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Abstract

This paper! presents the specification and prototype implementation of a printed circuit board
termed Network Time Interface (NT1). Based on the M-Module industry standard, the NTI
provides a turn-key solution for adding high-resolution synchronized clocks to fault-tolerant dis-
tributed systems built upon off-the-shelf hardware. It is built around our UTCSU-ASIC, which
contains most of the hardware support required for external clock synchronization in distributed
systems, like a rate- and state-adjustable local clock, automatically maintained accuracy inter-
vals, and provisions for connecting GPS receivers. Apart from interfacing the UTCSU to the rest
of the system, the primary purpose of the NT1 is to support accurate timestamping of clock syn-
chronization data packets transmitted/received by network controllers with DMA-capabilities.

Keywords: M-Module, external clock synchronization, hardware support, Global Positioning
System (GPS), ASIC, VHDL.
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1 Introduction

Real-time systems need to interact both correctly and timely with their environment. For tasks
starting at time r and having their strict dead-line at d the probability of correct task execution
is stated as P(r 4+ Ae < d|B) = 1 with Ae denoting the required execution time under the
conditions B, which cover all possible faults, see [Zoe95]. It seems obvious that predictable
operation of a real-time system requires a system design that incorporates a close relation to
time. The need for this requirement aggravates when the system becomes distributed, in the
sense that tasks are processed concurrently on seperate nodes. A mechanism to synchronize the
clocks of such a system must be enforced in order to guarantee the correct and timely interaction
of such processes. In general such mechanism come in two flavors namely the internal and
external clock synchronization.

The purpose of internal clock synchronization is to keep the clocks within well-defined bounds
of each other by disseminating and processing time information. If Cy(t) and Cy(t) denote any
two clocks, they are said to have precision © when |Cy(t) — C,(t)] <7 Vit > to.

Most internal synchronization algorithms are purely software-based and provide a precision
in the 10 ms-range only. Considerably better results can be achieved with dedicated hardware
support. Clocks synchronized in the 10 us-range can be built on top of the pioneering Clock
Synchronization Unit (CSU) described in [KO87]; about 100 us are achieved by the hardware
assisted clock synchronization scheme of [RKS90]. Even much smaller precisions are attained
by phase-locked-loops incorporating clock voting, cf. [RSB90]. This approach, however, is not
directly comparable to the other ones since it requires a dedicated clocking network.

If system time provided by synchronized clocks must also have a well-defined relation to
real-time ¢ (e.g. Universal Time Coordinated (UTC), the only official and legal standard time,
or GPS-time), then the so-called external synchronization problem needs to be solved. One has
to ensure here that there is some well-defined and small accuracy a,(t) sucht that any local
clock Cp(t) satisfies |C(t) — t| < ,(t) for all t > tq.

The most widely used external clock synchronization scheme is doubtlessly the Network Time
Protocol (NTP) designed for disseminating UTC among workstations throughout the Internet,
see [Mil91] for an overview. Under realistic conditions, worst case accuracies of approximately
20 ms were observed by [Tro94].

Of course, NTP was designed for partially asynchronous systems, exhibiting potentially
unbounded communication delays. More can be done in fully synchronous systems, see [Sch97a]
for a quite comprehensive collection of recent papers on this topic. For instance, there is a
software-based solution [VRC97] that “sprays” external time obtained via GPS into broadcast-
type LANSs, achieving a precision/accuracy in the 10 us-range.

This paper is devoted to a detailed description of the hardware support for interval-based
clock validation introduced in [Sch95]. Implemented as a Network Time Interface M-Module
(NTT), our solution allows to extend state-of-the-art hardware technology with fault-tolerant
synchronized clocks providing a precision/accuracy in the 1 ps-range. This is accomplished by
integrating our custom Universal Time-coordinated Clock Synchronization Unit (UTCSU-ASIC)
with memory and special-purpose decoding logic in a way that facilitates accurate transmission
and reception timestamping for DMA-type network controllers.

The remaining sections of our paper are organized as follows: The rest of Section 1 is
devoted to the description of the general node architecture and an assessment of the uncertainties
incorporated in time dissemination. Section 2 sheds some light on the interior of the UTCSU,
providing the necessary knowledge for integration on the NTI. The detailed NTI requirements




along with the resulting functional/architectural issues are provided in Section 3. Section 4
elaborates on implementation issues, which are complemented by an appendix containing timing
diagrams, schematics, and VHDL source code of our NTI prototype. In Section 5, a VHDL-based
simulation model of the NTI is briefly outlined, which greatly simplifies board development and
testing. Finally, a comprehensive list of further enhancements is appended in Section 7.

1.1 Node Architecture

A distributed real-time system consists of a set of nodes which are interconnected by a suitable
network. The nodes are self-contained computers, which run applications that need to interact
both correctly and timely with the environment. Actions and observations at different nodes
require a time service to coordinate them appropriately. The distributed nature aggravates the
installation of a time service considerably, because autonomous running clocks have a tendency
to drift apart or might fail grossly. Hence, clocks need to be synchronized by virtue of a suitable
algorithm executed on each node. Figure 1 identifies the major components of a system with
two generic nodes.

CPU Memory .| Memory CPU

UTCSU COMCO| . - | comco UTCSU

®

R A ‘ B R " external timesource

network medium

Figure 1: Two nodes of a distributed system

Each node contains a local clock, that is, our UTCSU-ASIC (see Section 2), a Communica-
tion Coprocessor (COMCO) providing access to the network, a CPU responsible for executing
the software-part of the clock synchronization algorithm, and some kind of memory to store
receive/transmit data packets. The (general purpose) CPU can be the node’s central processor
or, preferably, a dedicated microprocessor or microcontroller. Similarily, we do not impose a
particular network type and/or COMCO, except that the latter must be able to send /receive
data packets indepently of CPU operation. More specifically, we assume that the COMCO
fetches/stores packet data (e.g. via DMA) from/in the memory when it transmits,/receives a
Clock Synchronization Packet (CSP). We will return to the problem of deciding whether a
particular COMCO is suitable for one approach in Section 1.4.

1.2 Basic Operation Principle

A major concern in highly accurate/precise clock synchronization is exact timestamping of CSPs
at both sending and receiving side. In fact, the well known result of [LL84], saying that even n
ideal clocks cannot be synchronized with a precision less than ¢ (1 —1/n) in case of packet trans-
mission time uncertainty e, justifies this requirement. However, packet transmission /reception




involves several steps that potentially contribute to e. For COMCOs with DMA-capabilities,
those steps are as follows, cf. [KOS87]:

1. Sender-CPU assembles the CSP
Sender-CPU aquires the memory to write the CSP

Sender-CPU signals sender-COMCO to take over for transmission

Ll

Sender-COMCO tries to aquire the channel

5. Sender-COMCO arbitrates the memory, reads the CSP data and pushes the corresponding
bit stream onto the channel

6. Receiver-COMCO pulls bit stream from the channel
7. Receiver-COMCO arbitrates the memory and writes the CSP
8. Receiver-COMCO notifies the receiver-CPU of packet reception via an interrupt

9. Receiver-CPU acquires the memory and processes the CSP

Software-based clock synchronization performs CSP timestamping upon transmission resp.
reception in steps 1 resp. 9. Thus, € incorporates the latency to arbitrate memory (2,5, 7 and
9), the channel access uncertainty 4 — 5, any variable network delay 5 — 6, and the reception
interrupt latency 8 — 9. The dominating contributions are 4 — 5, which can be quite large
for any network utilizing a shared channel, and 8 — 9, which is seriously impaired by code
segments with interrupts disabled. Fortunately, in our LAN-based setting, we can safely neglect
the contribution from 5 — 6 since there are no (load- and hop-dependent) queueing delays from
intermediate gateway nodes.?

To reduce the variance of ¢, clock synchronization hardware must be placed as close to the
network as possible. Ideally, a CSP should be timestamped at the sender resp. receiver side
when, say, its first byte is pushed on resp. pulled from the channel. However, this requires
support from the interior of the network controller, which is usually not available.

In order to make our approach compatible with existing network technology, we insert a
timestamp on-the-fly into a CSP in a way that minimizes the uncertainty of the transmis-
sion/reception latency instead. This is accomplished by employing a refinement of the DMA-
based coupling method proposed in [KO87], which is based on a modified address decoding logic
for the memory that

¢ generates a trigger signal for sampling a timestamp into a dedicated UTCSU holding-
register when a certain byte within the transmit/receive buffer for a CSP is read/written,
and

e transparently maps the appropriate UTCSU holding-register into some portion of the
transmit/receive buffer.

This way, CSP timestamping occurs in step 5 resp. 7 of the data transmission/reception
sequence introduced above. Note that this special functionality is only present when a trans-
mit/receive buffer is accessed by the COMCO, whereas CPU-accesses act as plain memory
accesses.

*Note that this statement, would remain true if all intermediate nodes in a multi-hop network were also equipped
with the NTDs packet timestamping mechanism described below.




1.3 Packet Timestamping Example

To illustrate the resulting process of packet timestamping, we briefly discuss one possible scenario
depicted in Figure 2; alternative scenarios may be found in [SS95].

Sender - UTCSU: TTSXMTB >r Transmit TS {

[: : +

Transmit buffer: Dest. Adr. :— don’t care l Usef Datra ]
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Receive buffer: [ Sre.Adr. l Dest.Adr. | Transm. TS. l Rec. TS. I UsezData |

W

]
Receiver - UTCSU: UL .ff_ie_.ﬂ'

Figure 2: Packet timestamping

In order to send a CSP, the CPU writes the packet into the memory and signals the COMCO
to take over for transmission. The COMCO in turn sets up communication and eventually fetches
CSP data from memory, performing the required parallel to serial conversion and pushing the bit
stream onto the channel. The CPU, which executes concurrently with the COMCO, is notified
when the CSP has been sent. What really matters here is that whenever the COMCO fetches
data from the transmit buffer, it has to read across the destination address causing the decoding
logic to generate the trigger signal TRANSMIT. Upon occurrence of this signal, the UTCSU
samples a fransmit timestamp into an internal register, which is transparently mapped into a
certain portion of the transmit buffer and hence inserted into the outgoing packet. Note that
trigger and mapping address may be different.

By the same token, when the COMCO at the receiving end writes a certain portion of the
receive buffer in memory, the trigger signal RECEIVE is generated by the decoding logic, which
causes the UTCSU to sample the receive timestamp into a dedicated register. It can be saved
by the CPU upon reception notification or even immediately in an unused portion of the receive
buffer, see [SS95] for the appropriate details.

1.4 Suitable Communication Coprocessors

DMA-type COMCOs are available for a wide variety of networks, ranging from fieldbusses like
Profibus over Ethernet-based networks up to advanced high-speed FDDI or ATM networks. Ex-
cluded from being used in conjunction with our NTT are COMCOs providing on-chip storage for
packets, as is the case for most CAN controllers. Integrating our clock synchronization hardware
with this type of controllers is only possible if appropriate transmit and receive timestamping
signals are generated by the COMCO.

However, we should mention that assessing transmission/reception delay uncertainty ¢ of a
particular COMCO usually means experimental evaluation. This is due to the fact that most
controllers utilize internal FIFOs, which introduce uncertainties in the time between fetching
a byte from memory and putting it on the channel. Whereas adjusting the triggering position




of transmit/receive timestamp might help in reducing/circumventing such impairments, it is
nevertheless not easy to find and justify a suitable choice without actual measurements. Note
again that such problems would vanish entirely if additional information from the COMCO is
available, i.e. an explicit signal marking actual transmission/reception of a byte of the CSP.

2 UTCSU

In this subsection, we provide a succinct overview of the wealth of functionalities of our custom
Universal Time Coordinated Synchronization Unit (UTCSU); further information is available
in [SSHL97], [SL96], [SS95] and especially in [Loy96]. Manufactured as an ASIC in 0.7 pm
CMOS technology, the UTCSU accommodates about 80,000 gates on a 100 mm? die packed
into a 180-pin PGA case. Figure 3 gives an overview of the major functional blocks inside the

UTCSU.
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Figure 3: Interior of the UTCSU

2.1 Local Clock

The centerpiece of our chip is a local clock unit (LTU) utilizing a 56 bit NTP-time format,
which maintains a fixed point representation of the current time with 32 bit integer part and
24 bit fractional part, cf. [Mil91]. Clock time can be read atomically as a 32 bit timestamp with
resolution 272* ~ 60 ns that wraps around every 256 s, and a 32 bit macrostamp containing
the remaining 24 most-significant bits of seconds along with an 8 bit checksum protecting the
entire time information.

The local clock of the UTCSU can be paced with any oscillator frequency f,s. in the range
of 1...20 MHz, is fine-grained rate adjustable in steps of about 10 ns/s, and supports state
adjustment via continuous amortization as well as (optional) leap second corrections in hardware.




Those outstanding features are primarily a consequence of our novel adder-based clock design,
which uses a large (91 bit), high-speed adder instead of a simple counter for summing up the
elapsed time between succeeding oscillator ticks. Of course, a proper augend value (in multiples
of 2751 s & 0.44 fs) must be provided by the atop running clock rate synchronization algorithm
to enforce the desired rate adjustment.

To support interval-based clock synchronization, our UTCSU contains two more adder-based
“clocks” in the ACU that are also driven by the oscillator frequency f,,.. They are responsible
for holding and automatically deteriorating the 16 bit accuracies a™(t) and ot (¢) in a way that
sustains inclusion of external time t, ie., t € [C(t) — a7 (t),C(t) + at(t)]. Both accuracies
can be (re)initialized atomically in conjunction with the clock register in the LTU. In addition,
some extra logic suppresses a wrap-around of &~ and ot and zero-masks potentially negative
accuracies during continuous amortization.

2.2 Timestamping-Support

A number of external events, supplied to the UTCSU via polarity programmable input lines, can
be time/accuracy-stamped with local time and accuracy (i.e., o~ and at), which are atomically
sampled into dedicated registers upon the appropriate input transition. Optionally, an interrupt
can be raised on such an event as well. Due to the asynchronous nature of these inputs, internal
synchronizer stages are utilized that introduce a timing uncertainty of at most 1/f,,.. Note
that a one- or two-stage synchronizer is employed, depending on the status of the UTCSUs
RELIABLE-pin; the recovery time for metastability phenomenons is therefore 1/ f,s. or 2/ f,..,
resulting in a reasonably small probability of failure, see [Loy96] for more information.
Three different functional blocks in the UTCSU utilize time/accuracy-stamping:

1. Trigger signals generated by the decoding logic at CSP transmission/reception (as ex-
plained in Section 1.3) sample the current local time/accuracy into dedicated UTCSU
registers in the SSU. Six independent SSUs are provided to facilitate fault-tolerant (re-
dundant) communications architectures or gateway nodes.

2. Three independent GPUs are provided for timestamping the one pulse per second (1pps)
signal —indicating the exact beginning of a UTC second— from up to three GPS receivers.
An optional status line provided by some high-end models is also sampled upon each
occurrence of the 1 pps pulse. Note that this simple interfacing is sufficient for coupling
GPS receivers, since additional and less time critical information is usually provided via a
serial interface and handled off-chip the UTCSU.

3. Nine independent application time/accuracy-stamping inputs are provided by the APU.
Note that additional application-related features can be realized off-chip by tapping the
48 bit wide multiplexed NTPA-Bus, which exports the entire local time and accuracy
information at full speed.

2.3 Duty Timers

The above timestamping features are complemented by several 48 bit programmable duty timers
accommodated in several functional blocks of the UTCSU. Whenever an armed duty timer goes
off (due to the fact that local time reaches the programmed one), an interrupt is raised. Duty
timers are used to execute the protocol for CSP exchange governed by the clock synchronization
algorithm, to control continuous amortization, to insert/delete leap seconds, and to generate
application-related events.

-1




2.4 Selftest Support

Last but not least, the UTCSU is equipped with many features for test (BTU) and debugging
purposes (SNU). The BTU handles calculation of checksums, blocksums and signatures (via two
different multiple input linear feedback registers) for local time. The SNU hosts three features
for debugging and test purposes: A hardware snapshot, controlled by the HWSNAP-pin, is used
to retrieve coarse information of the chip by sampling local time and accuracy information into
dedicated registers. More detailed information is provided by a software snapshot, which samples
all dynamically changing registers. Finally, there is a SYNCRUN-pin facilitating testing as well
as synchronous operation of redundant UTCSUs. Note that such provisions are required for
building up fault-tolerant applications based on self-checking and/or redundant units.

2.5 System Interfacing

The Bus Interface Unit (BIU) contains logic for embedding the UTCSU in a wide variety
of system architectures. Facilitating dynamic bus sizing, little/big endian byte ordering, and
different access times, the UTCSU can be used in conjunction with virtually any 8, 16 and 32
bit CPU. Note that the UTCSU synchronizes its chip select signal (and all other asynchronous
inputs, e.g. all timestamp inputs) by the already mentioned synchronizer stage(s).

However, some care must be exercised here due to a design limitiation /fault: We incorrectly
assumed that 8 bit-accesses resp. 16 bit ones are always using D32-D24 resp. D32-D16, irre-
spectively of the port size and the address alignment. Thus, additional transceivers are usually
required for 32 bit port size.

The Interrupt Unit (ITU) finally collects the numerous interrupt sources inside the UTCSU
and assigns them statically to three dedicated interrupt pins, viz. INTN (network related),
INTT (timer related) and INTA (application related). Moreover the ITU allows enabling and
disabling of each interrupt source and provides additional status information.




3 NTI Requirements and Specification

Biased by hardware and software know-how gathered during former projects, see [Sch94], we
decided to use a VMEbus-based prototype system for experimental evaluation in our SynUTC-
project. Fortunately, our basic assumption about CPU and COMCO independence (recall Sec-
tion 1.2) allows us to avoid the development of a fully-fledged node hardware. Instead, our NTI
aims at extending existing CPU boards with adequate support. It became apparent soon that
designing a suitable mezzanine bus module should provide an appealing alternative to the costly
development of a VME board.

3.1 VME mezzanines

There are several mezzanine standards available on the market, e.g. Industry Pack (IP), M-
Modules, FLXibus modules, and others. As argued in most comparisons like [Bau94], however,
there is no single “ideal” instance for all applications. Consequently, one has to judge the
flexibility, performance, size, robustness, cost etc. provided by a certain mezzanine bus against
the requirements of the the particular application to find the best choice. Table 1 summarizes
the major features of the mezzanines considered for the NTI.

[ Module l [P-Module | M(A)-Module | FLXibus Module ]
mode of operation | synchronous asynchronous asynchronous
data interface 16 bit 16/32 bit 32 bit
address space 128 byte 1/O 256 byte 1/0 32 address lines
8 Mbyte memory 16 Mbyte memory non-multiplexed
(multiplexed) (multiplexed)
DMA capability 2 DMA channels 1 DMA channel 4 DMA channels
Interrupt 2 Interrupts with Vector | 1 Interrupt with Vector | 8 Interrupts with Vector
Max. No. of
Modules/Carrier 4 4 2
Front Panel
Connector No Yes Yes
Physical Dim. 100 x 47 mm 150 x 47 mm 150 x 82 mm

Table 1: IP, M- and FLXibus Modules Overview

The most important general requirements put on the development of the NTT are as follows:

e High performance: Since both CPU and COMCO access the memory on board the NTI,
fast accesses are mandatory; this means both high speed and 32 bit bus width.

e Simplicity: We do not have enough experience to bother ourselves with the development
of a complicated bus interface.

e Size: The module should be as small as possible but capable of accomodating the 180-pin
PGA of the UTCSU and the surrounding logic.

e Clarrier boards: There should be carrier boards capable of hosting several NTIs to reduce
the costs of the overall evaluation system.

o Connectors: The required interface to GPS-receivers and applications make a direct front
panel connector desireable.




3.2 General Outline

Comparing our general requirements with the features listed in Table 1, the benefits® of M-
Modules over the other candidates are apparent. We thus decided to design the NTI as an
MA-Module, that is, as an M-Module with a 32 bit data bus, which is characterized as follows
[MM96]: The address space consists of a 256 byte 1/0-space accessible via the standard M-
Module interface and up to 16 MB of memory-space addressed by multiplexing the MA-Module
data bus. The asynchronous bus interface requires the module to generate an acknowledge signal
for termination of a bus cycle only, thus minimizing the control logic on-board the M-Module.
The M-Module interface also provides a single vectorized interrupt line and two additional DMA
control lines. The unit construction design of the 147 x 53 mm (single-height) M-Modules pro-
vides a peripheral 25-pin D-sub connector on the front panel, a 24-pin resp. 60-pin plug connector
to the carrier board for peripheral I/O resp. MA-interface, and two optional intermodule port
plug connectors for interconnecting several M-Modules.

Figure 4 shows the major components of the NTI M-Module along with its interfaces, the
requirements of which are detailed in Section 3.3.

60 pin
Intermodule Port

connector

UTCSU <

60 pin MA-Interface
connector

24 pin plug 25 pin D-Sub

connector

Figure 4: NTI block diagram

The pivotal UTCSU-ASIC performs most of the relevant operations for clock synchroniza-
tion, recall Section 2. It is paced by a temperature compensated (TCXO) or ovenized (OCXO0)
quartz oscillator, or, alternatively, by an external frequency source like the 10 MHz output of a
high-end GPS receiver.

The memory serves as control and data interface between the CPU and the COMCO, namely,
Intel’s i82596CA Ethernet coprocessor, providing the special functionality for COMCO accesses
as outlined in Section 1.2. Note that it must support byte, word, and longword read /write
accesses, since it might cause problems with existing (operating system) software if CPU-accesses
to packet memory are constrained.

Most of the required glue logic of the NTT is incorporated in a single, in-circuit programmable
Complex Programmable Logic Device (CPLD), which adapts the signals of the MA-Module inter-
face, handles interrupt requests and gives access to the serial PROM storing module identification

and revision information.

*The only serious restriction is the single interrupt line, which causes some problems when mapping the three
UTCSU-interrupt outputs onto it,
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3.3 Interfacing Considerations

Limited pin-count and size of the (single-sized) M-Modules as well as the following requirements
dictate the signal grouping and connector layout to be used for the NTI interfaces.

o All UTCSU-signals that are likely to be used externally should be buffered to protect the
UTCSU from damage. In addition, pull-up or pull-down resistors must be provided for all
possibly open input lines to avoid floating.

e All UTCSU-signals of the APU must be accessible via the front panel connector and should
be opto-decoupled or at least buffered by socketed DIP devices for easy replacement.

e All UTCSU-signals of the three GPUs must be provided at both the front panel connector
and the intermodule port connector for easy attachment of both external and modularized
GPS receivers. All signals of at least one GPU must be opto-decoupled?* via very high-
speed, socketed devices to avoid ground loops in case of an external GPS-receiver.

o All the UTCSU’s timestamping inputs of the six SSUs must be provided at the I/O plug
connector to the carrier board to facilitate redundant architectures. This also includes
signals TRANSMIT (TSXMT1) and RECEIVE (TSRCV1) of SSU1, which are usually gen-
erated by the on-board decoding logic of the NTI; a pair of jumpers must be provided to
select internal or external supply of those signals for building up exotic architectures.

o All the UTCSU’s timestamping inputs (of any unit) as well as the special-purpose signal
SYNCRUN and the APPDUTY-output of the APU must be available at the I/O plug
connector to the carrier board. This requirement is set forth by our evaluation hardware
(consisting of 16 or perhaps 20 NTIs), which assumes that the APPDUTY-output of any
NTTis internally wired (by a flat cable) to a dedicated timestamp input at all other NTIs to
facilitate measurement of the transmission delay uncertainty. Note that APPDUTY must
be driven by the CPLD-generated transmit timestamp signal (TSXMT1) here instead of
the UTCSU’s APPDUTY-signal (this must be jumper-selectable).

e As far as the actual pinning of the connectors is concerned, it should not cause harm
if a connector is erroneously plugged in wrongly. This is particularily true for the front
panel connector, which should be designed symmetrically w.r.t. input/outputs, so that
even plugging in an (erroneously) mirrored (1 ¢+ 25 etc.) connector cannot cause damage.
For example, if pin 1 is an output, then pin 13 should be an output as well.

Note also that the limited size of an M-Module severely constrains the area where opto-
couplers can be placed, which in turn determines part of the front panel connector layout.

3.4 Memory Address Space

All accesses to UTCSU registers and NTT memory are performed by addressing the M-Modules
memory-space. As explained in Section 1.2, read/writes of the COMCO require additional logic
to provide timestamping functionalities. To distinguish between CPU and COMCO accesses,
the CPLD maps two address regions to the same physical memory as illustrated in Figure 5.

On top of the memory map is the 512 byte segment containing the UTCSU registers pre-
ceeded by the NTI memory’s 256 KB address region for CPU-accesses, which are both decoded
without special functionality. The 256 KB region for COMCO-accesses to NTI memory starts

*Line driver inputs with high common mode input voltage might also be considered here.
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Figure 5: Memory map of the NTI memory space

at address 0 and is divided into four different sections: The System Structures section holds
the command interface and system data structures usually required by the COMCO, the Data
Buffers are available for ordinary packet data. Special functionalities apply only to accesses
in the Receive Headers resp. Transmit Headers sections, which hold packet-specific control and
routing information (e.g. source and destination addresses) for received resp. transmitted CSPs.

The version of the NT1 described in this paper supports Intel’s 82596CA Ethernet coprocessor
using 64 byte receive and transmit headers. Figure 6 outlines the offsets within each header that
need to be supervised here.

£ b

b3 k3
‘;’ Accuracy Ox20
> = ox1C
8 - m1C % Timestamp ox18
# g - ox14

=
31 ) 5 x00 3 : 5 ¥ 0x00
Receive Header Transmit Header

Figure 6: Receive and Transmit Header
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When the 82596CA writes offset 0x1C within a receive header upon reception of a CSP, the
timestamp trigger signal RECEIVE for the UTCSU is generated. In addition, the base address of
the accessed receive header is stored into a dedicated NTI-register to facilitate further interrupt
processing, as explained below. Similarly, when the 82596CA reads offset 0x14 within a transmit
header upon transmission of a CSP, a timestamp trigger signal TRANSMIT is issued to the
UTCSU. Since the UTCSU registers holding the sampled time/accuracystamp are mapped to
the memory addresses with offset 0x18 and 0x20 in the transmit header, they are transparently
inserted into the outgoing data packet.

3.5 1I/0 Address Space

In addition to the UTCSU registers and the shared memory, there are also a few registers
provided by the NTT itself, primarily for the purpose of interrupt handling. They are accessible
via the M-Modules I/O-space according to the memory map in Figure 7.

S-PROM | OxFE

256 byte

Dis/Enable Interrupt Logic | Ox04
Vector (Base) | Ox(2
Receive Header Base | (0x00

Figure 7: Memory map of the I1/O-space of the NTI

The Receive Header Base register at address 0x00 is required for correctly assigning receive
timestamps to data packets: After the UTCSU has sampled a receive time/accuracystamp, it
must be moved to an unused portion of the appropriate CSP before the next CSP drops in.
This could be done in an ISR activated by a RECEIVE transition interrupt, which, however,
cannot reliably® determine the address of the receive header associated with the sampled times-
tamp. Therefore, the NTT latches this address into the Receive Header Base register upon the
occurrence of the RECEIVE-signal.

Two additional N'TT registers control interrupt generation (which is explained in some detail
in Section 3.6): The Vector (Base) register at address 0x02 can be used to program the interrupt
vector generated upon an UTCSU interrupt. Note that the final vector also includes the state
of the three UTCSU interrupt pins INTT, INTN, and INTA. Accessing register Dis/Enable
Interrupt Logic at address 0x04 eventually enables (further) NTI interrupts; it is usually written
once after a module reset and regularily prior to leaving the interrupt service routine.

The unused I/O address space between address 0x06 and the access-byte to the M-Module’s
Serial PROM at 0xFE can be used for adding special functionality, see Section 5 for an example.

*There are of course alternatives, which, however, do not work in general. For example, one might try
to move the timestamp in the packet reception ISR, where the base address of the receive buffer is of course
known. Unfortunately, this might be too late for avoiding a timestamp loss in case of back-to-back CSPs. Also
inappropriate are schemes that try to exploit a sequential order of received packets, since there might be CSPs
that trigger a timestamp but are eventually discarded, e.g., due to an incorrect CRC.
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3.6 Interrupt Handling Example

As noted in Section 2, the numerous internal interrupt sources of the UTCSU-ASIC are hard-
wired to three different interrupt outputs INTN (network-related), INTT (timer-related) and
INTA (application-related). M-Modules provide only a single interrupt line IRQB that, however,
can be used for signaling a vectorized interrupt with its vector provided by the module. On the
NTI, the three least significant bits D2, D1, D0 of the 8 bit interrupt vector reflect the current
status of INTN, INTT, INTA, and the remaining 5 bits are taken from the programmable Vector
Base. A possible scenario of an interrupt interaction is depicted in Figure 8.
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Interrupts \ ] -
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Interrupt Request (IRQB)

Interrupt acknowledge (IACKB)
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. \\ ! !
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D7-DO M= ; T
[ . ;
0x86 i W
|
9 ! M i
disable INT-Log, V Y enable INT-Logic
isable INT-Logic \
determine clear
INT Sources INT Sources

Figure 8: Interrupt service example

Assuming that the vector base has been programmed to 0x80, an UTCSU-interrupt on INTT
(a1) causes the current (internal) interrupt vector to be set to 0x82 and forces the M-Modules
IRQB to go active (low). Note that another UTCSU-interrupt INTN (a3) occurs before the vector
is provided to the CPU in the interrupt acknowledge cycle. The CPU accepts the M-Modules
interrupt request by driving IACKB active (b;), causing the NTI to put the current interrupt
vector 0x86 onto the data lines D0-D7 and to signal the CPU via DTACKB to terminate this
bus (vector) cycle. In addition, the IRQB line must be driven inactive (¢;) after IACKB became
inactive again. In the M-Module specification, the latter event is the one that is assumed to
clear the interrupt condition (“hardware end-of-interrupt”). However, this simple scheme does
not work in our application, since the CPU must clear the UTCSU-internal interrupts by writing
certain UTCSU-registers in the interrupt service routine.

Therefore, the rising edge of IACKB deactivates the interrupt logic of the NTI and forces
the TRQB signal inactive. Before the CPU leaves the ISR, it has to explicitly re-enable the
NTlIs interrupt logic by writing a certain NTI-register, i.e., Dis/Enable Interrupt Logic. Hence,
any active UTCSU-interrupt source that has not been recognized within the ISR raises another
interrupt (as). Of course, implementing this feature requires additional logic, which finally
justifies the memory map of the NTI I/O-space in Figure 7.
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4 INTI Implementation

Two different prototypes of the NTI are required for debugging resp. evaluation purposes.
Throughout the paper, we will call them debug (DB) resp. evaluation board (EB), with the
following meaning:

e Evaluation board (EB)

The EB must completely fit on a single-sized M-Module and is used for final experimental
evaluation. Lacking space is in fact the dominating constraint for the NTI design, since
the 180-pin (socketed) PGA of the UTCSU eats up most of the available high component
space on the M-module. Note that the M-module specification defines a high component
space (max. height 10.5 mm) resp. a low component space (max. height 5.25 mm) located
near the front panel connector resp. the MA-interface connector. Any socketed device
(opto-coupler, DIP-buffer), jumper field, and also most TCXO0s/OCXO0s must hence be
placed in the remaining high component space. Similarily, the available low component
space rules out any CPLD that exceeds the size of a PQFP-100 or TQFP-100 package.

¢ Debug board (DB)

The DB is primarily required for verifying proper operation of the UTCSU-ASICS by
conducting a scan-test. For this purpose, it must be possible to drive all input signals and
monitor all output signals by software, i.e., by accessing certain registers in the NTI over
the MA-interface. This way, measurement data can be compared against simulation data
gathered during the chip design process.

Moreover, the DB is required for conducting an in-depth software-based verification of
the UTCSU’s functionality. Apart from spotting design faults, this also allows automatic
and fast validation of the chips from an untested production run. In addition, the need
for in-depth debugging may also arise from unexplained problems during the evaluation
phase. To track down such problems, it must be possible to run the evaluation on a system
where an EB is replaced by a DB connected to a logic analyzer. Of course, this means that
the DB must provide the same hardware and software functionality as EB does. Hence,
several restrictions set forth by the design of the EB (like the interfacing architecture)
apply to the DB as well.

The above requirements primarily imply that a larger CPLD and numerous additional
connectors for the logic analyzer pods must be provided on the PCB of the DB. On
the other hand, the resulting size of the DB does not matter — a dual- or tripe-sized
M-Module is acceptable here. It is important, however, to use either the MA-interface
connector #0 or, preferably, #1 (cf. Figure 11) on a multiple-sized M-module to ensure
compatibility with certain VME carrier boards (like AcQ’s i6040 CPU). Note finally that,
with the exception of the connectors to the carrier board (MPC and CPC, see below), all
components of the DB should be mounted on the soldering side of a standard M-module
for easy access (and socketed for easy replacement as well).

We will now elaborate on implementation details of our prototype version of the DB. We will
guide our description primarily by the NTD’s interfaces, which are as follows (recall Figure 4):

®To reduce the risks of failures in the ASIC design flow [Hor96], we developed a stripped-down version of the
UTCSU called UTCLIENT, see [HL97] for an overview. Providing considerably reduced functionality only, the
UTCLIENT’s pinning is nevertheless the same as the pinning of the UTCSU, which allows replacement without
any modification of the NT1.
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e 25-pin D-sub front panel connector (FPC)

e 24-pin plug connector to the carrier board for peripheral I/O (CPC)
e 60-pin plug connector to the carrier board for MA-interface (MPC)
¢ 2 x 30-pin plug connectors for interconnecting M-Modules (IPC)

In addition, there is an additional 10-pin JTAG plug connector for programming the Altera
CPLD on board the NTI as well as various jumpers. (The DB version of the NTI also carries
plug connectors for logic analyzer.)

4.1 General Issues

The oscillator pacing the UTCSU is a critical component in high-accuracy clock synchronization.
The most suitable frequency would be 224 Hz ~ 16 MHz (22° Hz are unfortunately beyond the
current UTCSU’s capabilities ...), although the UTCSU can in principle be paced with any
frequency. A TCXO or OCXO with TTL compatible output should be given preference, since
the usual clipped sinewave output of standard oscillators would require a negatively supplied
comparator with very low threshold and offset voltage for coupling such a device to standard
logic. However, this requirement in conjunction with the severely limited space on the EB
considerably restricts the number of suitable TCXOs and OCXQs. This is particularily true
since the device is to be socketed (and hence not SMD), which is required for our experimental
evaluation. Note that a very low-height socket is required here, since OCXOs have considerable
height!

Most of the suitable TCXOs/OCXOs offered on the market have a DIP-14-compatile pinning
as shown in Figure 2. In addition, there are also DIP-8-compatible TCXO’s around, with an
analogous pin-out. The supply-voltage should be jumper-selectable 5 V or else 12 V, since some
OCXUOs require 12 V for the oven.

| Pin | Signal |
1 n.c./tuning
7 GND
8 frequency out
14 1 +Vouppry

Table 2: Usual pin-layout of DIP-14-compatible TCX0s/OCXOs

Finally, there must be a jumper for selecting the NTI clock source, which can be either the
TCXO/OCXO or a 10 MHz reference frequency input from a GPS-receiver (opto-coupled as
well as non opto-coupled), see Section 4.3.

4.2 MA-Module Interface (MPC)

A CPU and/or COMCO on a carrier-board can access the NTIs features via the MA-Module
interface. The following signals of the MA-interface are relevant for our NTI board:
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Carrier Board NTI

Notes

D0-D31 D0-D31
Al-AT
WRITEB
ASB
CSB
DTACKB

DS0B-DS2B + Al

RESETB
IRQB
IACKB
DREQB
DACKB
SYSCLOCK

TRIGA, TRIGB

Primarily, the NTI is targeted for a port size of 32 bit, but
supports 8- resp. 16-bit accesses as well.

As long as ASB is "H”, only A1-A7 are valid to address the
256 byte I/O space. When ASB is "L”, A1-A23 address 16
Mbytes of memory. In the latter case, the lines D0-D15 must
be latched at the falling edge of ASB. The latched value serves
as A8-A23.

When ”L” the carrier board writes to the NTI.

On the "H” to "L” transition of this signal, DO~-D15 must be
latched. The contents of this register then serves as address
lines A8-A23.

This indicates with ”"L” a normal R/W access to the NTI.
When the carrier board reads data from the NTI, the module
must drive the data lines as long as CSB is asserted.

The NTI signals the Carrier board that it is ready to terminate
the current bus cycle.

Determine the valid bytes for data bus routing.

The UTCSU’s RESET-signal is active high, thus RESETB must
be inverted.

The NTI tries to interrupt the carrier board. The signal must
be driven active until the CPU acknowledges with IACKB.

IACKB serves as select line instead of CSB during interrupt
cycles. When this signal goes low, the NTI should put an
interrupt vector onto D0-D7. The highest priority interrupt
pending should always be presented first. The module finally
asserts DTACKB.

DMA transfer requested by the module (not used for the NTI
prototype)

DMA access granted by the carrier board to the module (not
used for the NTT prototype).

16 MHz clock that can be fairly asymetric.

User-defineable trigger signals.

Note that we use the convention of appending “B” to the names of active-low signals instead of
a preceeding “/”, i.e., DSOB instead of /DS0. The signals are split between those generated on
the carrier board and those originating at the NTI. Bi-directional signals are marked on both
sides. The layout of the MA-interface plug connector is given in Table 3.
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| Pin | Row A | Row B }RowC]

1 CSB GND ASB
2 AOL +5V Di6

3 A02 +12V D17
4 A03 12V Dis

5 A04 GND D19
6 A0S DREQB D20

7 A06 DACKB D21

8 A07 GND D22
9 | DOR/A16 | D00/AOS | TRIGA
10 | D09/A17 | DO1/AG9 | TRIGB
11 | DI0/AI8 | DO2/A10 | D23
12 | DI11/A19 | DO3/AIL | D24
13" | D12/A20 | D04/A12 | D25
14 | D13/A21 | DO5/A13 | D26
15 | DI14/A22 | DO6/A14 | D27
16 | DI5/A23 | D07/AL5 | D28
17 DSIB DS0B D29
18 | DTACKB | WRITEB | D30
19 | IACKB IRQB D31
20 | RESETB | SYSCLK | DS2B

Table 3: Layout 60-pin MA-connector (MPC)

The glue logic for adapting the MA-interface to the components on board the NTI (primarily
UTCSU and memory) is primarily contained in an Altera EPM7128 CPLD. It performs address
decoding with and without special functionality, hosts the NTI-internal registers, and handles
bus cycle termination as well as interrupt generation. Apart from the serial PROM, external
devices are only required for data bus routing. Figure 9 illustrates the interfacing of the data
bus between the carrier-board, the UTCSU, and the memory along with all necessary signals
for control.

The routing of multibyte transfers is accomplished as described in [MM96, p. 24]. Accord-
ingly, the select signals of the MA interface indicate the active byte. The signals TROELB and
TROEHB controlling the transceivers (74245) must be driven appropriately to suit the needs
of memory or UTCSU accesses. The upper part of Table 4 specifies the routing required for
memory accesses. The data and select signals on the left side specify the intended data bus
routing, the signals on the right side specify the output enables for the transceivers and the
appropriate byte and chip select signals.

Unlike the memory, which can also be written byte-wise (since application software could
directly access packet data in memory), the registers of the UTCSU can only be accessed in
words or longwords, where word accesses are (incompatibly”) always expected at the higher
data bus interface (D31-16). The lower part of Table 4 gives the resulting data bus routing for
UTCSU-accesses; again, the right side provides the output enables for the transceivers, whereas
the left side states the appropriate (byte-)select signals for UTCSU accesses.

"Recall our remark in Section 2; as a remedy, we employ additional 2 x 8 bit transceivers (74245).
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Memory Accesses
Data DS2B-DS0B
MA NTI & Al TROEH(L)B BH(L)EB CSMEMH(L)B
D00-bo7 D00-bo7 LHLH HH HL HL
D08-D15 D08-D15 LLHH HH LH HL
D16-D23 D16-D23 LHLL LH HL LH
D24-D31 D24-D31 LLHL LH LH LH
D60 D15 D00 D15 LILH Al L L
D16-D31 D16-D31 LLLL LH LL LH
D00 D31 D00 D31 [HHxX LH LL L
UTCSU accesses
Data DS2B-DS0B BE3-BEO
MA NTI UTCSU & Al TROEH(L)B & Busl6 CSUTCSUB
D00-D15  D00D15 D16 D3l LLLH L LLOHH L
DI6-D31  D16-D31  D16-D31 LLLL LH HHLLH L
D00D31  D00-D31 D00 D31 LHx L THOAL L

Table 4: Enable signals for memory resp. UTCSU accesses
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4.3 Front Panel Connector (FPC)
‘The layout of the 25-pin D-Sub connector of the NTI is given in Table 5.

| Pin [ Signal |

1 | +5V GPS1
14 GND GPS1
2 | lpps GPS1
15 Status GPS1
3 +5V
16 1pps GPS2
4 | Status GPS2
17 10MHz GPS2
5 | lpps GPS3
18 Status GPS3
6 | GND
19 App0
7 | Appl
20 App2
8 | App3
21 App4
9 | App5
22 App6
10 | App7
23 GND
11 | APPDUTY
24 10MHz GPS1
12 | App8
25 GND App8
13 | 45V App8

Table 5: Layout of the 25-pin DSUB front panel connector (FPC)

All signals (1pps, Status, and 10MHz) for the first GPS-interface (GPS1), along with dedicated
+5V and GND lines, are fed via fast opto-couplers to the corresponding UTCSU input signals.
The same is true for the application timestamping input App8. All signals of the other two GPS
receivers and the remaining application timestamping inputs App0~App7 are connected via fast,
socketed DIP buffers (7404 or 7414) to the according UTCSU pins; 10 kOhms pull-up resistors
are also provided to circumvent floating inputs. The UTCSU’s APPDUTY-Output ist buffered
by a 74240. The exported 45V are fused to avoid damage of the PCB in case of short circuits.

4.4 Carrier-board Plug Connector (CPC)

The layout of the 24-pin plug connector that connects the NTI to the carrier-board for I/O is
given in Table 6. All Signals are pulled up by 10k resistors and buffered to protect the UTCSU
from damage; 74240 SMD devices are used for all signals except TSAPPO-TSAPPS, which are
the same as App0-App8 at the FPC.
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| Pin [ Signal |

1 SYNCRUN
2 | HWSNAP
3 TSXMT1
4 | TSRCV1
5 TSXMT2
6 | TSRCV2
7 TSXMT3
& | TSRCV3
9 TSXMT4
10 | TSRCV4
11 TSXMT5
12 | TSRCVS
13 TSXMT6
14 | TSRCVs
15 TSAPPO
16 | TSAPP1
17 TSAPP2
18 | TSAPP3
19 TSAPP4
20 | TSAPPS
21 TSAPP6
22 | TSAPP7
23 TSAPPS
24 | APPDUTY

Table 6: Layout of the 2/-pin plug connector to the carrier-board (CPC)

4.5 Intermodule Port Plug Connector (IPC)

The layout of the 2 x 30-pin intermodule port plug connector that can be used for further
interconnections is given in Table 7. Special care must be exercised when using the IPC, since
only the signals fed to the three GPUs are buffered — the 49 UTCSU-outputs comprising the
NTPA-bus are directly wired to the IPC due to lacking space for buffers.

4.6 Miscellaneous Connectors

The layout of the 10-pin JTAG plug connector for programming the Altera CPLD is given in
Table 8. Note that it should be accessible from the front panel, see Figure 11.

4.7 Debug Board Connectors

The DB-version of the NTT must provide numerous additional connectors for feeding all UTCSU
and MA-interface signals to a HP 16550A logic analyzer. Layout and placement on the PCB
should® ensure compatibility with the pods shown in Figure 10. Note that those figures show
the pods and not the connectors to be mounted on the PCB.

Any pod (16 channels) of the logic analyzer must be connected to the PCB via a 20-pin 100
kOhm termination adapter 01650-63203, which is just plugged onto the 40-pin cable plug of the

8Note that the prototype version does not comply to this requirement!

21




| Pin T Signal |
1 CSUPHASE
2 | CSUT47
3 CSUT46
4 | CSUT45
5 CSUT44
6 | CSUT43
7 CSUT42
8 | CSUT41
9 CSUT40
10 | CSUT39
11 CSUT38
12 | CSUT37
13 CSUT36
14 | CSUT35
15 CSUT34
16 | CSUT33
17 CSUT32
18 | CSUT31
19 CSUT30
20 | CSUT29
21 CSUT28
22 | CSUT27
23 CSUT26
24 | CSUT25
25 CsSUT24
26 | +5V GPS1
27 1pps GPS1
28 | Status GPS1
29 10MHz GPS1
30 | GND GPS1

Table 7:

| Pin T Signal ]
1

CsuT23
2 1 CSUT22
3 CSUT?21
4 | CSUT20
5 CSUT19
6 | CSUTI18
7 CSUT17
8 | CSUT16
9 CSUT15
10 | CSUT14
11 CSUT13
12 | CSUT12
13 CsuUT11
14 | CSUT10
15 CsuUT9
16 | CSUTS
17 CsuUT7
18 | CSUT6
19 CSUTs
20 | CSUT4
21 CSUT3
22 | CSUT2
23 CSUT1
24 | CSUTO
25 1pps GPS2
26 | Status GPS2
27 10MHz GPS2
28 | 1pps GPS3
29 Status GPS3
30 | GND

Layout of the 2 x 30-pin plug connectors of the intermodule port (IPC)

| Pin [ Signal |

1 TCK
2 | GND

3 TDO
4 +5V

5 TMS
6 | n.c.

7 n.c.
8 n.c.

9 TDI
10 | GND

Table 8: Layout of JTAG plug connector
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Figure 10: Connector layout of a pod of the HP 165504 logic analyzer

appropriate flat cable. Note that this requires considerable® (about 10 cm) inter-board space if
the NTT (with connected logic analyzer pods) is plugged into a VME rack. Note that the +5 V
supplied by the logic analyzer must not be connected to the PCB!

As far as signal grouping w.r.t. the various connectors is concerned, there are basically four
sets of signals of independent interest:

e UTCSU ordinary signals (data, address, control, timestamp-signals)
e UTCSU testbus (NTPA-bus, CSUPHASE)

o UTCSU scantest (SCANIN, SCANOUT, SCANEN, SCANTEST)

¢ MA-interface

Grouping them appropriately, i.e., assigning a particular signal to a particular connector, allows
the appropriate measurements to be carried out without needing all channels of the logic an-
alyzer. Apart from this requirement, signal grouping is also constrained by the need to assign
input and output signals to different connectors.

Figure 9 shows a signal grouping example that conforms to the above requirements. Note
that the UTCSU’s TCLK signal and the CPLD’s I/CLK1 signal should be fed to the CLK-pin of
at least one logic analyzer connector per signal set, e.g., to P1/P2, P6/P7, P10/P11, P13/P12;
connector P14 should be provided with the CPLD’s I/CLK1. Note that those connector numbers
do not correspond with those used in the schematics of our NTI prototype version provided in
the appendix.

Finally, there is an additional requirement that showed up in the course of testing our
prototype version: Any signal fed to a logic analyzer connector should also have a dedicated via
near the approprate pin of the connector, which facilitates measurements with an oscilloscope
(for detecting ringing and similar phenomenons) in spite of plugged-in logic analyzer pods.

It is important to use the same orientation (preferably vertical) of all logic analyzer connec-
tors on the PCB. In fact, they should be arranged in aligned rows (with enough space between
them to allow plugging in the pods!) to avoid problems with cabling. A suitable arrangement
is outlined in Figure 11.

® Alternatively, one might try to directly use the 40-pin cable plug, which would allow less inter-board space.
However, a termination network must be provided on the PCB in this case; the one inside the termination adapter
routes a any logic analyzer input via 8.2 pF (£2%) || 90 kOhms (£1%) followed by a serial resistor 250 Ohms
(£1%) to the test pin.
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| Conn.No. [ Signals
[ P1 DAO-DAT5
P2 D16-D31
P3 BEO-BE3, A2-A8 WEB, CSUTCSUB, WAITCYCLE, BUS8, BUS16
Pa TSAPPO-TSAPPS, 1PPS1, STATI, 1PPS2, STAT?2, 1PPS3, STAT3, APPDUTY
Ps TSRCV1-TSRCV6, TSXMT1-TSXMT6, HWSNAP, SYNCRUN, RESET, RELIABLE
P6 CSUTO-CSUT15
P7 CSUT16—-CSUT31
P8 CSUT32-CSUT47
P9 INTT, INTN, INTA, XO, CSUPHASE, A9-A19
P10 RELH, BIGEND, TESTMUX, DIRECTIN, SCANTEST, SCANEN, SCANIN1-SCANIN10
P11 SCANOUT1-SCANOQUT10
P12 ADDRI-ADDR7, ASB, CSB, WRITEB, DSB0-DSB2, RESETB, IACKB, DACKB
P13 DTACKB, IRQB, DREQB, TROELB, TROEHB, CSMEMHB, CSMEMLB, BHEB, BLEB, WEB,
CS, CK, DI, DOUT, LA_TRIGGER
P14 16 debug pins from the CPLD
Table 9: Signal grouping for logic analyzer connectors
H logic analyzer
S
connectors (I)
auxiliary power _ [ P4 PS5 PIO  P3 P1 P2 P12
supply

JTAG connector —a= U

FPC

T
i

CPC
MPC

logic analyzer
connectors (1I)

P7 P8 P11 P9 Pl4 P13

Figure 11: Principal layout of logic analyzer connectors on the DB
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5 CPLD Description

Most of the glue logic of the NTT is accommodated in a single Altera EPM7128 CPLD, which
can be easily re-programmed in place for modification purposes. Further advantages of using
a CPLD over generic logic are the possibility of high level language (VHDL) description and
simulation capabilities. The entire CPLD is thus coded in VHDL, with the listings provided in
the appendix. This section gives a brief description of our implementation.

5.1 I/0 logic

The following signals resp. registers are located within the 1/0 address space, the access of which
requires the following pre-conditions:

e CSB is active low, indicating an access to the NTI

o ASB stays high, thus the addresses are not latched from the data bus; A7-1 form the valid
addreses

= Signal IOACCESS is active high when both conditions from above are valid.

Only a small portion of the I/O space is used, the rest is reserved for future enhancements.

31:24 23:16 15:8 73 2:0  READ/WRITE
SPROM | ] I - | - | - | Joxrr

At address OxFE the serial PROM is selected. Only the three least significant data lines are
meaningful here: DO serves as READ/WRITE, D1 as CLOCK and D2 as DATA line for accessing

the serial PROM.

The active high signal SPROM follows the MA-Module chip select CSB. The address lines and
the address strobe ASB must be settled properly in advance of CSB. SPROM is in turn used for
generating the signals that actually control writing resp. reading of the serial PROM.

31:24 23:16 15:8 7:0 READ/WRITE
LA_TRIGGER | - I - I - | - |oxo6

On the DB-version of the NTI, LA TRIGGER is provided to post-trigger the logic analyzer
by software. Whenever this NTI-internal register is read/written, the CPLD generates a pulse
at a dedicated pin at the NTI.

31:24 23:16 15:8 70 READ/WRITE
ENABLEIRQ | - I - | - | - | 0x04

Signal ENABLEIRQ (re-)enables the interrupt logic, which is usually done once after NTI
initializaton and regularily as the last command of an interrupt service routine. The active high
signal ENABLEIRQ follows the MA-Module chip select CSB. The address lines and the address
strobe ASB must be settled properly in advance of CSB.

The interrupt logic must be disabled following a system reset and at every rising edge of signal
IACKB provided by the MA-interface.
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31:24 23:16 15:8 70 READ

SINTVEC l - l - l - l Interupt Vectorl 0x02
00 Reset

31:24 23:16 15:8 T4 3:0 WRITE
SINTVEC | - ] - I - | vector | -] ox02
0000 0— Reset

Accessing the interrupt vector needs a distinction between a read and a write operation.
During read the interrupt vector is presented on D7-0, during write the base address of the
vector is programmed with D7-4. In both cases this register within the CPLD is selected with
SINTVEC, which follows CSB.

31:24 23:16 15:13 12:0 READ
RADL | - - - RFD Base Address I 0x00
00..00 Reset

On packet reception the base address of the memory location, where the packet header is
written to, is stored in the NTI-internal Receive Header Base register within the CPLD. Signal
RADL follows CSB and selects this register for read-out.

5.2 Memory Addressing Logic

The memory address space is formed by latching the least significant data word at the beginning
of a bus cycle and using this information as extended address in conjunction with the value
derived from the address lines A1-A7. Thus the memory space has the following pre-conditions:

e CSB is active low, indicating an access to the NTI

e ASB has a high to low transition at the beginning of the bus cycle, indicating that valid
addresses are present on the data bus. This high to low transition is used to latch the
higher addresses.

31:24 23:16 15:8 70 READ/WRITE
AH I - | - | DATA Bus 15 - 0 | ASB high - low
00 00 00 00 Reset

At any high to low transition of ASB, the data lines D15-D0 are latched into an internal

CPLD register AH.
In addition certain regions of the memory space are selected to decide if either the Receive

Headers or Transmit Headers section are addressed, cf. Section 3.4.

e Select the Transmit Headers Section via signal MEMTCBHEADER when the addresses form
A19-A12 = 0b006000000.

e Select the Receive Headers Section via signal MEMRFDHEADER when the addresses form
A19-A16 = 0b0000 and A15-A12 # 0b0000.
Within the Transmit Headers section the following decodings are valid:

31:24 23:16 15:8 7:0 READ
TSXMTB B | - I - l - 0b..x01010%
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Offset in memory | UTCSU register (address)
0x18 MSXMT (0x80148)
0x1C TSXMT (0x8014C)
0x20 ACCXMT (0x80150)

Table 10: Address re-mapping

Signal TSXMTB triggers a transmit timestamp of the UTCSU and follows the CSB signal,
thus it requires the address lines (higher and lower part) and the WRITEB signal properly settled.

The UTCSU-registers holding the transmit timestamp, which need to be re-mapped into
memory, are summarized in Table 10.

The 32 bit UTCSU register MSXMT holds the Macrostamp value, consisting of the upper bits
of NTP time as well as an 8 bit checksum. Register TSXMT contains the lower 32 bits of NTP
time, with an LSB representing about 60 ns. Finally, the 32 bit register ACCXMT concatenates
two 16 bit words formed by positive and negative accuracy.

31:24 23:16 15:8 7:0 READ
MEMMSXMT | - | - l - | - | 0b..x01100x

31:24 23:16 15:8 7:0 READ
MEMTSXMT | - | - | - l - | 0b..x01110x

31:24 23:16 15:8 70 READ
MEMACCXMT] - | - | - | - | 0b..x10000x

Signals MEMMSXMT, MEMTSXMT resp. MEMACCXMT indicate the request to remap the
current address to the UTCSU registers MSXMT, TSXMT resp. ACCXMT. These signals are
directly decoded from the address lines and the WRITEB signal so they may have some hazards.
Note that these signals need a valid chip select otherwise re-mapping will not occur.

Within the Receive Headers section, the following decodings are valid:

31:24 23:16 15:8 7:0 WRITE
TSRCVB - | - - ] - | 0b..x01110x

On packet reception, when the frame is written to the memory, the CPLD may decode a
receive timestamp via signal TSRCVB. It is activated with CSB and requires proper addresses
and a valid inactive WRITEB signal.

31:24 23:16 15:13 12:0 WRITE
TADL _ - - RFD Base Address 0b..x01110x
00..00 Reset

In addition, the base address of the currently received packet header has to be stored in
the NTI-register Receive Header Base, to get a cross-reference between the sampled timestamp
and its according packet. Signal TADL, which follows CSB and requires the addresses and the
WRITEB signal settled properly, triggers this operation. Note, that signal TSRCVB and TADL
are generated at the same address offset in the current implementation.
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Finally the chip select signals for the memory and the UTCSU must be generated. They are
derived from the NTI module select CSB signal, address line A19 and the remapping signals for
the timestamp transmit signals.

e PRECSMEMB becomes active low when CSB becomes low and ASB, A19, MEMMSXMT,
MEMTSXMT and MEMACCXMT are all zeroes. From this signal the chip select for the
memory is generated in combination with the data select lines.

e PRECSUTCSUB becomes active low when CSB becomes low and ASB is low and A19 is
high, or when one of the remapping signals MEMMSXMT, MEMTSXMT or MEMACCXMT
becomes high. Again this signal in combination with the data selects is responsible for
generation of the UTCSU chip select.

In addition several byte selects must be valid according to Table 4, and ASB should be active
low, otherwise signals from a previous bus cycle could intervene. The chip, byte and bus select
signals are derived via PRECSMEMB, PRECSUTCSUB and these tables.

The signals to control the transceiver for data bus routing TROELB and TROEHB are also
controlled by the byte enables as enlisted in these tables. However, instead of the signals
PRECSMEMB and PRECSUTCSUB, the module select CSB can be used.

Figure 12 summarizes the provisions making up the whole address re-mapping logic.
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Figure 12: Special address mapping for UTCSU registers




Number Characteristic typical timings [ns]

1 t_addr_data_valid 20
2 t.addr_valid 10
3 t_asb_valid 10
4 t_dataout_vahd 0
5 t.dtackb2csb_invalid 30
6 t_dtackb_valid 0]
7 t.dataout_invalid 40
t.addr_invalid 40
t_asb_invalid 40

8 t.dtackb_invalid 40
9 t_dtack2datain_valid 25
10 t_dtack2datain_ invalid 30

Table 11: Timing parameters for the simulation model

5.3 Miscellaneous Features

Finally the CPLD has to control the generation of the acknowledgement signal DTACKB and
the interrupt request IRQB. The former is generated by the NTI to terminate a valid bus-cycle,
so that it is necessarily synchronous w.r.t. the CPLD’s clock signal. More specifically, DTACKB
becomes active one resp. two clock periods after the CSB in case of memory resp. UTCSU
accesses. Note that accesses to the UTCSU-register TSGETL currently involve an additional
waitstate cycle (which could possibly be circumvented). Of course, DTACKB becomes inactive
high again as soon as CSB is withdrawn.

The interrupt request line (IRQB) is activated asynchronously by the NTT after the occurence
of an interrupt, that is, when one of the interrupt lines of the UTCSU becomes active. This
interrupt request is eventually acknowledged by the carrier board, which asserts IACKB to
start a hardware-end-of-interrupt acknowledge cycle. The latter requires the NTI to put an
interrupt vector onto the data bus and to assert DTACKB. Note that, in order to avoid potential
problems!® with interfering access cycles, the current version of the CPLD delays the generation
of IRQB until the current access is terminated — this is probably an overkill.

6 Simulation Environment

To verify design and operation of the NTI, in particular, w.r.t. interoperability of all embodied
devices, a board-level simulation was performed prior to the realization of the module. This is
possible, since the most complex components (UTCSU and CPLD) are both coded in VHDL
and synthetisized by SYNOPSYs V3.4a'!. Thus, the idea of building a simulation environment
of the whole NTT on top of those descriptions is quite obvious. In fact, we only had to provide a
simple logic model of the memory and the external transceivers as well as a testbench modeling
an MA-interface according to [MM96] to achieve this goal. Figure 13 along with Table 11 gives
the timing diagram describing MA-accesses, which forms the basis of the testbench.

After logic simulation and synthesis with SYNoOPsYs V3.44, the CPLD code was transferred

Y After all, DTACK is used for both signaling the presence of the interrupt vector on D0-D7 and terminating
ordinary read/write accesses; it is not clearly specified in the M-Module specification whether carrier boards are

required to exclude any interference.
' SYNOPSYS is a registered trademark of Synopsys INC.
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Figure 13: Timing model of the MA-Module interface

in edif format to MAXPLUs 11'? along with a constraint file (.acf). This tool is capable of fitting
the device and calculating back-annotation timings, which were re-exported via the vhdl inter-
face. The final simulation was performed in the SYNOPSYS environment using these extracted
data to verify the logic after fitting. Finally, MaxpLUs II was used for in-circuit programming
of the CPLD on board the NTI via the JTAG interface.

2Maxplus 11 is a registered Trademark of Altera Corp.
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7 Further Enhancements

In this final section, we provide a list of enhancements that should be incorporated in a redesign
of the NTT. In fact, our prototype of the DB-version of the NTT exhibits several deficiencies that
must be mended in a professional redesign.

7.1 General Enhancements
We start with enhancements that apply to both the DB and the EB-version of the NTT:
e The signals fed into the CPLD should be (slightly) changed, namely,

— fixed WAITCYCLE-output instead of optional (J22/23-selectable) SYSCLOCK input,
— do not connect DAO to both pin 38 and pin 1,

— do not export Al on pin 51, since it is not used externally,

— provide a LA_.TRIGGER-output (see below),

— feed the MA-interface’s DREQB and DACKB to the CPLD,

— if an alternative CPLD with more than the 80 useable 1/O-pins of the Altera

EPM7128S can be found, RELIABLE should also be connected to the CPLD. Other-
wise, a pull-down + jumper for static assignment of RELIABLE should be provided.

Generally, it is important to devise a pin-assignment for the CPLD that supports the
internal structure of the CPLD logic, since (in case of Altera) it is sometimes difficult to
fit even small designs in case of an improperly laid out pinning.

e The CPLD logic must be modified/extended, namely,

— the default value of the NTI’s Vector Base Register should be 0x40 instead of 0x00,
— a software-reset feature should be provided in the CPLD.

Moreover, the entire CPLD logic should be reconsidered w.r.t. correct timing behavior,
increased performance, and less complexity. This is particularly true w.r.t. DTACKB-
generation and interrupt handling. A suitable pin-out for easy fitting should also be
considered (see above).

e Do not use the MA-interface’s WRITEB for R/W-control of the components —namely,
the UTCSU-— on-board the NTI, but only WEB. Otherwise, bad signal conditions on the
MA-interface lines (ringing!) could produce strange misbehavior.

e Pull-up resistors for the NTI-internal data bus D0-D15 should be provided.

¢ A dedicated ELA_.TRIGGER open-collector output must be provided on the NTI, which
can be used for software triggering a logic analyzer or for triggering system snapshots in
the evaluation environment. To further support the latter, ELA_TRIGGER should in fact
be (one pin of) a jumper that can connect ELA'TRIGGER to the EHWSNAP-signal (CPC).

e There should be clamp diodes for the EAPPDUTY-output to protect the 74240 SMD buffer.
An even more preferable solution would be to provide a dedicated o.c. output here, i.e.,
avoiding to go over the SMD buffer. (Are there dual fast o.c. driver in a single small
package, which could be used for EAPPDUTY and ELA.TRIGGER?).
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e The n.c.-pin of the opto-couplers must not be connected at all; reconsideration of the
data-sheet is generally advisible.

o Another pair of jumpers (like J1-J4) should be provided, which allows to select TSXMT2
resp. TSRVC2 from either the 24-pin 1/O connector or else from TRIGA resp. TRIGB of
the MA-interface.

e A more suitable (easy to replace) fuse for the exported +5V must be provided.

e The TCXO/OCXO layout must be adopted to the one of Section 4.1; both DIP-14 and
DIP-8 vias should be provided. A jumper for selecting the supply voltage must be provided,
but the TL712 comparator U10 as well as J9, J11 can be omitted. Note that an extremely
low-height socket is required since typical OCXOs have a height of 8 mm!

e The UTCSU must of course be socketed (ZIF on the DB and ordinary one on the EB); a
PGA socket without central (unused) pins might be advantageous w.r.t. routing the EB’s
PCB.

e More and/or better placed decoupling capacitors close to the CPLD (see Altera manual),
the UTCSU, the transceivers, and the opto-couplers (see data sheet!) should be provided.

e The PCB design must be suitable for clock frequencies up to 20 MHz (if possible, 32 MHz
should be envisioned). Note that there are suggestions in the Altera CPLD manuals how
to proper route wires on such a PCB.

The prototype of the EB should employ wire-wrap versions of MPC and CPC as well as an
wire-wrap UTCSU-socket. This way, it is possible to connect measurement equipment even if
the NTI is plugged onto a carrier board.

7.2 DB Enhancements

In addition to the general issues, the DB-version of the NT1 calls for the following improvements:

e A (much) larger, socketed CPLD (with at least 178 available 1/O-pins, e.g. an Altera
EPM9560S in a 240-pin RQFP) for extended debugging should be provided, which is
connected to additional signals:

— UTCSU’s NTPA-bus CSUT0-CSUT47 and CSUPHASE

— UTCSU-pins SYNCRUN, HWSNAP, APPDUTY, PORESET, SYNCRUN, RELIABLE,
RELH, BIGEND, TESTMUX, DIRECTIN, SCANTEST, SCANEN, SCANIN1-SCANIN10,
SCANOUT1-SCANOUTI10

— 16 additional debug I/O-pins routed to an additional logic analyzer connector (see
below)

— An additional Output-pin routed to the clock selection logic (see below) for generating
a software-clock for the UTCSU (scan-test).

e A slightly more flexible clock frequency selection outlined in Figure 14 should be provided,
which allows to supply the CPLD with twice the input clock of the UTCSU or the MA-
interface’s SYSCLOCK.
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SYSCLOCK

TCXO/OCXO —® @ i1 L~:—> Clock (CPLD)
10MHz (GPS1) —@ ¢ (Delay) .
10MHz (GPS2) —®

—e Clock (UTCSU)
2 fb———e
——e

SW-CLOCK (CPLD) !

Figure 14: Flezible clock selection for the DB

e The MPC and CPC to the carrier board must be positioned such that they plug directly
into the M-module slot #0- or, preferably, #1-connector of a standard carrier board. All
other components must be mounted on the soldering side of a standard M-module.

e The connectors for the logic analyzer must be adopted to the connector layout and signal
grouping described in Section 4.7. Moreover, the additional vias for tapping with an
oscilloscope are to be provided.

e The auxiliary power supply connector should be fused to avoid damaging the PCB when
a defective UTCSU is plugged in. A power-LED should also be provided.
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A Timing Aspects

The timing relations of several signals incorporated on the NTI are elaborated in Figure 15. The
clock signal CLK is used on the entire NTI. The address lines ADDR are used to address the
256 byte 1/O space and WRITEB indicates if either the carrier board reads/writes to the NTI.

When the carrier board writes to the NTT (first access cycle in Figure 15), the MA data bus
is valid as indicated. In addition, the value on D15-0 must be latched on the falling edge of the
address strobe ASB and provides the address lines A23-8 for memory space accesses. Depending
on the chip select CSB and the value on the address lines, signals ENABLEIRQ (enables the
interrupt logic), SPROM (selects the serial PROM), SINTVEC (selects the interrupt vector), and
RADL (read the stored Receive Header Base) are generated by the CPLD. The following group
of signals MEMMSXMT, MEMTSXMT, MEMACCXMT resp. TTSXMT, TTSRCV, TADL cause
receive and transmit timestamping and address re-mapping according to Figure 12. Signals
CSMEMB or CSUTCSUB are active when the memory or the UTCSU are selected. Finally,
signal DTACKB is activated for termination of the bus cycle either one or two consecutive clock
periods after the falling edge of CSUTCSUB, or immediately following CSMEMB.

Similarily, the second access in Figure 15 shows the required timings when the carrier board

reads data from the NTI.
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B VHDL source code of the

CPLD

- ICT - TU Yienna

-- Copyright 1996
- A1l Rights Reserved
- COXFIDENTIAL & PROPRIETARY

- File name : ma_int_cpld.vhd

== Praject o RTI

-~ Hodule : ma_cpld

-~  Purpese ¢ adopt Hi-Interface to UTCSU requirements

--  Hedification History
- Datse Author Revision Comments
- 12/1996 Hartin Horauer Rev A Creatien

LIBRARY IEEE;
use IEEE.std_legic_1164.all;

EXTITY ma_cpld IS

pert (
do: out std_logic, -~ Hk-Interface
la_trigger: sut std_logic;
resetb: in std_logic,
asb: in std_logic;
csb: in std_logic;
Friteb: in std_logic;
addr: in std_logic_vector(7 downto 1);
dsb: in std_logic_vector(2 downto 0);
data: inout  std_logic_vector(15 downte 0);
dtackb: out std_logic;
irgb: out std_logic;
iackb: in std_logic;
a: out std_logic_vector(i9 downto 1); -~ UTCSU+RAH
troelb: out std_logic; -- Transceiver
troehb: out std_logic;
di: out std_logic; -~ Serial Prom
<8 out std_logic;
dout: in std_logic;
ck: out std_logic;
csutcsub: out std_logic; -- UTCsu
reset: out std_logic;
tolk: in std_logic;
intt: in std_logic;
inta: in std_logic;
intn: in std_legic;
ttsrevb: out std_logic;
ttsxmth: out std_logic;
be: sut std_logic_vector(3 downto 0);
busi€: out std_logic;
bus8: out std_logic;
csmomhb : out std_logic; -~  Hemory
csmemlb: out std_logic;
bheb: out std_logic;
bleb: out std_logic;
web: out std_logic
i

END ma_cpld;
ARCHITECTURE behavioral OF ma_cpld IS
-~ the following signals are used for interconnactions
SIGNAL ioaccess, sintvec, tsprom,
rdidb, wridb, enableirg, disableirq, rint, tirgb, radl,

readint, dis : std_logic;

SIGEAL mORACCOss, memheader, memrfdheader, memtcbhoader
BommsYmE, memtsxmt, moemaccxmt, tadl,
admt, a4a : std_logic;

SIGNAL ah ¢ std_logic_vecter(23 downte 8);

SIGRAL rfdbase : std_logic_vector(12 downto 0);

SIGNAL precsutcsub, precsmemb, tcsutcsub,
tcsmemhd, tesmemlid std_legic;

SIGNAL tinti : std_logic_vector{2 downte 0);




SIGMAL tintd : std_logic_vector(7 downto 3};

SIGHAL tdtackb, tndtackb, tydtackb, tzdtackb, twdtackb,
intah, inteh, intnh @ std_logic:

SIGNAL enaradl, writeblatched, enaprecsutcsub,
enadtackb: std_logic;

BEGIN -- behavioral

==~ interrupts of UTCLIENT are of wrong polarity(high activa): -> invert them

intah <= not (inta};
intth <= not(intt};
intnh <= pot{intn};

-~ initialisation

csutcsub <» tcsutcsub; -- chip select for the UTCSU
csmemhd <= tcsmemhb; -- chip selects for the memories
csmemld <= tcsmomlb;

reset <= not(resetb); -- UTCSU reset is high active

irgb <= tirgb; -~ interrupt request

bus8 <=’g’,

-- HEHORY OR I/0 7

momaccess <= ’1’ WHEN (csb=’0* AND asb=’0’) ELSE
0% -~ the CPU performs a memory access
-~ to the NTI

icaccess <= 1’ WHEN (asb=’1’ AND csb=’0’) ELSE
0, -- the CPU performs an I/0 access

- 1/0 section

-—  generate the select signal for the Serial PROH (active high)
-~  SPROH

p-tsprom : PROCESS (ioaccess,resetb)
BEGIK -~ PROCESS p_tsprom
IF (resetb=’0’) THEN
tsprom <= >07*;
ELSE
IF (ioaccess=’1> AND (addr(7 downto 1)="1111111")) THEK
tsprom <= ’17;
ELSE
tsprom <= ’Q’;
END IF;
END IF; -- select Serial PROH
END PROCESS p_tsprom;

~= provide a signal to trigger the Logic Analyzer by Software read/write
-- la_trigger pulse is generated when ifo address 0x6 is accessed
==~ LA_TRIGGER

p-latrigger : PROCESS (icaccess,resetb)
BEGIN -~ PROCESS p_latrigger
IF (resetb=’0') THEX
la_trigger <= ’07;
ELSE
IF (ivaccess=’1’ AND addr(7 downtoe 1)="0000011"} THEN
la_trigger <= *1i7;
ELSE
la_grigger <= ’07;
END IF;
END IF; -~ trigger the Legic Analyzer
END PROCESS p_latrigger;

-~ enable the jinterrupt legic by resetting the Flip Flop used
== to control enabling/disabling the IRQ (Interrupt) logic
--  ENABLEIRG

p-enableirg : PROCESS (iocaccess,.resetb)
BEGIN -~ PROCESS p_enableirq
IF (resetb=’0’') TREN
snableirqg <= ’0’;
ELSE
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IF (ioaccess=’1’ AKD (addr(7 downto 1)=0000010")) THEX
anableirqg <= 17,
ELSE
enableirq <= °07;
EXD IF;
EXD IF; ~— enable IRQ Logic signal decod.
END PROCESS p_enableirg;

- decode an access to the interrupt vector base at 0x2
- per default the int-vector base is set to 0x40

p-sintvec_srite : PROCESS (iocaccess,resetb)
BEGIN -~ PROCESS p_sintvec_write
IF (resetb=’0’) THEN
tintd <= ''01600"; ~- IXT-VEC Base 0x40 per default
ELSE
IF (ioaccess=’t’ AND (addr{(7 downto 1)=''0000001" AMD writeb=’0’)) THEN
tintd (7 downte 3) <= data(7 downto 3);
EXD IF;
EXD IF; ~—= write INT Base
END PROCESS p._sintvec_write;

- register set for the base address of the Receive Header
- the following process allows reading of the stored value by the CPU

- in addition the interrupt vector is presented as stated abeve
- SINTVEC READ + RADL

p-readint : PROCESS ({oaccess,reseth)
BEGI¥ -- PROCESS p_readint
IF (resetb=’0’) THEN
readint <= ’0’;
ELSE
IF (icaccess=’1’
AKD ((addr(7 dounto 1)="0000001" AND writeb=’1’)
OR iackb=’0’)) THEW
readint <= 17,
ELSE
readint <= ’0’;
END IF;
END IF; ~= HNormal Read of INT~Vector
ERD PROCESS p_readint;

- signal rint controls reading from the interrupt vector

- INT Vector must be presented onto the DATA Bus when

== 1.) Normal Read of INT-Vector

== 2.} During IACKB = 0

- ROTE: generate DTACKB in both cases!
rint <= (readint);

-~ register set for the base address of the Receive Header
== the fellowing process allows reading of the stored value by the CPU
p-radl: PROCESS (radl,rfdbase)
BEGIN -- PROCESS p_radl
IF (radl=’1’) THEN
data(12 downto 0) <= rfdbase;
data(15 dewnto 13) <= "000";

ELSE
data(15 downto 0) <= "Z2Z2222ZZZZZZZI22";
EED IF; -~ tristate output buffer !! Note:
END PROCESS p_radl; ~~ don’t forget pull-up’s on the

= upper 16 bit’s of the data-bus

== decode the Receive Heador Base store during reception of the last

=~ network packet

--  RADL

enaradl <= ’1' WHER (addr(7 dewnto 1)="0000000" AND writeb='1’) ELSE
100

p-rfdread: PROCESS (ioaccess,resathb)
BEGIN -- PROCESS p_rfdread
IF (resetb='0?) THEN
radl <= °Q7;
ELSE
IF (icaccess='1’ AND (enaradl=’1’)) THEN
radl <= 7i?;
ELSE
radl <= ’¢',
END IF;
END IF; ~- read stored Receiva Hoader Base
END PROCESS p_rfdread;

== IRQ Logic

p-dis : PROCESS (iackb,resetd,enableirq)
BEGI¥ -~ PROCESS p_dis
IF (resetbx=’0’ OR enableirq=’1’) THEN
dis <= '07%;




ELSE
IF (fackb='1’ AXD {fackb’svent) THEN
dis <= 1%,
END IF;
END IF:
END PROCESS p.dis;

p-disableirq: PROCESS (resetb,enableirq,dis)
BEGIR -- PROCESS p_disableirg
IF (resetb=’0' OR dis=’1’) THEY¥
disableirg <= '{’;
ELSE
IF (enableirg=’1’ AND enablsirq’event) THEN
disableirg <= 707,
EXD IF;
END IF: ~~ Interrupt~Legic enable/disable
END PROCESS p_disadleirg;

==  the UTCSU interrupt sources are hardwired te the interrupt vector

P_IRQINT : PROCESS{tclk,resetb)
BEGIN -- PROCESS P_IRQINT
IF (resetb=’0’}) THEN
vinti <= 111",

ELSE
IF (tclk=’1’ AND tclk’event) THEN
tinti(0) <= intah; -~ mapped to Data Bus O
tinti(1) <= intth; - t
tinti(2) <= intnh; - 2
END IF;
EXD IF; -- Interrupt Vector (interrupts)

END PROCESS P_IRQINT;

== the whole interrupt vector is put -rint=i- onto the data bus
-~  when either the IRQ vector is read (i/o address 0x2) or when
== a pending interrupt is acknowledged by the CPU -IACKB-

P_IRQINTR: PROCESS (rint,tinti,tintd,iackd)
BEGIN -~- PROCESS P_IRQINTR
IF (rint=’1’ OR iackb='0’) THEN
data(2 downto 0) <= tinti(2 downto 0);
data(7 downto 3) <= tintd;

ELSE
data(7 dewnto 0) <= “ZZZZ22ZZ";
END IF;
END PROCESS P_IRQINTR; ~-= tristate buffer for IRQ logic

== the following signal generates the interrupt request from the NTI
- te the CPU on thecarrier board
- IRQB is not allowed to become active when the NTI is currently selected
P_IRQB: PROCESS (resetb,tclk)
BEGIN -~ PROCESS P_IRQB
IF (rosetb=’0’) THEN
tirgd <= ’17;
ELSE
IF (tclk=?1> AND tclk’event) THEN
IF (csb=21’ AND (disableirq=’0’ AND (tinti(0)=’0’
OR tinti(1)=’0' OR tinti(2)=’'0’))) THEN
tirgb <= 107
ELSE
tirgh <= ’17;
END IF;
END IF;
END IF;
END PROCESS P_IRQHE; == tristats buffer for IRQ logic

~- Serial PROH
- the folloewing logic controlls the access schema for the 93C06 E-Eprom
-= that holds the Hodule Identificatien Logic

p.vridb: PROCESS (tsprom,rosetb)
BEGI¥ -- PROCESS p_wridb
IF (resotb~’0’) THEN
wridb <= 717,

ELSE
IF (tsprom=’1’ AND (writeb=’0’ AND dsb(0)=70’)) THEN
wridb <= ’0’;
ELSE
wridb <= 1%

EXD IF;
END IF; —- this signals registers data(1)
END PROCESS p_wridb; -~ and data(0) to ck and di resp.

p-rdidb: PROCESS (tsprom,resetb)
BEGIN ~-- PROCESS p_rdidb
IF (resetb=’0') THEN
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rdidb <= 1’
ELSE
IF (vsprom=’1’ AND (uriteb=’1’ AND dsb{(0}=’0’)) THEN
rdidb <= *0’;

ELSE
rdidb <= ’17;
END IF;
ERD IF; == this signal controls the output
EXD PROCESS p_rdidb; ~~ tristate buffer

p.di_ck: PROCESS (resetb,wridb)
BEGIE -- PROCESS p_di_ck
IF (resetb=’0°) THEN
cs <= Q7
di <= 107 ;
ck <= 707

IF (wridb=’0" AND wridb’event) THEN
cs <= data(2);
¢k <= data(i);
di <= data(0);

END IF;
E¥D IF; -= this register generates ¢k and di
END PROCESS p_di.ck; ~~ the software has to provide the

== correct values therefore on
-~ data(0) and data(1)

p-do: PROCESS (resetb,rdidb)

BEGIN -- PROCESS p_do
IF (resetb=’0’) THEN
40 <= Z7;
ELSE
IF (rdidb=’0’) THEN
d0 <= dout;
ELSE
d0 <= 2%,
END IF;
ERD IF; =- when the Serial Prom is read this
END PROCESS p.do; -~ tristate buffer connects dout
~= from the Prom to data(0)
- Hemory section

-- register set for a23-8 derived by latching D15-0 on ASB H->L trans.
-~ AH

p-ah : PROCESS {(asb,reseth)
BEGIN -~ PROCESS p.ah
IF (resotb=’0’) THEN
ah(23 downto 8) <= *0000000000000000";
writeblatched <= ’0’;
ELSE
IF (asbx’0* and asb’event) THEN
ah(23 downto 8) <= data(1s downto 0);
writeblatched <= writaeb;

ERD IF;
ERD IF; ~- some of these latched addresses
EXD PROCESS p.ah; - must be re-mapped others are

-~ directly fed to the Hemory and
=~ the UTCSU Asic

-~ most address lines can be directly connected to the external pins
~~  without meditications

a(18 downto 9) <= ah(18 downto 9); -~ a19,a4-8 are re-mapped

a(3 downto 1) <= addr(3 downto 1);

~- decode the memory header regions
p-memheader : PROCESS (ah,resstb)
BEGIN -- PROCESS p_memheader
IF {resetb=’0’) THEX
memhoader <= 07,
ELSE
IF ah(i9 downto 1€)}="0000" THEM
memhoader <= '1’;
ELSE
memhoader <= ’07;
EXD IF;
EXD IF,
EXD PROCESS p_memheader;
-~ now decede receive resp. transmit header
- HEHTCEHEADER + HENRFDHEADER
p-memtcbrfd : PROCESS (resetb,ah,memhsader)
BEGIN -- PROCESS p_memtcbrfd
IF (resetdb=’0’} THE¥
momtcbhoader <= ’0°*;
memrfdheader <= ’0’;
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ELSE
IF (memheader=’t’) THEN
IF (ah (15 downto 12)="0000") THEX
momt cbheader <= 717,
mnemrfdheader <= 0
ELSE
memtcbheader <= °@¢7’;
memrTdheader <= ’17’;
END IF;
ELSE
zomtcbheader <= 207;
menrfdheader <= 07,
EXD IF;
EXD IF;
EED PROCESS p_memtcbrfd;

~-== transmit packet specialitiss

- gonerate a transmit timestamp signal (low active) ~ttsxmth-
- TTSIHTB
p-ttsxmtb : PROCESS (memaccess,memtcbheader,resetb)
BEGI¥ -- PROCESS p_ttsxmtd
IF (resetb=’0’)} THEN
tEsxmth <= ’17;
ELSE
IF (memaccess=’i’ AND memtcbheader=’1') THEN
IF {(Wwriteb=’1' AND addr(5 downto 1)}="01010"
AND (dsb(1 downto 0)="11" OR dsb(t downto 0)="00"
OR dsb(1 downto 0)="10")) THEN
ttsxmtb <= ’Q7;
ERD IF;
ELSE
ttsxmtb <= '17;
EXD IF;
END IF; - trigger a transmit timestamp
END PROCESS p_ttsxmthb;

== re-map the data/address bus next byte and chip selects from
== the memory to the UTCSU register HSXHT Ox..18 => 0x080148
-~  HEHHSXHAT

p-memmsxmt : PROCESS (memaccess,memtcbheader,resetb)
BEGIN -~ PROCESS p_memmsxmt
IF (resetb=’0’) THEN
memmsxmt <= ‘0’;
ELSE
IF (memaccess=’1’' AND (memtcbheader=’1’ AND writeb=’1’
AND addr(s downto 1)="01100“)) THEN
mommsxmt <= 17,

ELSE
mommsymt <= ’07;
EXD IF;
END IF; =~ select UTCSU register HSXHT
END PROCESS p_mommsxmt; -- instsad of this memory address

== re-map the data/address bus next byte and chip selects from
==  the memory to the UICSU register TSXHT O0x..1C => 0x08014C
-~ HEHTSXHT

p.memtsxmt : PROCESS (memaccess,memtcbheader, resetb)
BEGIN -~ PROCESS p_memtsxmt
IF {resetb=’0’) THEN
memtsxmi <= *0’;
ELSE
IF (memaccess=’1’ AND (memtcbheader=’1' AND writebm’1i’
A¥D addr(5 downto 1)="01110')) THEN
momtsxmt <= ‘{’;

ELSE
memtsxmt <= ‘0’
ERD IF;
END IF; == select UTCSU register TSIHT
EXD PROCESS p_memtsxmt; == instead of this memory address

- re-map the data/addrass bus next byte and chip selects from
-~ the memory to the UTCSU register ACCXHT 0x..20 => 0x080120
- HEHACCXRT
p-mesaccxmt: PROCESS (memaccess,memtcbhoader,resetb) |
BEGIN¥ -~ PROCESS p_memaccxmt
IF (resstb=’0’) THEN
momaccxmg <= 70’
ELSE
IF (momaccess=’1’ AKD (membcbheader='i’ AND writeb=’i’
ARD addr (5 downte 1)="10000"}) THEN
memaccxmg <= 1t
ELSE

E
|



memaccxmt <= ’0’;

END IF;
END IF; = selsct UTCSU register ACCXHT
END PROCESS p._memaccxmt; == instead of this memory address

~= address re-mapping for transparent timestamp insertion into the
== outgoing packet

p.a4nt: PROCESS (memmsxmt, memtsxmt,addr)

BEGIR
IF

~~ PROCESS p_a4mt
(memmsxmt=’1’ OR memtsxmt=’1’) THEN

admt <= 07
ELSE
admt <= addr(4);

EXD IF; -~ in multiplexer for address
EXD PROCESS p_admt; ~= re-mapping of a4
p.ada: PROCESS (memaccxmt,addr)
BEGIN -~ PROCESS p_ata
IF (memaccxmt=’1’) THE¥
ad4a <= 717,
ELSE
ada <= addr(4)
E¥D 1IF; - in multiplexer for address
ERD PROCESS p._ada; - re-mapping of a4
p-24: PROCESS (memaccxmt,ata,amt)
BEGIN -~ PROCESS p_at
IF (memaccxmt=’1’) THEN
af4) <= aga;
ELSE
a(4) <= admt;
END IF; -~ out multiplexer for address
EED PROCESS p_a4; ~= re-mapping of a4
p.a€: PROCESS (montsxlt,nonsxnt,lonaccxmc,addr)
BEGI¥ -~ PROCESS p_aé
IF (memtsxmt=’1’ OR memmsxmt=’1’ OR momaccxmt=’1’) THEN
a(6) <= 117;
ELSE
a(6) <= addr(e);
END IF; -- multiplexer for address
EED PROCESS p_a6; -~ re-mapping of aé
p-a8: PROCESS (memtsxmt,memmsxmt,memaccxmt,ah)
BEGI¥ -~ PROCESS p_as
IF (memtsxmt=’1’ OR memmsxmt=’1’ OR memaccxmt=’1’) THEN
a(8) <= ’17;
ELSE
a{8) <= ah(B):
END IF; -- multiplexer for address
END PROCESS p_aB; -= re-mapping of a8
p-219: PROCESS (memtsxmt,memmsxat,memaccxmt,ah)
BEGIN -~ PROCESS p_al9
IF (memtsxmt=’1’' OR memmsxmt=’1’ OR memaccxmt=’1') THEN

a(19) <= 717,
ELSE
a{19) <= ah{19);

END IF; ~~ multiplexer for addrass
END PROCESS p_=x19; =~ re-mapping of aiy
p-a7: PROCESS (memtsxmt,memmsxmt,memaccxmt,addr)

BEGIN -~- PROCESS p_a7
IF (memtsxmt=’1’ OR mommsxmt=’1’' OR memaccxmt=’1’) THEN
a(?) <= 197,
ELSE
a(7) <= addr(7);

END IF; == multiplexer for address
EMD PROCESS p_a7; ~— Tre-mapping of a7
p-a5: PROCESS (memaccxmt,addr)

BEGIN -- PROCESS p_as

IF (memaccxmt=’1') THEN

a(6) <= 71’;
ELSE
a(b) <= addr(5);

E¥D IF; == out multiplexer for address

ERD PROCESS p_as; -~ re-mapping of a5

-~ receive packet specialities

gonerate a roceive timestamp -ttsrcvb- and sample the receive base address
inte a dedicated register -tadl-
TTSRCYB

p-tts
BEGIN
IF

revb_tadl: PROCESS (memaccess memrfdhoader, resetb)
-~ PROCESS p_ttsrcvb_tadl
(rosotb=’0’) THEW
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EN

P-

tégrevd <= 17,
tadl <= '07;
ELSE

IF {memaccess='1’ ARKD (memrfdhsader='1’ AND writeb=’0’
AND addr(5 downto 1)="01110"
AND (dsb(1 downte 0)="11" OR dsb(i downto 0)="00"
OR dsb(1l downto 0)="10"))) THEN

ttsrevh <= Q7

tadl <= 17,
ELSE
tesrevb <= 'y
tadl <= ’0’;
E¥D IF;
END 1IF; ~= trigger a receive timestamp and
D PROCESS p.ttsrcvb_tadl; == store the base address of the
- RFD-Header in an intermediate
~= register

rogister set for the base address of the Receive Header
the following process stores the incoming address
TADL

rfdbase: PROCESS (tadl,resetb)

BEGI¥ -- PROCESS p_rfdbase

EX

P
BE

EN

P~
BE

IF (resetb=’0’) THEN
rfdbase <= 0000060000000 ;
ELSE
IF (tadl=’1’ AND tadl’event) THEN
ridbase {2 downto 0) <= addr(7 downts 5);
rfdbase (12 downte 3) <= ah{(17 downto 8);
ERD IF;
END IF; -- save the RFD-base address
D PROCESS p_rfdbase;

procsmemb is activated (low active) whenaver a memory address is decoded
PRECSHEHB

precsmemb: PROCESS (manccoss,namsxmt,mamcsxnc,nemaccxmt,rasatb)
GIN -~ PROCESS p_precsmemb
IF (resetb='0’) THEN
precsmemb <= ’1’;
ELSE
IF (memaccess=’1' AND (memmsxmt=’0’ AND memtsxmt=’0’
AND momaccxmt=’0’ AND ah{19)='0’)) THEN
precsmemb <= ’Q’;
ELSE
precsmemb <= *1’;
END IF;
E¥D IF; == select the HA-Hodul Hemery
D PROCESS p_precsmemd;

- generate the byts and chip select signals for the memory chips
~=  for both lower and higher bank
~~  CSHEHL/HB + BL/HEB

csmemb: PROCESS (precsmomb,resetb)
GIN -~ PROCESS p_
IF (resetb=’0’) THEN

tcsmemhb <= 17,

tesmemlb <= ?17;

bheb <= *17;
bleb <= 717
ELSE

1IF (precsmemb='0’) THEN
IF (dsb(1 downto 0)="11") THEN
tesmemhb <= ‘07,
tesmemlb <= 70’
bheb <= 0’;
bleb <= 20°; -- 32 bit access
ELSIF {(dsb(1 downto 0)="00" AKD addr(1)=’Q’) THEN
tesmemhb <= 204
tcsmemlb <= 17
bheb <= ’07;
bleb <= ’0’; -- 16 bit access - higer part
ELSIF (dsb(1 downto 0)="00" AND addr(i)=’i’} THEX
tcsmemhb <= 717
tesmemlb <= 707
bheb <= 10,
bieb <= ’0’; -~ 16 bit access - lower part
ELSIF (dsb{(i downto 0)="10" AND addr(1)=71’) THEN
tcsmomhb <= Y0’
tesmomlb <= 17,
bhet <= *17;
bleb <= ’0?; -~ 8hit access I
ELSIF (dsb(t downto 0)="01" ARD addr(1)=’1’) THEN
tesmomhb <= Q7
tesmomlh <= 717
bheb <= 07,
bleb <= ’1’; -~ 8bit access 2




ELSIF (dsb(i downto 0)="10" A¥D addr(1)=0’) THEN
tcsmemhb <= f17;
tcsmemld <= 107
bheb <= 't’;
bleb <= '0’; -~ 8bit access 3

BELSIF (dsb(i dewnte 0)="01" AKD addr(1)='0’) THER
tcsmemhd <= 717
tcsmomld <= Qf;

bheb <= 07,
bleb <= ’1’; -~ 8bit access 4
ELSE

tcsmemhb <= °17;
tosmomld <= 717

bheb <= ’1°*;
bleb <= 17,
END IF;
ELSE

tosmemhb <= 717,
tosmemlb <= 21

bheb <= 1+
bleb <= ’17;
EXD IF;
END IF;

EXD PROCESS p_csmemb;

~-  the read/write signal for the memory - direct driven by the writeb
=~ signal of the HA-Hodul interfacs

web <= writebd; =~ read/Write to the Hemory

- UICSU access
- the precsutcsub becomes active (low) whenever either a UTCSU access is

-= decoded or the memory re-mapping logic is acvtivated
-- PRECSUTCSUB

enaprecsutcsub <= ’1’ WHEN (ah(19)=’1’ OR (mommsxmt=’1’
OR memtsxmt=’1’ OR memaccxmt=’1’)) ELSE
g,

p-procsutcsub: PROCESS (memaccess,enaprecsutcsub,reseth)
BEGIN -- PROCESS p_precsutcsub
IF (resetb=’0’) THEX
precsutcsub <= ’17;
ELSE
IF (memaccess=’1’ AND (enaprecsutcsub=’1’)) THEN
precsutcsub <= 0?;
ELSE
precsutcesub <= 12
END IF;
END IF; ~~ select the UTCSU Aisic
END PROCESS p_precsutcsub;

-~ the read/write signal of the UTCSU was omitted because a lack of pins
~= it can usually be driven by the HA-Hodul interface writeb signal
- reb <= writed; ~~ read/write to the UTCSU

T  generate the byte and chip select signals for the UTCSU
~=  CSUTCSUB + BE + BUS16

p-utcsu: PROCESS (precsutcsub,resatb)
BEGIN -- PROCESS p_utcsu
IF (resatb=’0’) THEN
tesutcsub <= f1;
be(3 downta 0) <= "0000";
busig <= 'Q7;
ELSIF (precsutcsub=’0’) THEN
IF (dsb(1 downto 0)="11") THEN
tesutesyb <= Q7
be{3 downto 0} <= *1111";
bugié <= ’07; -- 32 bit access
ELSIF (dsb{(1 dawnto 0)="00" AND addr(1)=’0’)} THEN
tcsubesub <= 07,
be(3 downte 0) <= "1100"; :
busi6 <= ’f'; -~ 16 bit access - higer part i
ELSIF (dsb(i dewnto 0)="00" AND addr{(1)=’1’) THER :
btesutosub <= Q7 b
be(3 downto 0) <= "Q011"; i
busié <= *1’; -- 16 bit access -~ lower part E
ELSE
tesutesub <= 17
be(3 downto 0) <= “0000";
buglé <= ’07;
ERD IF;
ELSE
tesutesub <= *pf;
be(3 downto 0) <= “0000";
busié <= Q7
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EXD IF;
EXD PROCESS p_utcsu;

- Global sectien

~= DBTACKB - signals the base board that the Hi-Hedule (NTI) is ready to

-~ terminate the bus-cycle - this signal is a bit critical due to the fact
—= that it determines the time the units on the ¥TI are granted to perform
T= their computations - when the UTCSU requires a waitstate this should be
~= inserted within the following statements

=~ TEDTACKB

p-tndtackb: PROCESS (tclk,resetb)
BEGIN -- PROCESS p_tndtackb
IF (resetb=’0’) THEN
tndtackb <= ’i’;
ELSE
IF (tclk=’1’ AND tclk’event) TREN
IF (tcsutcsub=’0' AND EOT(writeblatched='1’
AND addr(7 downto 1)="0000010")
} THEX
tndtackb <= *¢?*;
ELSE
tndtackb <= ’1’;
EAD IF;
END IF;
EXD IF;
END PROCESS p_tndtackb; ~~ generate a synchronous signal due
=~ to the fact the dtackb needs to
-- be delayed by two clock periods
=- for the UTCSU

-= if required insert an additional clock cycle for the UICSU
=~ TSGETL

p-tydtackb: PROCESS (tclk,resetb)
BEGIN -- PROCESS p_tydtackb
IF (resetb=’0’) THEN
tydtackb <= ’17;
ELSE
IF (tclk=’1’ AND tclk’event) THEN
IF (tcsutcsub=’0’ ARD writeblatched=’1"
AND addr(7 downto 1)="0000010") THER
tydtackb <= '07;
ELSE
tydtackb <= *31°;
END IF;
END IF;
END IF;
END PROCESS p_tydtackb;
p-tzdtackb: PRUCESS (tclk,resetb)
BEGIF -~ PROCESS p_tzdtackb
IF (rosetb=’0’) THEN
tzdtackb <= ’1?;
ELSE
IF (tclk=’1’ AND tclk’event) THEN
IF (tydtackb=’0’) THEN
tzdtackb <= ’¢’;
ELSE
tzdtackb <= ’1*;
END IF;
END IF;
END IF;
END PROCESS p_tzdtackb;

enadtackb <= ’1’ WHEN ({({(tndtackb=’0’ OR tzdtackb=’0*
OR tcsmemhb=’0’ OR tcsmemlb=’Q’
OR icaccess=’1’) ARD csb=’0’)})
OR iackb=’0') ELSE
07,

p-twdtackb: PROCESS (tclk,resetb)
BEGIN -- PROCESS p_twdtackb
IF {(resetb=’0’) THEN
twdtackb <= 717,
ELSIF (tclk=’1" AND tclk’svent) THEN
IF (enadtackb=’1’) THEN
tudtackb <= '07;

ELSE
twdtackb <= *i’;
END IF;
ERD IF;
EXD PROCESS p_twdtackh; -~ generate a synchronous signal due

p-tdtackb: PROCESS (tclk,resetb)
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BEGIR -~ PROCESS p_twdtackb
IF (resetb=’0’) THE¥
tdtackb <= ’17;
ELSIF (tclk=’'1’ AND tclk’event) THEX
IF (tudtackd=’0’ AND (csb=’0’ OR iackb=’G’)) THEN
tdtackb <= 20*;

ELSE
tdtackb <= 1%,
ERD IF;
END IF;
END PROCESS p._tdtackb; TT gensrate a synchronous signal due

dtackb <= (tdtackb);

== when WAITCYCLES are required signal -waitcycle~ is in charge for
== the current implementation does not require this feature
-~ ®aitcycle <= '07;

-= TRANSCEIVER control logic

p-transceiver: PROCESS (csbh,resetb)
BEGIN -- PROCESS p_transceiver
IF (resetb=’0’) THEX
troeld <= *1’;
troehb <= ‘17,
ELSE
IF (dsb(1 downto O)="11" AND (csb='0’)) THEN
troeld <= ’17;
troshb <= ’0’; -- 32 bit access mem
ELSIF (dsb{(1 downto 0)="00" AND addr(i)=70" AND (csbx’0%)) THEN
troelb <= ’17;
troehb <= ’0'; -~ 16 bit access - higer part mem
ELSIF (dsb{i downto 0)="00" AKD addr(1)=’1’ AED (csb=’0")} THEN
troeld <= ’17;
troehd <= ’17; -~ 16 bit access - lower part mem
ELSIF (dsb(1 downto 0)="10" AND addr(1)=’1’ AND (csb=20')) THER
troelb <= 707,
troehb <= ’1’; -~ B8hit access 1
ELSIF (dsb(1 downto 0)="01" AND addr{1)}=’1’ AKD (csb=’0’)) THEN
troeldb <= '07;
troehb <= ’1’; -- 8bit access 2
ELSIF (dsb{1 downto 0)="10" AND addr(1)=’0’ AKD (csb=20")) THEN
treelb <= ’17;
treehb <= ’1’; -~ B8bit access 3
ELSIF (dsb(1 downto 0)="01" AND addr(1)=’0' &HD (csb=’0’)) THEN
troelb <= 17,
troehb <= ’1’; -~ 8bit access 4
ELSE
troelb <= '1';
troehb <= '1’;
END IF;
END IF;
END PROCESS p_transceiver;

EXND behavieral;
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