Technische

[Institut fur Automation Universitit
I Abt. fiir Automatisierungssysteme Wien

Projektbericht Nr. 183/1-68
October 1996

A Primer to Digital Design with
Synopsys and Cadence

Martin Horauer

Salvador Dali, "Die Bestandigkeit der Erinnerung”

‘PeAIEse) SybL {ly “euusIp AUSIOAIUN [BOIUYDa | ‘ABojouyos § 1eindwio) jo Wswepedeq ‘1eneioH W ‘Bul-1diq Aq 9661 ©

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

Contents

1 Synopsys 2
1.1 Synopsysdocumentation 2
1.2 Analyzingsourcefiles. 2
1.3 Directory hierarchy and file-naming policy 3
1.4 Simulation before synthesis 4
LS Synthesis 5
1.6 Adesignexample 7
2 Back-End design with CADENCE 25

"pansasal siybl ||y “euueip Ausieaun [eojuyoa] ‘ABojouyos i tendwog o wswepedeq YeneloH ‘W Bul-1diq Aq 9661 ©

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

Chapter 1
Synopsys

Here we will give a brief description of the basic programs and shells, that can be used in
conjunction with an ASIC development. I will not cover the use of the schematic entry
tool sge, that is (thats just another prejudice of mine) preferably useful for interconnect
management at the top level.

Figure 1.1: SGE fronted after invocation

If you're intending to make use of this tool, see the online documentation for an extensive
description.

1.1 Synopsys documentation

The large collection of the Synopsys manuals can be read and searched online via the
very powerful inter-leaf viewer. Type iview at the Unix command prompt to bring it up
onto your screen. Figure 1.2 shows the outline after invocation. Very powerful context
search is available via Search ~Collection. This documentation is an excellent guide
to further work, so I'll recommend it for your use not only when you’re a novice.
Furthermore there is a collection of books available at our department, that are primarily
related to HDL coding [R.94], [P.90], [J.92], [HYES5], [R.93], [D.91], [IEE87],
[IEE93], [PT95] and [S.96].

1.2 Analyzing source files

The program vhdlan can be used to analyze the VHDL-files for correct syntax.

% vhdlan -nc vhdl/test_ent.vhd vhdl/test_beh_arch.vhd

"PaAtssas SWBL Iy "BuusiA ANSIOAIUN ROILYSa | ‘ABojouyos 1 Jeindwog jo luswepedeq ‘seneloH w 'Bui-idig Aq 9661 O

Notes

Notes

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. Al rights reserved.

“WorkIView” - Welcome 19 Synopsys Online Doc umentation - Synopsys CPIEHE] ’
. file Edit View Search Eookmarks Windows EBrowser Help
3 =l =

SYNoPSYS®

Online Documentation

% Onfine Hely » Ahout

% Synthesis ® Sheulation

% Liwary Tools a0 Test Tools

% DatkmWare % Methodology Notes
% SOLV-IT! OnSite = Appication Notes
% Tutortals x Demand Printing

3 DesignSource % COSSAP

| % System instakation and Oonfiguration

n

{ Click hyperiinks, &, with your left mouse bution

g E-mail your comments about Synopsys documentation to:
¥s.00Mm

For further assistance with your question, fry SOLY-IT1,

zjn';:pws elecirenic knowedge base which s updated

;

| — _1»
i weti | o [T =P

Figure 1.2: Synopsys online documentation

The -nc option avoids just an annoying header displayed at every invocation. Beside
vhdlan has many other useful options and switches. See the online help iview or type
vhdlan ——help to get more information on them. When you're dealing with several
source files that are depending on each other you can generate a Makefile using the com-
mand simdepends. Once you've got you’re Makefile, you ’Il only need to enter make,
and all depending VHDL-source files, that were modified more recently, are analyzed
again. In the case when the analysis of your code succeeds, you can start with your simu-
lation. Otherwise the lines and locations of the error prone code fragments are displayed.
You’ll have to identify the error an rerun the analysis.

1.3 Directory hierarchy and file-naming policy

To ease file manipulation and navigation through a project, everybody in the design
team should follow some general naming and structure conventions. The following
directory tree serves as an example how to structure the design.

/project/dd
%HN /CTS\
mdu tdu edu ... scr comp scan s2¢ ver

top_dd.run

wrfDir shmDir
The cds directory holds all Cadence related files, while syn all Synopsys related. In the

= oa e

"pentasel siybu |y “euusip AsieAlun featuyos] ‘ABojouyos | ieindwion 4o sweyedeq ‘teneioH ‘W Bul-idiq Aq 9661 &

Notes

Notes

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

4

Synopsys tree the subdirectories mdu, tdu and exu hold the VHDL-source files for the
three modules of the design. The directory scr contains all related script files for synthe-
sis and simulation, under comp all synthesized files are stored and scan holds all files
after scan-path insertion. Finally the contents of directory s2¢ are made up with several
files necessary for the design transfer to Cadence (physical place and route).

In the Cadence tree, many subdirectories are instantiated by the tools and therefore you
should avoid to manipulate to much in there. Use the tools supplied with Cadence in-
stead.

filename description

dd_pkg.vhd project package declaration
dd_pbdy.vhd project package body
exu_ent.vhd top-module entity
exu_beh_arch.vhd top-module architecture
exu.beh_cfg.vhd top-module configuration
exu_body_ent.vhd sub-module entity (body varies)
exu_body.beh_arch.vhd sub-module architecture

Table 1.1: Filenaming policy

Table 1.1 summarizes a possible filenaming convention. It is of course a bit tedious to
split everything, but benefits of a highly modular design should always be kept in mind.
Beside, every file should contain a header, that includes the project name, the name of
the designer, the version number, the filename itself, the title and type of the module, the
tools it is targeted for, which libraries and packages are used and of course a timestamp.
A few of these header lines are of course obvious and could be taken from the file
properties itself, but they are nice to have when included also in the header. For examples
consult the source-code listings in the further sections.

1.4 Simulation before synthesis

Within Synopsys either the graphical interface vhdldbx (see Figure 1.3) or the command
line version vhdlsim can be used. In both cases you need to specify the name of the con-
figuration you’re intending to simulate. Afterwards you’ll have to specify the signals
you're willing to trace. The later can also be specified in an include file that is applied
to the simulator during invocation. You can single-step the code, set/delete breakpoints,
evaluate signals and variables, set them to specific values, interrupt the simulation,
In the waveform window you can add several cursors to measure timings between dif-
ferent signals, zoom in and out, Furthermore you can implement file i/o, to ease
comparison of your simulation results at different levels of simulation. The later can
in addition also be performed via a post-processor program gpp. Gpp takes two wif
files (file-extesion .ow), and compares them at periodic times you specify at the com-
mand line. A wif file is automatically created when the variable WAVEFORM is set to
wif+waves within the .synopsys_vss_setup configuration file.

The simulator is usually invoked with an include file, which consists of several control
sequences for the simulator itself. The following gives an idea of such a file. It traces
several signals in different levels of the hierarchy and displays them in the waveform
window.

"panIasel s |y “euusip AlisieAlun [eojuyos | ‘ABojouyde | Jeindwod o Juswsueda(y Janeioy W 'Bul-1dia AQ 9661 @

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

Figure 1.3: The graphical user interface for simulation

trace /EXU.TB/TOPATCLK

trace /EXU.TB/TOP/ADDR

trace /EXU_TB/TOP/BE

trace /EXU.TB/TOP/RWB

trace /EXU.TB/TOP/CSB

trace /EXU_TB/TOP/RESET

trace /EXU.TB/TOP/UITU/UTCCONF1

trace /EXU TB/TOP/UITUMUTCSTATT

trace /EXU.TB/TOP/UITU/NTUBODY/UTCINTSTAT1
trace /EXU_TB/TOP/UITU/UITUBODY/UTCINTEN1

An analogue file for the post-processor could be for e.g. as the following.

load cmp/EXU.TB.LTU_PRE.ow emp/EXU. TBLTU_POST.ow
files
timespec t1=40530,40530,repeat 500 times +40000 snd

show t1
file=1 1 all to flle=2;th 41 all

p P P

Here two wif files, that must be created previously with the simulator, are loaded first.
The files command displays all files in memory. The fimespec command declares a
periodic point in simulation time, starting at time 40530 and repeating 40000 times
every 500 time increments. The resolution for the time increments (ns, ps, ...) is
determined via the setup-file .synopsys_vss_setup.

1.5 Synthesis

The programs for synthesis are the graphical user interface design_analyzer (see Figure
1.4) and the command line shell de_shell. Both have the same functionality, although the
shell version is of course more appropriate for most synthesis runs, while the graphical
interface can be used primarily for cross-checkings and is easier to use by new users.
Both programs have many options and commands built-in. A few of them will be illus-
trated a little along with some scripts we'll illustrate along with the following sections.

‘paAtesas siubl |y euusip Ausiaaiun [Batyoa] ‘ABojouyos | Jeindwod Jo Juswepedsq JeneioH "W -Buy-1diq AQ 9661 ©

Notes

Notes

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

6

To get more information on specific commands just type help <topic> at the shell
prompt or within the command window.

Figure 1.4: The graphical user interface for synthesis

To illustrate the funcionality a bit more in depth, take a look at the following example.

PACKAGES={ pkg/ExU_pkg.vhd pka/ExUl_pbdy.vhd}
analyze -f vhdl PACKAGES

FBTUY

BTU_VHDL FILES={ btu/nsumadder_snt.vhd btwnsumadder_beh_arch.vhd \
bwbtu_body_ent.vhd btwhtu body_bsh_arch.vhd \

btwbtu.mdmux_ent.vhd btubtu.mdmux_beh_arch.vhd \
btuwbtu_mbiu.snt.vhd btubtu.mbiu_beh.arch.vhd \

btwbtu_ent.vhd btwbtu beh_arch.vhd}

analyze -f vhdi BYU.VHDL FILES

elaborate btu

current.design{ NSUMADDER}
set.max delay 28 all.outpute(}
complile -ungroup_all

First a dc_shell variable PACKAGES is defined that consists of two files. They are
analyzed in the subsequent line. Within this package you could have defined several
constants or functions that are used from within several other source files. The subse-
quent variable holds all VHDL-files of the module in a bootom up fashion. These files
are analyzed and elaborated. In the case this operation succeeds, the module is ready
to accept several constraints for logic synthesis. Afterwards a submodule NTPADDER,
that consits of pure combinational logic is synthesized in front of the rest. Therefore
you’ve to set the current design to this submodule. Then the outputs of this submodule
are constrained with a maximum output delay of 28 ns. — Use a realistic value for
constraining, otherwise you’ll end up with an unnessecarily huge bulk of logic and in
addition you’ll waste much processing power of your workstation. — The submodule
then is synthesiszed and ungrouped, so that you'll end up with a flat logic.

If the module has registered inputs and outputs the following sequence would be an
appropriate constraining scenario.

"paniesal siybu |y “euusia Alsieniun [esiuyos | ‘ABojouyoe | Jeindwo) jo Juswepedag eneioH ‘W Bul-'did Ag 9661 ©

Notes

Notes

© 1896 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

current.design{btu}

clock_name = ITCLK

create_clock clock.name -period 40 -wavetorm 6 20
set_dont touch_network {clock name }
set.operating.conditions "IND MAX”

sat_wire_load "1407X 1407 with_routing” -Jibrary ecpd07.ind
set test_ methodology fudi_scan

set_scan_styls multipiaxed.filp_flop

satinput delay 6 find(port,"IANBUS"”) ~clock clock name
sat_input_delay 10 find(port,"ISYNCRUN") —clock clock_name
sel.input_delay 12 find(port, TSGATE") -clock clock_name
sel input delay 10 find{port,"CSUMSTROBEPURE"} clock clock_name

sotoutput_delay 30 find{port, TTESTSEL") -tlock clock_nams
setload 0.2 all outputs()

set.max_fanout 1 allinputs{)
remove_attribute find{port,"ITCLK™) max_fanout

set_driving_celi -cell LIBINV -Jibrary ecpd07_ind ali_inputs()
seLdriving.cell -none find(port,"ITCLK")

compile -incremental.map

write -f vhdi -hier -0 btu.vhd

write -f db -hler -0 btu.db

report area > btu area.rep

report.timing > btu timing.rep

After the current design is set, a variable clock_name is defined with the name of
the clock signal. In this case the name of the clock signal is ITCLK. Then a clock
constraint is instantiated, that defines the clock with a period of 40 ns and the rising
edge set to O ns and the falling to 20 ns. The next constraint set_dont_touch_network
prevents the instantiation of buffers within this network. — For e.g. ES2 uses only one
large buffer, strong enough to drive the whole clock tree. Such a buffer is usually
instantiated manually after synthesis. — Then according to the technology library you're
syntesizing for, you’ll have to set operating conditions and provide a wire load model
for area estimation of the interconnections. The next two commands are used if you're
intending to insert scan-path logic after synthesis. They set some restrictions for the
optimisation of sequential cells to ease the scan-path insertion afterwards. — In the case,
you're willing to omit scan insertion, leave these commands aside. — Then set input
and output delay constraints in relation to the clock edge to all appropriate signals. —
The set_input_delay defines the delay of the path to an input. This value is the total
time a signal takes to propagate through logic in front of the input port. In contrast the
set_output.delay value is the delay through the logic hooked to the output port. The
common time reference is the rising edge of the clock signal. Include library setup time
and instance-specific clock skew in this calculation. — Use the set_load command with
library dependent typical values to constrain the output ports, and the set_max _fanout
for the input ports. An inverter is than specified as a driving cell for the according
inputs. Again these attributes are removed from the clock network, because it should be
considered special. Finally compile the module. The switch incremental_map takes care
of the already precompiled submodule. With the write command you are able to save the
results in different formats, e.g. vhdl, verilog or the Synopsys internal database format
(.db). After synthesis you usually create several reports to verify if the synthesized
results meet your desired requirements.

If you’re unaware of the meaning or usage of certain commands, you can type help
<command> at the dc_shell prompt or contact the online documentation iview from
the Unix prompt.

1.6 A design example

To illustrate the design flow and to make it a bit more clear and concise imagine the
following example displayed in figure 1.5. This example consists of two submodules,
the EXU_BODY, that holds the core functionality of the module, and a submodule called
EXU_MDMUZX, that is split from the body, due to the fact that it is for e.g. reused within
other modules. The block diagram entails the interconnect lines to other modules, and

‘peatesel sjubul fiy “euusip Ausiealun reauyoe | ‘ABojouyos | teindwio jo Jusieredeqg Yenelon W ‘Buj-1dig Aq 9661 @

Notes

Notes

TSRCYGATE

[T TSXMTGATE

[, T

—
¢ N
E EXU_MDMUX <I
%
)
]

BE 7
RWBAR —
EXUBUS ko
EXU_BODY

:
ki

MDATAW __|)
i
t

Figure 1.5: A design example: Example Unit (EXU)

gives a rough impression on the internal structure of the module.

- recmT Computer Technology Dept
-- University of Technology, Vienna
-- All Rights Reserved

- praject : UTCSU
- designer : Martin HORAUER
version i 1.0
file name : exu_ent.vhd
title : Example UNIT
.- module © entity
tools : Synopsys
ref. lib. : IEEE
ref. pkg. : 1164
.- Roadmap
- Date : 10/96

-- This file containts the top of the EXU.

S>> EXU
|
- A
- | |
- exu_body exu_mdmux

library IEEE;
use IEEE.std_logic_1164.all;

entity exu is

port {

ADDR: in std_logic_vector{l downto 0};

RWBAR: in std_logic:

BE: in std_logic_vector(3 downto 0});

CLK: in std_logic;

RESET: in std logilc;
MDATAR: out std_logic_vector (31 downto 0);
MDATAW: in std_logic_vector{3i downto G}
READMUX: in std_logic_vector(1 downto 0);
EXUBUS: in std_logic_vector (63 downto 0);
TSRCVGATE: in std_logic;
TSXMTGATE: in std_logic:
INTTERCV: out std_logic;
INTTSXMT: out std_logic;
INTDUTY: out std_logic;
SDUTY: out std_logic
Vi

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. Alf rights reserved.

end exu;

This file which holds the entity ot the EXU top module, is saved in the directory exu
under the filename exu_ent.vhd. ;

rcT Computer Technology bept
uUniversity of Technology, Vienna
All Rights Reserved

"pantasel sjubl || “euusip Aisisaun [Boluyoa | ‘ABojouyos | seindwiod Jo Juswsapedsq “1eneioH ‘W Bul-1dig A9 9661 ©

Notes

Notes

. All rights reserved.

iversity Vienna

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical Un

-~ project : UTCSU

- designer : Martin HORAUER
version ¢ 1.0

- file name : exu beh_arch.vhd

.- title T Example UNIT

- module : architecture

.- tools 1 Synopsys

- ref. lib. : IEEE

-~ ref. pkg. : 1164

- FRoadmap

- Date © o 10/%6

architecture BEHAVIORAL of exu is

signal MDATABRO: std_logic_vector(31 downto 0};
signal MDATABR1: std_logic_vector(31 downto 0};
signal MDATABR. 8td_logic_wvector(31 downto 8);
signal MDATABR3: Btd_logilc_vector{ 31 downto 0}

COMPONENT exu_body
port {

EXUBUS: in std_logic_vector(63 downto 0};
MDAT2W: in std logic vector (31 downto 0};
RESET: in std_logic;
CLE: in std_logic:
ADDR: in std_logic_vector{l downto 8};
BE: in std_logic_vector {3 downto 0);
RWBAR: in std_logic;
INTTSRCV: out std_logic;
TSRCVGATE: in std_logic;
TSAMTGATE: in std_logic;
INTTSXMT: out std_logic;
INTDUTY: out std_logic;
SDUTY: out std_logic;
MSRCV : out std_logic_vector {3l downto G};
TSRCV : out std_logic_vector (3l downto 6}
MSXMT : out std_logic_vector (31 downto 0};
TSXMT : out std_logic_vector (31 downto 0)

end COMPONENT;

COMPONENT exu_mdmux
PORT (
MDATABRO: in std_logic_vector(31 downto 0):
MDATABR1: in std_logic_vector (31 downto 0};
MDATRBR2: in s8td_logic_vector (31 downto 0};
MDATABR3: in std_logic_vector {31 downto 0};
MDATAR : out std_logic_vector (31 downto 0);
READMUX: in std_logic_vector{ 1 downto 0}
Vi
end COMPONENT;

begin

UEXUMDMUX : exu_mdmux port map (MDATABRO,MDATABRI,MDATABR2,MDATABR3,
MDATAR, READMUX
Vi

UEXUBODY: exu_body port map (EXUBUS, MDATAW, RESET,
CLK,ADDR, BE, RWBAR , INTTSRCV,
TSRCVGATE, TSXMTGATE,
INTTS¥MT, INTDUTY, SDUTY,
MDATABRO, MDATABR1 , MDATABR2 , MDATABR3
Y
end BEHAVIORAL:

The architecture of the EXU top module is saved as exw/exu_beh_arch.vhd. Finally the
configuration is stored as exw/exu_beh _cfg.vhd.

.- rcT Computer Technology Dept
- University of Technology, Vienna
.- All Rights Reserved

.- project : UTCSU
.- designer : Martin HORAUER
- version £ 1.9
.- file name : exu_beh_cfg.vhd
.- title : Example UNIT
.- module : configuration
.- tools ;. Synopsys
- raf. lib, @ -
ref, pkg.

- Roadmap

- Date 16/96

- description:

-- Thig file containts the top of the EXU.

"pansosel sybu |y “euusip Alisieaiun [eaiuyde | ‘ABojouyoe | Jeindwog jo justeueda(‘ieneioH W ‘Bul-idiq Aq 9661 ©

Notes

10

READMUX

Notes

MDATABR{0}

MDATABRI1}

MDATABR([3]

configuration CFG_EXU of exu is

for BEHAVIORAL
for UEXUMDMUX: exu mdmux use entity work.exu_mdmux (BEHAVIORAL) ;
end for;
for UEXUBODY: exu_body use entity work.exu_body (BEHAVIORAL) ;
end for;

end for;
end CFG_EXU;

Now that the top elements are specified, lets work out the interior of the submodules.
Figure 1.6 entails the schematic of the module EXU_MDMUX, which consists only
of one large multiplexer, that feeds one of four 32-bit wide buses, depending on the
value of the lines READMUX to the output MDATAR. For larger modules a table should
summarize the functionality, such as provided with the following submodule, to ease
understanding and to write down a functional mapping. The following code saved in
exu/exu_mdmux_ent.vhd holds the entity.

I1cT Computer Technclogy Dept
University of Technology, Vienna
211 Rights Reserved

project ¢ UTCSU

designer : Martin HORAUER
version ¢ 1.0

file name : exupkg_ndmux_ent,vhd
title : Modul Data Bus Multiplexer
module ; entity

tools : Synopsys

ref. lib. ¢ IEEE

ref. pkg. : 1164

Roadmap

Date s 10/96

library IEERE;
uge IEEE.std _logic_ll64.all;
USE work.exupkg.all:

entity exu_judmux is
port(
MDATABRO: in std_legic_vector (31 downto G}
MDATABR1: in std_logic_vector (31 downto 0);
MDATABRZ: in std_logic_vector (31 downto 0);
MDATABR3: in std_logic_vectori3l downts 0);
MDATAR : out std_logic_vector {31 downto G};
READMUX: in std_logic_vector{ 1 downtoc 0}
y

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

end exu_mdmux;

And in addition exu/exu_mdmux_beh_arch.vhd specifies the architecture.

1o Computer Technology Dept
University of Techneclogy, Vienna
211 Rights Reserved

‘pantasal siybu |y "BuUSIA Alisiaamun [eoluyoa) ‘ABojouyos | sendwiod Jo Jusweiredeq “eneloH W ‘Bul-1diq Aq 9661 O

Notes

11

NOteS project ; UTCSU

designer ; Martin HORAUER

version i 1.0

file name : exu_mdmux_beh arch.vhd

titla : Modul Data Bus Multiplexer adopted for EXU
module : architecture

tools : Synopsys

ref. 1ib. : ZIEEBE

ref. pkg. : 1164

Roadmap

Date : 16/96

- - MDATAMUX

- - outputs: MDATAR

o

g bt

> -- inputs: MDATABRx, READMUX
(24

o -- description: Data Multiplexer

2
5=

T P_READMUX: procesa(READMUX,MDATABR3,MDATABRZ,
= MDATAER], MDATABRD)

-
ol TSXMT
e R
S if (READMUX = °11%) then

ey MDATAR <= MDATABR3;
..
2 MSXMT

@ ..
@ elsif (READMUX = *10%) then

= MDATAR <= MDATABRZ;

o et et e
-] TSROV

@ T CTTTIToTrTTTTTTTITITIIITIITeT
L elsif (READMUX = “01%) then

c MDATAR <= MDATABRI;
e
[

elsif (READMUX = ~0(*) then
MDATAR <= MDATABRO;
else
MDATAR <= ZERD3Z;
end if;
end process;

end BEHAVIORAL;

The second submodule EXU_BODY consists of an input bus EXUBUS, that provides the
EXU with varying data. The registers MSRCV and TSRCV sample the data of this bus on
the activation of the gate signal TSRCVGATE, that is exteranlly activated synchronous
to the bus. In analogy, the registers MSXMT and TSXMT are sampled by TSXMTGATE.
Both signals are additionally fed through this unit (INTTSRCV and INTTSXMT) to a fol-
low up module. All these four 32-bit registers can than be read via a 32-bit access from
the address MDATABR[X].

At the bottom, there are two registers DUTYH and DUTYL located, that can be written.
The 32-bit DUTYH and the lower 16 bits of DUTYL serve as DUTY input for a compara-
tor module. Bit 17 of register DUTYL enables or disables this comparator, that performs
a comparison of 48 bits between EXUBUS[S5,8] and the Duty value. When the Exubus
is greater than or equal to Duty, a pulse is generated on the output-line INTDUTY, that
is active for one clock period, whilst signal SDUTY is active as long as the EXUBUS >

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Te

DuTy.
Element Width R/W ADDR BE Reset description
MSRCV 32 R 0 X 0 Macrostamp receive
TSRCV 32 R 1 X 0 Timestamp receive
MSXMT 32 R 2 X 0 Macrostamp transmit
TSXMT 32 R 3 X 0 Timestamp transmit
DUTYH 32 W 0 3:0 0 DUTYH high
DUTYL 17 w 1 20 0 Enable and DUTYL

The following listings belong to the files exwexubody entvhd and
exu_body_beh_arch.vhd.

1cnt Computer Technalogy Dept

‘pansasal sybu ||y euusip AusieAun feoluyos) ‘ABojouyos | Jeindwon jo usweedsq ‘enesoH ‘W Bul-1dig Aq 9661 ®

Notes

12

EXUBUS {63,0

Notes ’

. Y
INTTSRCV { v
[Msrevie332) [rsrovpre b= lrsgcvcme

2

MDATAR[O]} MDATAR[}}]
INTTSXMT {nl ln'
7 2
[MsxmT 53323 L rsxmMT 3101 TSXMTGATE
MDATAR[2} MDATAR{3}
i
EXUBUS
INTDUTY 1
>= ENB
SDUTY ~—
DUTY -
[purvnissae | | purviespas |
. "
MDATAW MDATAW

Figure 1.7: Schematic of the submodule EXU_BODY

University of Technology, Vienna
All Rights Reserved

project i UTCsU

designer : Martin HORAUER
- version ¢ 1.0

file name : exu_body_ent.vhd
.- title : Example Unit
.- module : entity
- tools + Synopsys

ref. 1ib. ; IEEE

ref. pkg. : 1164
N Roadmap

- Datre : 10/%6

LIBRARY IEEE;
USE IEEE.std _logic_1164.all;
USE IEEE.std_logic_unsigned,®>=%;

USE work.exupkg.all;

ENTITY exu body IS
port(

EXUBUS: in std_logic_vector (63 downto 0};
MDATAW: in std logic vector {31 downto 0};
RESET: in std_logic;
CLK: in std_logic;
ADDHR: in std_logic_vector {1l downto 0);
BE: in std_logic_vector{3 downto 0);
RWBAR: in std_logic;
INTTSRCV: out atd_logic;
TSRCVGATE: in std_logic;
TSXMTGATE: in std_logic;
INTTSXMP: out std_logic;
INTDUTY: out std_logic;
SpUTY: out std_logic;
MSRCV ; out std_logic_vector (31 downto 0);
TSRCV : out std_logic_vector (31 downto 0F;
HMSXMYT : out std_logic_vector(3l downto 0};
TSXMT : out std_logic _vector (31 downto)
Vi

END exu_body;

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

1cw Computer Technology Sept
university of Techneclogy, Vienna
£11 Rights Reserved

project : UTCSU
designer : HMartin HORAUER
version 1 1.6
- Eile name : exu_body_ben_arch.vhd
- - title : Example Unit
module : architecture
tools : Synopsys
ref. lib. : IEEE
ref. pkg. : 1164
Roadmap
bate s 10/96

- The example unit samples timestamps on external events, asg

"peniasal SJyBY |y “euusia AlisieAiun [ealuyos | *ABojouyos | seindwod §o juswenredeq ‘ueneioH "W “Bul-'Idia AQ 9661 ©

Notes

Notes

. All rights reserved.

iversity Vienna

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical Un

-- can be transmit or receive pacckets. Receive packets trigger via TSRCV a time-

-- stamp, which is sampled into the MSRCV and TSRCV registers. Transmit packets

<- trigger TSXMT wich samples a timestamp into MSXMT and TSXMT.

The duty-timer DUTY is responsible to periodically trigger S/R/D/A-duties.

-- The duty-registers are loaded via two 32-bit wide ragisterz and are enabled via the
-+ 17th bit of the lower register. When the EXUBUS>=DUTY an INTDUTY + SDUTY are

-- driven active. EXUBUS<DUTY restores SDUTY w. the consecutive rising edge of CLK.
Otherwige SDUTY is restored one clock-period after the falling edge of the enable
of the current timer. The INTDUTY is just one period active.

ARCHITECTURE BEHAVIOEAL OF exu_kody IS

SIGNAL DUTYH : std_logic_vector {3l downto G};
SIGNAL DUTYL : std_logic vector (15 downzo 0};
SIGNAL EB ; std_logic;

SIGNAL LSDUTY : std_logic;

SIGNAL TMPINTDUTY, TMPSDUTY : std _logic;
SIGNAL QBARSDUTY : s5td_logic;

INTTSRCV <= TSRCVGATE;
INTTSKMT <= TSXMTGATE;
SDUTY <= LSDUTY;

Process: E_MSRCV

-- Purpose:

-- Inputg: EXUBUS,RESET,MTCLE, TSRCVGATE

-- Qutputs: MSRCV

P_MSCRV : FROCESS (EXUBUS,TSRCVGATE, CLK,RESET)
BEGIN
IF (RESET='0') THEN
MSRCV <= ZER0O32;
ELSE
IF {CLK=’1‘ AND CLK'event) THEN
IF (TSRCVGATE='1’) THEN
MSRCV <= EXUBUS (63 downto 32}
END IF;
END IF;
END IF;
END PROCESS P_MSCRV;

Proces P_TSRCV

-- Purpose:

EXUBUS, RESET, CLK, TSRCVGATE
TSRCV

P_TSRCV : PROCESS (RESET,CLK, TSRCVGATE, EXUBUS)
BEGIN
IF (RESET=‘0‘) THEN
TSRCV <= ZERO3IZ;
ELSE
IF {CLR='1l‘ and CLK‘event} THEN
IF (TSRCVGATE='1‘')} THEN
TSRCV <= EXUBUS (31 downto 0);
END I¥;
END IF;
END IF;
END PROCESS P_TSRCV:

-~ Process: P_MSXMT

CLK,RESET, EXUBUS, PSXMTGATE
-+ Outputs: MSXMT
P_MSXMT : PROCESS (CLK,RESET, EXUBUS, TSXMTGATE)
BEGIN
IF (RESET='0'} THEN
MSYXMT <= ZFERO32;
ELSE
IF (CLE='1‘ and CLK’event} THEW
IF (TSXMTGATE~'1'} THEN
MSYXMT <= EXUBUS (63 downto 32);
END IF;
END IF;
END IF;
END PROCESS P_MSXMT;

Frocess:

-+ Purpose:
- Inputs: RESET, CLK, EXUBUS, TSXMTGATE
-+ Qutputs: TEXMT
P_TSXMT : PROCESS (RESET,CLK,EXUBUS, TSXMTGATE)
BEGIN
IF (RESET='0) THEN
TSXMT <= ZERO32;
ELSE
IF (CLK='1' and CLE‘event} THEN

13

‘pansesal sybl |y “euuBIA Alisieaiun fealuyos | ‘ABojouyos | isindwog jo usweeds(seneioH ‘W ‘Buj-1dig Aq 9661 @

Notes

Notes

. All rights reserved.

iversity Vienna

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical Un

IF (TSXMTGATE='1’} THEN
TSXMT <= EXUBUS(31 downto 0);
END IF;
END IF;
END IF;
END PROCESS P_TSXMT;

- Process: P_DITYH
-+ Purpose:
-- Inputs: RWBAR, BE, RESET, CLK, MORTAW
-- Qutputs: DUTYH
P_DUTYH
BEGIN
IF {RESET='0’) THEN
DUTYR <= ZERQO32Z;
ELSE
IF (CLK='1’ and CLK’event} THEN
IF (ADDR=*10" and RWBAR=‘0’ and BE=~"GU0Ll*) THEN
DUTYR{7 downto 0} <= MDATAW(7 downto 0);
ELSIF (ADDR=*10% and RWBAR='(’' and BE=*(010*} THEN
DUTYH{15 downto 8} <= MDATAW(15 downto 8};
ELSIF (ADDR=*10" and RWBAR=’(‘ and BE="0100"} THEN
DUTYH (23 downto 16) <= MDATAW(23 downto 16);
ELSIF (ADDR=*10" and RWBAR=’0’ and BE=*1000") THEN
DUTYH (31 downto 24) <= MDATRW(31 downto 24);
ELSIF (ADDR=¥10* and RWBAR='(' and BE=*0011*} THEN
DUTYH (15 downto 0} <= MDATAW(15 downto 0);
BLSIF (ADDR=*10* and RWRAR='(‘’ and BE=*1100"} THEN
DUTYH (31 downto 16) <= MDATAW(31 downto 16);
ELSIF (ADDR="10" and RWEBAR='(’ and BE=*1111*) THEN
DUTYH <= MDATAW;
BEND IF;
END IF;
END IF;
END PROCESS P_DUTYH;

PROCESS (RWBAR,BE, RESET, CLK, MDATAW)

-+ Process: P_DUTYL

-+ Purpose:
-- Inputs: ADDR,RWBAR,BE,RESET,CLK,MDATAW
-~ OQutputs: DUTYL,EB

P_DUTYL : PROCESS (RWBAR,BE,RESET,CLK,MDATAW)

0’} THEN
ZERO16;
EB <= ‘0‘;
ELSE
IF (CLR=‘1‘ and CLK‘event) THEN
IF {(ADDR="(1" and RWBAR='{' and BE=%0001*} THEN
DUTYL {7 downto 0} <= MDATAW(7 downto 0};
ELSIF (ADDR="01* and RWBAR='0’ and BE="0010"} THEN
DUTYL (15 downto 8} <= MDATAW(15 downto 8);
ELSIF (ADDR=*01* and RWBAR='(’' and BE=*0100*} THEN
EB <= MDATAW (16} ;
ELSIF (ADDR="01* and RWBAR='0' and BE=<0011%) THEN
DUTYL (15 downto 0) <= MDATAW(15 downto 0);
ELSIF (ADDR=*01* and RWEAR='0‘ and BE="1100")} THEN
ER <= MDATAW(16);
ELSIF (ADDR=*01*" and RWBAR='0‘ and BE=%1111") THEN
DUTYL <= MDATAW (15 downto 0);
EB <= MDATAW{16};
END IF;
END IF;
END IF;
END PROCESS P_DUTYL;

-- Procees: P_DUTY

<. Purpose:

-- Inputs: DUTYH, DUTYL, EB, EXUBUS, CLK, RESET
-- Qutpute: INTDUTY, 5DUTY

INTDUTY <= (TMPSDUTY RND QBARSDUTY];
LSDUTY <= TMPSDUTY;

P_DUTY : PROCESS (DUTYH,DUTYL,EB, EXUBUE, CLK, RESET)
BEGIN
IF (RESET="0'} THEN
TMPSDUTY <= 0’ ;
ELSE
IF (CLK='1l' and CLK'event) THEN
IF ((BXUBUS(55 downto B) >= (DUTYH & DUTYL)} and EB='1'} THEN
TMPSDUTY <= ‘17;
ELSIF ({EXUBUS (55 downto &) >= (DUTYH & DUTYL}) and EB='0‘'} THEN
TMPSDUTY <= '§7;
ELSE
TMPSDUTY <= (' ;
END IF;
END IF;
END IF;
END PROCEES P_DUTY:

-+ Purpose:
-- Inputs: CLK, TMPSDUTY , RESET
-- Outpurs: QBARSDUTY

14

"paAtesal siUbU |l "BUUBIA AJiSisAIUN feoiuyaa] ‘ABojouyos | teindwon jo Juswsieds(‘ienelon ‘W ‘Bui-1diq Ag 9661 ©

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

P_DUTYGATE : PROCESS (THMPSDUTY,CLK,RESET)
BEGIN
IF (RESET="0') THEN
QBARSDUTY <= ‘G7;
ELSE
IF (CLE=’1 and CLK‘event) THEN
QBARSDUTY <= not (TMPSDUTY! ;
END IF;
END IF;
END PROCESS P_DUTYGATE;

END BEHAVIORAL;

15

The Figure 1.5, the previously description and the Table ?? are a fundamental de-
scription that should exist in any case before one starts coding. It eases VHDL-coding
drastically, clarifies the the dataflow and gives always a brief overview of the module.

Sometimes in the previous files we’ve included our own package. This could look
like the following one. In the package we declare constants, functions and procedures
that are frequently used, whilst their code remains in the package_body section. In our
example there are only constants, which can be used either for HDL-coding or for
simulation. Note that the type time must be hidden from the synthesis tools, therefore
use the Synopsys synthesis off and on switches (they are special comments treated

seperately) as illustrated.

IceT Computer Technology Dept
University of Technology, Vienna
All Rights Reserved

project ¢ UTCSU
designer : Martin HORAUER
version ¢ 1.0

file name : exupkg_pkg.vhd
title -

module -

tools : Synopsys

ref. 1ib. : IEEE

ref. pkg. : 1164

Roadmap

Date r10/96

library IEEE:
use IEEE.std_logic_1164.all;

package exupkg is

constant ZERC16 :std_logic_vector:= “0000000000000000%;
constant ZRRO32 :std logic_vector:= *0{000060600000000000000000000000%;

- -8ynopsys synthesig off

constant t_CLK_period : time := 40 ns;
congtant t_half_ CLK_period : time := 20 ns;

constant t_WAITCYCLE: time := 0 ns; .- x Waitestates (x*CLR)
constant t_waitcycle_pulse_width: time := 0 ns;

constant t_ADDR_sstup : time := 5 ns;
congtant t ADDR hold : time := 5 ns;
constant t_ADDR_valid : time := (t_ADDR_setup+t CLK_pericd+t_ADDR_holgd);
constant t _ADDR_finigh: time := (t CLR period-t_ADDR_hold);

constant t_ywb_setup : time := 5 ng;
constant t_rwb_hold : time := 5 ns;
constant t_rwb_valid : time := (t_ADDR_valid+t_rwb_setup+t_rwhb_hold);
constant t_rwh_finish: time := (t_ADDR_finish-t_rwh _hold);

constant t_data write_getup : tima :=
constant t_data_write hold : time := 5 ps ;
constant t_data write_finish: time :x {t_CLE_period-t_data_write_hold};

5 ns;

5 ns;
(t_ADDR_valid+t_be_setup+t_ba_hold);
(t_ADDR_finish-t_be_hold);

constant t_be_setup : time
constant t_be_hold : time
constant t_be _walid : cime
constant t_be_finish: time

R il l;

constant t_gate hold : time := 3 ns;

constant t_gate_setup : time := ¢_half CLE period;
constant t_gate_finish: time := (t_CLK period-t_gate_hold);
- -synopsys synthesis _on

end exupkg;

package body exupkg is
end exupkg;

‘pantesal sBU |y “euusiA Ausiealun [eoiuyos) ‘ABojouyos | seindwon) jo juswenedsg ‘1eneioH ‘W Bu-1dig AqQ 9661 ©

Notes

16

Now analyze the files with the command:
%vhdlan -nc -spc exu.pkg.vhd exu_mdmux_ent.vhd exu_mdmux_beh_arch.vhd exu_body_ent.vhd
exu.body.beh.arch.vhd exu_body_beh_arch.vhd exu_ent.vhd exu_beh_arch.vhd exu_beh.cfg.vhd

Notes

The first switch avoids printing a header to the standard output, and the second (-spc)
forces the analyzer to check the code for fragments that wouldn’t be syntesizable.
When all errors are diminished, proceed with simulation.

.- Icw Computer Technology Dept
Univergity of Technology, Vienna
Z11 Rights Reserved

project uTcsu
.- designer Martin HORAUER
- vergion s 1.0
.- file name exu_tb.vhd
.- title Example Unit - Testbench
.- module IEEE
.- tools t SYNOpsys
- ref. lib. : IEEE
.- ref. pkg. : 1164,arith
- Roadmap
Date 10/96

library IEEE;
use IEER.std _logic_1164.all;
use IEEE.std _logic_arith.all;

- synopsys translate off

use IBRE.std_logic _textioc.all;
use std.textio.all;

-~-- synopsys translate_on
USE work.exupkg.all;

entity exu_tb is
end;

architecture tb of exu_tb is

FILE afile: TEXT is in *exu_control.dat;
FILE rfile: TEXT is in *exu_control.dat*;
FILE dfile: TEXT is in ®exu_control.dat®;
FILE bfile: TEXT is in ®exu_control.
FILE hfile: TEXT is in *“exu_control.
FILE yfile: TEXT is in "exu_control.
FILE ffile: TEXT is in "exu_control.
FILE ifile: TEXT is in “exu_control.
FILE jfile: TEXT ig in "exu_control.

signal ADDR: std_logic_vector(l downto 0};
signal RWBAR: std_logic:

signal BE: atd_legic_vector {3 downto 0);
signal CLK: std_logic;

signal RESET: std_logic;

signal MDATAW: std_logic_vector (31 downto 0);
signal MDATAR: atd_logic vector (31 downto 0);
signal INTPBUS: std_logic_vector ({63 downto 6}
signal TSRCVGATE: std_logic;

signal TSXMTGATE: std_logic;

signal INTTSRCV: std_logic;

signal INTTSXMT: std _logic;

signal INTDUTY: std_logic;

signal SDUTY: std_logic;

gignal READMUX: std_logic_vector(l downto 0);

componant exu
port{

ADDR: in std_logic_vector (1 downto 0);

RWBAR: in std _logic;

BE: in std_logic_vector(3 downto 0};

CLK: in std_logic;

RESET: in std_logic;
MDATAR: out std logic_vector(3]l downto 0);
MDATAW: in std_logic_vector{3l downto 0);
READMUX: in std_logic_vector(l downto 0}
INTPBUS: in std_logic_vector(63 downto 5};
TSRCVGATE: in std_logic;
TSXMIGATE: in std_logi
INTTSRCV: out std_logic;
INTTSXMT: out std_logic:
INTDUTY: out std_logic;
SDUTY: out std_logic
bi

end component;

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

beain

example_unit: exu
port map (ADDE, RWBAR,
BE, CLK,RESET, MDATAR, MDATAW, READMUX,
INTPBUS, TSRCVGATE, TSXMTGATE, INTTSRCV,
INTTSXMT, INTDUTY, SDUTY
Vi

P_CLK: process

"pantasal sibU |y ‘BuusiA AusieAaiLn [eoluyos | ‘ABojouyos | Jsindwog jo Juswepedaq ‘teneion ‘W 'Bul-1dig AQ 9661 ©

Notes

Notes

. All rights reserved.

iversity Vienna

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical Un

begin
CLK <= ‘1‘;
wait for r_half CLK period;
CLE <= '0';

wait for t_half_ CLK period;
end process P_CLK;

P_ADDR: PROCESS

variable r_line: line;

variable control: character;

variable cADDR: std_logic_vector(l downto 0};
variable w: boolean;

begin
r=true;
while w locp

if endfile{afile} then
assert false report "Testfile zu Ende*;
wi=false;
waic;
end if;
readline{afile, r_line);
read{r_line, control};
if {control='A’) then
readlinelafile, r_line};
read(r_line, CADDR);
ADDR <= *00*;
wait for (t_CLK_period-t_ADDR_setup);
ADDR <= CADDR;
wait for t_ADDR valid;
walt for t WAITCYCLE;:
ADDR <= *00%;
wait for t_ADDR finish;
else
readline(afile, r_line);
end if;
end loop;
wait;
end process P_ADDR;

P_RWBAR: PROCESS

variable r_line: line;

variable control: character;

variable crwb: std_ logic:
variable w: boolean;

begin
wr=true;
while w loop
if endfilef(rfile} then
assert false report *Testfile zu Ende®;
w:=false;
wait;
end if;
readline(rfile, r_line);
read(r_line, control};
if (control='R’) then
readiine({rfile, r_line);
read{r_line, crwb);
RWBAR <= '17;
wait for (t_CLK_period-t_rwb_setup);
RWBAR <= crwb;
wait for t_rwb_valid;
wait for t WAITCYCLE;
RWBAR <= '1°;
wait for t_rwb_finish;
elge
readline(rfile, r_line);
end if;
end loop;
walt;
end process P_RWBAR;

P_DATA: PROCESS

variable r_line: line;

variable control: character;

variable cdata: std_logic_vector (31 downto 0);
variable w: boolean;

begin

wiztrue;
while w locp

if endfile(dfile} then
aggert false report *Testfile zu Ende®;
w:=false;
wait;
end if;
readline(dfile, r_linej;
read(r_line, control);
if {control='D’} then
readline(dfile, r_line};
hreadir_line, cdatal;
MDATAW <= =36000000000C00C0C00G0G0000000000";

wait for (2=t CLK pericd+t WAITCYCLE-t data write_setup);

MODATAW <= gdata;
wait for {t_data write setup+t _data write hold);
MDATAW <= *0000G0000000060C0000000000000000;
wait for t_data_write_finish;

else

readline{dfile, r_linej;

end if;

end loop;

walit;

end process P_DATA;

17

"panlesel siybu jiy “euusiIn AlsIoAaun [eouyoe] ‘ABojoulps | 1eindwoy Jo jusweuedsq ‘Jeneion ‘W Bu-idiq Ag 9661 ©

Notes

Notes

. All rights reserved.

iversity Vienna

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical Un

P_BE:PROCESS

variable r_line: line;

variable control: character;

variable cbe: std_logic_vector(3 downto €}
variable w: boolean;

begin

wistrue;
while w loop

if endfileibfile) then

asgert false report *Testfile zu Ende*;
wi=falae;

wait;

end if;

readline(bfile,

r_line);

read{r_line, control};

if (control=‘3¢)

readline(bfile,

then
r_line);

hread(r_line, cbe);

BE <= ®0000%;
wait for (t_CLK _period-t_ADDR_setup);

BE <= cbe;
wait for t _be_valid;
wait for t_WAITCYCLE;
BE <= *{000";
wait for t_be_finish;

else

readline(bfile, r_line};

end if;

end loop;

wait;

end process P_BE;

P_RESET:PROCESS

variable r_line: line;

variable control: character;

variable creset: std_logic;
variable w: boolean;

begin

RESET <= *1;
wistrue;
while w loop

if endfile{hfile) then
assert false report *Testfile zu Ende*;
w:=false;
wait;
end if;
readline(hfile, r_line);
read(r_line, control);
if (control="H'} then
readline(hfile, r_line};
read(r_line, creset};
RESET <= creset;
wait for 3*t_CLK_period;
RESET <= ’1¢;
wait for t_WAITCYCLE;
else
readline (hfile, r_line);
end if;
end loop:
wait;
end process P_RESET;

P_READMUX: PROCESS

variable r_line: line;

variable control: character;

variable creadmux: std_logic_vector (1l downto 0);
variable w: boolean;

begin

READMUX <= *00*;
wWi=trua;

while w loop

if enafile(jfile) then
assert false report “Testfile zu BEnde*;
wi=false;
wait;
end if;
readline(hfile, r_line};
read{r_line, contralj;
if (controi=‘J’] then
readline(hfile, r linej;
read(x_line, creadmux];
READMUX <= creadmux;
wait for 3*t_CLX pericd:
READMUX <= ®{0*%;
wait for t_WAITCYCLE:
else
readline {(ifile, r_line};
end if;
end loop;
waity
end process P_READMUYX;

P_INTPBUS: PROCESS

variable r_line: line;
variable control: character;

variable CINTPBUS: std_logic_vecter (63 downto 0} ;

18

i
;
i
;
3
i

i
!
E
:

"Pantasel sbu iy “euusip Ausiealun feajuyos] ‘ABojouyos 1 JeIndwo) jo wawsiedaq seneton W -Bul-idid Aq 9661 O

Notes

19

Notes variable w: boolean;

begin

wiztrue;
while w loop

if endfile(yfile) then
assert false report *Testfile zu Ende®;
wi=false;
walt;
end if;
readline{yfile, r_linej;
read{r_line, control};
if {control='y’) then
readline{yfile, r_line};
hread(r_line, CINTPBUS);
WAIT for 3 ns;
INTPBUS <= CINTPBUS;
wait for 3*t_CLK_period - 3 ns;
wait for t_WAITCYCLE;
else
readline{yfile, r linej;
end if;
end loop;
wait;
end process P_INTPBUS;

P_TSRCVGATE: PROCESS

variable r_line: line;

variable control: character;

variable ctsrev: std_logic;
variable w: boolean;

begin

wr=true;
while w loop

if endfile(ffile) then

assert false report “Testfile zu Enda~;

wixfalse;

wait;

end if;

readline(ffile, r_line);

read(r_line, control);

if (control=’F’') then

readline(ffile, r_line};

read(r_line, ctsrev};
TSRCVGATE <= ctsrcv;
wait for 3*t_CLK_period;
wait for t_WAITCYCLE;

else

readline(ffile, r_line);

end if;

end loop;

walt;

end procegs P_TSRCVGATE;

P_TSXMTGATE: PROCESS

variable r_line: line;

variable control: character;

variable ctsxmt: std_logic;
variable w: boolean;

begin

wimtruag;
while w loop

if endfile(ifile) then
aggert false report *"Testfile zu Ende®;
w:=falge;
wait;
end if;
readline(ifile, r_line};
read(r_line, control);
if {control='I’) then E
readline{ifile, r_line}; H
read(r_line, ctaxmt};
TSXMTGATE <= ctgxmt;
wait for 3%t _CLK period;
wait for t_WAITCYCLE;

else

readline(ifile, r_line);
end if;
end loop; ‘
wait;
end procegs P_TSXMTGATE; f

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technicai University Vienna. Al rights reserved.

end tb;

configuration cfg_exu_tb of exu_th is E
for tb
for example unit: exu use entity work.EXU(BEHAVIORAL); i

end for; E

end for;
end cfg_exu_th; E

The testbench that is illustrated now should explain a way of coding to make testing a
bit more modular and easy to use. It is based on some preassumptions, that when they

‘poAsesas sUbL |1y “euusip Ausieaiun) [eatuyos | *ABojouyos | semndwos jo uswspedaq JenesoH W Bui-1diq Aq 966) ©

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

20

are met by the design, make it easy to use the testbench with little modifications on
ail different kinds of modules. The assumption is that you have a periodic bus-cycle
and that all signals that don’t apply to such a category can be modeled in the same
periodic fashion. What follows is a testbench file that reads stimuli data from an ASCII
data file. According to the periodic signals, the stimuli are taken from this file only,
when they should be valid. In the gaps between, when the values are of no interest
for the bus-cycle, they are set to a default value, that is usually related to the idle
time. The testbench is structured into several processes, where every process reads
simultaneously to all others the stimuli data. The data file consists of a comment line
followed by the data. The relevant data for a process checks, if the first letter in a
comment line corresponds to the letter that is applied to it. If the comparison is true the
following data in the next line is applied to the described models. Therefore to keep all
processes simultaneous, within every bus-cycle must exist a data value for EVEery process.

A - AAGress =#** RESET *#wwétsssrsusn
0
R - RWB

o

D - MDATAW
22226783

B - Byte Enable
F

- RESET

- REAMUX

=

H

0

J

0

Y - INTPBUS
0123ACDESE32F012
F - TSRCVGATRE
0

I - TSXMTGARTE
o

A

- Address *¥** DUTYH *t#usxasxsstwr

o

- RWB

FFFFFFF

1

R

G

D - MDATAW
F

B - Byte Enable
F

- RESET

=Y

H
1
J - REAMUX
0
Y - INTPBUS
OFFFFFFFFFFFDOO
- TSRCVGATE
- TSXMTGATE

- Addregs rxx* DUTYL séxweshwsksrhn

et

0
F
0
I
0
A
0
R - RWE
0

D -
OR37FFFE
B - Byte Enable
¥

H - RESET

- REAMUX

>

- INTPBUS
OFFFFFFFEFFFDOG

1
J
[
Y
0
F - TSRCVGATE

- TSXMTGATE

- Address **%* nothing *wxstwikrseens

=y

- MDATAW
3C16E2Z3
- Byte Enable

0
I
4
A
)
R - RwB
o
D
o
B
¥
- RESET
i

* REARMUX

=Y

- INTPRUS
OFFFFFFFFFFFEQD
- TSRCVGATE

H
J
o
Y
G

- TSXMTGATE

¥
1]
I
G
A - Address **¥x nothing *wwarraewsewsew
[

k=

R - RWB
o

D - MDATAW
G3C10R23

B - Byte Enable
3
H

- RESET

- REAMUX
o

1

J

0

Y - INTPBUS
OOFFFFFFEFFFFF 0
F - TSRCVGATE

[
I - TSXMTGATE

[

A - AQAress wrvx DUTYH *xssrdwwkmsmrn

=S

- RWB

- MDATAW
FFOFFFF
- Byte Enable

1
R
0
B
Fl
B
F

- RESET

- REAMUX

=S

H

1

J

0

Y - INTPRUS
O0GFFFFFFFFFFO000
F - TSRCVGATE
0

I

o

A

- TSXMTGATE

- Address trs DUTYL #kskwmrxsknsn
01

R - RWB

0

D - MDATAW ------- EB=1
OA37FFFE

B - Byte Enable
F

H - RESET

- REAMUY

S

1
J
[
Y - INTPBUS
OOFFFFFFFFFFFDO0
F - TSRCVGATE

- TSXMTGATE

0
I
0
A - AQdress **** nothing **eesstxwwkusn
0

&

R - RWB

0

D - MDATAW
03C1oKE23

B - Byte Enable
F

H - RESET

1

J - REAMUX

i3}

Y - INTPBUS
GOFFPFFFFFFFFELO
F - TSRCVGATE

[
I - TSXMTGEATE
[

A - AQAress **** nothing *++wxxssrsentw

=

R - RWB
4

O - MDATAW
03016823

B - Byte Enable
F

- RESET

- REAMUX

=Y

H
1
J
G
Y - INTPBUS
GOFFFFFFFFFFFFGO
F - TSRCVGATE

[
T - TSXMTGATE
o

"pamasal slubl |y Buusip Alisieaiun [eouyos | “ABojouyos | Jendwog Jo swepedsaq ‘ieneroH ‘W ‘Bul-1dig Aq 9661 ©

Notes

21

N teS B - AdAress *vtx DUTYL wxarekessrstws H - RESET
‘ , 01 1

R - RWE J - REAMUX
o 11
D - MDATAW - ------ EB=0 Y - INTPBUS
GRIOFFFE 0123ACDES432F(12
B - Byte Enable P - TSRCVGATE
F o
H - RESET 1 - TSXMTGATE
1 1
J - REAMUX R - AdQress =hxx MSRCOV *¥#sstktskxess
a6 6o
Y - INTPBUS R - RWB
GOFFEFFFFFFPFFGO 1
F - TSRCVGATE D - MDATAW
0 03C10E23
I - TSXMIGATE B - Byte Enable
0 F
A - Rddress **r* nothing *+~erkerzsswis H - RESET
. oo 1
8 R - RWB J - REAMUX
> ¢ 00
@ D - MDATAW Y - INTPBUS
® 03C1CEZ3 0123ACDES432F012
@ B - Byte Enable F - TSRCVGATE
o F 0
£ L - Big/Little Bndian I - TSXMIGATE
= 0
= H - RESET A - Address **#* TSROV wrssawwhxexses
= 1 01
< 5 - reax R - RWE
© 00 1
c Y - INTPBUS D - MDATAW
$ oooo1i1100001100 03C10823
Fd F - TSRCVGATE B - Byte Enable
> ¥
2 I - TSXMTGATE H - RESET
‘B [1
5 A - Addrems *#%¥ TGRCY *wktremassrsin J - REAMUX
R 33
= R - RWB Y - INTPBUS
D 0123ACDES432F012
E D - MDATAW F - TSRCVGATE
© 22226789 o
€ B - Byte Enable 1 - TSXMTGATE
=R 0
$ u - meser A - RAATeSE *wx* MEXMT *#kssvardssris
- 1 10
g J - REAMUX R - RWB
& o 1
© v - Iyresus D - MDATAW
[} G0000OFFFFFFPEDQ 03C10E23
_g F - TSRCVGATE B - Byte Enable
S 1 F
D 1 - roxmreaTE H - RESET
L 1
5 A - hddress **** nothing =**k**swxrxzrw J - REAMUX
=1 00 10
D R - omwB Y - INTPBUS
£ o 0123ACDESE32F012
Q D - MDATAW F - TSRCVGATE
O pacioen 0
"5 B - Byte Enable I - TSXMTGATE
o oF o
T 4 - RESET A - Rddress trer TSXMT *rtsxexstsesir
o 11
g J - REAMUX R - RWB
T 00 1
@ Y - INTPBUS D - MDATAW
£L 00GCOUAARAARARGGD 03C10E23
8 F - TSRCVGATE B - Byte Enable
0 13
E I - TSAMTGATE H - RESET
3 ¢ 1
@ A - Address vrv TSXMT *rxwexesresss J - REAMUX
S 11 11
I R - RWB Y - INTPBUS
.1 0123ACDES432F012
= o - woamw P - TSRCVGATE
o 22226789 o
© B - Byte Enable I - TSXMTGATE
- F 0
S
[a)
> . > . . - -
o Due to the fact that simulation is often a very interactive process, create an include file
& that holds the relevant commands for the simulator (e.g. which signals to trace). The
pid

C

following could be an example for the previously described EXU.

i
cd /EXU_TB H
trace CLK P
trace RESET }
trace ADDR

trace BE

trace RWBAR

trace MDATAW

trace MDATAR .
trace EXUBUS i

cd /BXU_TB/EXAMPLE_UNIT/UEXUBODY
trace DUTYH :
trace DUTYL
trace EB :
trace INTDUTY

"patesel sybl Iy “euusIA Alsienlun Jeoluyos | ‘ABojouyos] Jsindwon jo Juswispedaq “4aneioH ‘W ‘Bui-1diq Aq 9661 ©

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. Al rights reserved.

22

Figure 1.8: The waveform window

trace SDUTY
trace TSRCVGATE
trace TSXMTGATE

trace MSRCV
trace TSRCV

Now analyze the testbench with the command

%vhdlan -nc exu_tb.vhd

and start the simulator either via

%ovhdldbx -i exu_tb.inc CFG_EXU_TB
%ovhdlsim -i exu_tb.inc CFG_EXU_TB.

In addition to the commands specified in the include file, you can enter commands at
the command prompt (e.g. run 3000). The waveform window (see Figure 1.8) is rather
intuitive.

When the simulation runs perform as intended, you can continue with synthesis. The
major functionalities for synthesis were already described in the prior sections. Therfore
the commands of the following script should already be at hand.

"peatesel sIUbU ||y BuueIA AlIs1eAiun [Boyos | ‘ABojouyos | leinduiog yo Juewsnedeq Jeneion ‘W Bui-idig Aq 9661 ©

Notes

23

Notes

. All rights reserved.

iversity Vienna

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical Un

/* targeted for Synopsysvi.da */
F T Ty
PACRAGES={exu_pkg,vhd}

analyze -f£ vhdl PACKAGES

/* EXU =/

e owwx o/

EXU_VHDL_FILES={exu_body_ent.vhd exu_body_beh_arch.vhd exu_mdmux_ent.vhd
exu_dmux_beh_arch.vhd exu_ent.vhd exu_beh_arch.vhd}
analyze -f vhdl EXU_VHDL_PILES

elaborate exu

current_design{exu}

clock_name = CLK

create_clock clock name -period 40 -waveform {0 20)
set_dont_touch_network {clock_name}
set_operating_conditions “IND_MAX®

Bet_test_methodology full_scan

set_scan_style multiplexed_flip_ flop

set_input_delay 6 find{port,*EXUBUS*) -clock clock_name
set_input_delay 8 find({port, “TSRCVGATE") -clock clock_name
set_input_delay 8 find(port,*TSXMTGATE®) -clock clock_name
set_outpur_delay 20 find{port, "INTTSRCV*) -clock clock_name
set_ourput_delay 20 find{port, YINTTSXMT*) -clock clock_name
set_load 0.2 all_outputs(}

set_max_fanout 1 all_inputs()

remove_attribute find(port,*CLK*) max_fanout

set_driving cell -cell LIBINV -library ecpd07_ind all_inputs{}
set_driving_cell -none find(port,“CLK"}

campile

write -f vhdl -hier -o comp/exu.vhd

write -f db -hier -0 comp/exu.db

Teport_area > comp/exu_area.rep

report_timing > comp/exu_timing.rep

/* SCANpath insertion */

/twrn:-tr’ttturtt&tw«t«/

/* In the case you have & bidirectional databus
create a new level of hierarchy, where only
the bidirectional function of the data busg is
described. On top of this file insert scan
path legic. After scan-insertion you’ll
have to replace the file with the bidir
information with a file where the pads are
instantiated. */

set_test_methodology full_scan

set_scan_style multiplexed flip flop

test_default_period = 1000.0

test_gdefault_delay = 50.0

test_default bidir_delay = 550.0

test_default_gtrobe = 956.0

create_test_clock CLK -waveform (450.0 550.0]

check_test

insert_test -no_disable -max_scan_chain_length 500

check_test > scan/check__test_after_testinserciomrep

/* generate buffer tree for tegt_scan_enable signal */

set_max_fanout 1 find(port, “test_se¥)

compile -only_design_rule

write -f db -hier -o scan/exu_scaned.db

write -f vhdl -hier -o scan/exu_scaned.vhd

check_test

create_test _patterns > scan/patterns.log

/* generate reports on the final design */

/:wt**navi—wrtk*tn:—aﬁn:xktttntn:*t*'w'tw*t/

check_design > gcan/check_exu.rep

report_area > gcan/exu_area.rep

report_cell > scan/exu_cell.rep

report_net > scan/exu_net.rep

report_reference > scan/exu_reference.rep

report_hlerarchy > scan/exu_hierarchy.rep

report_timing > scan/exu_timing.rep

report_transitive fanout -clock_tree > scan/exu_fanout.rep

report_test -port > scan/exu_ports.rep

report_test -scan path > scan/exu_scan_path.rep

report_test -coverage > scan/exu_coverage.rep

report_test -faults > scan/exu_faults.rep

report_test -dont_fault > scan/exu_dont_fault.rep

report_test -mask_fault > scan/exu_mask_fault.rep
report_test -assertions > scan/exu_assertions.rep
repart_test -atpg_conflicts > scan/exu_atpg_conflicts.rzep

/* instantiate the pads */
A A S T T PPy

read -f vhdl top_exu.vhd

/* now prepare for CADENCE +/
/kta----rn*aﬁtttatae«tttt*ta/

current_design top_exu

verilogout _single_bit = true

symbol_library = {StdLik_cdk.sdb, OscLib_cdk.sdb, PadLib_cdk.sdb,
basic_cdk.sdb, sheets_cdk.sdb, ripper_cdk.sdb j
synthetic_library = standard.sidb

verilogout_no_tri=true

define name_rules cadence_ verilog -allowed *A-Z0-9_{) {}*;
change_names -rules cadence_verilog -hierarchy
current_design exu_mdmux

ungroup -all

write -f£ verilog -o e2c/exu_mdmux.v

current_design exu_body _test_1

ungroup -all

write -f verilog -o s2c/exu_body_test_1.v

current_design exu

write -f verilog -o s2c¢c/exu.v

current_design top_exu

write -f verilog -o s2c/top_exu.v

‘pantesel sbu |y "BuuaiA Alsiealun [eouyos | ‘ABojouyos | ieindwiod Jo Juswepedeq ‘1SNBIOH ‘W ‘Bul-1diq Aq 9661 ©

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. Al rights reserved.

24

The first part of this script analyzes, constrains and syntesizes the example unit
(EXU). Refer to previous sections for an explanation. Afterwards scan-path-insertion
is performed. First the scan methodology is set to full-scan and the scan-style is set to
multiplexed flip flop. The next few lines define the timing related test attributes given
by the ES2 documents. The check_test command is useful to identify non-scanable
sequential cells. Then with the command insert_test scan-cells are inserted and the
scan-path is instantiated. Afterwards the test select input (fes_se) is constrained and
buffers are instantiated to fix design-rule violations. The Ccreate_test_patterns instruction
calculates test patterns for this path. Next the reports give an overview of the derived
results.

Before the modules are made ready for transfer to Cadence, pads should be instantiated.
One way would be to write a structural VHDL-source file, that instantiates several
VERILOG-files after this stage, that can be read into CAdence via the Verilog-In
procedure. ~Refer to the next section how to continue then with the layout— Now
before you proceed with Cadence, you should perform a post-synthesis simulation. —
Take the last saved design unit (in our case scan/exu_scaned.db) and load it into dc_shell:

>read -f db scan/exu_scaned.db
>current._design exubody_test_l

>ungroup -all

>current.design exu

>ungroup -all

>write -f vhdl -o scan/exu.synthesized.vhd

Than edit this VHDL-file, to check that the lines for the library inclusion are cor-
rect (e.g. use work. ECPDO07.all;), and the name of the instantiated architecture (e.g.
SYN_BEHAVIORAL). In general both items are handled via the setup-files and should be
already instantiated as intended.

In addition you have to edit your testbench file now to add a process that drives the
test-select and test-input lines, the component to match the entity with the newly added
test-ports, the port-mapping to the component and finally the configuration at the end of
the testbench to point to the correct architecture.

Analyze the VHDL-netlist exu_synthesized.vhd and the modified testbench and invoke
the simulator the same way you did for simulation at the logic level.

TR

‘Pentasel sjubl Iy “euusia Ausieaun leauyda) ‘ABojouyos 1 Jsindwoy Jo Wewselredeq ‘leneioH W ‘Bul-'1dig Aq 9681 ©

Notes

Notes

© 1896 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

Chapter 2

Back-End design with
CADENCE

Before you start with the back-end design of your project using CADENCE, make sure
you got an own directory from within your project directory available (e.g. /project/<
projectname >/cds). You can make a soft-link from within your home-directory to ease
traversing through the system. Furthermore you need to have two files (or two links) in
this directory called .cdsinit and .simrc. All this should already have been done by your
project head, if not contact him.

Before invoking Cadence you must allow the program to display the windows on
your terminal. Therefore type % xhost -+[terminalname] within an xterm window.
Change to the working directory (e.g. /project/<< projectname >/cds) and enter %
ictb & The command interface window (CIW) is displayed as illustrated in figure
2.1.

Opes Devige Managrr Technslegy Fle UBUes Tronsisters My 1

"Done with stactop initislization.

Moune

Figure 2.1: The CIW interface

First create a new library that corresponds to the name of your project (e.g. exu) with
Open —Library «. In the displayed form fill in: Library Name <. You are now
prompted to create a new library - select «=. Then in the next form specify a working
and/or user group and apply the according permissions, leave all other items to their
default. Open the library browser Design Manager — Library Browser you should
see your newly created library.

At the Ciw command line prompt enter load
"/project/proto/VerilogIn.ii". The form for importing Verilog files,
with some defaults preset, is displayed in table 2.1. From several items check and adjust
the following settings:

The import session can take several minutes up to several hours - stay patient. — The CIW
reports many Warnings and Errors that should be checked carefully. — After the import
process has finished you should have at least one schematic view in your design library,
which you should open (e.g. via the Library Browser). Within the schematic view of
your top-level design perform a Check and Save in every level of the hierarchy in a

25

"Pentasel siubu |y ‘euueip Alisieaun [ealuyos | ‘ABojouyos | Jaindwog Jo Juswenedeq “eneioH W ‘Bul-dig A 9661 ©

Notes

Notes

© 1996 by Dipl.-Ing. M, Horauer, Departement of Computer Technology, Technical University Vienna. Alf rights reserved.

26

Target Library Name exu
Reference Libraries StdLib PadLib basic
Verilog Design Files /project/exu/syn/s2c
Verilog Options lusersfict2/staff/es2lib/ecpd07/utl/verilog/dllib_ind
—y /project/dd/exu/syn/s2c +libext+.v
Verilog Cell Modules ¢Import
View 4 Schematic

Table 2.1: The VerilogIn form

bottom up manner. Before doing so at the top instance, perform the last final changes
as instantiating and connecting an oscillator cell, a power-on reset and all the other
elements that make up the final design. Furthermore you require for e.g. a cell called
LIBTOPNETS, that adds information for the supply nets, and some pads for both supply
of core and peripheral. How many and what kind of pads have to be used therefore is
described in [ES294] on page 3-3 ff.

¥
i
i
8
£
H
1

(&5 | H)

Al

DIN|®E A

ERE RS

soste L sehbisglefaleidtcs ot m—r— RN TI T e —

Figure 2.2: The Schematic View

When you have fixed everything and done the final ’check and save’ operation,
bring up the hierarchy browser via Tools ~—Floorplan/Schematics and Floorplan
—Hierarchy Browser. For a flat design, click on the top instance and perform
Hierarchy ~— Generate Physical Hierarchy. The views autoLayout and autoAbstract
are created.

For a hierarchical design, the above action should be repeated for every
level of hierarchy - therefore expand the top element by instance. Alterna-
tively you can also open the flat auroLayout and use the browser to cross
select the instances of each hierarchy and perform a Create — Softblock.
Anyway don’t regroup the hierarchy due to the fact that CADENCE would
rename several nets. Then you would no longer be able to run an LVS
check later on.

<

The previously generated autoLayout can now be opened into Cell Ensemble by
selecting Tools —Floorplan/P&R —Cell Ensemble. As a first step load the net
information for routing (track widths and separation of distinct nets).

‘pansasel siybu |y "euusip Ausieaun jeajuyos | ‘ABojouyos | Jeindwiod 10 Juswiepiede(q saneiop ‘W ‘Bui-1dic] Aq 9661 ©

Notes

Notes

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

27

Route ~—Modify Net ~sNet Properties File
#/users/ict2/staff/es2lib/ecpd07/utl/startup/netData
#read

This file contains information for the nets vdd! and gnd!. Now add glue cells such
as LIBCORNER with Place —Glue Cell —Add. — To move the cells out of the
placement region perform Floorplan — Reinitialize. Then make Region selectable in
the Object Selection Window (OSW) and click on the default region, that was created
after reinitialisation. Perform Floorplan »—Analyze Floorplan Objects and enter the
desired number of rows (use an even number preferably) and a percentage for the
desired row utilization. Both values require some experience and must be derived in an
interactive manner. (e.g. 90% row utilization) — Keep in mind that the router expands
primarily up and a bit on both sides but not down! — Drag the placement region in a way
that the routing channels between the standard cell rows become a bit smaller in height
than the standard cells. Therefore considering these aspects, the width of the placement
region should be greater than the height in case you have a square core area in mind.
Now adjust the design outline to the default region and perform a second reinitialisation
with only the instance status left on.

Load the floorplan file Place —1/O commands — Read Initial File to place the pads
around the placement region. When the file is correct all but the LIBCORNER pads
should be moved to their desired places. In some cases the placer swaps a few pads,
therefore control the placement carefully. Than move and rotate the corner
cells to their locations and use the command Edit — Align Cells to position them and
change the property @ from unplaced to placed.

| VDDPY1 left 1
|PIN_TEST SE left 2

|PIN_TEST SI1 left 3

| .. The example on the left shows how
| GNDPY1 bottom 1 such a placement file should be
| PIN_DATAI O bottom 2 constructed. The first column lists
|PIN_DATAI_1 bottom 3 the pin names, the second the po-
ce sition and the third the order they
| PIN_CSUTIME13 right 23 are positioned. A counter clock-
| VDDPY5 right 24 wise placement is performed.

| GNDPY2 top 1

| PIN_CSUTIME14 top 2

Start the placement of the standard cells with Place — Automatic

#Insert Feedthru

Feedthru Library Name: StdLib
Feedthru Master Name: LIBFEED
Placement Snap Grid: 0.1 (Ecpd07)

Sometimes after placement of the standard cells you have to fix up the position of the
corner cells again. Now bring up the menu for the power cells Place —Power Cell
~— Add Manual. Depending on the size of the placement region you add either only cap
cells on each end of a row, or when the length of a row exceeds some values, influenced
by the operating frequency (see [ES294] on page 3-6), you'll have to add power bars.
For the later take care that the cells have all the same x-positions after placement,

e .

"panIssel siybu Iy "euusiA Ausielun feotuyos | ‘ABojouyos | seindiwog jo Wweweapedsq “JenesoH ‘W Buj-1diq £q 9661 @

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technolegy, Technical University Vienna. Al rights reserved.

28

otherwise the routing becomes worse. In the Define Power Cell menu select LIBLCAP
and LIBRCAP for the cap cells. For powerbar grid routing add also LIBPGB40 and
LIBPGFILL and disable the distribute feedthru option. Usually the later two should
be omitted in most cases +. Now draw two rectangles over the left and right side
of the standard cell rows and select . Power cells should be inserted, if not correct
the placement and repeat the above step. Figure 2.3 gives a glimpse of an exemplary

L L AT R T — @ o Bat. tna @

Tesin Besig Wedew Cootr GO Pacrpins biym Pae S Ey

,

L
o

S

T . b premmansaie PR e — P R ————

Figure 2.3: A placed design
placement.

;; Now select all instances and do a Place ~Snap to Grid with a value of
0.1.

Placement is now finished and can be saved as for e.g. placed.

The next step is Route ~Channels — Create and to modify the net properties of
dedicated nets, such as for e.g. the clock net, via Route —+Modify Net — Modify Net
Properties. — To determine the width and separation of the clock net see [ES294] on
page C-6. — Set the preferred layer to CME2, the signal type to clock and the criticality
to 105.

Then invoke interactive global route on the clock and supply nets. Route — Global
Route —Interactive Global Route, select Initialize Net and enter a net name for
global routing (e.g. |Clock, vdd!, gnd!). With Settings you can enlarge the snap points
from 1 to say 19. You should recognize all available snap points for the selected net.
You can select those you want to connect either by clicking on them or via the Select
Scan Chain menu. — Take care of the order you select points, because it can influence
the desired routing order. — When you’ve all desired nets selected, Connect Set will
tie them together. Via Modify Set you can apply a routing width and a preferred layer
for the selected segments. Therefore if you want different widths of segments (e.g. the
main clock trunk is in general far thicker than the clock net within a channel), you've
to modify those separate parts individually. Before you push the Exit Net button,
the modified snap points should be selected, otherwise you can get malicious routing
results. On exiting the net, select the Fix Global Route option and to remove all the
snap points. If you’re prompted for an edge connected attribute, you’ve obviously

R L s

"paatesal sIUBu Iy "euusiA Aisiealun festuyos) ‘ABojouyos L Jendwiog 4o ewspeds(YeneroH ‘W ‘Bul-dig Aq 9661 &

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. Al rights reserved.

29

forgotten to connect some instances.

After all special nets are global routed, you can exit the Interactive Global Route
menu by hitting the Done button. Now perform global routing Route — Global Route
~— Automatic <. This takes a while - take a look at the CIW. Then continue with
Route —Detail Route — Automatic. Choose the Compact button to set the routing
grid to 0.1 microns and start the detail router. If errors occur they are prompted in the
CIW whilst routing. Then save the design under a meaningful name (e.g. layout), as
shown in figure 2.4,

L L R] - L2 L o 45z o

Tesis Sevgp Wmiew Coesls 08 Pescslss by S ek oy

| mewe &_protiassesaits B e B ATt e St

Figure 2.4: The final layout

Now that placement and routing is finished, finalize the chip by performing a DRC and
LVS run followed by a final sign-off simulation.

Open the previously saved view and change to the layout interface Tools — Layout. In
the CIW window select Technology File — Compile Technology and specify

/users/ict2/staff/es2lib/ecpd(7/utl/startup/diva. PR #load

In the layout view choose Verify ~DRC in full and flat mode, with the switches grid
and correct set. In the case that errors are reported, you can view them via Verify
~+Markers —Find.

Tip: In the layout view you can modify segments easily by changing the

v values of the geometries you get from the properties window. Modification
takes place on a solely segmented basis, therefore if you move a segment
it is disconnected from the rest. In contrast the cell ensemble view remains
the segments tied to each other when modified.

If you’re not able to select a wire, you must first descend into the desired module/channel
and perform the check there once more to locate the same errors again. If you want to
circumfere the required steps of traversing through the hierarchy, you can explode the
channels from within the cell-ensemble view by Route ~— Detail Route — Explode
Channels, which will promote the channels to the upper hierarchy level.

"paAlasss siubl |y "euusip AlsieAlun fesluyoa] ‘ABojouyoe 1 seindwo o uswepedeq 4eneioy ‘W Bul-idig Aq 9661 ©

Notes

Notes

© 1996 by Dipl.-ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

30

In the case when the DRC checker reports zero faults proceed with Verify — Extract
and select ¢Macro Cell as extract method. When succeeding a view called extracted is
created, that is used for the LVS run.

Prior to the LVS run compile the technology file diva.lvs, that resides under the same
directory as the one before for the DRC run. Then start Verify —LVS to compare the
schematic versus the extracted view. In the case the run succeeds check the log file if
the two views match; — if not search the directories LVS/schematic and LVS/layout for
files with a .out extension (e.g. mergenet.out). These files contain information about the
nets that caused the mismatch. (e.g. A merged net in the schematic is mostly caused by
a short in the layout.) Open the layout in cell ensemble and highlight the conflicting
nets with Edit —Search. Zoom into the regions where these nets cross and search
for violations. Correct them and run the DRC, EXTRACT and LVS again. Hopefully
you’ve corrected everything without introducing new errors, and the netlists now match.
— Save the design!

How to perform a post layout simulation? Within the cell ensemble view select all
global nets with and perform an Analyze - Parasitics —Extract on them. Than
make sure that you have enough swap space available, before succeeding with the
next step Analyze — Parasitics ~ Write reduced SPF with the option physical name
mapping 4. The name of the SPF file should be < top.cellname > .spf. At the CIW
command prompt enter > ES2generateSDF. This brings up a form, where you have
to enter the library name, the name of the top_cell and which kind of SDF (min, typ or
max) to generate. When you select all three, you’ll end up with six files (three sdf files
and three reports with an extension .out). Check the reports carefully whether you’re
violating fanout and fan-in rules or not. If you got violations cross check them with the
library data book.

V NOTE: If you connect two clock buffers in parallel and the load is greater
than the one a buffer can drive, you'll see a warning. Check if the given
load is less than the added load of the buffers.

Now lets start with simulation. Open from within the schematic via Tools ~— Simulation
the Verilog-XL environment. Change Setup —Record Signals from Top Level I/O
to All Signals. Enter at the CIW prompt > ES2simTemplate and leave all options to
their default values. Change to the simulation run-directory and edit the generated file
ES2testfixture.v. At the bottom of the file you’ll see a line for inclusion of an SDF file
(top.sdf) and an inclusion of another verilog file (default_stim.v) that supplies the user
provided stimuli. An example of such a stimuli file is provided in appendix ??. Change
the name to point to your file. What is still missing, is a file top.sdf in the simulation
directory that has valid back-annotation information. Therefore enter at the CIW >
ES2sdfTranslation. This copies the appropriate SDF file into the directory, generates a
report that should be checked, and produces a soft-link called top.sdf that points to the
real SDF file.

Tip: If you have connected two clock buffers in parallel, check that the

W back-annotated SDF values for the buffer delays don’t differ too much,
otherwise your simulation run won’t be successful. Make the two delays
for CKBUF! and CKBUF2 equal.

Now press the Start Interactive button and simulation will start unless you haven’t
introduced any error in a previous stage. When simulation ends bring up the waveform
viewer via Debug — Utilities — View Waveform. The simulation results that are stored
below shmDir/shm.db in the run-directory is loaded automatically. You can now add
signals of different levels to the waveform window by Edit — Browser/Display Tool.
When all desired signals are on screen save the setup for other/later sessions. After

"panasal s|BU Iy “BuusiA Alsieaun jeoluyos | ‘ABojouyoa | 1eindwon jo Juewepedaq 4enesoH "\ "Bu-1dig Aq 9661 ©

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

31

you’ve checked the simulation (see figure 1.8) rename the directory shm.db and edit the
previously saved setup-file to point there. This will avoid that the simulation run can be
overwritten by follow-up runs.

Few Em warier .ty

2

" ™
>
]

)
-

S N e T

woase Lo vELUpetoid et (3 = MiSingl L] L

Figure 2.5: The Waveform window

When everything ’s fine you can create a gds2 file out of the final layout view via Trans-
lators ~—Stream Outfrom the CIW. Fill in the working directory, choose Stream DB,
Library Version 5.0, microns, append a layer map table (see appendix ?? for details) and
activate in the options form the items report bad polygons and precision report. In the
end you can load the script >1load "/project/proto/retr.il". Then evalu-
ate these script via >eval (retr()) to get some statistics and reports of the final
layout.

‘panseses siuby [y BuLBIA AlsisAiun [Baluyoa] ‘ABojouyos | seindwiog) 1o Juswepedseq UeneroH "W -Bul-1dig Aq 9661 &

Notes

Notes

© 1996 by Dipl.-Ing. M. Horauer, Departement of Computer Technology, Technical University Vienna. All rights reserved.

Bibliography

[D.91]
[ES294]

[HYE9S5]

[IEES7]
[IEE93]
{1.92]
[P.90]

[PT95]

[R.93]

[R.94]
[5.96]

Perry D. VHDL. McGraw Hill, 1991,

ES2 ECPDO7 Library Handbook, ES2 Process-Independent Library Hand-
book, ES2 Asic Design Handbook, 1994.

LiuJ. Hsu Y., Tsai K. and Lin E. VHDL Modelling for Digital Design Syn-
thesis. Kluwer Academic Publishers, 1995.

IEEE Standard VHDL Language Reference Manual - Std 1076-1987, 1987.
IEEE Standard VHDL Language Reference Manual - Std 1076-1993, 1993,
Basker J. A VHDL Primer. Prentice Hall, 1992.

Ashden P. The VHDL Cookbook. available in postscript on the Internet, South
Australia, 1990.

Kurup P. and Abbasi T. Logic Synthesis Using Synopsys. Kluwer Academic
Publishers, 1995.

Lipsett R. VHDL: Hardware Description and Design. Kluwer Academic
Publishers, 1993.

Ariau R. Circuit Synthesis with VHDL. Kluwer Academic Publishers, 1994,

Palnitkar S. Verilog HDL, A Guide to Digital Design and Synthesis. Prentice
Hall, 1996.

32

