state. Either triggered by hardware or software,
registers NTPTIME and ALPHA+ need to be saved in their full extent to certain
shadow registers for postprocessing. Besides checking for local errors, this me-
chanism allows experimental evaluation of the time service precision, by triggering
simultaneously snapshots on all nodes with a common line. To be complete, another
special input line allows the UTCSU to (re)start its operation from a well defined
state when an external pulse occurs. This features multiple redundant UTCSUs
starting simultaneously at each node and allows to bypass elegantly initial clock
synchronization for the sake of testing purposes.
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SPECS 16 (SNAPSHOTS): The UTCSU needs to include a soft- and hardware
snapshot mechanism to make atomic full-length shots of registers NTPTIME and
ALPHA+. Furthermore we require a feature to start the UTCSU from a well defi-
ned state by activating the special input line SYNCRUN.

4. Unit Implementation

Functional issues, ensuing from our desire to capture all hardware requirements for
a highly accurate/precise time service, guided the process of developing the UTCSU
specification. In the course of designing this ASIC, we crafted a layout of physical
units fostering a clean top-down implementation. More specifically, starting from
the specification (Schossmaier and Schmid, 95) compiled in Section 3, the UTCSU
internal units portrayed in Figure 5 were eventually identified and designed in
(Loy, 96).. A first look at the boundary reveals interfaces for the System-Bus, GPS
receivers, CSP stamping, and applications. The interior consists of 10 generic units
connected by a 32 bit broad I-Bus, resulting in a homogeneous architecture. The
following subsections introduce these units in some detail, depending on the level
of interest and originality.

{ —

HWSNAP
SYNCRUN
emmmmmE

LTU =
Data ACU
TRANSMIT{1 6] .
— BIU SSU RECEIVE[L..6] unit full name
Contro ACU Accuracy Usit
C;_S 1PPS{1..3] APU Application Unit
GPU STATUS[1.3] BIU Bus Interface Unit
BTU Built-In Test Unit
2 APP1.9] GPU GPS Unit
APU APPL Ty Interrupt Unit
LTU Local Time Unit
INT-T NTU Network Time Interface Uit
INT-MN NTPA-Bus !
e ITU NTU ._.——:._:> SNU Snapshot Unit
<NTA ng SSuU Synchronization Subnet Unit

SNU

BTU

Figure 5. UTCSU block diagram
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4.1. Bus Interface Unit (BIU)

The BIU contains logic for embedding the UTCSU in a wide variety of system
architectures as demanded in Specs 1. In particular, it makes the ASIC appli-
cable to System-Bus widths of 8, 16 or 32 bits, little or big endian byte ordering,
and different access times. A technique called dynamic bus sizing is used to solve
this common interfacing problem and we recommend (Motorola, 90) for technical
details.

4.2. Interrupt Unit (ITU)

Throughout the UTCSU specification we encountered several dedicated interrupts
to announce certain conditions asynchronously. We grouped all possible interrupt
sources in three categories, resulting in the following interrupt lines:

* Interrupt INT-T indicates events relevant to the clock synchronization algorithm
as specified in SPECS 12 (duty-timers) and SpEcs 5 (accuracy overruns).

¢ Interrupt INT-N indicates external events as specified in SPecs 10 (stamping
leaving/arriving CSPs) and SPecs 11 (IPPS pulses from GPS-receivers).

¢ Interrupt INT-A indicates application-related events as demanded in SpEcs 13
as well as events for chip testing purposes.

The ITU contains the logic for generating these interrupts. Any interrupt source
can be individually enabled/disabled via configuration registers UTCINTEN1 /2, and
pending interrupts are reflected by registers UTCSTAT1/2. For further details about
handling these registers turn to Section 5.2.

4.3. Local Time Unit (LTU)

According to SPECS 6 and 8 local time has to be maintained by an adder-based
clock. This boils down to set up a 91 bit adder capable of carrying out an
addition at each oscillator tick. Due to the advanced space and time require-
ments, much effort has been invested to devise an optimal adder architecture,
cf. (Horauer and Loy, 95).

Figure 6 shows schematically the architecture of the LTU with the 91 bit adder
NTPADDER right in the center. The addend is realized as a positive feedback of
the previous adder output held by the (+31, ~59)-register NTPTIME, which in turn
provides local time. Initialization takes place via multiplexer NTPMUX and preload
registers MSSET, TSSET and USSET.

The augend is supplied by the (=20, —51)-register STEPPUREACT resp.
STEPAMORT during pure resp. amortization phase. Their granularity is exten-
ded by register STEPLOW, which holds a fixed value in the (—52, —59)-range to




SPECIFICATION AND IMPLEMENTATION OF THE UTCSU 19

account for non-binary oscillator frequencies. Muliplexer AMORTMUX is in charge
of switching between pure and amortizing clock-step values as demanded by Specs
8. As long as the programmable 32 bit counter AMORTTIMER is running, the au-
gend originates from STEPAMORT, otherwise from STEPPUREACT. The counter
can be activated by a duty timer or immediately by writing a dedicated register
address. Preload register STEPPURE is necessary to hold the clock-step value for
the following pure phase, which starts when the counter expires. See Figure 4 for
a better understanding of the transitions between the two phases.

(MSSET (:31.08) TTSSET (+7,24) | USSET (55,59 [000] [ CSMSOET 3T : TSGET (+7,24) T USGET (25.-56) | NSGET (57.59) ]

/T

NTPTIME (+31,-59)

> R

NTPHOLD CS:(+31,-59) NTP-Bus CS:(+31,-24)
PO &

AMORTTIMER f o

G3Hal=l (31410

AMORTTIMESET STEPAMORT (-20-51) | [ STEPPUREACT £.20,51)

Figure 6. Local Time Unit

According to SPECS 3, the adder-based clock has to cope with leap seconds as well.
Basically, the leap second correction hardware consists of multiplexer LEAPMUX,
which affects the upper 32 bits of the augend in such a way that either one standard
second is added or subtracted Just as required. An additional duty-timer can be
programmed to initiate these time corrections.

An 8 bit Checksum (CS) is computed for the (+31, ~24)-range of register
NTPTIME by the Error Detection and Correction Unit (EDCU) as stipulated in
SPECs 12, using a modified Hamming Code of distance 4. The CS bits together
with the NTPADDER output are buffered on each rising edge of the oscillator pulse
n an intermediate register NTPHOLD. This introduces a delay of one oscillator tick
between computation and sampling, but the clock synchronization algorithm is not
affected, since adjustments are only applied in a relative fashion. Therefore, we can
operate the local clock one tick ahead of actual time internally, so that correct time
is perceived after buffering.
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Adhering to byte-orientation, the output of register NTPHOLD is decomposed
into four portions. The 24 bit Marcostamp-range (+31, +8) together with the 32 bit
Timestamp-range (+7, —24) including the 8 CS bits constitute the internal 64 bit
NTP-Bus (see Figure 5) from where all timestamps are obtained. The remaining
32 bit Microstamp-range (=25, -56) and the 3 bit Nanostamp-range (-57, —59)
are internally used for rate corrections. Nevertheless, all portions are atomically
accessible through holding registers CS:MSGET, TSGET, USGET and NSGET for
testing purposes.

4.4.  Accuracy Unit (ACU)

The ACU maintains a*(¢) and @™ (t) as demonstrated in Figure 4, forming the local
accuracy interval A() around local clock C(t). SpEcs 7 and 9 demand a dedicated
ABC for each at(t) and @~ (t), but due to symmetry, it suffices to discuss only one
of them. -

Apart from a few modifications and supplements, the basic structure of this adder-
based clock is similar to the one inside the LTU, see Figure 7. In the center we find
a 45 bit adder ACCADDER, which is able to deal with negative numbers. Unlike
the LTU-adder, however, it stays at its upper limit and triggers an interrupt INT-T
instead of wrapping around in case of overrun.

Register ALPHA is situated in the feedback loop of the addend, so that it actually
provides the current accuracy value a*(¢) or @~ (t), respectively. Initialization with
the preloaded value in the +(—8, —38)-register ALPHASET happens via multiplexer
ALPHAMUX, whereby the (-39, —51)-part is fixed to all ones upon initialization.

In analogy to the LTU, multiplexer LAMBDAMUX selects the augend from
+(—37, —51)-register LAMBDAPUREACT resp. LAMBDAAMORT during the pure
resp. amortization phase as specified in SPECS 9. Both registers hold 16 bit signed
deterioration values that are internally sign-extended to 45 bits via multiplexer
LAMBDASMUX. Executing continuous amortization for local time controlled by
counter AMORTTIMER, switching between deterioration values takes place simul-
taneously with the clock-step registers inside the LTU. No deterioration takes place
right at the transition from pure to amortization phase, but rather register ALPHA
s relatively adjusted via multiplexer STATEMUX by an offset value previously writ-
ten to register STATESET. Again, Figure 4 helps to clarify the subtleties at this
pivotal transition point. :

During the amortization phase, the content of accuracy register ALPHA can be-
come negative. Following SpEcs 9, multiplexer AMUX converts such negative values
into zero controlled by the associated sign bit. The raw accuracy values are never-
theless accessible via registers ALPHAGET and NALPHAGET, which are sampled
simultaneously when LTU register TSGET is read.

Both negative and positive accuracy are exported in the (—~8, —23)-range, consti-
tuting the UTCSU internal A-Bus+ resp. A-Bus-. Together they are referred as the
32 bit broad A-Bus (see Figure 5), from where all accuracystamps are taken. Note
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{_ALPHASET S:3,3%) | 11,1 [ ALPHAGET 513,38 NALPHAGET (39,51} | [STATEGET (8.23) |

BOUND (-§.-23) A-Bus(-8,-23)

[ STATESET 5:8.38) [ 60.0]

[T\ o [\ oo

$:(-8,-35)=1

S:0:8.-350 ((LAMBDAAMORT S37.51) | [ LAMBDAPUREACT 3751 ]

LAMBDAPURE §:(-37,-51)

Figure 7. Accuracy Unit (generic)

that the output of adder ACCADDER is buffered at each rising edge of the oscilla-
tor pulse into register ALPHAHOLD, thus the accuracies on the A-Bus suffer from
the same latency of one tick as local time on the NTP-Bus; recall our comments in
Section 4.3.

Implementing SPECs 5 results in a 16 bit comparator block COMPARE that
permanently checks the A-Bus against a (—8, ~23)-register BOUND. If the current
value on the A-Bus happens to be greater or equal to BOUND, an interrupt INT-T
will be raised.

4.5.  Synchronization Subnet Unit (SSU)

Rule SpeEcs 10 demands one SSU for each SSN attachment, where each unit com-
prises a set of registers to sample the NTP- and A-Bus on the occurrence of packet
reception/transmission events mediated by the embedding hardware as explained
in Section 2.2. The latter is also responsible to map transparently the correspon-
ding SSU registers, see Section 5.3 for an enumeration, into a certain portion of the
transmit/receive buffer of the ajoined COMCO.
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Moreover, SPECs 12 introduces two duty timers for each SSU, that perform a
comparison of the NTP-Bus against a 48 bit preload value. An interrupt INT-T
is raised whenever the NTP-Bus becomes greater or equal to the preloaded value,
provided that this interrupt source is enabled.

4.6. GPS Unit (GPU)

External clock synchronization requires access to an external time source. As im-
posed by SPECs 11, we use GPS receivers to inject UTC or GPS-Time. F igure 8
shows an exemplary interface structure to couple one receiver to a Primary-node.
For redundancy purposes, up to three receivers can be attached to a single UTCSU.

—,
( UTCSU
LTU
GPS Antenna
ACU
SSuU
10MHz I[‘
GPS-Receiver (PPS[1]
STATUS[1] GPU[1] 7_
GPU2] ¥
RS232
GPU(3]
CPU or
Microcomroller : J

System Bus fL

<

Figure 8. GPS-receiver coupling

Both lines 1PPS[1] and STATUS[1] of the receiver are directly connected to the
GPU[1] in order to trigger a timestamp and sample the receiver status on the
occurrence of an active 1PPS. The interior of a GPU is made up of our usual
sample registers, see Section 5.3 for a listing, whereas the most significant CS bit
is replaced by the status bit of the recetver. To adapt the GPU for different GPS
receivers, the active 1PPS edge can be programmed to be either the rising or the
falling one. Advanced GPS timing-receivers offer an additional frequency output
with high stability characteristics, e.g. line 10Mhz in our example, which is most
suitable for being used as the oscillator input frequency pacing the ABCs.
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Events signalled by the 1PPS are conceptually analogous to the arrival of CSPs.
However, information identifying the pulse (full seconds relative to UTC) is deli-
vered after the occurrence of the 1PPS, usually via a RS$232 interface. The task of
preprocessing this data, sending commands to the receiver for configuration purpo-
ses, and interpreting other data concerning status, navigation, etc. are not handled
by the UTCSU, but rather by the CPU of the embedding hardware.

4.7.  Application Unit (APU)

According to SPECs 13, the APU provides features to generate interrupts at specific
points in time and to record the occurrence time of application-related events.
The former is implemented by a duty-timer APPL to generate an INT-A interrupt,
similar to one in the SSU as explained in Section 4.5. The second feature is more
expensive, since tracing events requires atomic sampling of both NTP- and A-Bus.
The APU accommodates nine register sets (see Section 5.3) to stamp pulses on the
polarity programmable input lines APP[1..9] with time and accuracy simultanecusly.
Moreover, to ease higher-level recovery of applications in case of a clock fault, CPU
read accesses of these registers are memorized by a certain reference status bit.

4.8. Network Time Interface Unit (NTU)

Additional application timing support can be provided externally by means of the
NTPA-Bus as required by SpEcs 13. The UTCSU produces 64 bit time information
onto the NTP-Bus and 32 bit accuracy information onto the A-Bus at each oscillator
tick; given an operating frequency of 22 Hz, this amounts to 192 MByte/s. Indeed,
exporting such a stream of data turns out to be a challenging matter. To reduce
the pin count of our chip, the NTU achieves this performance by pushing out data
via the 48 bit wide multiplexed NTPA-Bus driven by both edges of the oscillator
pulse.

4.9. Snapshot Unit (SNU)

The SNU comprises three debugging/test services called software snapshot, hard-
ware snapshot and synchronous operation. As motivated by SPECs 16, snapshots
are means to sample the current internal state of the UTCSU.

A software snapshot can be triggered by writing a dedicated SNU register ad-
dress or on expiration of a duty-timer. This entails a simultaneous sampling of the
complete LTU register NTPHOLD into the already introduced registers MSGET, TS-
GET, USGET, and NSGET, as well as sampling ACU registers ALPHAHOLD+ into
registers ALPHAGET+, NALPHAGET+ and STATEGET=. Further reads without
latching semantics deliver the before sampled data.
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A hardware snapshot is triggered by an external pulse on the polarity programm-
able line HWSNAP. Due to the asynchronous nature of such an event, it merely
samples both NTP- and A-Bus into appropriate SNU registers, enumerated in Sec-
tion 5.4.

Finally, input line SYNCRUN gives the UTCSU a “GO”-functionality. In other
words, all three ABCs can be started simultaneously at a specific point in time
triggered by the test environment.

4.10.  Built-In Test Unit (BTU)

In principle, the sequence of all time/accuracy values generated inside the UTCSU
could be computed externally as well. Unfortunately, a continuous check is prohi-
bited by the tremendous throughput, as already pointed out in Section 4.8.

However, SPECS 15 specifies two compression methods over a certain set of
time/accuracy-stamps, that allow less frequent data exchanges between the UTCSU
and external verification devices. As a result, the UTCSU is endowed with a BTU
that computes signatures and blocksums for both NTP- and A-Bus. Note that these
two methods can be used independently of each other.

A-Bus+ (-8) A-Bus+ (-12) A-Bus+ (-13) A-Bus+ (-14) A-Bus- (-23)
b ¢ " D qQ }L b Qr—¥—re p 0
DFF 4, D-FF D-FF 55 DFF g
Cr R PCy r
Init 1
| J { '
ACCSIG (31} ACCSIG 27y ACCSIG (26} ACCSIG (25) ACCSIG (0)

A-Bus+ (-8,-23) : A-Bus- (-8,-23)

Init ACCSUM

Figure 9. Compressing accuracystamps with signatures and blocksums
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The upper half of Figure 9 shows the logic to compute a signature for the A-Bus,
where the accuracy values are fed from above into a linear feedback shift register
(LFSR), cf. (Yarmolik and Kachan, 93). These registers are implementing the eva-
luation of a polynomial P(z) with coeficients out of {0,1}. Each power z* is
reflected by a D-Flip-Flop (D-FF) fed from the zk-! stage exored with the cor-
responding bit from the input data. Powers with non-zero coefficient obtain an
additional feedback from the D-FFg output. In particular, a polynomial of degree
56, namely Pnrp_pus(z) = 2% + 222 4 221 4 41 + 1, compresses timestamps and a
polynomial of degree 32, namely PaoBus(z) = 237 + 2% £ 227 4 21 11, takes care
of accuracystamps. The lower half of Figure 9 shows an adder feedbacked by the
32 bit register ACCSUM to compute blocksums over the A-Bus.

Only a complete sequence of time/accuracy-stamps is useful to be processed in the
LFSR or adder block, hence specific start/stop-points have to be defined. Tran-
sitions between pure and amortization phases are particularly suitable for that
purpose. Section 5.4 remarks on programming issues about these features.

5. Programming Model

We wrap up our UTCSU picture by presenting a synoptic view from the program-
ming standpoint. Organized in subjects concerning clocks, interrupts, sampling
and testing, we inspect essential operations tagged with programming guidelines.
Tables will summarize related UTCSU elements by showing their type and provi-
ding a brief description. Three types can be distinguished: An internal register
indicated by the corresponding NTP-range or width, a pseudo register to trigger
certain actions, or a pin for external events. A forthcoming datasheet will provide
a complete programming description including register maps, timing diagrams and
electrical characteristics.

5.1. Clock Management

The management of ABCs can be separated in issues concerning initialization and
adjustments. Initializing the UTCSU turns out to be a delicate matter, since several
stages have to be passed through, namely

* set all registers to a default value via a hardware reset,
¢ set augend (clock rate and accuracy deterioration) of ABCs, and
* set addend (clock and accuracy state) of ABCs,

All UTCSU registers are set to a default value whenever the chip is powered up
or when an external hardware reset occurs. In particular, LTU-register NTPTIME
becomes zero, ACU-registers ALPHA+ all ones, and the various registers holding
the corresponding augend are cleared to prevent a progression of the adder-based
clocks.
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The second stage targets the active augends of the adder-based clocks be.
longing to the pure phase, i.e. LTU-register STEPPUREACT and ACU-registers
LAMBDAPUREACT+ holding the pure clock-step resp. pure accuracy deteriora-
tion values. As shown in Figures 6 and 7, these registers cannot be initialized
directly. Still, we get a handle on them by first writing their preload registers
STEPPURE resp. LAMBDAPURE+ and by subsequently comumencing a short pe-
riod of continuous amortization. Only register STEPLOW can be set directly to
account for a non-binary oscillator frequency. Table 2 summarizes programming
elements relevant at this stage.

Table 2. UTCSU elements for rate/deterioration initialization

element type description

STEPPURE {~20,-51) clock-step for pure phase

STEPLOW. (~-52,-59) clock-step for non-binary frequency adaption
LAMBDAPURE+ +(-37,~51) upper accuracy deterioration for pure phase
LAMBDAPURE- +(~37,-51) lower accuracy deterioration for pure phase

In the third stage, the addends of the adder-based clocks, i.e. LTU-register
NTPTIME and ACU-registers ALPHA, are initialized. Since they reflect the state
of local time/accuracy, their value has to be set appropriately to correspond to the
time of setting them. As a consequence, preload registers must be provided to hold
the initialization values in advance that are transferred atomically to NTPTIME and
ALPHA upon a suitable event. Local time Is initialized with the aid of three 32
bit registers MSSET, TSSET and USSET. When no accuracy information is at hand
for initialization, we can stick to the maximum introduced during hardware reset,
which serves literally as infinity. Otherwise, preload register ALPHASET supplies
both ALPHA+ and ALPHA-, launching a symmetrical accuracy interval. The event
of actually transferring preloaded values is generated by writing pseudo-registers
NTPSET and ALPHASET, cf. Table 3. To ease simultaneous starting of distributed
UTCSUs during the testing phase or in redundant configurations, the transfer event
can also be a pulse on the external line SYNCRUN.

Table 3. UTCSU elements for time/accuracy initialization

element type description

MSSET (+31,+8) macrostamp portion of clock state

TSSET (+7,-24) timestamp portion of clock state

USSET (-25,-56) mircostamp portion of clock state

ALPHASET +(-8, -38) iitial upper/lower accuracy

NTPSET pseudo sets clock state and upper/lower accuracy on write
ALPHAPNSET pseudo sets only upper/lower accuracy on write

SYNCRUN pin sets clock state and upper/lower accuracy on external pulse
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Once initialized, clocks need to be adjusted periodically in order to maintain
 internal/external synchronization. Adjustments values for local time and accu-
racies are handed over at each pure to amortization phase transition as already
explained in Section 3.5. The UTCSU enforces these adjustments autonomously,
which renders programming rather simple. In fact, the elements of Table 4 need
to be computed before the next amortization phase, encompassing values for clock-
step register STEPAMORT, for deterioration registers LAMBDAAMORT+, and for
accuracy adjustment registers STATESET+. Additionally, registers STEPPURE
and LAMBDAPURE+ need to be preloaded for the subsequent pure phase. The
duration in oscillator ticks of the amortization phase can be set via counter
AMORTTIMESET, whereas the start can be either triggered by writing pseudo
register STARTAMORT or by activating duty-timer DUTYB[1]. Managing DTs is
covered in Section 5.2.

Table 4. UTCSU elements for time/accuracy adjustments

element type description

STEPAMORT (~20,-51) clock-step for amortization phase
LAMBDAAMORT+ +(-37,-51) upper accuracy deterioration for amortization phase
LAMBDAAMORT- +(-37,-51) lower accuracy deterioration for amortization phase
STATESET+ +(-8, ~38) upper accuracy adjustment in two's complement
STATESET- +(-8, —-38) lower accuracy adjustment in two's complement
AMORTTIMESET 32 bit counter duration of amortization phase in oscillator ticks
STARTAMORT pseudo starts amortization phase on write

DUTYB(1} (+31, -16) duty-timer to start amortization phase

5.2. Interrupt Management

There are as much as 64 interrupt sources within the UTCSU, which are statically
mapped to three dedicated interrupt lines introduced in Section 4.2. Interrupt
processing in general works as follows, cf. Table 5: To initialize an interrupt source
for further interrupts, we have to clear it by setting the appropriate bit in register
UTCINTCLEARI or UTCINTCLEAR2, and to enable it by setting the appropriate
bit in register UTCINTEN1 or UTCINTEN2. A pending interrupt is mirrored by
a status bit in registers UTCSTATI or UTCSTAT?2, which can be polled by the
interrupt service routine (ISR) to identify the originating source of the interrupt.
Before leaving the ISR, the interrupt source must be cleared as described above.

Many interrupts are associated with external events, like leaving/arriving CSPs,
IPPS pulses from GPS timing-receivers, or occurrence of application-oriented
events. Their handling will be described in Section 5.3. Here we proceed with
interrupts that are internally caused by the UTCSU, in particular by DTs and ac-
curacy overruns. Of course, many other exceptional UTCSU conditions are also
announced by INT-T interrupts, like an overrun of NTPTIME somewhere in year
2036 or clocking failures.

T
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Table 5. UTCSU elements for interrupt handling

element type description

UTCINTCLEAR1/2 32 bit each clears pending interrupts

UTCINTEN1/2 32 bit each enables/disables interrupts

UTCSTAT1/2 32 bit each reflects the status of the interrupt condition

Various duty-timers are used for generating interrupts or for triggering certain
actions, see Table 6 for a complete list. Each DT spans 48 bits, organized in a 32
bit high-part (+31,0) and in a 16 bit low-part (—1, ~16) including an enable bit E to
arm/disarm its operation. If armed, the content of each duty-timer is permanently
compared against the current time on the NTP-Bus and corresponding status bits
in registers UTCSTATI and UTCSTAT? indicate the condition “less” (duty-timer
< NTP-Bus) or “greater-or-equal” (duty-timer > NTP-Bus). In case of a transition
from “less” to “greater-or-equal”, a dedicated interrupt INT-T will be generated.
Note that activating a DT with an old value w.r.t. the current time given on the
NTP-Bus also entails an interrupt.

Table 6. UTCSU elements for duty-timers

element type description

DUTYA[L..6]-HIGH (+31,0) SSU duty-timers A[1..6]
DUTYA[L..6]-LOW E:(~1,-16) e

DUTYB{1}-HIGH (+31,0) duty-timer to start amortization
DUTYB[1}-LOW E:(~1,-16) -

DUTYB[2]-HIGH (+31,0) duty-timer to terminate CSP receptions
DUTYB[2]-LOW Ei(~1,-16) -

DUTYB[3]-HIGH (+31,0) duty-timer to insert/delete leap seconds
DUTYB[3]-LOwW E:{~1,-16) -7 -

DUTYB[4..6)}-HIGH (+31,0) auxiliary SSU duty-timers B{4..6]
DUTYB[4..6]-LOW E:(~1,~16) e

SW-HIGH {(+31,8) SNU duty-timer for software snapshot
SW-LOow E:(-1,-16) -7 -

APPL-HIGH {+31,0) APU duty-timer for applications
APPL-LOW Ei(~1,~16) R

Without external scaling, the capacity to hold accuracies in registers ALPHA+ is
limited to 7.81 ms each, while overflows cause an interrupt INT-T. A more selective
supervision of maximum accuracy can be programmed with the help of registers
BOUND, also displayed in Table 7. Similar to duty-timers, whenever the condition
“below” (A-Bus+ < BOUND:t}) tips to “above-or-equal” (A-Bust > BOUND=), an
interrupt INT-T will be generated. Setting registers BOUND=+ to the maximum
disables this feature.
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Table 7. UTCSU elements to bound accuracies

element type description
BOUND+ (~8,-23) bound for upper accuracy
BOUND- (-8,-23) bound for lower accuracy

5.3. Sampling Management

Sampling activities can stem from software primitives or from external events. The
first ones are also known as atomic clock readings, providing allied portions of local
time/accuracies only. Whenever register TSGET is read by software, it entails
a simultaneous latching of full-scale local time and accuracy in certain UTCSU-
registers listed in Tables 8 and 9. Later on the sampled values can be read externally
at register addresses without latching semantics.

Table 8. UTCSU elements for sampling local time

element type description

CS:MSGET CS:(+31, +8) macrostamp portion of clock state together with checksum
TSGET (+7,-24) timestamp portion of clock state (causes atomic sampling)
USGET (~25,~56) microstamp portion of clock state

NSGET (—57,-59) nanostamp portion of clock state

Table 9. UTCSU elements for sampling local accuracies

element type description

ALPHAGET+ +(-8,-38) high portion of signed upper accuracy
ALPHAGET- +(~8, -38) high portion of signed lower accuracy
NALPHAGET+ (-39, ~51) low portion of upper accuracy
NALPHAGET- (-39, -51) low portion of lower accuracy
STATEGET+ (-8, -23) upper accuracy on A-Bus+
STATEGET- (-8, ~23) lower accuracy on A-Bus-

Crucial for UTCSU operation are features to stamp external events with
time/accuracy values. Apart from sampling, a INT-N interrupt is raised upon
occurrence if enabled at all. Table 10 recapitulates all elements relevant for this
functionality.

Registers UTCCONF1 and UTCCONF2 determine the polarity on which input
pulses cause sampling. Besides that, they contain bits to control leap-second inser-
tion/deletion and to configure self-test features, cf. Section 5.4.

In a straightforward way, pulses on pins TRANSMIT[1..6] resp. RECEIVE(1..6]
inform the UTCSU about leaving resp. arriving CSPs. The various sample registers
can be found in the second and third block of Table 10.
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Similarly, pulses on pins 1PPS[1..3] resp. STATUS(1..3] inform the UTCSU about
an active on-time pulse resp. status of a connected GPS timing-receiver. The fourth
block of Table 10 indicates the corresponding sample registers.

Finally, pins APP[1..9]
events. The bottom bloc
ding a pseudo one called
TSAPP[1..9] or ACCAPP|

cleared by writing APPCLEAR.

are available for time/accuracy-stamping of application
k of Table 10 show the associated sample registers inclu-
APPCLEAR. Every read access of registers MSAPP(1..9],
1..9} sets a status bit in register UTCSTAT1, which can be

Table 19. UTCSU elements for stamping external events

element type description

UTCCONF1/2 32 bit each  configuration bits, e.g. polarity of input pulises
TRANSMIT/1..6} pins  indicates a CSP transmission

MSXMT(1..6] CS:(4+31,+8)  sample of upper NTP-Bus portion
TSXMTI[1..6] (+7,~24)  sample of lower NTP-Bus portion

ACCXMTI[1..6]

(—8,-23):(—8, -23)

sample of A-Bus

RECEIVE(1..6] pins  indicates a CSP arrival

MSRCV(1..6) C8:(+31,+8)  sample of upper NTP-Bus portion
TSRCV[1..6] (+7,-24)  sample of lower NTP-Bus portion
1PPS[1..3] pins  indicates a 1PPS pulse from GPS receivers
STATUS[1..3] pins  indicates the status of GPS receivers
MSGPS[1..3] status:CS:(+31,4+8)  sample of upper NTP-Bus portion with receiver status
TSGPS[1..3] (+7,~24)  sample of lower NTP-Bus portion
APP[1..9] pins  indicates an external application event
MSAPP1..9] CS:(+31,48)  sample of upper NTP-Bus portion
TSAPP[1..9] (+7,-24)  sample of lower NTP-Bus portion
ACCAPP[1..9] (~8,-23):(-8,-23)  sample of A-Bus

APPCLEAR pseudo  clears the application reference status bit

5.4. Testing Management

Snapshot mechanisms are im
vated in Section 3.7. Before

must be set appropriately.

plemented for test and verification purposes as moti-
using them, certain configuration bits in UTCCONF1

If enabled, a pulse on pin HWSNAP triggers a hardware snapshot, Le., the NTP-
Bus is latched into registers MSSNU and TSSNU, and the A-Bus into ACCSNU. The
top block of Table 11 summarizes these elements.

A software snapshot is triggered directly, when pseudo register SWSNAP is writ-
ten, or programmed when duty-timer SW fires. All registers listed up in Tables 8
and 9 are affected by activating this mechanism, which provides a comprehensive
view of the current state of the whole chip.
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Table 11. UTCSU elements for snapshots

element type description

HWSNAP pin triggers a hardware snapshot

MSSNU CS:(+31, +8) sample of upper NTP-Bus portion
TSSNU {(+7,-24) sample of lower NTP-Bus portion
ACCSNU (—8,~23):(~8, -23) sample of A-Bus

SWSNAP pseudo triggers a software snapshot

SW (+31,-16) duty-timer to trigger a software snapshot

The computation of signatures and blocksums for external verification can be
started and stopped by a SYNCRUN event, a software snapshot, or at the beginning
of an amortization phase. Configuration bits in register UTCCONF1 must be set
accordingly to enable the desired operation. Furthermore, these events (except
of SYNCRUN) latch the results into appropriate registers as given in Table 12.
Usually, the period over which these compression functions are calculated include
the pure phase, the length of which is provided by counter PUREPHASE for external
verification purposes.

Table 12. UTCSU elements for external verification

element type description

MSSIG 32 bit signature of macrostamp portion of time
TSSIG 32 bit signature of timestamp portion of time
ACCSIG 32 bit signature of upper and lower accuracy
MSSUM 32 bit blocksum of macrostamp portion of time
TSSUM 32 bit blocksum of timestamp portion of time
ACCSUM 32 bit blocksum of upper and lower accuracy
PUREPHASE 32 bit counter duration of pure phase in oscillator ticks

6. Design Methodology

The chip design process evolved in several stages. In the following we document
them briefly by pointing out their particular objective and the tools used.

Starting out from the functional specification of (Schossmaier and Schmid, 95),
an elaborate process of successive refinement was conducted that eventually ended
up in coding and synthesizing all required units, cf. (Loy, 96). Based on this know-
ledge, we worked out a complete behavioral VADL description of the UTCSU. At
the same time, we coded a simulation model of the node consisting of a basic VHDL
model of both CPU and embedding hardware including the COMCO. At the next
stage, algorithmic operations were verified to ensure that all required functionalities
are present and behave as required. Again, this model was refined and recoded to
meet our specification and to make the code ready for synthesis.
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To obtain a gate-level netlist, we used SYNOPSYS DESIGN COMPILER * for syn-
thesis into two foundry libraries, viz AMS 4 0.8 p#m and ES2* 0.7 um standard cell
CMOS process. A postprocessing tool was used to verify the resulting code against
the behavioral simulation. Table 13 summarizes some technical chip data derived
at this stage. Afterwards, SyNoPsYS TeEST COMPILER * inserted full scan path
logic with a multiplexed flip-flop style and boundary scan logic according to IEEE
1149.1. CADENCE DFWII 4 back-end tools finalized the design with place&croute
for ES2. Timing requirements and technology rules were cross-checked by parasitic
extraction.

Table 13. UTCSU chip data for ES2 0.7um

area {with pre-estimated routing) [mm?] 100
max. operating frequency [MHz] 25
equivalent gates 66.500

7. Conclusions

The obstacles on the road to implement a highly accurate/precise time service in
the real-time systems domain emerge from two difficulties. First, a clock circuitry is
necessary for maintaining local time/accuracy with sufficient state graininess and
rate dynamics. Second, recording and generating events in the proximity of the
clock has to be done with minimal uncertainty. Only profound and well designed
hardware allows to meet these requirements. Hence, a major result of our research
1s the development of a custom VLSI chip that incorporates adder-based clocks and
sophisticated event handling facilities. In this paper we gave the specification of
the UTCSU in terms of 16 rules focusing on the key implementation parts, and
presented a basic programming model.

Future efforts are devoted to redesign of this ASIC to advance it beyond the
prototype version. Especially, a higher operating frequency, a reduced chip size,
and more application-specific features are desireable. It is planned to bring out a
whole familiy of UTCSUs varying in performance, pin-count, package size, power
consumption and of course functionality. We also have in mind to tailor it —
in conjunction with the embedding hardware — towards emerging applications in
computer science relying on a time service, like multimedia or mobil computing,

Appendix

Table A.1 gives the time equivalence of NTP-bit numbers divided in columns for
the integer part (+31, 0), the fractional part (—=1,-32) and the ultrafractional part
(—33, —64). Note that “n” stands for nano (107%), “p” pico (10~12), “f” for femto
(107%), “a” for atto (10~'8) and “z” for zepto (10721),
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Table A.1. NTP-bit numbers and their time equivalence

integer part fractional part ultrafractional part
bit#  time equivalence bit#  time equivalence bit# time equivalence
+31 68 years -01 500 ms -33 116.42 ps
+30 34 years -02 250 ms -34 58.21 ps
+29 16 years -03 125 ms -35 29.10 ps
+28 8.5 years -04 62.5 ms -36 14.56 ps
+27 4.25 years -05 31.25 ms -37 7.28 ps
+26 2.13 years -06 1562 ms -38 3.64 ps
+25 1.08 years -07 7.81 ms -39 1.82 ps
+24 194.18 days -08 3.81 ms -40 909.50 fs
+23 97.09 days -09 1.90 ms -41 454.75 fs
+22 48.55 days -10 976.56 us -42 227.38fs
+21 24.27 days -11 488.28 us -43 113.69fs
+20 12.17 days -12 244.14 us -44 56.84 fs
+19 6.07 days -13 122.07 us -45 28.42 fs
+18 3.03 days -14 61.03 us -46 14.21 fs
+17 1.52 days -15 30.51 us -47 711 fs
+16 18.02 hours -16 15.25 us -48 3.55fs
+15 9.10 hours -17 7.62 us -49 1.77 fs
+14 4.55 hours -18 3.81 us -50 888.18 as
+13 2.27 hours -19 1.90 us -51 444.09 as
+12 1.13 hours -20 953.67 ns -52 222.04 as
+11 34.13 min -21 476.83 ns ~-53 111.02 as
+10 17.07 min -22 238.41 ns -54 55.51 as
+09 8.53 min -23 119.21 ns -55 27.76 as
+08 4.27 min -24 59.60 ns -56 13.88 as
+07 2.13 min -25 29.80 ns -57 6.94 as
+06 1.07 min -26 14.90 ns -58 3.47 as
+05 32s -27 7.45 ns -59 1.73 as
+04 16s -28 3.72 ns ~-60 867.36 zs
+03 8s -29 1.86 ns -61 433.68 zs
+02 43 -30 931.32 ps -62 216.84 zs
+01 2s -31 465.66 ps -63 108.42 zs
+00 1s -32 232.83 ps -64 54.21 zs

Notes

1. Although our UTCSU owes much to the CSU of (Kopetaz, 89) in general, it will become apparent
that almost all features are entirely different in both functionality and implementation.

2. We adapted a FORCE CPU-30 board by constructing a piggy back equipped with the LANCE
82596CA from INTEL. A second generation is under development build on top of standard
IP-Modules.

3. Currently we are performing a longterm evaluation experiment to tail out accuracy and availa-
bility of several GPS timing-receivers.

4. SYNOPsYS DE3IGN COMPILER and SYNOPSYS TEST COMPILER are registrated trademarks of
Synoprsys, INC. AMS is a trademark of AUSTRIA MICRO SYSTEME INT. ES2 is a tradmark
of EUROPEAN SILICON STRUCTURES. CADENCE DFWII is a trademark of CaDENCE, Inc.
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