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Abstract

In this paper we promote rate synchronization for clocks in fault-tolerant distributed
systems and develop the underpinnings for a clock rate algorithm. Two parameters are
used for characterization, namely drift for ezternal and consonance for internal clock
rate synchronization. A clock rate algorithm is similar to a conventional clock state
algorithm, but instead of depending on their mazimum oscillator drifts, their stability
is exploited. We present a comprehensive system model, work out the concepts for clock
rate synchronization and give a general analysis by using a suitable interval paradigm.
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1 Introduction

The concept of time allows us to reason about events and durations. For the purpose of quan-
tification, designated clocks attach (real) number to them, so we are able to tell when an event
occurs and how long a duration takes. This mapping in turn characterizes clocks in two ways:
An event draws a particular clock state, whose deviations towards a reference clock are known as
accuracy. A duration, measured as the difference between two corresponding clock states, enables
us to determine a particular clock rate when compared against a reference clock, whereby devi-
ations are known as drift. Unlike the states of clocks, however, the rates are not directly observable.

In case of an ensemble of clocks, a common event could lead to distinct clock states, if they
are not synchronized in terms of state. A clock state synchronization algorithm is responsible to
guarantee a maximum state difference among them, called precision. Similarly, a common duration
could reveal distinct clock rates, and a separate clock rate synchronization algorithm has to take
care for a maximum rate difference, called consonance. Note that a small precision compels a small
consonance, but the reverse need not to be true. One goal of this paper is to shed more light on
the relationship between clock state and rate synchronization.

A vast material on clock state synchronization has been developed in the last 2 decades, nev-
ertheless, many algorithms are content with rate synchronized clocks, cf. [Lis93]. Distributed ap-
plications in computer science based on time-outs (e.g. lifetime of Kerberos tickets) or round-trips
(e.g. NTP protocol) serve as representative examples. Still, state synchronized clocks are essential
for many applications (e.g. real-time systems), but tight and robust synchronizations are expensive
in terms in components and bandwidth. Clocks having their rates synchronized beyond the usual
manufacturer’s drift specifications, offers the possibility to achieve a higher performance, simplifies
initial clock synchronization or facilitates a fault detection mechanism.

Not much research has been conducted towards the problem of clock rate synchronization. The
most important contribution is the pioneering work of [Mar84], presenting an algorithm based on
non-accelerating clocks with a round-trip method for measuring clock rates. Intervals were used
to capture the relevant information for the fault-tolerant algorithm. Our goal is to extend his
ideas, resulting in the development of an algorithm for clock rate synchronization, that deals with
both drift and consonance embedded in a realistic system model. Furthermore, we work out the
similarities to the well-known problem of clock state synchronization, in order to benefit from it’s
rich collection of theoretical results and approaches, cf. [Sch87] or [SWL90].

The paper is organized as follows: Section 2 introduces formally the clock rate synchronization
problem and stipulates our system model concerning clocks and processors along with their means
of communication. After a comprehensive preparatory work on notations and building blocks for
rate synchronization in Section 3, the following section develops the theory of an algorithm both for
external and internal rate synchronization. Section 5 provides the analysis of drift and consonance
in a generic way, since no particular fault model is applied. Concluding remarks and future research
issues close the paper.




2 System Modeling

Each node p in the distributed system hosts a local clock Cp regarded as an entity that reads
clock state T at the non-directly observable real-time t in some meaningful Newtonian frame. In
mathematical parlance, a clock can be described by a piecewise continuous function Cypit— T by
neglecting granularity issues. Ideally, ), should be the identity function, but reality forces us to
be content with an approximation resulting in partial synchronization.

2.1 Synchronizing Clocks in State and Rate

Usually, we characterize clock synchronization in terms of clock states by two parameters: The
maximum deviation between corresponding clock states and real-times on a single clock is called
accuracy o, and the maximum clock state deviation between two different clocks in the distributed
system at simultaneous real-times is called precision «. Maintaining accuracy resp. precision of an
ensemble of clocks refers to the problem of external resp. internal clock state synchronization.

Definition 1 (Clock Accuracy and Precision) Let T be a non-empty real-time period. A clock
Cp has accuracy ap, during T iff |C(t) — t| < o, V2 € T. Any two different clocks C, and C, have
precision  during T iff |Cp(t) — C,(t)| < 7 Vt € T.

However, we can view clock synchronization in terms of clock rates as well. Denoting the
derivative dC)(t)/dt by the instantaneous clock rate vp(t), where C,(t) is differentiable, we obtain
another two parameters for characterization measured in Sec/sec. The maximum deviation be-
tween the clock rate and the ideal rate 1 is denoted by drift, and the maximum clock rate deviation
between two different clocks in the distributed system at simultaneous real times is called conso-
nance. Maintaining drift resp. consonance of an ensemble of clocks refers to the problem of external
resp. internal clock rate synchronization.

Definition 2 (Clock Drift and Consonance) Let T be a non-empty real-time period. A clock
Cp has drift 6, during T iff jv,(t) — 1| < 6, Yt € T, where Cp(t) is differentiable. Any two different
clocks Cp, and Cy have consonance v during T iff fop(t) — v, ()] < v YVt € T, where Cp(t) and Cy(t)
are differentiable.

Figure 1 illustrates the components involved in steering a local clock. On the one hand, a
clock state algorithm (CSA) is in charge of accuracy /precision, and on the other hand, a clock rate
algorithm (CRA) targets drift/consonance. The benefits of a CRA are twofold: Besides achieving
a better measurement for time durations it can support a coexisting CSA by reducing the ac-
curacy/precision deterioration of freely running clocks during consecutive state resynchronization
instants. This effect open up the possibility to save communication bandwidth or to achieve a
tighter clock state synchronization.

2.2 Local Clock

A local clock C, is attached to a local oscillator O, in order to keep pace with the progress of
time. The oscillator indicates a passage of time with periodic ticks of nominal frequency f, given
in ticks/sec. The manufacturer specifies a maximum oscillator drift p, in ppm, hence the instan-
taneous oscillator frequency f,(¢) is bounded by f,(1 — p,) < Sot) € f,(1 + pp). The distinction
between oscillator and clock is the hook to introduce clock rate synchronization. In the absence of
a CRA, the oscillator is directly coupled to the clock in the sense that

up(t) = Spfo(t), (1)
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where coupling factor S, is the constantly 1/f, Sec/tick. In such an arrangement clock drift §,
becomes the maximum oscillator drift Pp, Which is determined by the physics and environment of
the oscillator.

It is vital to understand that a CRA tries to break up this rigid oscillator-clock coupling, by
getting a handle on S,. In other words, even if the oscillator frequency f,(t) changes, the factor
Sp should be influenced in such a way, that the clock rate vp(t) remains to be approximately
constant. Obviously, the realization of a local clock needs to provide a means to set Sy like the
CSU from [KOS87] or our UTCSU, cf. [SSHL97]. The feasible range of coupling factor S, is given
by 1/f,(1 £ p,), through which the rate vp(t) of a non-faulty clock satisfies

[vp(t) = 1] < 2pp. (2)

Clock rate synchronization rests on the fact, that the frequency fp(t) of oscillator O, does
not alter too quick, otherwise a permanent adjustment of factor S,(t) would become necessary
to control clock C,. Depending solely on the specified maximum oscillator drift Pp, the oscillator
frequency could make instantaneous leaps up to 2f,p,, but experiments show, that oscillators keep
up their frequency to some extent. For a CRA it is essential to make proper assumptions about
the oscillator frequency, cf. [NIST90] or [Tro94]. In particular, we should consider a dynamic char-
acterization, which should include short-term stochastic frequency changes stemming from various
noise sources, shock, or radiation, and long-term deterministic changes from aging, temperature or
humidity.

Suppose oscillator 0, has instantaneous frequency f,(t;) at real-time ¢, and fo(ta) at ty > t;.
We stipulate that the ratio % is linearly bounded by 1+ op(ty — t1). Parameter oy is called the

oscillator stability measured in ppm/sec for treating the long-term deterministic effects. However,
this characterization! is only meaningful for certain durations 0 < ¢, — ty < oo0. For very large
ones, the stability term op(ty — t1) would become too pessimistic, since if £, — ¢; becomes /oy
the clock could possibly stop or run twice its nominal rate. In fact, the given specified maximum
oscillator drift p, prevents the frequency ratio on the long run from exceeding 1£2p,. For very small
durations, say a few oscillator periods 1/ f,,, glitches from short-term stochastic effects could violate
the bounds, but we regard them as non-accumulating. If fact, measurements on oscillators confirm

'A more advanced way for characterizing the oscillator would be ilgf—f; et (v + op(tz — t1})].




this hypothesis, but an increased variance arises. Let us summarize our oscillator assumptions,
which hold for proper parameter settings.

Assumption 1 (Oscillator Drift and Stability) Each non-faulty node p hosts an oscillator O,
with instantaneous frequency f»(t) subject to two conditions. The drift condition

fo(t)

A

J

bounds the instantaneous frequency, where fp is the nominal oscillator frequency and p, the mazi-
mum oscillator drift. The stability condition

fo(t2) _
fp(tl)

bounds the variation of the instantaneous frequencies during ty — ty, where op 18 the oscillator
stability.

<pp  Vi>t (3)

1 S O'p(tg - tl) Y tQ Z ty Z to (4)

In the special case of o, = 0 we say the oscillator/clock is stable, thus fp(t) = const. Moreover,
we define ooy = maz?_;o; as the uniform bound on the oscillator stability, and ppay = mazl_p;
as the uniform maximum oscillator drift. Note that expressions like o, (¢, — ¢1) are regarded to be
in the magnitude of p,.

It is important to realize, that a CRA has no means to affect the oscillator stability. A free
running clock C, inherits this property directly for its rate, since the common coupling factor Sp
falls out of the ratio, formally
vp(ta)

vp(t1) !

Apart from making assumptions on the clock rates, we additionally presume a weak clock state
synchronization as a result of the coexisting CSA. In particular, only a global precision I, is
required to have a measure on the degree of simultaneity in our system, relinquishing a certain
global accuracy of the clocks. The dependence among these algorithms is rather loose, since the
CSA offers its precision and the CRA exports tight bounds on the clock drifts.

< op(ty — 1) (5)

Assumption 2 (Global Precision) The clocks in our system are synchronized by an underlying
clock state algorithm, where any non-faulty pair of clocks C, and C, satisfies the precision condition

ICo(t) = Co()] < Mmax Y £ > 1. (6)

2.3 Processor

Besides a local clock each node is equipped with a processor that executes the CRA. As it will turn
out, all computations are essentially periodic and require floating-point arithmetic with sufficient
resolution. In terms of the execution speed and organization of the processor, we make the following
assumption.

Assumption 3 (Computation Times) A single computation required for clock rate synchro-
nization at a non-faulty node is completed within Timax SE€COTS.




2.4 Communication Subsystem

Nodes communicate with each other via a packet based communication subsystem, that provides
an unreliable broadcast primitive. Crucial for the operation of a CRA is, that transmission delays
are bounded. The following two assumptions specify our communication subsystem in a formal
way.

Assumption 4 (Broadcast Characteristics) The nodes in our system communicate by mes-
sage exchange using a broadcast operation. Two implementations are possible:

e [n a fully connected point-to-point network by a sequence of send operations, whereby the
mazimum broadcast operation delay . characterizes the worst-case time to send out all
messages.

¢ In a broadcast-type network by pertinent hardware, whereby the mazimum broadcast latency
Amax characterizes the worst-case time between initiating and actually sending the message.

Assumption 5 (Transmission Characteristics) The nodes in our system communicate by mes-
sage exchange featuring synchronous behavior. If no transmission Jaults occur, a message from node
q to node p experiences a delay At;yq subject to the delay condition

- ’
Aty — €54 < Aty < Aty + e;vr,q’ (7)

where Aty , represents the deterministic part and eiq the delivery uncertainties. For simplicity
we will work with €pae = ma:):p,q{e;’q + e;q} and Atyax = mazy, {At, ,}. For logical reasons we
require ming o{ Aty .} > €max-

2.5 Faults

The above made system assumptions are only meaningful in the absence of faults. However, when
dealing with a realistic system, faults may occur and need to be considered both for developing and
analyzing distributed algorithms. Faults can affect the clocks (e.g. stuck, jump, rate error), the
processors (e.g. various crashes) or the communication subsystem (e.g. omissions, timing errors,
value errors). Therefore, it becomes necessary to set up a proper Jault model F, which specifies the
prospective faults in our system. Section 4.4 will elaborate on these issues, aiming at an abstract
treatment to keep our framework for clock rate synchronization as generic as possible.

R




3 Elements of Clock Rate Synchronization

This section presents the basic concepts for clock rate synchronization by introducing the notations
and definitions along with technical lemmas. They will be the building blocks for the algorithm in
Section 4 and its analysis in Section 5.

3.1 Interval Paradigm

As it turns out asymmetric intervals will play an important role in both describing and analyzing
the algorithm, cf. [SS97] or earlier [Sch94], [Lam87) and [MO83]. We denote them with bold capital
letters such as I = [z,r,y], where r is called the reference point, = > 0 the left length, y > 0 the
right length. Such an asymmetric interval translates into a regular one [r — 2,7+ y], where (r — T)
is the left edge and (r + y) the right edge. In case of & = y we also write [r + z]. An ordered set
of them is written by calligraphic capital letters such as Z. Operations on them are defined in a
straightforward manner, summarized in the following Definition.

Definition 3 (Operations on Asymmetric Intervals) Given two asymmetric intervals 1, =
(21,71, 21] and I3 = 29,79, y2]. We define the

e reference point as ref(I;) = ry,

e alignment as align(I;) = I — ref(1y),

e right edge as right(Iy) = ry + yy,

o left edge as left(I) = ry — 2y,

o length ||I,]| as @1 + yy,

e exchange of lengths as swap(Iy) = [y1, ry, z1].

e sum Iy + 1y as (21 + x93, 1 + 72, y1 + 12,

e scalar product sIy as [szy, sry, sy1] for some scalar s,

e interval product Iy - Iy as [ri2o + rozy — 2129, rirg, Piye + roy; + Y1y2),
e intersection I; NIy as [max{r) — 1,7y — 23}, min{r; + y;,rp + Y2},
o union Iy ULy as [min{ry — zy,ry — 22}, maz{ry + y1, ro + 12}],

Note that in case of disjunct intervals the intersection delivers the empty interval § and the union
the closure of them. Furthermore, no reference point is explicitly given for these two operations,
since several definitions are feasible.

3.2 Local Rate Intervals

For rate synchronization we have to find a way to capture the rate vp of clock Cp. Unfortunately,
the rate of a clock cannot be observed directly, but we can postulate an asymmetric interval with
reference point r, and sufficiently long left /right lengths to include the ideal rate of 1. Both lengths
and the reference point are given in multiples of the clock rate, hence 1 € (Vo0 vprp, UPH;;*], where
¢, and 0; are called rate drifts. Note that this introduces a relative expression of clocks rate as
opposed to an absolute expression of clock states. Loosely speaking, “rates” are always regarded as
the ideal rate 1 altered by the some “drifts”. Dropping v, leads to the definition of a rate interval

R, =1[0,r,, (92‘)"], which contains enough information to run a clock rate algorithm.




Definition 4 (Properties of Rate Intervals) A rate interval R, is correct during a non-empty
real-time period T iff 1 € v,(t)R, ¥Vt € T. Two rate intervals R, and R, are consistent during a
non-empty real-time period T iff v, ()R, N vy (t)R, # @ Vt € T.

In the special case that a rate interval R, has 1 as reference point, we call it a local rate interval.
These kind of rate intervals have great importance, since they can be maintained locally and possess
many useful properties. The following Lemma asserts, that there exists a correspondence between
local rate intervals and clock rates.

Lemma 1 (Local Rate Interval vs. Clock Drift) If clock C, has clock drift §, then R,
[6p/(1+ 8,),1,8,/(1 — &p)] is the smallest correct local rate interval. On the contrary, if R, =
[05,1,01] isa correct local rate interval for clock C, then 6, = maz{6; /(1 ~67),6F /(14 61)} is
the smallest clock drift.

Proof For the first part of the lemma, we have to determine the smallest rate drifts ¢, and 0;“
that satisfy
vp(1=0;) <1< vp(1+6]) (8)

from Definition 4. Definition 2 assures that clock rate v, € [1 — &, I+ 6,]. To find the smallest 6,
and 8, it is sufficient to draw upon the extreme values of v,. Hence, plugging in v, = 1+, in (8)

yields 6, > 8,/(1+§,) and 8} > 0, and v, = 1 —§, delivers 67 > 0 and 6} > §,/(1 — §,). Putting
these statements together, we obtain the desired local rate interval

)
R, = |maz{0, 1+—p5;}’ 1, maa{0, 1 ﬁp(sp}

For the second part of the lemma, we have to find the smallest &, that matches the possible
clock rates v, induced by the local rate interval R,. For that purpose we transform (8) into

<v,—-1< P (9)

- +
which can be rewritten as |v, — 1| < maa:{l—eﬁgr, Ii%} =dp. O
“Yp P

It is interesting to note, that local rate intervals exhibit an intrinsic asymmetry. The first part
of Lemma 1 together with a specified oscillator drift p, can be used to initialize local rate intervals,
thus

Pp Py
R,(ty) = .1, 10

by a neutral setting of the coupling factor and if ty denotes the real-time of initialization.

For further considerations it is important to relate an observable duration AT on a local clock
with their real-time counterpart At and vice versa. Our next Lemma establishes these relationships.

Lemma 2 (Duration Estimation) Given a clock C, paced by an oscillator with stability o,. Let
ty resp. ty be real times and Ty = C,(ty) resp. Ty = Cy(ty) the corresponding clock states, where
t1 <ty and no resynchronization occurred in between. If clock C, has rate v,(t1) at t; then we have

vp(t1) <(t2 —t) — %ﬁ(fz - Z‘/1)2> <To =Ty < wy(th) <(t2 —11) + %p(l‘rz - f1)2>




and the converse

Ty =1y _ Up(Tz - T1)2
Up(tl) Zi}g(tl)

. . 2
~0 (GUT, - 1)) < ty—ty < 22D e 1)

vp(ty) 202(t,) +0 (03(73 - T1)3> '

Proof We introduced the clock rate v,(t) as the derivative of the time dependable function Cplt)
of the clock state. Applying the integral from starting point ; to successive point ¢, + At, we get

At
AT = Cylty + At) — Cylty) = / vy (ty + €)de. (11)

0

In the absence of resynchronizations we derive from the stability condition of Assumption 1 that
the clock rate at ty + & satisfies

vp(t) (1 — 0p8) < wy(t1 +€) < Up(t1) (1 + 0,€) (12)

for any £ > 0. Using these relations as majorants for the integrand in (11) and relying on the
non-accumulating nature of short-term violations, we can bound the clock state difference by

At At
[t = o6ds AT < [u)0+ 08
0 0

vy (t1) (At - %Aﬂ) <AT < wy(ty) <At + %Aﬁ) ,

which proves the first part of the Lemma setting At = t, — ¢.
For the second part we treat the above relation as a quadratic equation and choose the corre-
sponding roots in order to find bounds on At. This leads to

A
_1_ 14 1+2crp T SAtS_l_ 1 I_QUPAT
Tp vp(t1) Op Up(t1)

where in our setting the second term under each root is small compared to 1. To simplify the
bounds we use the asymptotic approximation valid for z — 0

M:1i§¢f§+0(z3),

and obtain after some algebraic manipulations that

AT a,AT? (a,";’AT3>_ o AT | 0,AT? (U;AT3>

ot 202(0) Ay ) STyt 202(%)) V()

Note that the linear terms represent the bounds in case of stable oscillators. Since clock rates Up
are very close to 1, we drop them and get the simplified O-terms of the Lemma. O

Each node p maintains a local rate interval R, which should remain correct as time proceeds.
However, the oscillator stability requires to deteriorate them as stated in the following Lemma.

10




Lemma 3 (Deterioration of Rate Intervals) Given a clock Cp paced by an oscillator with sta-
bility o, and mazimum drift p,. If R, denotes a correct rate interval at Ty, then

O'p(Tz

R, + [0+ ref(R,) =y 1)}+[Oio(o,,nﬁpn(zg—T1)+o§(T2—T1)2)}

is correct at Ty > Ty, when no resynchronizations occurred in between.
Proof Due to the correctness of R, = (65, p, 0;] at Ty = C},(t;) we know from Definition 4 that
Up(tl)(rp“gp_) <1< ”p(tl)(rp'f‘g;)- (13)

In the absence of resynchronizations until 75 = C,(¢3), the stability properties according to As-
sumption 1 ensures that |U—P(t—2v — 1} < op(tz ~ ;). Making v,(t;) explicit and using the asymptotic
approximation (1+z)~! = 1% 2 4+ O(z?) valid for # — 0 yields

valta) (1= 05tz = 11) = O (02t = 1)) < vy(t1) < vylte) (L4 0p(t2 = 1) + O (o2(t2 - 1)?)).

To bring in the observable duration T, — T}, we consult Lemma 2 to get an upper bound on ty —ty,
hence

Up(tQ) (1 — M -0 (O'Z(TQ - T1)2>) < Up(tl) (14)

Up(tl)
and

a,(T2 - Ty) 2 2
’Up(tz) (1+__1)p(—7f1)_+0(0p(T2_t1) ) > Up(tl). (15)
Before plugging v,(¢;) from (14) and (15) into (13), we replace the denominator in the error term
by (1 —2p,) according to (2). This leads eventually to

UP(TQ — Tl)

1_2pp _O(Upep (TZ_T1)+UP(T2“T1)2>) <1

vp(t2) (rp — 9; -

and
Ty - T
vp(tg) (T'p + 9;- -+ T'pip—i-% + O (Upgj(TQ - Tl) -+ OE(TQ — T1)2)) >1
P

which proofs the deterioration of rate intervals. O

As a trivial consequence, local rate intervals R, can be deteriorated by [0, (T, ~Ty)/ (1~ 20p)]
when neglecting the O-terms.

3.3 Consonance Intervals

For internal rate synchronization we have express consonance, which measures how close the clock
rates are together. Returning to the definition of rate intervals, we introduce consonance by im-
posing distances upon their reference points.

Definition 5 (y-Consonance) Given consonance interval v = [y~,0,4] with 0 < v~, 4+ < 1
and an ensemble of clocks Cl, oo, Co with their rates vy(t), ... v (t). 4n associated set of correct
rate intervals R = {Ry,.. } is called ~-consonant iff ﬂ” o) (ref(Ri) +v) # 0.

11




As before, local rate intervals play a special role for establishing a relationship between the
~-consonance property and the consonance v of the associated ensemble.

Lemma 4 (vy-Consonance vs. Consonance v) Given an ensemble of clocks Ci,...,Cp with a
mazimum clock drift 6. If such an ensemble has consonance v, then a set R = {Ry,.. ., Ry}
of local rate intervals is y-consonant for any v 2 [0 £ v/(2(1 - 8))]. On the contrary, if a set
R ={Ry,...,R,} of local rate intervals is y-consonant, then they have consonance v = (1+8) vl

Proof For the first part of the Lemma we have to ensure that v,(1+ <) and v,(1 + ~) intersect,
since ref(Ry) = ref(Ry) = 1. Therefore making v = [y, 0, 7] sufficiently long, in particular,
vyt + v;yT > v has to hold if v, < vy, and vy T + vyt > 4 if Up 2 vy, By solving these

unequations we easily get
Y

3
Up—f—vq

vyt >

and noting that the sum of any two clock rates cannot fall short of 2(1 — &) we are done.

For the second part of the Lemma we know from the non-empty intersection of vp(1l+ ) and
ve(1+7) that v, — vy < vy~ + vyt if v, > Vg, OF Vg — U, < vyt + vey” if v, > v,. Combining
them and recalling that no clock rate exceeds 1 + § leads to

lop = vl < max{v,y” + Uq7+a U'p7+ +vy77}
= 7"ma${vp,vq}+7+md17{vpavq}
(L4 8)]I1]-

I

O

Corollary 1 (y-Consonance by Clock Drift) If an ensemble of clocks Cy,...,C, has a mazi-
mum clock drift §, then a set R = {Ry,..., Ry} of correct local rate intervals is vy-consonant for

any vy 2 [0+6/(1 - 6)].
Proof Immediately from the first part of Lemma 4 by setting v = 2. O

So far we are able to express the quality of internal rate synchronization, but in order to
get a handle on the operation of an internal CRA, we need to introduce the notion of internal
global rate w(t). The idea is to define w(t) in such a way that local rate intervals satisfy w(t) €
(Vi=1 vi(t)(147) Vt > to, which guarantees a particular consonance according to Lemma 4. Section
5.1 will show that w(t) is a piecewise constant function in the proximity of the ideal rate 1. This
leads eventually to the definition of «y-correctness.

Definition 6 (y-Correctness) Given consonance interval v = [y~,0,4%] with 0 < Vv <1
and a clock C, with its rate vy(t). A rate interval R, is called Yp-correct w.r.t. internal global
rate w(t) at t iff w(t) € vp(t)(ref(R) +,). For an ensemble of clocks Cy,...,C, with their rates
vi(t), ..., va(t) the associated set of correct rate intervals R = {Ry,...,R,} is called ~v-correct
w.r.t. internal global rate w(t) at t iff each of them is y-correct, thus w(t) € v;(t)(ref(R;) + ) for
all 1 < i <n.

Lemma 5 (y-Correctness of an ensemble) If clocks C, are ¥p-correct w.r.t. internal global
rate w(t), respectively, then the ensemble is y-correct for any v 2 U%_,v,.

Proof Let v be an interval such that v 2 U™ ,~v,. Suppose [V, v;v = 0, then there exist at
least two disjunct intervals v,y and v,7y. Since Yp: ¥y & 7 we conclude that vyy, N vy, = 0, which

12




contradicts with the correctness assumptions of the clocks. O

By putting Lemma 5 and 4 back to back, we know that if each clock is vp-correct, then the
ensemble has consonance v = 2(1 + §)ymaa?_, ||v,]|, since y-correctness implies «y-consonance but
not necessarily the converse. This result is the key to the analysis of the internal CRA. Note
further, that the introduction of internal global rate is purely artificial, but it allows us to reason
about consonance by considering each clock separately, which greatly simplifies the analysis.

Lemma 6 (Deterioration of Consonance Intervals) Given a clock C, paced by an oscillator
with stability o, and mazimum drift pp- If Ry is vy, -correct at Ty, then it is Yp-correct at Ty > Ty,
where

(Tp(T2 - Tl)

T =t |0 el (Ry) T

} T [Oi o (UPH’YPH(Tz ~Ty) +0‘§(T2 _ T1)2)]

and no resynchronizations occurred in between.

Proof The same line of reasoning as in the proof for Lemma 3 can be applied, but instead of
the ideal rate 1 the internal global rate w(t) is enclosed, which is identical at 7} and Ty if no
resynchronizations take place. O

Figure 2 illustrates the deterioration of rate and consonance intervals. Starting out at ¢; the
local rate interval R, satisfies 1 & vp{t1)Rp(t1), and the consonance interval ~ satisfies w* &
vp(t1)(ref(Ry(t1)) + ), respectively. The cone formed by the dotted lines represent the feasible
clock rates according to the stability condition of the underlying oscillator, whereas the curved line
represents an exemplary progress of the clock rate. At ¢, the intervals are enlarged such that they
remain correct,

Vo(tn) ¥ (ty) W(t2) ¥ (t)

l Q) il I

rate k-1

Vp(ty) Ry(t))

%(t) Ry(t)

Figure 2: Deterioration of Rate and Consonance Intervals

3.4 Rate Measurement

Any clock rate algorithm has to work on the grounds of relative rates between clock pairs. This
restriction comes from the fact that a local clock is not able to determine it’s rate by itself, otherwise
rate synchronization would be trivial. We capture the relative rate of a remote clock against a local
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one with the help of a quotient rate interval Q,,,. The indexing follows the rule that the first one
denotes the local node and the second the remote one. Such an interval quantifies how fast or slow
a remote clock is in respect to it’s own.

Definition 7 (Quotient Rate Interval) Given two clocks C, resp. C, with their rates v,(t')
resp. v, (t") during the non-empty real-time periods T, resp. T,. An asymmetric interval Q,.q

that holds 3?(—'5’% € Q,, Vt' € T, Vt" € T, is called a quotient rate interval of remote clock C,

v (tll
during T, against local clock Cp, during T,,.

To obtain quotient rate intervals Q,, , we carry out a simple protocol as illustrated in Figure 3.
It is based on repeated message pairs, such that remote node ¢ broadcasts periodically a message
that contains the latest clock state of C,. The receiving node p records the current clock state of
Cp upon message arrival. From Figure 3 we extract clock states T, T}, from the first message M,,
and T,, T, from the second message M,. With these four clock states and taking into account
the transmission characteristics from Assumption 5, node p can compute quotient rate intervals as
certified by Lemma 8. For preparation, we need the following technical Lemma.

remote node q local node p

Atg *tp

At
t’q u® '

Figure 3: Protocol for Rate Measuring

Lemma 7 (Min/Max Clock Rate) Given a clock C, paced by an oscillator with stability oy, and
let ty resp. ty be real times and Ty = C\y(ty) resp. Ty = Cyp(t2) the corresponding clock states, where
ty < ty. When no resynchronization occurred in between, then clock rate vp(t) obeys

Tg - T1 Up

() € 220 [1 £ 2ty - tl)J +0£0 (o2(t, - 1)?)]

for any t € [ty t5].

Proof We have to consider two cases, either where the clock rate increases or decreases maximally
during the real-time duration At = t3~¢; and the expired logical time still amounts to AT = To—Ty.
The actual clock rate lies somewhere between these two extremes, which gives raise for bounding
vp(t) Vt € [t1,t2]. In the first case (increasing rate), the clock has a minimum rate vlin at £ related
by

AT = o (At + %B(At)z) (16)
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according to Lemma 2. By virtue of Assumption 1 the maximum rate Vlax 2t to is given by

Vs = Uhnin(1 + 0, A1), (17)

max

For the second case (decreasing rate) we find similar expressions for the maximum rate

AT = vy, <At - %(AN) (18)
and for the minimum rate
Ug]in = vr,rlxax(l - UpAt)' (19)

We can easily show that vy, < v, and vl > v but the asymptotic approximation

(1+ )™ = 1F 2+ O(z?) valid for ¢ — 0 vanishes the differences. Hence, using (16) for the
minimum rate bound yields

, AT Op 20,2} AT
and (18) for the maximum rate bound

AT oy 2oy AT

both for t € [t,t,], which completes the proof. O

Lemma 8 (Rate Measurement) Let C, and C, be clocks driven by oscillators with stability o,
resp. 0q, and mazimum drift p, resp. p,. By executing the above sketched protocol in Figure 3
without any resynchronizations in between, interval

T‘; — Tq ((UP + Uq)(Tr;/ B Tq) + 6max(l + 2pp)

Q= [T]g -1, 2(1 - 2p,) T, —-T,

)} + [O:i: (@] ((03 + oq?)ATg + crqema,x)]

is a quotient rate interval during the real-time periods [t,, t,] resp. [ty,t].

Proof First of all, we want to find a relation between the involved real-time periods Aty =t —1,

at the sending side, and At, = t;, —tp at the receiving side. Due to Assumption 5 the delivery
delay for the first message M,, can be captured by Atpg =€y <ty —tg < Aty + e;ﬁq, and for the
second message My, by At,, —e; <t~ ty < Aty +¢f,. Subtracting them and further algebraic

manipulations deliver
[At, — At,] < €yt e;q < €max- (20)

Next we want to derive a lower bound on the ratio Uﬁg%,)—), where ' € [t,, )] and t" € [t,,1]].
From Lemma 7 we know that the maximum clock rate v, ** at node p during [t,, t;} is related by
AT,

Aty = (21)
o - AT, - 0 (02a02)

and the minimum clock rate v™" at node ¢ during IZRARY

AT,
Aty = — ! ) (22)
upin + AT, + O (02002)
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Putting together (21) and (22) via (20) yields

AT — ATop > —LTAT AT, - 0 (02282) AT, - 0 (02222) AT, -

e <vmax - %ATP -0 (agmg)> <U;nin + %ATq +0 (agmg))

P

and after some algebraic manipulations we get

-0 (OzAt?, + agAtg + aqemax) . (23)

o S AT () (op o) AT emavf™®
pmax = AT, Jumax AT,

To get rid of v'** resp. v,’;‘i“ in the error terms, we make use of the maximum oscillator drift
Pp resp. pg of a non-faulty clock and the agreed condition (2). Inside the O-term we can replace
At? and At? by AT? according to Lemma, 2. Thus, we can transform (23) into

) g DY Bdp g

v, (t') AT, (op + 0g) AT, €max(1 + 2py) 2 2 2
> — — — _
v, (") © AT, 1 201 200) AT, ¢ ((Op + O‘Q)ATP + O'quax)

valid for all ¢ € [t,,#;] and " € [t,,, 1,]. A similar line of reasoning starting out with

AT,
At, = —
upin 4 AT, + O (02A82)
and AT
Aty = d

vmax _ AT O (agAzg-)

brings out the desired upper bound on UUP (Z,l,)), which completes the proof. O

Remarks

e Since rate measurements will take place less frequently than state resynchronizations, we have
to care about interspersed state corrections to get useful clock state differences AT, and AT,.
In fact, we have to maintain and subsequently exchange the sum of state corrections on both
sides, irrespective of being applied instantaneously or by continuous amortization.

e The ratio %% is fairly good indicator if clocks are running properly. Values too far away from
1 allows us to take away faulty once by an easy sanity check, otherwise fault assumptions
have to capture them.

e Rate measurement is the means where the information of the clock rates come in, but it
requires the cooperation of both nodes to compute the quotient as opposed from a CSA.
Straight from Lemma 8 and dropping delivery uncertainties we get

Q,, = {1 + %égp-’ﬂ + [0+ 0 (o2a12)] (24)

for a common period ATy, reflecting again the impossibility to acquire information about the
own clock rate.
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e By taking a look at the formula for the quotient rate interval in Lemma 8, we observe that
for stable clocks the interval degrades to a point if the measurement duration becomes large.
This is not the case for unstable clocks, so we can imagine a certain rate resynchronization
period, given roughly by

€m
\/ (1 4 4pmax),

max

where the interval length becomes smallest. For short rate resynchronization periods, the de-
livery uncertainty spoils the rate measurement. Note that this is different to an CSA, where
apart from bandwidth concerns there is no particular lower limit on the state resynchroniza-
tion period.

e Note that the deterministic part At,, of the message delivery delay does not pop up in the
formula, since it is included in the measured durations AT, and AT,.

3.5 Remote Rate Intervals

Suppose node ¢ maintains a correct local rate interval R, of its clock C,. For synchronization
purpose, we want to transfer it correctly to another node p resulting in the remote rate interval
Ryp,q- This operation is similar to a CSA, where an accuracy interval of one node is passed on to
the others within the ensemble.

However, the way to carry over a rate interval from node ¢ to a node p is more intricate than
for a state interval, since switching correctness involves the relative rate measurement via quotient
rate interval Q4. The importance of these intervals come from the fact, that they contain the
ideal rate 1 expressed in the “rate world” of the particular local node. The following lemma pins
down this property in a formal way.

Lemma 9 (Computing Remote Rate Intervals) Let Cp and C, be clocks driven by oscillators
with stability o, and oy, respectively. The messages for the rate measurement are sent Sfrom nede q
at Ty = C'y(ty) resp. T = Cy(t}) and received at node p at T, = C,(t,,) resp. T, = Cy(t},) according
to the transmission characteristics of Assumption 5, cf. Figure 3. If Ry is a correct local rate
interval at t; on remote node q, then

Ry, = Qp,q 'Rq

18 a correct remote rate interval at t; on local node p, where Q,, , is a quotient rate interval during
the real-time periods [t,, t] resp. [t,, t!].

Proof We string together the properties of Qp,; and R, forming the remote rate interval R,,,
and show that this Jeads to the desired interval multiplication.
From Definition 4 we know that the local rate interval R, = [0, ,1,8}] of a remote clock C,

satisfies
vg(tg)(1 — 0;) < 1 <o (f)(1 +0;), (25)

and by specialization of Lemma 8 that the quotient rate interval Qpq = Qpqlu, 1, u], with Q,, =

T-T. P (Cf +a )(T{_T) max(l“Q ) :
TZ_—TZ— and v = p2(1q—zp};) Pl £ 7,4~qup + O ((05 + Uq?)ATp2 + aqemax), holds

Qp,q(l _ 1&) < Ufl(tq)

< o) < Qpo (14 u). (26)
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Plugging in v,(t,) from (26) into (25) yields
vp () Qp (1 —u) (1= 87) <1 <, (1)Qpq (1 + u}(1+67).
We can translate the last equation into the asymmetric interval notation
L€ v, (t,)Qpqlu+ 0 —ud 1, u+ 0; - uﬁj},
which is according to Definition 3 equivalent to

le Up(t;)QPYQ[u» L, u} . [0;? L, 9;]

Finally, a resubstitution provides the desired property

le 'Up(t;)(Qp,q ‘Ry).

In general, a remote rate interval doesn’t have 1 as reference point, but ref(Ry,4) = ref(Qpq)-
A remote rate interval of itself becomes to R, , = Q,, - R, and using (24) proves

o, AT, 2 _
Rp,p = |:1:t (TI)_—2;Z);+O<UPAT§>>:| [01,,1,9;’]
(1-0,)0,AT,

14 64)0,AT,
R e R ] a7 1 gt 4 LF TRy
= l9p+ . +0 (a2AT2) ,1,6F +

2 2
Tt (UPATP)]
op AT,

—_— Bl il 28 2 2
= R,+ {0 + zpp] + [0+ 0 (0,[R,||AT, + 02AT2)] . (27)

Note that this expression equals the deterioration formula for rate intervals as given in Lemma 3,
which makes perfect sense because measuring the rate by itself over a particular duration means
to cope with the oscillator stability.

Corollary 2 (Consonance of Remote Rate Intervals) Let C, and C, be clocks driven by os-
cillators with stability o, and oy, respectively. The messages for the rate measurement are sent from
node q at Ty = Cylty) resp. T, = Cq(t;) and received at node p at T, = Cylty) resp. Ty = Cp(ty,)
according to the transmission characteristics of Assumption 5, cf. Figure 3. Furthermore, let Q, ,
be a quotient rate interval during the real-time periods [t,,t,] resp. [ty,t7]. If local rate interval R,
is v,-correct at t, on remote node q, then R, , = Q,, - Ry s v, ,-correct at t;, whereby

Yoo = Qwa 7y

and no resynchronizations occurred in between.

Proof Similar to the proof of Lemma 9 by starting out with w(t,) € v,(t;}(1 + v,), replacing
vg(ty) by vp(ty,) from (26), and noting that w(t,) = w(ty). O

18




4 Clock Rate Algorithm

In this section we stitch together an algorithm, called CRA, for both external and internal clock
rate synchronization based on the elements of Section 3. For ease of presentation, we first assume
a fault-free system of n > 2 nodes, connected by a communication subsystem (Assumption 4 and
5), where each node p hosts a processor (Assumption 3) and a clock C, driven by an oscillator
O, (Assumption 1 and 2). Our starting point is the round structure of the algorithm, followed
by the development of the pieces for external and then internal rate synchronization. Faults are
treated generically, so that only a few specific modifications of the algorithm are necessary to work
correctly upon an established fault model. A simple example wraps up this section, providing a
good insight how the algorithm works.

4.1 Round Structure

First we lay out the structure of our algorithm, which is based on rounds as known from other
distributed algorithms. Periodically, every rate resynchronization period Fora, each node executes
the same algorithm, which consists roughly of mutual rate measurements and the computation of
a suitable rate correction. The rounds are a product of a coexistent clock state algorithm with
state resynchronization period FPoga, whereby global precision I, doesn’t need to be too small
to make our algorithm working. In fact, a round-less version is also conceivable by an adaptation
of the value of I ax-

Let us examine a particular round k by using Figure 4. Logically it starts at kPora + D
and ends at (k + 1)Pcpa + D lasting a duration of Pcra seconds. The rates of the clocks are
going to be actively influenced by our algorithm at these points in time symbolized by SYNy and
SYNg41. During a round, we need to carry out the protocol of Figure 3 in order to make relative
rate measurements. More specifically, shortly after the beginning of round k&, we initiate a full
message exchange FME’, for the first messages, and near the end of the round the second messages
belonging to FMEgi;. The reason to have two separate FMEs instead of using just the ones near
at the end of each round back-to-back is, that we need to exclude any rate synchronization during
rate measurement periods. Intervening state synchronizations are allowed to occur, since they can
eagily be taken care by summing up all state corrections. Indeed, the additional FMEs at the
beginning of each round can be piggy-backed on the FMEs from state synchronization.

round k
FME’, FMEy41 SYNpyg FME"k4+1
3 T
D’ L D D’
kPegpa (k+DPepa

Figure 4: Execution of a Round

To make our algorithm running properly, we have to set up large enough delays to account for
the longest possible duration of any FME and any computation inside algorithm CRA. In particular,
delay D consists of the worst case FME duration I and the worst case computation duration F.
Delay I lessens the active rate measurement duration to Pcpa — D — D’. The following lemma
helps us to assign D and D"
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Lemma 10 (FME and Computation Duration) Complying to Assumptions 1-5, any FME is
completed within

Hmax

0+ Tmax + )‘max + Abmax + 6max)
1 = 2pmax

L= (I+ 2,Dmax) <
and any single computation for the clock rate synchronization within

E = (1 + 2pmax)77max
logical seconds.

Proof Suppose C, is the fastest and C, the slowest clock in our ensemble. Let t! be the real-time
when node p initiates as first one its broadcast of the particular FME. From Assumption 2 we know
that Cq(tl) > C'p(t[) — IImax, hence node ¢ takes no more then 7, < M./ (1 — 2pq) seconds to
initiate its broadcast as the latest participant of the same FME. This follows from Lemma 2 and
condition (2), whereby the usage of the maximum oscillator drift includes the deviation from the
stability. Before the message from node g gets transmitted, it can experiences a maximum broadcast
operation delay Ti,.x and a maximum broadcast latency Amax. Furthermore, the transmission can
take as long as Atmax + €max Seconds to reach its receiver. Since we are interested in the longest
logical duration L of an FME, we map the sum of expired real-times to the fastest clock p, hence
L= Cp(tI + Ty + Amax + Tmax + Abmax + €max) — Cp(tl). A following application of Lemma 2 and
condition (2) yields L.

From Assumption 3 we know that any computation doesn’t take longer than Nmax Seconds.
Once again, mapping this duration onto the fastest clock, we get the desired result. O

Given these logical duration both for FME and computation, we are able to quantify the delay
D in our round structure as shown in Figure 4. Obviously, D has to be at least L + E, hence we

set
Hmax .
D= (1 + meax) <T_—2_p_—' + Tmax -+ /\max + Atmax + €max + 77max> . (28)
Setting

D' = Pospa — D (29)

for practical reasons, we have to choose the rate resynchronization period FPcpa larger than 2Pcsa,
since it has to be at least 2(D + D’). Obviously, Pgsa has to be at least D.

4.2 External Clock Rate Algorithm

After carrying out FME’; and FME;; during round k, node p is able to build up a set of quo-
tient rate intervals @, = {Qp1,...,Qp} by using the formula from Lemma 8. A straightforward
approach would apply a particular point-based convergence function, for instance FTA or FTM as
proposed in [DLPSW83], upon the associated reference points to obtain a new one for adjusting the
rate at SYNgy1. This sounds reasonable, because local clocks would get in sync with a majority,
but there are no means of external rate synchronization.

However, we can take advantage of local rate intervals, which provide vital information about
clock rate. Pointing out that if clock C, has rate v,, then the ideal rate of 1 with respect to the
current rate is merely the reciprocal of it. Therefore knowing a range of 1/v, enables clock C, to
adjust it’s rate accordingly. The crux is to narrow down this range with the help of remote clocks,
where the remote rate intervals are carrier of this information. From Lemma 9 we know that each
correct remote rate interval of the set R, = {R,1,...., R, ,} computed by node p contains the
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searched value of 1/v,.

Considering the dynamic nature of our rate intervals, we have to make them compatible with
each other in a meaningful way. More specifically, the broadcasted local rate interval R, at FME’,,
of node ¢ stems from SYNy, so we need to compensate for D' + L. This happens with the formula
from Lemma 3, whereby D’ is necessary to bridge the time towards the initiation of FME’; and L
for its duration. Afterwards we can obtain the remote rate interval, which needs to be deteriorated
by D at node p to finally reach SYNy.;.

Having the set of compatible remote rate intervals R, at hand, a feature for external rate
synchronization needs to be provided. We seize the idea of clock rate validation rooted in [Sch94],
which works basically as follows: Suppose there are a few primary nodes in our system that act as
rate references, e.g. their clocks are disciplined by GPS receivers, cf. [Dan97]. Their contributing
remote rate intervals will be of short lengths due to their good rate knowledge. On the other hand,
the remote rate intervals from nodes within the ensemble exhibit usually longer lengths, but are of
larger cardinality. Since all intervals are supposed to include 1/v,, rate validation can be viewed
abstractly as a selection function VAL z(-) defined in the following way.

Definition 8 (Ideal Validation) Let R resp. R, be a set of remote rate intervals at node p
from primary nodes resp. from nodes of the ensemble according to fault model F. A validation
function VAL (R ' UR") is said to be ideal, iff it either outputs the subset of correct onces of R’
providing it is non-empty, or R" otherwise.

The actual mechanism to carry out clock rate validation is not relevant at the moment (see
forthcoming paper []), but this kind of ideal validation isolates us from the sublte issues about
toggling between internal and external rate synchronization. Even more, it is essential to recognize
that the length of the rate intervals are of major interest for external rate synchronization due to
the implicit inclusion of 1/v, in case of correct ones. The accompaning reference points play only
a minor role in terms of external rate synchronization.

Given the set of validated remote rate intervals, a suitable interval-based convergence function
CV#(-) tailored to fault model F is in charge of computing a new interval RCY* that encloses 1/v,,.
However, instead of dealing with concrete convergence functions CVx£(-), we pin-point abstract
properties of them for the external rate algorithm, cf. [Sch87]. First of all, we require them to be
translation invariant and weakly monotonic in the following sense.

Definition 9 (Translation Invariance, Weak Monotonicity) Given two setsT = {I,...,1,}
and J = {J1,..., I} of n > 1 intervals. An interval-valued function f(-) is called translation in-
variant off f(I;+y,....L+y) =f(Iy,...,1,) +y for any real y, and weakly monotonic iff I; C J;
with re f(L;) = ref(J;) for all 1 <7 < n implies £(Z) C £(T).

As already pointed out, the length of the remote rate intervals are important for external rate
synchronization purpose. More specifically, a drift preservation function DP(-) relates the length of
the fed-in remote rate intervals with the computed one. Section 5 will treat these issues in greater
details when analyzing the algorithm.

Definition 10 (Drift Preservation) Let R, = {R,1,...,R,} be a set of remote rate intervals
in accordance with fault model F, and let V, ; bounds such that align(R, ;) C V,; for correct R, ;.
A convergence function CVr(-) is characterized by a weakly monotonic drift preservation function
DP() iff ,

align(REVF) S DP (V.o Vi),

where Rgv; =CVs(Rp1,...,Rp0).
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It remains to explain how the algorithm accomplishes the rate adjustment according to Rgvf.
In particular, we need to determine a new factor S, for the oscillator-clock coupling and a new loca)
rate interval R;T The first issue is straightforward, since we know that 1 € vagi at SYNgyg. If
rgvf = ref(Rgi), then our best approximation for the clock rate is given by vp = 1/7‘5‘*, hence
we set

Sy = Sprovs (30)

to enforce the new rate. Additionally we check for IS, fs — 1] < p, to ensure a feasible rate
adjustment, otherwise the clock is declared as faulty. The second issue deals with the computation
of the rate interval R; in respect to the new rate vz’) = vprgvf. Because of 1 ¢ UPRSVF =
(U;/rgvf)RgV}" we can set :
r_ cy
R, = —C—V;Rp z. (31)
T'p
Now we have developed and justified all parts of algorithm CRA. Before diving into the analysis,
we give a crisp summary in Algorithm 1. Also take a look at Figure 4 for an easier understand-
ing. The employed convergence function has to be translation invariant, weakly monotonic and
characterized by a drift preservation function in regard of fault-model F; the employed validation
function is supposed to be ideal.

Algorithm 1 (CRA) Complying to Assumptions 1-5, each node p performs the following actions:

#1 (FME") at kPcra + D + D' initiate broadcast containing the local rate interval R,
from SYN,, and timestamp it with T,

#2 until kPcra + D + D'+ L receive messages from remote nodes q and
timestamp them with T, ,

#3  (FMEpi )  at (k+ 1) FPora initiate broadcast containing the sum U, of applied state
synchronizations during round k and timestamp it with TIQ

#4 until (k+ 1)Pora + L receive messages from nodes ¢ and
timestamp them with T)

#5 (COMPryy) at (k4 1)Pcra + L compute the set of quotient rate intervals Q,, whereby

T/ ~Tg+Uy (op+ag (T =Te+Uyg) emax{1+2p
Qo [mort + St )] for g # p

2(1-2pq) Tyq=TpatUp
#6 compute the set of remote rate intervals R, whereby
aq(D'+L) opD

Ry, (Rq + [O + 1~2jq D Qg+ [0 tref(Qpyg) 1_2—‘_sz] for q+#p,

and Ry, — R, + [0 % e
#7 invoke rate validation fo get {Rp1,... Ry} VALF(R, ;.. S Ryp)
#8 apply convergence function to get Rgv; ~CVr(Rp, ..., Ry )
#9  (SYNiy1)  at (k+1)Pora + D adjust clock rate by setting Sp S, - ref(RgVF)
#10 reset local rate interval by R, Rgvf/ref(Rgvf)

Actions #1 to #4 perform the protocol to carry out the relative rate measurement from Figure
3, resulting in the calculation of the quotient rate intervals in #5 by virtue of Lemma 8. Action
#6 transforms the received rate intervals into remote rate intervals according to Lemma 3 and 9,
which are subsequently fed into the validation function in action #7 and the convergence function
in action #8. The computed interval is used to adjust instantaneously the clock rate in action #9
and to update the local rate interval in #10.

The above algorithm works for & > 1. In the initial case k = 0, we begin with local rate interval

Ry = [pp/(1 + pp), 1. pp/(1 = pp)] and coupling factor S, = 1/f, as justified by Lemma 1. The
results of analyzing algorithm CRA, in particular the run of drifts, will be given in Theorem 2.
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4.3 Internal Clock Rate Algorithm

As long as remote rate intervals from primary nodes are passed through by the clock rate vali-
dation VALr(-), they determine interval Rgvf by virtue of convergence function CVz(-). As a
consequence, the rates of the clocks in our ensemble are disciplined by external clocks. In this
operation mode, we say the algorithm performs external rate synchronization, resulting in a small
maximum drift 6 and consequently a small consonance v according to Corollary 1.

However, in case that remote rate intervals from external references get rejected by the clock
rate validation or are absent altogether, we have to rely on the remote rate intervals from the other
nodes of the ensemble. They are generally longer and their reference points have a tendency to drift
apart. Thus, it is the purpose of the convergence function to keep them together, whereby their
lengths are still growing. This operation mode is known as internal rate synchronization, ensuing
a bounded consonance in spite of an increasing maximum drift.

To understand the preservation of the consonance, we recall the notion of internal global rate
w(t) and y-correctness. Suppose that each local rate interval belonging to non-faulty clock is ~,-
correct at SYNy, the beginning of round k. During the round we have to deteriorate it in order to
compensate for the stability of the local clock. This is done by Lemma 6 ending up with ~y-correct
local rate intervals at SYNgy ;. Note that these interval properties are merely of artificial nature,
since the algorithm has no explicit handle on them.

Just enlarging v, to v doesn’t guarantee a bounded consonance for any t — co. Therefore, at
the end of round £ the clock rates have to be manipulated in such a way, that the ensuing local
rate intervals become <y,-consonant, demanding v, C 7. Observe carefully, that we cannot safely
assert vyg-correctness here, since it may be the case that the internal global rate w* from round &
does not fit into the new ~, consonance intervals. Defining a suitable new internal global rate w*+!
resolves this deficiency and reassures vyg-correctness. As a result, our introduced internal global
rate makes discrete leaps at resynchronization instants and remains constant otherwise, cf. Figure 2.

If we impose further properties on the convergence function CVz(-), algorithm CRA serves not
only external but internal rate synchronization as well. For that purpose imagine two different
local nodes p and ¢ that are about to measure their rates in cooperation with another remote node
1. After the execution of one round, the local rate interval R; at node ¢ leaves two remote rate
intervals R, ; resp. R,; at node p resp. ¢. The iteration with all nodes 1 < ¢ < n results in the
sets Ry, = {Rp1,..., Ry} and Ry = {Ry1,..., R, }. In consideration of our assumptions, we
are able to show in Section 5.1 that non-faulty remote rate intervals w.r.t fault model F have the
following properties:

e v, ~correctness of R ;,

® v,.i-correctness of R, ;,

e ~i-correctness of R,; and R, ;,

e ~yp-correctness of any non-faulty remote rate interval,

e ~y-consonance of any set {R,;, R, ;} with ||vIf < ||vgll-

Applying convergence function CVx(-) at node p resp. ¢ yields Rgvf =CVr(R,1,...,Ryn)
resp. Rgvf =CVr(Ry, 1, ..., Ry ,), that has to both preserve and enhance consonance. This will be
specified with the help of a consonance preservation function CP(-) and a consonance enhancement
function CE(-) in the following way.
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Definition 11 (Consonance Preservation) Given two sets of remote rate intervals R, and R,
with the above made preconditions. A convergence function CV () is characterized by a weakly
monotonic consonance preservation function CP(-) iff

R;;Vf i CP(Yp1 -+ s Ypmi YHI Y- - -)—correct and Rgvf s CP(Ygu -+ s Yqnis YH Y15 - -)—correct

with ||ICP(Y" - Y v v - M = Ollvall).

Definition 12 (Consonance Enhancement) Given two sets of remote rate intervals R, and
R, with the above made preconditions. A convergence function CVr(-) is characterized by a weakly
monotonic consonance enhancement function CE(-) iff

{Rgvf, Rgvf} is ¥°V7 — consonant satisfying ||VV7|| = CE(R .. Y YY)

with CEY* ..oy vy -+ ) < llvwll-

The results of analyzing algorithm CRA, in particular the bounded consonance, will be sum-
marized in Theorem 1.

4.4 Fault Model

So far we have sidestepped the issue of faults in our system, which allowed us to establish a generic
framework for clock rate synchronization. Only the validation function VALx(-) and the conver-
gence function CVz(-) need to be modified in respect to fault model F. In the following we recap
their duties: A validation function has to mask out faults stemming from primary nodes by making
use of rate information from the other nodes of the ensemble. Ideally, it either outputs the subset
of correct rate interval from primary nodes or the set of rate intervals from the others, as given in
Definition 8. A fault model F is needed to specify the potential faults in terms of plugged in rate
intervals, so that a suitable validation function VALx(-) can be applied. A convergence function
has to produce a rate interval that maintains both drift (Definition 10) and consonance (Definition
11 and 12) in spite of faults stemming from nodes of the ensemble. Again, they need to be char-
acterized by a fault model F, so that an appropriate convergence function CV£(-) can be utilized.
Both functions will call for certain fault-tolerance requirements, e.g. fraction of non-faulty primary
or ensemble nodes.

It remains to illustrate how system faults lead to faulty rate intervals. They can be faulty in
terms of their reference points and/or their lengths, resulting in a catalogue from which a specific
fault model F can be built, cf. [AK96]. For that purpose, imagine a broadcasting node and two
receiving nodes, carrying out the rate measurement protocols (two FMEs) and the preprocessing
steps to obtain their remote rate intervals for a particular round. In order to understand the variety
of faults, it is advantageous to distinguish between two perspectives:

e Viewed from the perspective of a single receiving node, a remote rate interval can experience

—~ omission faults, caused by an omissive broadcasting node or transient errors during
message reception, making it to an empty interval ().

— timing faults, caused by a faulty broadcasting node or excessive transmission delays,
rendering it as non-correct and/or non-+y-correct.

~ wvalue faults, caused by a faulty broadcasting node or a damaged message, rendering it
as non-correct and/or non-y-correct. In contrast to accuracy intervals as used in clock
state synchronization, rate intervals have an easy to check meaningful lengths, so we
don’t need to consider truncated, bounded or even unbounded intervals, cf. [Mar90].
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e Viewed from the perspective of corresponding receiving nodes, their remote rate intervals can
be entagled with

— crash faults, which are consistently detectable. However, a node that crashes during a
broadcast operation might produce inconsistent receptions.

— omission faults, which are usually differently at different receiving nodes. Traditionally,
they are attributed to the broadcasting node although most receive omissions occur
independently.

— restricted faults, which are consistent and can be tolerated with moderate efforts.

— arbitrary faults, which are inconsistent including the byzantine case. They may be caused
by nodes sending different messages to different receivers or by excessive transmission de-
lays at receiving nodes. Such faults can also occur in broadcast-type networks, since the
broadcast operation is not assumed to be reliable. However, we rule out the possibility
of impersonating other nodes or jamming the network.

It is beyond the scope of this paper to set up fault models along with suitable validation and
convergence functions. A forthcoming paper deals with these fundamental issues, cf. [Sch97].

4.5 Example

A simple execution should demonstrate algorithm CRA. We assume three nodes with stable clocks
(Omax = 0 ppm/sec) having rates vy = 0.8 Sec/sec, vy = 0.9 Sec/sec and vz = 1.3 Sec/sec, hence
the drift of our ensemble is 0.3 Sec/sec and the consonance is 0.5 Sec/sec. Of course, the clock
rates are not directly observable, but local rate intervals Ry = [0.15,1,0.3], Ry = [0.2,1,0.4] and
R; = [0.3,1,0] capture them by fulfilling condition 1 € »;R; for all 1 <7 <3 from Definition 4.

The protocol for relative rate measurement yields the quotient rate intervals Q,, = vq/v, for
all 1 < p,q < 3 when neglecting transmission uncertainties (€max = 0 sec). In addition local rate
intervals are exchanged and subsequently converted into remote rate intervals by use of R, =
Q,, - R, from Lemma 9. The resulting matrix of remote rate intervals reads

[0.133,0.888, 0.266] [0.2,1,0.4] [0.433, 1.444, 0]

( [0.15,1,0.3] [0.225,1.125,0.45]  [0.488,1.625,0] )
R = .
[0.092,0.615,0.185] [0.138,0.692,0.277)  [0.3,1,0]

Only local information was used to calculate the remote rate intervals. Figure 5 depicts them
from a global perspective, where each dashed block represents the local view of a node. Qualitatively
we can say that nodes have a similar view up to a particular shift (nodes with faster clocks to the
left) and stretch (nodes with slower clocks possess larger intervals).

Let’s take a closer look of node 1. All it’s remote rate intervals include the desired reciprocal
rate 1/v; = 1.25 sec/Sec. Using plain intersection as convergence function and setting the refer-
ence point in the middle, we get R(fvf = [0.082,1.218,0.082]. For adjusting the clock rate we alter
multiplicatively the oscillator-clock coupling by 1.218 leading to the new rate v] = 0.9744 Sec/sec.
Moreover the new local rate interval in respect to the changed rate becomes to R} = [0.067,1,0.067],
which again goes hand in hand with Definition 4.

Analogous results hold for the other nodes. In particular, the rate adjustment factors are 1.083
for node 2 and 0.75 for node 3, hence the new rates turn out to be v} = 0.9747 Sec/sec and
vh = 0.975 Sec/sec, respectively. The new local rate intervals R/, and R/, happens to be identical
with R} due to our trivial scenario. Suppose all rates were adjusted that way, we can reckon a drift
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Figure 5: Global view of remote rate intervals

6 = 0.0255 Sec/sec and a consonance v = 0.00056 Sec/sec. Not surprisingly, this is an excellent
result, but we should put it in perspective with the idealized assumptions.
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5 Analysis

The analysis of Algorithm CRA comes in four subsections concerning the dissemination of rate and
consonance intervals within a single round, the applied rate adjustments, the consonance (internal
rate synchronization) and drift (external rate synchronization) and of clocks. A terminating section
shows how clock rate and state synchronization work together.

5.1 Interval Dissemination

At the very first, we have to agree upon the real-time, when a particular round starts, since clocks
don’t resynchronize simulatenously. So far we have used SYN} to symbolize the begin of round k,
whereas the corresponding real-time of a non-faulty node p is tg. Following the line of arguments
from the proof of Lemma 10 and relying on the global precision I,,a, from Assumption 2, it is easy
to show that

Hma.x~ (32)
where p and ¢ are non-faulty nodes.

However, rate intervals (Definition 4) and consonance intervals (Definition 5) are expressed
over a common point of time, so the maximum of the resynchronization times t]; among non-faulty
nodes p can be exclaimed as the beginning of round &, denoted by t*. If clocks are stable, the clock
rate v,(t5) at t]’; remains constant until t*. Fortunately, since Iyay is assumed to be very small
compared to Pcra, we can justify the approximation

up(t%) = vy (th) + O(0, I Tmay) (33)

by combining (12) and (32). Unlike to clock state synchronization, it is our goal to collapse the
period of resychronization into a single point of time. Note that if Il is considerably large,
we cannot make this kind of simplification. The following Definition smoothes the way for rate
intervals and consonance intervals along with internal global rate having their origin at t* for round
k> 0.

Definition 13 (Round Start) Let t;f be the resynchronization times for non-faulty nodes p, when
switching to round k > 0 takes place. The begin of round k is determined by t* = max{t;‘;} among
non-faulty nodes p. If rate interval Rp(t’;) is correct and ﬂvp(t;f)(ref(Rp(t;f)) + 4% #£ @ for
non-faulty nodes p holds, then we assert rate interval R, (t*) = R, (tF) + [0 £ O(0,Tnax)] as

(1) correct, and

(2) (’Yk +0+ O(Umaxﬂmax)]) -correct
w.r.t internal global rate w(t*) € Mnon—faultyp Up(t;;)(ref(Rp(t’;)) + k).

Three remarks are important to make about internal global rate: First, the basis to define w(tk)
was a set of v*-consonance rate intervals at a common point of time, cf. Definition 6. We relaxed
it for different times and appended O(omaxIlmax) to ¥*. Second, note that any value in the above
intersection can be chosen as w(¢*). Finally, internal global rate remains constant during a round,
thus w(t) = w* = w(tk) for t* <t < t*+1. As a consequence, w(t) is a piecewise constant function
as depicted in Figure 2.

During each round the local rate interval R, of a remote node ¢ will be transferred to the rate
interval R, ; at local node p with the help of two FMEs. Since the computation of a remote rate




interval involves the multiplication of the associated quotient rate interval Q.4 we begin with
obtaining properties on them. The final results are given in Lemma 13 and 14.

Lemma 11 (Quotient Rate Interval Bounds) If R, is a correct local rate interval at remote
node q when a round commences, then the quotient rate interval Q,.,, at local node p #+ g has the
following properties:

y (U +a )P fmax
(]) alzgn(Qm) < [0 = (h%(l—q%qc)RA + (PCRA—PCSA—B)(I—IOpmax)H +

[O + O <£ﬁm‘x(—maj‘ + }_i%:i‘ + O'rznaxp(%RA + Umaxﬁmax>}

Pera

(2) ref(Quy) € swap(Ry) + [0+ (20, + 2E5ma 4 2Bokemn )] |

1-2p4 cra—Fcsa

€max)Pmax €max 2
[0 + 0O <(B+ Jo + (B;(%RA ) + (,Umax + UmaxPCRA)2>J

Pcra

with mazimum logical broadcast delay B = (1 + 2pmax) (Tmax + Amax) -

Proof Looking at the formula for Q,, at action #5 in Algorithm 1, our first step is devoted to
find bounds on the duration AT, = T} — T, and the corresponding duration AT,y =T, - T,y
The accumulated state corrections U, and U, can be ignored, since we assume a transparent state
synchronization.,

To get a handle on T} — T, we have to figure out the range of sending timestamps belonging
to FME’; and FMEg;; at remote node ¢ during an arbitrary round k. Directly from Algorithm
1 and consulting the proof of Lemma 10, we see that 0 < T, ~ (kPcra + D+ D') < B and
0<T,-(k+1)Pcra < B. Adding these unequation up and considering setting (29), we end up
with

]ATq — (Pcra — Fesa)l < B. (34)

Carrying over the bounds on AT} to the real-time counterpart At, and further to At, , at node
p will finally give us bounds on AT, .. If R, = [07,1,61] is correct at ¢, then a deterioration by
Fopa according to Lemma 3 makes it correct throughout round k. Therefore it follows by using
the asymptotic approximation (1+z)™' = 1 Fz 4+ O(z?) for 2 — 0 that the clock rate vg(t) is
bounded by

_ o, P .
v(t) 1467 + T2+ O (IRl + 0 Pona)?) (35)
q
and
+  IFcRA 2
valt) 2 1= 0F = 8 — O ((IRy][ + 0, Pora)?) (36)
q

for all ¢ € [t*,*+1]. From Lemma 7 we can obtain the relation

AT, o, 2 a3 AT,
— —=At,) —~ OQlozAt2) < t) < —=2(1
Atq ( 2 f]) (Uq q) — Uq( ) - Atq ( +

g
;Atq) + O(0]At2), (37)

which holds for the duration between the two sending events belonging to FME’, and FMEf41.
This duration is included in [t*,#**1] so we can apply the bounds of (36) and (35) upon them of
(37). An extraction of At, yields ;

AT, AT,
- q P < Atq < + oo P :
L+0g + 5502 + O (IRl + 0y Fera)?) L =8 — 5= = O((IRy]l + 04 Pera)?)
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Exploiting (20) gives us the intermediate At, , bounds. They are subsequently mapped onto clock
C, in order to obtain the aspired bounds on AT, ,. Since C, is the object under measurement, we
can solely use its possible range of clock rates based on (2) to receive

o, P
A%@s(Mz@+%ﬁﬁijf)+%M)u+m»+OWWm+%Rmmﬂma (38)
q

and

_ o.FcR:
ATL'D»Q z (ATQ (1 - Hq - CRA) - 6max) (1 - 2:017) -0 ((”RG’H + UQPCRA)Q) ATQ (39)

with the help of Lemma 2 in the permissive way.

After this preparatory work we are ready to attack Q,, itself. Let’s begin with the length of it
given by the formula in Lemma 8, whereby the left and right lengths are equal. Applying (34) and
(39) on it yields

{op + 04) Pcra €max(1 + 2pp)
2(1=2p5)  (Pora — Posa — B) (1- 67 — Zfema) (1 - 9p,)

1—2p4
O ((HRqH + UqPCRA)2€max ‘?nax

1
§HQP,QH <

+
Pera Féga

+ (Uz + Ug)Pg‘,RA + Uquax) )

whereby the O-term and €;ax-term of (39) was taken away from the second fraction appropriately.
As a consequence from Assumption 1, the drift of any non-faulty free running clock C, incurred
from the oscillator stability o, cannot exceed the range of 4ppmax given by (2), thus 0, Pora < 4pmax-
Also 8 can be safely bounded by 2pmax/ (1 = 2pmax) according to Lemma 1. When pushing all
Pmax-terms into the denominator, we finally get for the length of the symmetrical quotient rate
interval

(Up+Uq)PCRA €max

.+.
2(1 - 2p,) (Pera — Pesa — B) (1 — 10pmax)

1
§||Qp,q|] <

Prmaxe 62 2 p2

ax -max

@ mP + PI;laX + UmaxPCRA + Omax€max |
CRA CRA

which proofs item (1) of our Lemma.
In a similar way, we start out with the formula in Lemma 8 for the reference point, apply (34),
(38) and (39) on it. This provides an upper bound of

ref(Q,) Fepa — Pesa + B 1 4 €max
i Pera — Posa =B (1 -6, — ilﬁlfg——%)(l ~2p,)  Fera — Fesa — B

O ( foms . CmasPmas (R 1 4 g, Pory )
CRA
Péga  Pora .

and a similar lower bound. Noting that B < (Pcra — FPcsa) and using the asymptotic approxima-
tion (a+2)/(aFz) =1£22/a+ O(z?) and (1£2)"! =1F 2+ O(2?) both valid for z — 0, we
can make further simplifications on the above bounds, which results in

UqPCRA 2B + €max

1—=2p,  Fera — Posa

7’€f(stq) < 1+0; +2pp+
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+ (pmax + Uma.xPCRA)2)

B max max max 2
O (B + €max)p N (B +2€ )
PCRA PCRA

and
o, Fora 2B + €max
ref(Q z 1= —2p, — B

HQpy) g TP T T 2p,  Pcra — Posa

) (B + €max) Pmax 4 (B +2€max)2
Pcra Pépa

+ (pmax + O'maxPCRA)Q) .

A translation into the interval notation finishes up the proof. O

Lemma 12 (Interval Multiplication Bounds) IfI=[z,1,y] and J = [r + u] then
(1) align(J) + le ft(D)align(I) C align(1-J) C align(J) + right(J)align(I)
(2) ref(1-J) =ref(J)

Proof First we have align(I-J) = [u+ 2(r — u),0,u+ y(r + u)]. The lower bounding interval is
given by [0 4 u] + (r — u)[,0,y] and the upper one by [0+ ul + (r+ u)[z,0,y]. A resubstitution
according to Definition 3 delivers the claimed result. The second item is a trivial conclusion from
the interval multiplication definition. O

Lemma 13 (Rate Interval Dissemination) IfR, is a correct local rate interval at remote node |
q at t* and Qyp,q 78 the involved quotient rate interval, then the remote rate interval R, , at local

node p has the following properties at t*+1:

) . P 3oq+0,) P, 2(B+€max) ;
(1) align(Ry,q) S <1 +2pp : 2q(l—p?)Pq(iRA + (PCRA—PC(SAtB)(l)—mpmax)) align(R,)+
oy P o4 P, (1+ + ) €ma
[0 = (HR‘?HZ + 1—§(pcpi};q) + = CR?—‘M;DP o+ (PCRA“PCSA“B)(I‘IOPmaX))} T

Pcra

[0 +0 ("2 mex 4 ,—%:: + 02 Péna + Omax(B + Moy + emax)” Jorp# q, and

align(Ry,) C align(Ry) + [0+ ZEEEL] + 0 £ O (G| Ryl Pona + M) + 2P, )|

1—-2pp

a4 fmax
(2) ref(R,,) € swap(R,) + [0 + (2,01U + f-‘éﬁ‘j + p2Bt )} 4

cra—FPcsa

[O + 0 <£B+;§mx)pmax + (B;-gmax)z + (pmax + UmaxPCRA)Z)J f07‘ p ?é q, and

CRA CRA
ref(Rpp) = 1.

Proof Item (1) targets the alignment of the remote rate interval R, ,, whose computation is given
at action #6 in Algorithm 1. The alignment of multiplicand align(R, +[0 + o (D'+ LY/ (1-2p,)])
can be easily expressed as 0, + 94,0, 9; + 9,] with

9 — UQ(PCSA - (1 + zpmax)ﬂmax) (40)
¢ L —2p,
< C’qPCSA’
- 1=2p,
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since D'+ L = Poga —~ D+ L = Poga — (1 + 2pmax) max from (28), (29) and Lemma 10. The
properties of multiplier Q,, are given by Lemma 11, so we just need to string them together by
virtue of Lemma 12. The remaining component to prepare is the right egde of Q,, ,, which is

(B + Gmax)pmax (B + emax)z

right(QP'q) = 1—{—9;—{—?97),[1—’—0 ( + (pmax + UmaxPCRA)Z + Umaxemax)

Fera Pépa
with
. _ UqPCRA 2B + €max (Up + UQ)PCRA €max
Vg = oyt Tt B p 201 -2 Pora — —BY(1-
1 -2p, cra — Posa ( Py) (Pcra — Pesa — B)(1 = 10pmax)
< ot (3% + U;T)PCRA n 2(B + €max) '
2(1 — 2p,) (Pera — FPesa — B)(1 — 10pmay)

Now we are ready to attack the upper bound on the alignment of R, ,. According to Lemma 12
and recalling #6 in Algorithm 1, we have

) D’
align(R, ) C align(Qp,q)'*‘”ght(Qp,q) align (Rq + [0 + U_ql(__é-_;_Ll} ) + [0 tref(Qp,) 1 Upé)p } ;
- q — “Fp

which can be casted into

align(Ryq) C (1467 + ) [07 +10,,0,6} + 9, + (41)
(Up + UQ)PCRA €max UpD
0+ + + +
[ ( 2(1 - 2p,) (Pora — Posa — B)(1 = 10pmax) 1 —2p,

p?naxemax 6rznax 2 2
00 + 2 + UmaxPCRA + Umax(B + Gmax)
Pora Pépa

Next we focus on the first interval of (41). Since 0 < 07 < 2py/(1 — 2p,) from Lemma 1, we can
interfere that

2p,
1-2p,

(L4 07 + Tp, ) (0 +9,) < (149,065 + (67 +67)7 + (1 + + 05)0s,

where the last term can be placed to the deterioration interval of (41). By reshaping this interval,
we get for its left /right length

(Up + Uq)PCRA €max UpD qu
foa = 2(1 - 2p,) (Pcra — Posa — B)(1 ~ 10pmax) * 1—=2p, i 1 —=2p, * Tpa) s
< o ( Fcra N D ) o, ( ’PCRA (14 2p, + 2/)q)PCSA> +
2(1=2py)  1-2p, 2(1 = 2p,) 1—4dp,
fmax +0 <ar2naxp(23RA + Omax (B + 6maX))

(FPecra — Pesa — B)(1 — 10pmax)
< ap,Pcra g Fera(l + pp + py) €max .
- 1-2(p, + pq) 1 —4p, (Pcra — Pesa — B)(1 — 10pmax)

O (02, x Pl + Oumax (B + ma))
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since Pora > 2Pcsa > 2D from (28) and below. After all, we can restate (41) as

align(R,,) C© (1 + Up.q) align(R,) + {O + (HRQH2 + lp,q)} +

O O /)znaxgmax 6;?na.x + 2 P2 _’_ (B + )
Omax . amax €max .
I CRA 1 (%R A CRA

Plugging in the bounds for our temporary variables Up.q and [, ,, and adding O(omaxllnax) to make
it correct at t**! according to Definition 13 finishes item (1) for case ¢ # p. The other case is a
trivial consequence of Lemma 3 and Definition 13.

Item (2) follows immediately from Lemma 12, since the deterioration terms don’t affect the
reference points. Therefore it is sufficient to take over the interval from item (2) of Lemma 11 for
case ¢ # p. The other case is also trivial. O

Lemma 14 (Consonance Interval Dissemination) Let N* be the set of non-faulty nodes dur-
ing round k. If the set of correct local rate intervals Ro = {R,|p € N'*} is v,-correct w.r.t. internal
global rate w(t*) at t* and Q,, is the involved quotient rate interval, then the remote rate interval
R, for p,q € N* have the following properties at t*T1;

(1) Any remote rate interval R, , is Y p.q-COTTECE Wit
(3(7 +0 )PCRA 2(B+5ma.x)
Tpa & (1 +2pp + g(l—pZ/)q) + (PCRA—PCSA—B)(l—IODmax)) Yot

2 opk Ik (1+p +p ) max
[Oi (”70“ R e T e s e v (PCRA—Pcsﬁ—B)(I—lopm)”+

RA

[0 +0O (ﬂ%%é‘im + I_i%}i + U?naxPéRA + Umax(B + Mmax + 6ma.x))] fOT P 7[: q, and

Vop C g+ [O + &@i} -+ [O +0 (O'max(”’)’o“PCRA + HmaLx) + O';EP(%RA)}

1-2pp

(2) The set of remote rate intervals R, = {Ry,l¢ € N*} at a receiving node p supplied by
broadcasting nodes ¢ € N'* is "/f-correct with

H (3 max+0 )P 2(B+€emax
717 g (1 + 2pp + a?(l—Zp}:nax(iﬁA + (PCRA“‘PCSA—B)(l)_lgpmax)) 70+

P, Tmax P (14 pp+pmax ) max
':O :t (HF)IOHZ + l_gfppil:;fnax) + C?ﬁ‘*l’ma: ‘ + (PCRA“PCS.:_B)(I_IOPmax)):' +

Pcra

2 fmax 2
[Oi(”) <p - + ”;'?;“*'U;axpéRA +Umax(”70HPCRA +B+Hmax+€max)>;l-

(8) The set of all remote rate intervals R = Upens Ry at non-faulty nodes is vy -correct with

2 maxPQBé 2(B+fmax)
TH & (1 + 2pmax + U1~2pme.x + (PCRA~PCSA-B)(1~IOpmax)) Yot

2 QamaxP RA(1+Pmax) €max
[0 + (H’YOH + 1‘C~4pmax + (PCRA“PCSA“B)(I_IO/}maX)):{ +

2 fmax 52
[0 + 0 <&m“—— + ﬁ?ff; + 0 paxFera + Omax ({170l Pora + B + Mpax + €maX)>] .

Fera

(4) The set of remote rate intervals R? = {R,4lp € N*} at receiving nodes p € N* from a
broadcasting node q is v1-correct with

(30 +0'ma.x)P y 2(B+6max
ARS (1 + 2pmax + q2(1—2pq)CRA + (Pera—Fcsa "B)(I)—lol)ma,x)) Yot

2 Omax 3 oq P (1+pmax+ﬁ ) max
{0 + <H70H + 1—2(Pma§i??q) + - CRA1~4Pq L+ (PCRA“Pcs;“B)(l—umaX)” +
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Fera

2 fmax 52 y
[0 + 0 (Bm“;_‘ + }‘3?:: + O-rQnaxPéRA + Umax(”')’OHPCRA + B+ Hax + Emaﬂ)}

and v p-consonant with

Traaxt C’qPCRA(1+Pma.x+Pq) €rmax )]
V1S [OZf (1—2uhmx+pq5*' =17, F P Posa = BY= 10 )| T

2 2
‘:O +0 (Bm}%i%ﬂ + 25‘21:: + UgnaxPCQTRA + Omax(B + Hmax + €max)>}

Proof Item (1) is analogous to item (1) of Lemma 13, but instead of a rate intervals, the associated
consonance intervals are analyzed. Suppose node ¢ € A% maintains a correct local rate interval R,
at t*, which is also v4-correct expressing that w* e vp(tk)(l + 7o), cf. Definition 6. The local rate
interval R, +[0t0,(D'+L)/(1-2pg)]is (vo+[04+0,Poss /(1 - 2p,)])-correct, see (41) and Lemma
6, when the message of FME’; leaves node ¢. Let p € A% be the peer node with P # q computing
remote rate interval R, ; for t*+1 at action #6. It remains to quantify the Yp,g-correctness of R, ;.
Due to Corollary 2, we can use the same line of reasoning as for align(R,,) in Lemma 13 in order
to find a bounding interval of Yp,q SinCE

opD
1—2p,|°

o.FPcsa
Vo & (’Yo + I:O + #{Ej) “Qpq + [O T ref(Qp)

Eventually, we arrive at w* ¢ vq(tk“)(ref(Rp‘q)—k'ypyq) with the properties from item (2) of Lemma
13onref(R,,) and from item (1) on v, , after applying two substitutions, viz. align(R, 4) becomes
to,,, and align(R,) tovy,. Lastely, case p = ¢ is a trival consequence of Lemma 6 and Definiton 13.

Since each remote rate interval is Vp,a-Correct as asserted in item (1), a straight majorization
over the broadcasting nodes provides the claimed 75—001‘rectness of set R,,. More specifically, cal-
culating 'yf = Ugens\{p} Vp,q Tesults in the formula as given in item (2), whereas the consonance
interval vy, , is also subsumed, since Yo G ’yf holds.

Item (3) embraces all appearing remote rate intervals at non-faulty nodes, whose v#-correctness
w.r.t. w® can easily be proved by doing the union Uper 'yf. Effortlessly, we arrive at the desired
formula.

Again, each remote rate interval is Yp,g-correct as given in item (1), so a majorization over the
receiving nodes, formally ~7 = UpeNk,\{q} Vp,g» tesults in the formula given in the first part of item
(4), whereas Yq.q © 77 holds as well.

For the second part, we have to calculate the consonance of the set of remote rate intervals RY
stemming from a common broadcasting node ¢. For that purpose, we attach a pseudo consonance
interval &, to local rate interval R,,. It is initialized to § when the first message leaves node ¢ during
FME’;. Covering a point-to-point and a broadcast-type network uniformly, we deteriorate it by
the maximum logical braodcast delay B to take care for the last leaving message during FME’,,
hence we end up with

o, B
1—2p,

%:Fi }+@i0@wﬁy

Replacing Ry by k, in item (1) of Lemma 13, yields the corresponding pseudo consonance interval
Kpq- Carrying out all simplification steps, in particular the O-operations, we obtain

a PCRA g PCR,A(1+/) +p ) €max
~ C 0+ P q P g + +
peo= { (1 - 2(/);) + Pq) I 4,017 (PCRA - PCSA - B)(l - lopmax)

33




2 €max 62
040 ( Pmaxtmex | Smax 4 o2 P2t man(B 4 Moo + ema) |||
Pcra Pépa

for p # ¢, and

o, FPcrA

Kqq C [Oﬁ: =2
7

} + [0 O (el B+ M) + 02, P2 ).

A majorization over the receiving nodes provides the 4 ;-consonance of R?, hence Y1 = Upens\{q} Kp.q
leads to the formula given in the second part of item (4), noting that x, , C v;.

This eventually completes the proof of Lemma 14. O

Note that we have managed to express the properties of the remote rate interval R,, at tht1
basically linear in the terms of the the local rate interval R, and consonance interval v, at t*. In
case of ideal conditions, i.e. stable clocks and zero uncertainties of the communication subsystem,
we can roughly say that:

align(Ry, ) C (14 2p,)align(R,) for ¢ # p, and align(R,, p) = align(R,)
o ref(Ry,,) € swap(R,) + [0+ 2p,] for ¢ # p, and ref(R,,) =1
e R, is v, ,-correct with Vg € (14 2p,)7 for p # ¢, and Yop = Yo

e R,is 7f-correct with 'yf C(1+2pp)70
® R is yy-correct with vg C (14 2pmax)vo
o R?is y9-correct with 47 C (1 + 2pmax)y, and 4 ;-consonant with =0

This finishes the analysis of disseminating rate and consonance intervals, which have their
origins as local rate intervals and are avaiable as remote rate intervals at the end of a particular
round. Subsequently they are fed into the validation and convergence function, producing local
rate intervals for the next round after adjusting the clock rate accordingly. The remaining sections
focus on the evaluation of theses functions based on the input intervals characterized by Lemma
13 and 14.

5.2 Rate Adjustments

We investigate the amounts of rate adjustments administered at the end of each round by changing
instanteneously the oscillator-clock coupling factor Sp in action #9 of Algorithm CRA. Since this
change happens in a multiplicative way, we aim to find bounds on the ratio between the new and
old one. An additional sanity check for feasible values of Sy helps to exclude faulty clocks. Our
analysis is grounded on the consonance preservation function CP(-) of the utilized convergence
function CV£(+) in algorithm CRA, cf. Definition 11.

Lemma 15 (Rate Adjustments) Let N* be the set of non-faulty nodes during round k. If the
set of correct local rate intervals Ro = {R,|p € N'*} is vyy-correct w.r.t. internal global rate w(t*) at
tk then the rate adjustment at t**1 expressed as the ratio between the new and old oscillator-clock
coupling factor, is limited by

S;/,c+1 UpPCHA
oF € 147+ Oil_:—i;— + swap (CP(*yp,l...,7%”;7}1;7];...))+ (42)
P : P

[0 O (mas(llrol1Pena + M) + 02 P2, )]
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Jor node p € N*, whereby CP(vp1-- S Ypmi YHI YL -+ ) is @ weakly monotonic consonance preser-
vation function of convergence function CVr(-) subject to fault model F supplied with

. (30‘ +o )P 2(B+5max)
© Y= (1420 + S0 T PR B TorT ) Yot
2 o Pc oq P (1+P +p ) fmax
[O :t (HA}/OH + l“g(ppi?)q) + . CRIA—4Pqp ! + (PCRA“PCSA_B)(I_IOPmax))} +

[0 + 0 <&2‘nm‘ml + ']%l:: + U?naxPéRA + Umax(B + Hmax + Emax))]y

FPera

— 2omax P 2(B+€max
* Yu= <1 + 2pmax + 5 so (PCRA—PCSA—B)(I)—IO/Jmax)) Yot

1-2pmax
2 2O’maxPCRA(1"¥'pmax) fmnax
[0 + (lhOH + T—4pmax + (PCRA-PCSA“B)(I_IOPmax)):! +

Pera

2 2
[0 + 0O (mef_w -+ }—;?:i' + UrL;laxP(%RA + 0max(l’70'lPCR,A + B + Hmax + 6max)>}) and

- UmaxPCRA UqPCRA(l‘l"pmax'f'Pq) €max ):i
¢ 71 - [Oi (1‘2(Pmax+Pq) + 1“4Pq + (PCRA—PCSA—B)(I“lOﬂmax) +

[0 +0 (M + 765‘2?:: + O'r2naxP(%RA + Omax(B + Hiax + Emax))} .

Pcra

Proof At the beginning of round k, suppose clock C, of node p € N'* is steered with coupling
factor SS, and the corresponding local rate interval R, is yy-correct w.r.t. w*. From item (1) of
Lemma 14 we know that R, is v, -correct as shown there. Hence, if v, (t*+1) is the clock rate

Jjust before the rate adjustment takes place to switch over to round k + 1, it follows that

3 3 o, P
Wk € v, (tFF1) (1 Fvo+ {o + T”_—‘;F‘p-é} +[0£0 (omaxl1ol Pera + Tinax) + agpgRA)]) . (43)
P

Furthermore, node p computes a new correct rate interval Rgvf valid for t**! by virtue of the
ideal validation function VALxz(-) and the convergence function CVx(-) tailored to fault model
F. The characterization of CVz(-) with the consonance preservation function CP(-) ensures that
Rgvf 8 CP(Yp1 -+ Ypm3 YHI Y15 - - )-correct w.r.t. w¥, cf. Definition 11. By virtue of the weak
monotonicity of CP(-), it holds that

ok e vp(tkH) <ref(R]C9Vf) +C7?(7p71 e Y YH YL - )) (44)

with the above calculated intervals for Yp1 -+ Ypnr Yo and yp taken over as bounds from item
(1), (3) and (4) of Lemma 14. Combining (43) and (44) yields

P ;
%ef(Rgi) € 14,4+ [0 + glﬁ*g}_;)ﬁ} + swap (CP('yp’l Y YHI YT - )) + (45)
= 4Pp

[0 + O (Umax(H%HPCRA + Mmax) + "z:;PéRA” :

Noting that S;f'“ = Szfref(Rgvf) from (30) or see action #9 in algorithm CRA finishes the proof.
0

5.3 Consonance

For internal rate synchronization, we are interested how the consonance of our clocks behave. In
particular, we study the sustentation of the consonance, which is determinated by the consonance
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enhancement function C&(-) upon CVz(-}, cf. Definition 12. The following Theorem expresses the
lengths of the resulting consonance intervals ¥,» whereby the conversion to consonance v can be
done via Lemma 4 and 5.

Theorem 1 (Consonance) Complying to Assumptions 1-5, if Algorithm CRA employs an ideal
validation function VAL (-) and a translation invariant, weakly monotonic convergence function
CVx(-) characterized by a weakly monotonic consonance enhancement function CE(-) subject to a
gwen fault model F, then the local rate interval R, of a non-faulty node p is v,-correct at t* for
k >0, whereby vy is a solution of the equation

CEV Y YY)
L= {lvoll

Yol = (46)

with

. ¢ (30' +(7max)P 2(B+ max
* v = (1 + 2Pmax + q2(1—2pq)CRA + (Pcra—Posa —63)(1)—10pmax)) Yot

2 Tmax P 7 Pera(l4pmax+pq) fmax
[O :t (H’YO” + I‘Z(Pmail‘r;q) + . RA1‘4Pq . + (PCRA_PCSA‘B)(I—IOPmax))] +

[O +0 <m =+ }—63%:: + UéaxP(%RA + O'max(B + Hiax + 5max))];

Pcra

— 20max P 2(B+ max)
© i = (L4 2pman + Hmgplins 4 PP B —Tommy ) Yot
2U'maxP (1+ ma.x) IBAX
[0 * (“70“2 + lgzgmax . + (PCRA’PCS:“B)(I“IOPmaX)>:' +

FZ
[0 Lo (pz mex | o 02 Pera + omax(|Vol|Pora + B + Ty + emax))J, and

Fera

. UmaxPCRA UiPCRA(l‘FPmax'f'Pq) £max ):l
¢ V1= {Oi (1—2(pmx+pq) + =40, t Pora—Posr =B T-105ma )| T

PoaxEmax €2 2 2
[0:1:0 < + I—J?I:i“f‘amaxPCRA +Umax(B+Hmax+€max)>]~

FPera

Proof The above result is established by conducting an induction proof on round k. For ease of
presentation, assume a set A% of non-faulty nodes during round k& > 0. The key part is to show
that if the set of local rate intervals {R’;Ip € N*} is vj-correct w.r.t. internal global rate w(t*)

at t* for some v C 7, then R;f“ s yo-correct w.r.t. the newly internal global rate w(t*+1) at tF+1,

Starting backwards, we know that if v, satisfies (46) it follows from Definition 12 that the set
{RSY7|p € N*} is vCV7consonant at, t5+1 whereas HYY7 1 = Yol (1 = 17o]]). The enforcement

of the new clock rate vp(tk“)ref(Rgi) at action #9 of algorithm CRA affects the consonance
intervals as well, since in accordance with Definition 5 it holds that

N vp(tk“)ref(Rgi) (1 . —l—cv—f—-) #0

- FRGY7)

Therefore, the set {R’;“fp e M} is 7CVF/ref(Rgvf)—consonant at "1 whereas

ed! 1= {1l

1ied < [hvolls— oll-

ref(Rp"7)
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in conju‘nction with 46.

The set of initial local rate intervals Rg ={pp/(L+pp), 1, pp/ (1 — p,)] with SS = 1/f, is correct

a

This is only at resychr. point




5.4 Drift

For external rate synchronization, we are interested how the clock drifts evolve. Such a result
is useful in two ways: In case that the clock rate validation supplies remote rate intervals from
primary nodes, the others serve only as validation intervals. For this operation, it is important to
have knowledge about the lengths of the encountered remote rate intervals, bearing in mind their
correctness. In lack of remote rate intervals from primary nodes, the drift of our ensemble is about
to increase. Again, their lengths tell how much the rates deviate from the ideal rate of 1. The
following Theorem expresses the lengths of the resulting local rate intervals R, in a recursive way,
whereby the conversion to clock drift d, can be done via Lemma 1.

Theorem 2 (Drift) Complying to Assumptions 1-5, if algorithm CRA employs an ideal valida-
tion function VAL (-) and a translation invariant, weakly monotonic convergence function CVz(-)
characterized by a weakly monotonic drift preservation function DP(-) subject to a given fault model
F, then the local rate intervals Ry, ... R, have the following properties:

(1) The local rate interval R, of a non-faulty node p is correct at t* for k > 0.
(2) The local rate interval R, of a non-faulty node p satisfies align(R,) C V;‘,‘ at t* for k > 0,
where VY = [—pﬂ— 0 —’)LJ and Vi1 = MIN (V2 )DP(VE .., VE 5oL with

T+op* 21 T-pp

koo P, o440 2(B+€max k
prq - (1 +2p, + Cg?l(—zqﬂq) = + (PCRA—PC(SA*63)(1)—100max)> Vq+

k—1]12 7pPer 7qPcra(1+pp+0q) frmax
[0 :{: (qu II + 1“§(Pp+‘£/§:j + : 1‘4/’qp ! + (PCHA“PCSA‘B)(I"lgﬂmax)):l +

Pcra

[0 +0 (M + %%f: + 020 PR + Tmax(B + Tax + €max)>] .

Proof The above results are established by conducting an induction proof on round k. For ease
of presentation, assume a set N'* of non-faulty nodes during round & > 0.

For item (1) an initial local rate interval RY = [p,/(1+ py), 1, p/(1 — p,)] with Sp=1/f, is
correct according to Lemma 1 if ¢ € A%, For an arbitrary k > 1 choose any p,q € N*, whose local
rate interval R;f resp. Rf;' is correct at t;, with coupling factor Szf resp. 55, Let’s trace through the
way towards remote rate interval R’;’q at t¥+1. By construction of our algorithm and by consulting
Assumption 4, we deduct that

CQ (tSMEk) - Cq (t(‘;) < D’ + (1 + 2pmax) (Tmax + Amax)7

E) . . .
whereby tSM * denotes the real-time of actual message transmission during FME’;. Lemma 10

provides that (1 + 2pmax)(Tmax + Amax) < L, so we know that Rf; +0to,(D'+L)/(1 - 2p,)] is

correct at tSME;‘ by virtue of Lemma 3 and ignoring O-terms. Waiting L logical seconds for message
reception guarantees the completion of FME’;. Now we are ready to apply Lemma 9 asserting that
the remote rate interval (Rf; + {0+ o, (D"+ L)/(1 = 2p,)]) - Qp, is correct at thEk“, when the
message arrives at node p during FME; ;. An ensuing deterioration of 0tref(Qp,)opD/(1~2p,)]
makes it correct at t*t1 since

Cp(t**h) = Gyl ™) < D

again by construction of our algorithm, and by recalling Lemma 10 and Definition 13. Since
messages between non-faulty nodes don’t arrive later than (k+1)Pega + L during FME41, there
remains a logical duration of E, sufficient to carry out the computation of CRA. By fixing node
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p, we are dealing with a set of correct remote rate interval {RE lg € N*} at tryy. Although
additional faulty remote rate intervals might be involved, the ideal validation function VALx ()
and the convergence function CV£(-) tailored to fault model F are responsible for computing a new
correct rate interval Rgvf = [Hgvf",rgvf,ﬁgvaﬂ. Adjusting the rate by setting the coupling-
factor S;f“ = S;frgvf entails

gV r,—~ , gV .+
(vp(h1)rEV7) (1 — o | <L (oY) (14 T )

rp rp
which shows that the new local rate interval R’;“ = Rgvf/rgvf is correct for the new clock rate
rf,vvp (tF+1y, Remarking that the nodes within A/ are interchangeable finishes the correctness proof.

For item (2) the initial case k = 0 is trivial, since V) =R at t for all ¢ € O, For an arbitrary
k > 0, we assume align(RF) C Véf at t* for all ¢ € A%, Using item (1) of Lemma 13, the computed
remote rate intervals R;j’q at t* for any p € N* have the property

. P (3(7 + a ) Z(B + €ma )
k CRA q P X k
C
@hign(Ryq) © (1 T T2 T (Poma ~ Bosa —B)(1L = 10pm) ) V0 T
PCRA (o PCRA(]-"‘)O +p ) €max
0+ [|IvH2+ —22 g e Pe) +
[ (“ L TP =1, (Porn — Posa ~ BT~ 107

2 x€max | €2
[0 +0 (p max max | max 4 o2 Plra + Omax(B + Moax + emax))} ,
FPera Fépa

which can be abbreviated by align(R* ) C V¥ | According to Definition 10 concerning the drift
: ! P P g
preservation, we can derive that

align(Rg¥7) CDP(VE ..., VE - ).

p?n’

Since align(Rgvf)/rgvf is an including interval of align(Rﬁ“), we are in need to find a lower
bound on rgvf. This touches the problem of setting the reference point, which is directly tied with
internal rate synchronization. O

*** R, , nicht vergessen
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5.5 Splicing Clock Rate and State Synchronization

Let us review the principles of a clock rate and state synchronization algorithm:

At state resynchronization points, the algorithm achieves a worst case precision g max, strug-
gling against message delivery uncertainties and clock granularities. Between these points, the
clocks are running free and drift apart by p,_ . Pces. The rate resynchronization algorithm is in
charge of reducing this term, battling against the clock stabilites. There is a tradeoff involved
expressed in the ratio Popa/Pesa.

Looking at the mutual dependencies between a rate and state synchronization algorithm: We
see, that a CSA needs a good rate synchronization, but the CRA only little or even no state syn-
chronization. This is also the key to have a separated analysis, putting a CSA on top of a CRA.
Note that there is no conflict with the optimal result of [ST87], since the hardware drift is now
affected by the CRA.

** Nicht vergessen die state correction ausweisen, um die unkorrigiert Clock zu bekommen

Let us briefly compare these algorithms:
S state is gut zugaenglich, bei R ist rate nicht (measurement), R hat grosse Zeitkonstanten,

S hat kleine (eng, B, gr), R ist mult, inst corr, S is add.and amort corr, R kann Fehler leichter
detektieren, S nicht

Usage of CRA:
R kann S helfen auch bei trans delay measurement, faults, initial, R as its own right.

R Verbessern durch pipeling, keine 2 extra FME’s,
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Conclusion

We crafted an algorithm CRA for synchronizing both internally and externally the rates of clocks
in a fault-tolerant distributed system. The not directly observable clock rates are captured by dy-
namically maintained rate intervals, which are capable to account for the oscillator stability. The
algorithm is analog to a round-based one for clock state synchronization, consisting of a method
for rate measurement, a validation function to inject external rate references, and a convergence
function to compute proper rate corrections. Both functions have fault-tolerance properties tailored
towards a realistic system model comprising clocks, processors, and communication networks.

Clock rate synchronization is useful for many distributed applications and can support algo-
rithms for clock state synchronization. Moreover, it has the advantage of an inexpensive implemen-
tation, besides the need of a rate adjustable local clock. In the future, we are building a prototype
to demonstrate the behavior of the algorithm and to verify the theoretical results. Finally, much
work remains to be done to devise and analyze suitable interval-based validation and convergence
functions for a specific fault model. Of additional interest is to study the tradeoff between internal
and external rate synchronization.
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Glossary

Name

Meaning

accuracy of clock C,

maximal logical broadcast delay
function of clock C,

consonance enancement function
consonance preservation function

convergence function referring to fault model F

delays in algorithm CRA

drift of clock C,

drift preservation function
delivery uncertainties

maximum delivery uncertainty
logical duration of computation
maximal computation time
abstract fault model

nominal frequency of oscillator 0,

instentaneous frequency of oscillator O,
consonance of an ensemble of clocks

consonance interval

asymmetric interval

ordered set of asymmetric interval
interval alignment

reference point of interval

logical duration of an FME
maximum broadcast latency
number of nodes

internal global rate

rate synchronization period

state synchronization period
precision of an ensemble of clocks
global precision

quotient rate interval

(local) rate interval for clock C,
remote rate interval

set of (local) rate intervals
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Definition Page

Def. 1 4
Lem. 11 28
Sec. 2 4
Def. 12 24
Def. 11 24
Sec. 4.2 21
Sec. 4.1 19
Def. 2 4
Def. 10 21
Ass. 5 7
Ass. 5 7
Lem. 10 20
Ass. 3 6
Sec. 4.4 24
Sec. 2.2 4
Sec. 2.2 4
Def. 2 4
Def. 5 11
Def. 3 8
Sec. 3.1 8
Def. 3 8
Def. 3 8
Lem. 10 20
Ass. 4 7
Sec. 4 19
Sec. 3.3 12
Sec. 4.1 19
Sec. 4.1 19
Def. 1 4
Ass. 2 6
Def. 7 14
Def. 4 9
Lem. 9 17
Sec. 3.1 8




Name Meaning Definition Page

Pp maximum oscillator drift Ass. 1 6
Pmax uniform maximum oscillator drift Sec. 2.2 4
Sp coupling factor between Cp and O, Sec. 2.2 4
oy oscillator stability Ass. 1 6
Crmax uniform oscillator stability Sec. 2.2 4
t real-time in a Newtonian frame Sec. 2 4
tk begin of round k Def. 13 27
At real-time duration Sec. 3.2 9
TAN deterministic delivery Ass. 5 7
Almax maximum deterministic delivery Ass. 5 7
T clock state Sec. 2 4
AT logical-time duration Sec. 3.2 9
T non-empty real-time period Sec. 2.1 4
Tmax maximum broadcast operation delay Ass. 4 7
(9;} rate drifts for clock C, Sec. 3.2 8
U,, U, accumulated state corrections Alg. 1 22
vp (1) instentaneous clock rate Sec. 2.1 4
VAL#z(-) validation function referring to fault model F Def. 8 21
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