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Abstract

Our project SynUTC! is devoted to the development of soft- and
hardware for very high precision/accuracy clock synchronization in fault-
tolerant distributed systems. In the course of this project, the simulation
system SimUTC was developed, which allows to execute and evaluate clock
synchronization algorithms [Wei99]. However, in order to simulate the
indeterministic nature of the hardware we need random generators that
allow us to model the transmission delay characteristics of a network or
the behaviour of clock drifts. The goal of this work? is to implement such
generators in the programming language C++.
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1 Introduction

In order to generate a random variable according to a given distribution function,
it is first necessary to compute a uniform random variable in the interval [0, 1].
Such generators are well documented, see e.g. [Knu81]. We use the uniform
random generator provided by the authors of C++SIM (a simulation toolkit,
cf. [LM]), see section 2.1.

To get a non-uniform distribution within a given interval, first we need to
specify the destination interval [low, high|. Our simulation requires intervals
with low > 0.

Many distribution functions are defined within an infinite interval, but the
computer can only represent values within a finite range. So we have to reduce
the original infinite range to a finite “computation interval” which can be repre-
sented with the chosen data type, like [1E-308, 1E4308] when using data type
double. Now when the user requests a random value within a given interval
[Low, high|, then this interval is a subset of the finite range. The parameters
of the distribution, which lie within the user interval, are first mapped to the
computation interval. The random value is then computed for this interval and
finally mapped back into the user interval.

Before we start explaining the functions, we need to introduce a few commonly
used terms: The behaviour of our random generators can be described by a
probability density function (PDF). It gives the probability with which a certain
value occurs. In order to obtain random variables, however, one has to consider
the cumulative distribution function (CDF), which is the integral of the PDF.

Functions are characterized by the ezpectation E, which is the mean of the
random values, and in the case of the normal distribution by the standard devi-
ation p as well.

When computing the distribution, it is best to use the transformation method
which computes the random values from the inverse function of the CDF. The
method utilizes the fact that since a given distribution function F maps an X-
distributed random value from the range [a,b] to the uniform range [0, 1], its
inverse function maps uniform values from [0, 1] to X-distributed values in [a, b].
So we only have to draw a uniform random value, use it as input to the inverse
CDF, and the result will be an X-distributed random value. This is a determin-
istic method which always needs to compute exactly one uniform value to obtain
the result.

The transformation method is limited by the fact that it requires the existence
and computability of the inverse function of the CDEF. If these conditions are not
fulfilled, one has to use some kind of rejection method, which tries to approximate
the inverse function. It uses an appropriate “enclosing function” and a uniform
value to compute a random value z. Then, it uses a second uniform value u



and tests if PDF(x) < u. If the condition is fulfilled, then z is returned and
conforms to the desired distribution. If the test fails, x is discarded and the
process is repeated with a new value. Obviously, the algorithm needs to compute
an arbitrary number of values until one passes the test. This makes the method
less useful for our simulation, because the execution time of calls to the random
generators will vary, which is not desired.

In Section 2 we will explain the distribution functions and compare the ideal
function to the distributions obtained by our random generators. Section 3 is
devoted to a description of the test program we have used to create the plots of
the generators’ behaviour. The final Section 4 describes the C++ library that
contains the implementation of the generators.

2 Distribution Functions

2.1 Uniform

As already mentioned, we have taken over the uniform generator of [LM], which
is a combination of two methods:

e The first method uses a multiplicative generator to fill an array of fixed
length with random values. These values are computed from a given seed
M Seed, which is changed at every access to the generator according to the
formula

MSeedyew = (MSeedyq * 3125) mod 67108864.

The initial value of M Seed is saved in case the user wants to reset the
generator to its initial state at some later time.

e The second generator uses a linear congruential generator [Knu81| to com-
pute an index into the array. It also needs a seed LSeed which is changed
at every access according to the formula

LSeed,e, = (b* LSeedyq + 1) mod m,

with m = 100000000 (modulus) and b = 31415821 (multiplier).

The value of the seed is mapped to an array index to choose the random
value that is returned to the user. This value is then replaced with a new
one that is obtained from the multiplicative generator.

Again, the initial seed is saved.
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Figure 1: Measured PDF of the Uniform Distribution

So uniform deviates are generated by the multiplicative generator, but ad-
ditionally shuffled by the linear congruential generator, thus (hopefully) causing
the resulting sequence to be even more random.

Fig. 1 shows the behaviour of our uniform generator. Ideally, the PDF should
be the constant function f(z) = 0.1. The real function fluctuates around 0.1,
with some values having a slightly higher probability, and with some being less
probable. However, we have compared this generator with the uniform generator
implemented in [PF88] and it shows a significantly better overall behaviour. Thus,
we have chosen it as the basis of our generators.

In order to be able to reset the random generator to a former state, we have
modified the original code so that it saves the access parameters M Seed and
LSeed that correspond to the current state of the generator. The user can obtain
these parameters at any time and can restore this state at some later time.

Internally, we need to keep track of the number of accesses (distance) that
the user has made, up to the array size, and we always keep the seeds that have
been used distance accesses ago. These seeds and their distance comprise the
state information that is returned to the user. When the user restores a state,
we check the value of distance. If it is less than the array size, we fill the array



using the initial M Seed and then draw and discard distance values to get to the
current state. If distance is equal to the array size, we just restore the seeds
and draw and discard distance values to get to the current state. Note that the
values we draw have nothing to do with the restored state, they still belong to
the former state of the generator. But after they were drawn, the multiplicative
generator has filled the array with exactly the same values that it had when the
user has saved the state. So the next user access to the random generator will
result in the same value as was returned by the first access after the state had
been saved.

2.2 Exponential
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Figure 2: Ideal PDF of the Exponential Distribution, 2nd Param. A
The exponential function is characterized through the following PDF (see Fig. 2)
f(x) = A*xe Mo,
The CDF and the corresponding inverse function are

F(z)=1- e M Fﬁl(y) — _ln(l)\*y)

with the expectation £ = 1/\.



Since the inverse of the CDF is available, we utilize the transformation method
to obtain the random value. We use a uniform random variable y as input to the
inverse function F'(y) to get the corresponding z. The result of F(y) follows
an exponential distribution.
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Figure 3: Measured PDF of the Exponential Distribution, E = 2

The implementation is taken from [PF88] but modified to draw random values
within a given interval [low, high| which conform to a given expectation E.

Fig 3 compares the ideal PDF for E' = 2 within the interval [0, 10] against the
PDF of the exponential generator. The ideal function is nearly invisible behind
the real function, so the functions are closely together.

2.3 Normal

The normal distribution is marked by its symmetrical, bell-shaped density func-
tion (see Fig. 4)

f(z) = —% *6_%*@_;&)2’ o >0,
ox\/ 2%

with the expectation £ = p and the standard deviation o.

The generator uses the Boxz-Muller Algorithm: first, two uniform random
values are obtained, which are taken as the cartesian coordinates of a two-
dimensional point. In order to be usable, the uniform values must first pass
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Figure 4: Ideal PDF of the Normal Distribution, 2nd Param. u, 3rd Param. o

a test: if the distance r of the point from the origin is less than 1, then the ran-
dom values can be further used to compute the normal deviate. Otherwise, they
are discarded and two new values are drawn. Using the Box-Muller algorithm,
a surviving pair of uniform deviates is transformed into values conforming to a
normal distribution with pg = 0 and 0y = 1, so we have to multiply the values
with ¢ and add p to obtain random values with the mean p and standard devi-
ation 0. From these two values, we return the first and store the second in case
a future test fails.

Our implementation is based on [PF88], but allows an arbitrary mean and
standard deviation. Note that we do not scale the interval: if a (valid) result does
not fall into the desired range, then it is discarded and a new result is computed.
Since this may theoretically result in an endless loop, we keep a counter that is
set to zero upon function entry and which is incremented if the value has to be
discarded. If the counter reaches a given upper limit, then we abort the program,
since this means that something is seriously wrong. In such a case, one should
check the parameters of the algorithm to determine the problem. In our tests,
however, we have never encountered such emergency aborts.

Fig. 5 compares the ideal PDF for ;4 = 0.3 and ¢ = 0.06 within the interval
[0.2, 0.5] against the PDF of the generator. Again, the ideal function is nearly
invisible behind the real function. However, it seems to be smaller than the mea-
sured PDF, because it is defined within an infinite range, whereas the measured
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Figure 5: Measured PDF of the Normal Distribution, p = 0.3, 0 = 0.06
PDF is only defined in the target interval.

2.4 Gamma

This function looks exponential for an expectation near the interval bounds and
is bell-shaped, albeit asymmetrical, for all other expectation values (see the first
three functions in Fig. 6). Its PDF is

-1

f(z) = %, a,x > 0.

The function has to be computed with the rejection method. For this method
we first need an “enclosing” function which should be greater or equal to the
density function and which should be computable. Our implementation uses
the algorithm in [PF88|, which is based on the Lorentzian distribution. The
comparison function is given by

xz

f({L') — (1 +y2) " 6(oc—l)*ln(oﬁl)—s*y

where

yztan(W*U),s:\/2*(a—1)+1,andx:s*y+a—1.

Parameter U is the uniform deviate, and the expectation is £ = a.



To compute the desired random value, we split « into an integral part |«|
and a fractional part o — ||, compute gamma-distributed deviates for each of
the values and finally add these deviates to get the desired value.

For the integral part, we use the algorithm presented in [PF88]. We first
draw a uniform deviate and use the enclosing function to compute the f(z) value.
Then, we draw a second uniform deviate. If this second value is less than f(x)
then we use the computed z, otherwise we have to repeat the process.

For the fractional part, we use the algorithm presented in the exercises
of [Knu81]. It also works with rejection but uses a different enclosing function.
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Figure 6: Ideal PDF of the Gamma Distribution, 2nd Param. o

We have modified the original generator to draw random values within a given
interval [low, high|. This has posed unexpected problems, since the obvious
method of scaling the intervals does not work. This is due to the properties
of the gamma distribution, which has a highly asymmetric appearance if the
expectation is “near” zero, but gets flatter and more symmetrical if £ is large.
So if we just scale our target interval to a fixed and large computation interval,
then we will also scale the target E' to a large value, and the resulting gamma
distribution will loose its asymmetrical shape. However, it is this asymmetry
that makes the gamma distribution particularly interesting. So we had to reduce
the computation interval to a size that still keeps this property. Plots of different
gamma distributions have led us to the computation interval [0, 25]. This interval



J
"
A
g ‘)"n'\;(('/“’ u
d M\/""“‘\( N
0 | ) Vot N

2 3 4 5 6 7

Figure 7: Measured PDF of the Gamma Distribution, Fy = 2.8, 5 = 6.2

is large enough to make values beyond the upper bound quite unlikely (such
values are rejected and the computation is repeated), but small enough to make
functions with an expectation within this range sufficiently asymmetrical. As a
second modification, we differentiate between an expectation that is within the
left half of the interval, and an expectation that is within the right half. If F is
in the right half of the interval [1ow, high|, then we use the expectation high— F
in our computations, that is, we “mirror” the expectation into the lower part
of the interval. For this new E, we compute the gamma distribution, and then
we mirror the result back again. Fig. 6 shows the ideal probability functions.
Function Gamma(25 — z,4) plots the desired result of a call with E = 21. It is
the mirror of function Gamma(z, 4).

Fig. 7 shows the results of two calls to the generator with the target interval
[2, 7] and the expectations E = 2.8 and E = 6.2. The results should be com-
parable in shape to the ideal plots with expectations £ = 4 and £ = 21. The
real functions have higher y-values, however, since the functions only exist in the
target interval, whereas the ideal functions are defined within an infinite interval.

2.5 Weibull

This distribution function has a characteristic asymmetrical bell-shape that de-
pends on the location of the expectation within the interval (see Fig. 8). The
PDF is
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f(x) = Axa*zo !t xe M,
The CDF and its inverse functions are

F(x) -1 e—)\*za’ F_l(y) — a/—ln(/\l—y)_

The expectation is given by

E=x*xT(1+3)

and the standard deviation is defined through

Q|

S=1*x[D(1+2)—(T(1+ 1)

1
)
Since the CDF and its inverse function are known, we use the transformation
method. Parameter A is a scaling parameter and is computed from the given
interval bounds. Parameter o determines the form of the function and is taken
from a table which contains a list of pairs (F, a) that cover the range of E. The
user specifies F' and the corresponding « is obtained from the table. Fig. 9 shows
the result for the interval [0, 10] with the expectation E = 7. The ideal function
that is plotted against the measured one has been obtained by experimenting
with the parameters until the shape and location was approximately the same.

11



12 T T T T

"weibull.dat" —
Weibull (x, 1e-18, 21) ----

1 I -
0.8 |
0.6 |
0.4 |
0.2 |

0 I | |
i ’ ! 6 8 10

Figure 9: Measured PDF of the Weibull Distribution, E =7

Stepping through the code would have yielded the exact values, but setting A\ =
107!8 and o = 21 resembles the generated function pretty good.

For the implementation of the I' function, we have used the source code of
the plot program “gnuplot”. See [TKS82] for further information on the Weibull
distribution.

2.6 Generic

Here, the user can obtain any distribution function, provided that its inverse
CDF is passed as a table of (F(x),z) values, where x is the random value and
F(z) the corresponding CDF. The table must be sorted by F(x). To obtain a
random value, the algorithm computes a uniform deviate, searches the table for
the F'(z) that best matches this value and returns the corresponding z. This is
like the transformation method but uses a pre-computed inverse CDF instead of
computing it online.

To demonstrate the generic function, we have added two normal distributions
with y1y = 3 and 0, = 0.5 and u, = 6 and 09 = 1 to get a function with two peaks.
For this function, we have computed the table of the inverse CDF for the interval
[0, 10] and loaded it into our random generator. Fig. 10 shows the resulting PDF

12
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Figure 10: Measured PDF of the Generic Distribution

of the generator plotted against the ideal PDF. For the latter, we have divided
the sum of the normal distributions by two to normalize the resulting PDF.

The table was generated by plotting the ideal PDF into a file, incrementing
x in steps of 0.01. This file was further processed to compute the corresponding
CDF by adding the y-values of the PDF. With this data we have then created the
table of the inverse CDF. When generating such a table, the incremental value
for x must be chosen with care. If the value is too small, then you will get “holes”
in the resulting PDF. If it is large, the PDF of the generator will be good, but
the table will be large and searching it will take much time.

In any case, you should be aware that the generator searches its table for
computing the entries. The number of table accesses until a matching value is
found will vary with the CDF, but since we use a linear search method, the value
is proportional to the number of pairs in the table. So the generator should
certainly not be used in a real-time environment.

3 Test Program

For evaluating the performance of our random generators, we use the test program
randtst. It lets the user choose from a list of available distribution functions
and asks for the mean, for the standard deviation (if the normal distribution
was selected), and for the lower and upper bound of the target interval. Then it

13



prompts the user to enter the number of deviates that should be computed and
to specify the number of equivalence classes into which the target interval should
be parted?.

The program then draws the random deviates, sorts these values into the
equivalence classes and keeps track of the number of values that have fallen into
each class. After the desired number of deviates has been drawn, the number
of elements in each equivalence class is multiplied by the number of classes and
divided by the product of the total number of values drawn times the interval
range, and is then printed to the file ranvars.dat in gnuplot format. Therefore,
we can use the plot program gnuplot to generate a graphical representation of
the results. The plotted function should approximate the probability density
function. Note that the quality of the resulting function depends on the number
of samples used for the plot and on the choice of the parameters (since we use only
finite intervals, we introduce errors if the expectation is too near to the bounds).
The width of the equivalence classes also influences the result. When testing a
function, you will have to experiment to find a good choice for the number of
samples and the number of equivalence classes.

For testing the generic random generator, we have developed a second program
cdfgen to generate the inverse CDF from a gnuplot file. You have to follow these
steps to generate the table:

1. Use gnuplot to create your desired PDF'. For our example in section 2.6, we
have generated the PDF with the commands

Normal (x, m, s) = 1/(s*sqrt(2*pi))*exp(-0.5%((x-m)/s)**2)
plot [0:10] Normal (x, 3, 0.5)+Normal(x, 6, 1)

2. Print the PDF to a file. You should pay attention to the granularity of
the z-value, since it influences the quality of the resulting CDF. For our
example, we have used the gnuplot commands

set samples 1000

set term table

set output '"generic.dat"

plot [0:10] Normal (x, 3, 0.5)+Normal(x, 6, 1)

to print a gnuplot table of the PDF.

3. Compute the factor div = [ PDF(x)dz by which one has to divide the
CDF to normalize it. The factor is div = linterval * M func Where lipterpar 18
the interval range and nyy,. is the number of PDFs you have added to get
your customized PDF.

3The equivalence classes are used to part the interval into a finite number of intervals of the
same length. Whenever a random deviate is drawn, it is attributed to the equivalence class
whose interval contains the value
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4. Call cdfgen -d div. The program will read the file generic.dat and gen-
erate two files generic_cdf .dat and gentab.hpp. The former contains the
inverse CDF in gnuplot format, the latter a table in C+4 format that is
included by randtst (you have to compile again to include it).

4 CH+ Library

The distribution classes are contained in the files distrib.hpp and distrib.cpp
which can be found in the SimUTC directory SimUTC/Sources/Includes (header
file) and SimUTC/Sources (implementation file). The test program randtst and
the generic function table generator cdfgen are located in SimUTC/Sources/-
Tests.

4.1 distrib.hpp
This is the header file and declares several classes:

distributions: Provides the uniform generator used to obtain the uniform values
that are needed by the algorithms. The class is used as a base class for all
other random classes. It should not be used directly.

CUniform: Uniform random generator. Users should always declare their uni-
form generators from this class, never from distributions.

CExponential: Exponential random generator.
CNormal: Normal random generator.

CGamma: Gamma random generator.

CWeibull: Weibull random generator.

CGeneric: Generic random generator with function table.

CRandom: Access class that combines all random generators and lets the user
dynamically choose the distribution.

4.2 distrib.cpp

This is the implementation file. As already mentioned, access to the generators is
co-ordinated by the class CRandom. The following member functions of CRandom
enable the user to access the single generators:

double RandomVar (EDistribution dist): Obtains a random number with
the distribution dist.

dist: Uniform | Exponential | Normal | Gamma | Weibull | Generic

15



double RandomVar (EDistribution dist, double ¢, double low, double
high, double mean, double free par): Obtains a random number with
the distribution dist, but first sets the parameters of the distribution.

Note that this function cannot be used for distributon Generic.
dist: Uniform | Exponential | Normal | Gamma | Weibull

c: a constant that is added to the random value before it is returned
low: lower interval bound

high: upper interval bound

mean: expectation F

free par: a free parameter, its meaning depends on the distribution (e.g.,
it is ignored for Exponential and is taken as the standard deviation for
Normal.

void Set (EDistribution dist, double c, double low, double high, dou-
ble mean, double free par): Sets the parameters of the distribution
without drawing a random value. Use this function to preload parame-
ters that should stay fixed for several accesses to the generator and use
RandomVar (EDistribution) to obtain the random values.

The parameters have the same meaning as in the function above.
void Set_generic (double c, double low, double high,
double *inv_funct, unsigned long tabsize): This loads the function

table inv_funct into the generic random generator and at the same time
sets the interval bounds and the additive constant.

inv_funct: pointer to the first element in the function table; the table
consists of pairs (F'(x),z of double values that are sorted by F(x).

tabsize: number of pairs in the function table; note that this is not the
size of the table (the table has size 2 x tabsize).

void GetSeeds (EDistribution dist, long& mgSeed, long& lcgSeed,
long& distance) const: Obtains the current state of a particular ran-
dom generator.

dist: Uniform | Exponential | Normal | Gamma | Weibull | Generic
mgSeed: seed of the multiplicative generator

lcgSeed: seed of the linear congruential generator

distance: distance of the seeds

void SetSeeds (EDistribution dist, long mgSeed, long lcgSeed, long
distance): Sets the given generator to a former state.

16



dist: Uniform | Exponential | Normal | Gamma | Weibull | Generic

mgSeed: seed of the multiplicative generator

lcgSeed: seed of the linear congruential generator

distance: distance of the seeds

Take care only to use a triple of seeds and distance values that has been
obtained by an earlier call to GetSeeds ().
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