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GENERAL INFORMATION

0 GENERAL INFORMATION

0.1 Issue Control

The document comprises 86 pages, all pages have issue no 086.

0.2 History

Issue Date Reason for Changes

01 24.8.2000 |First issue
Skeleton, mapping of PROCESS primitiv.

02 30.8.2000 | Mapping of basic VOCOS primitives.

03 31.8.2000 | Version proposed for review.

03a 7.9.2000 Add-on for version 0.3.

04 18.9.2000 | Merge between version 0.3 and 0.3a

05 18.9.2000 |Incorporated review-remarks.

06 4.10.2000 | Merge between version 05 of this document and version 02 of the
effort estimation document which has been inserted into Section
15.3. Final version delivered by subcontractor.

Table 0-1: History

0.3 References

/Call2/

/CHILL/

/Concurrency/

Meeting Minutes

Phone call with contractor regarding performance considerations

minutes-25082000.txt
25.8.2000

Description

P30308-A2737-B000-**-7618
CHILL Language and Compiler

P30303-X0033-C699-03-7635
EWSD

User Manual

CP113 Operating System

Concurrency Control
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/Control/

/Cost/

/ErrorH/

/Except/

/Heap/

NPC/

/Mauro/

/Pflicht/

Controlling Software Projects
Management, Measurement & Estimation
Tom DeMarco

ISBN 0-13-171711-1 025

Software Engineering Economics
Barry Boehm
ISBN 0-13-822122-7

P30303-X0033-G099-**-0035

User Manual fir CP-Sicherungssoftware
Kapitel G, Reg. 1

Behandlung von Softwarefehiern am CP113

Design Specification
P30303-D2284-E100-07-76D8
CP113

Exception Handler for V11 V11C

P30303-X0033-C399-**-7635
User Manual for the CP Operating System
Chapter C, Section 3

Calls to Heap Management

P30303-X0033-C299-03-7635
CP OS User Manual
Chapter C2

Interprocess Communication (IPC)

Inside Solaris
Threads Libraries in Solaris
Jim Mauro

http//www.sunworld.com

Pflichtenheft
Mapping of a Realtime-Operating System to SUN SOLARIS
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/Posix1003.1b/

/Posix

1003.1¢/

/PosixProg/

/PosixThread/

/Proz/

/ProzSpec/

/Scheduler/

ANSI/IEEE Posix 1003.1b
POSIX Real-Time Extensions

ANSI/IEEE Posix 1003.1¢
POSIX Threads Standard

POSIX.4

Programming for the Real World
Bill O. Gallmeister

ISBN: 1-56592-074-0

O'Reilly & Associates

Pthreads Programming

Bradford Nichols, Dick Buttlar & Jacqueline Proulx Farrel
ISBN: 1-56592-115-1

O'Reilly & Associates

P30303-X0033-B099-05-0035
EWSD

User Manual

fir das Betriebssystem im CP

ProzeBkonzept

Entwurfsspezifikation

VISION O.N.E

CP118: ProzefBsteuerung,
ProzeBverwaltung
ProzeBtabellen

Subsystem ON, OS

Erweiterung in Vision O.N.E

P30303-B2283-E100-*-00D8

P30303-D2286-E100-03-00D8
Entwurfsspezifikation

CP113 Betriebssystem
Scheduler (Ablaufsteuerung)
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/Solaris/

/SolarisRT/

/Stall/

/Startup/

/UML/

/Update/

VxGuide/

Better by Design-The Solaris Operating Environment
Whitepaper

Sun Microsystems

http://www.sun.com

Scalable Real-Time Computing in the Solaris Operating Environment
Whitepaper
Sun Microsystems

http://www.sun.com

Operating Systems

Internals and Design Principles
Third Edition

William Stallings

ISBN 0-13-887407-7

P30303-X0033-C199-**-0035

User Manual fiir das Betriebssystem im CP
Kapitel C1

Aufrufe an die Start-/Endebehandlung

Unified Modeling Language in a Nutshell
Sinan Si Alhir

First Edition

ISBN 1-56592-448-7

P30303-X0033-H009-**-7635

User Manual for the Operating System in the CP
Chapter H

Interface for Updating, Main and Background Memories

VxWorks

Programmer’s Guide

Edition 1, Version 5.4

Wind River Systems
http://www.windriver.com/products/html/vxwks54. htmi
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NxRef/ VxWorks
Reference Guide
Edition 1, Version 5.4
Wind River Systems
http://www.windriver.com/products/htmi/vxwks54 .htm|

0.4 Glossary and Abbreviations

API Application Programmers’ Interface

Interface available to application programs in general.
APM ATM Processor (Bridge between SSNC and CP)
APS Anlagenprogrammsystem

The totality of all SW which is loaded into the processors that make up an EWSD
or EWSX switch. The APS is made up of several part-APSes which contain all
SW for a specific type of processor (e.g. CP, MP).

BAP Base Processor of CP113
CAP Call Processor of CP113
COCOMO COnstructive COst MOdel
CP113 Coordination processor 113

A Motorola 68020/68040 based multiprocessor used in EWSD which is mainly
programmed in CHILL.

EWSD Elektronisches Wahlsystem Digital
A Siemens Solution O.N.E product line for narrowband switching systems.
EWSD Broadband Node

An EWSD switch with additional broadband switching capability which will be
available in future EWSD versions.

EWSD Powernode

An EWSD switch with an enhanced #7 signalling system which will be available
from EWSD Version 13.

EWSX Elektronisches Wahlsystem Express
A Siemens Solution O.N.E product line for broadband switching systems.

IDS Interactive Debugging System
IOP:SCDP  10-Processor for X.25

IPC Interprocess Communication
LOC Lines of Code

LTG Line Trunk Group

...... =ernemn...=06-7659 11
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LWP
MM
MP

MY
OSA
PIF

PCP

Pthread
RTOS
SPU

Peripheral processor in EWSD used as interface for customer and inter-office
lines.

Lightweight Process
Man Month
Main Processor.

An Intel based monoprocessor used in the SSNC of the EWSD Powernode, and
also in the EWSD Broadband Node and in EWSX. The MP is mainiy
programmed in CHILL.

Man Year
Operating System Abstractionlayer
Published Interface (see section 2.1)

Peripheral processor in EWSD used as interface for customer and inter-office
lines.

POSIX thread
Real-Time Operating System
Service Provision Unit (see section 2.1)

Siemens Solution O.N.E

SP
SSNC
SvC

SWET
SWSG
8D

Overall term indicating product palette of the Siemens Public Network division.
Synchronization Point

The part of the EWSD Powernode that performs #7 signalling.

Supervisor Call

Feature of Siemens CHILL by which application programs invoke Operating
System functions that execute in the supervisor mode of the processor.

Software Error Treatment
Software Safe-Guarding
To be defined

VISION O.N.E SW structure

VOCOS

VOCOS/CP
VOCOS/MP
WBS
WCP

SW structure defined for several Siemens Solution O.N.E product lines which
involve a very large amount of SW, such as EWSD and EWSX.

VISION O.N.E CHILL Operating System

Operating System supporting the VISION O.N.E SW structure for the CHILL
processors (CP113 and MP).

VOCOS variant for the CP113.
VOCOS variant for the MP.
Work Breakdown Structure

Worst-Case Performance

...... "reeee®ensn=06-7659 12
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GENERAL INFORMATION

0.5 Definitions

Priority-based Scheduling: Each process is assigned a priority, highest priority process is
scheduled first.

Preemptive Scheduling: Type of scheduling where the scheduler interrupts and suspends the
currently running process in order to start or continue running another process if that other
process is of higher priority and (suddenly) becomes runnable.

Cooperative Scheduling: Contrasts preemptive scheduling as each task (or process) must
include calls to allow it to be de-scheduled periodically.

Transient Data: Data defined at module level that is read- and write-able.

Semi-permanent Data: Data defined at module-level through the /CHILL/ PrROTECT option.
This kind of data is generally read-only to all processes. It can be only modified through the
UPDATE function (cf. /Update/).

Permanent Data: Data defined through the /CHILL/ READ attribute with PERMANENT option.
Only read-only access possible.

0.6 Notation

The overall approach throughout this study was to take a VOCOS/CP primitive, explain in brief
what it does, explain the options provided by POSIX and present then how within these options
this primitive can be resembled. Although most of the document contains plain English prose,
we chose to use sequence diagrams to capture dynamic behavior (cf. /UML/).

0.7 Keyword/Descriptor

Operating System

VOCOS

0.8 List of Figures and Tables

Figure 2-1: Software Layers...............cocoioiiooooni 16
Figure 4-1: Memory utilization of process fork() from a statically linked application..........c...ccoeevenneen 21
Figure 4-1: Memory utilization of process fork() with exec and shared brary. ..o 22
Figure 4-2: Dynamic aspects of a process FOPK() o 23
Figure 4-1: SUN SOLARIS Thread MOGel ........c..oocceeroroereors oo 25
Figure 5-1: Drossel MEChaniSm .......c.....o.oocooo.miooricctnmenesooo oo 29
Figure 5-1: STOPCALLP/GOCALLP SVCS ..........cccoorecrrnoonoooo oo 30
Figure 5-1: SCHOFF/SCHON SVCS .......oooooomicceisirin o 31
Figure 5-1: Simple Implementation of SYC PAUSE ......o.ccocccoooooroooo 32
Figure 5-1 Complex Implementation of SVC PAUSE ........oooeooooooeooo o 33
Figure 6-1: LOCK SEQUENCES.............ccoviooriececeeenesoceeoeooeo oo 35
Figure 6-1: Free REGION ..........cc.cccooiimiiieiteeee o 37
Figure 6-1: REGION with COMENtion. ... occcceeeovernnoeeeos 38
Figure 6-1: Delay and CONtINUE. .........o....oooiioioccoinee 39
Figure 7-1: Declaration of a message buffer mapped to the creation of a message queue..........cccca..... 46
Figure 7-2: Reference of a message buffer mapped to ma_open(} ... 46
Figure 7-3: Mapping CAST and PMPOST to MA_SeNA().ooiiiiii e 47
Figure 7-4: Mapping SEND to mq_setatir() and ma_send()..........cccoooeoomoiio 48
Figure 7-5: Mapping RECEIVE to MQ_TCRIVE() ..o 49

Figure 7-6:

An approach to map SVC RECEIVE CASE to select() and mq_receive() ..o 50

...... “veeenmeen.=06-7659 13




ey
O ©W®OW~NDO A WM -

RN NN -

n
(<]

GENERAL INFORMATION

Figure 7-7: Mapping PMTAKE to MQ_FECBIVE() oo oo 51
Figure 7-8: Mapping SVC GETDATA to MMAP(). o 52
Figure 7-1: Mapping RPCs to normal Procedure Calls...........oooooiiicieeee 53
Figure 9-1: Treatment of SIGSEGV ... 70 58
Figure 9-1: Memory Protection Through Run-Time Checks.......... ... 7" 59
Figure 9-1: Mapping of Regular Files into the Address Space of a Process ... 60
Figure 9-2: : Copying after Mapping of Regular Files into the Address Space of a Process...................... 61
Figure 11-1: Initialization of OSASWET ....c.c.ooo et T 70
Figure 11-1: SASDAT RECOVErY LOVE ...t oo T 71
Figure 11-1: SASDATS RECOVEry LEVEl......o..oooeesercescrs o770 72
Figure 12-1: Initialization of the OSA Heap-Manager ........c..ooooovoiieciciiiicoeee 74
Figure 12-2: Allocating heap SPACE o 75
Figure 12-3: Releasing Neap SPace............oocwcicorcessos T 75
Figure 12-4: Transferring heap SPACE oo 76
Table 0-1: HIStOrY .o 7
Table 3-1: Compliance of SOLARIS Threads to POSIX.AC it 19
Table 9-1: System RECOVery PhASES.............c...ooccvwcercrsores oo 55
Table 11-1: INdiZIENpaket-ComPONENtS ......c.....coovvvericeeeecrntcenseeoooeoooooooooee 68
Table 11-2: Mapping or HW-Detected Error CoNditions............ ... ... . . . . " 68
Table 11-3: SWSG-Conditions Detected through System Monitoring ... 69
Table 11-4: SWSG-Conditions Detected by the Interrupt Handler ... 69
Table 15-1: COCOMO ESHMAton Method ..........occeeervrcr oo 82
Table 15-2: Collected Historical Data ................_.c.cceevccc L 83
Table 15-3: Estimates for ldentified DBSIgN HeMS ..ot 83
Table 15-4: Extrapolated Effort....... ... 84
Table 15-5: Effort Calculated by the COCOMO Method. ... 7w 84
...... "vene®....~06-7659 14




A » W

L o N>

10

11
12

14
15
16

17
18
19
20

21
22
23
24
25
26
27
28
29

30
31
32
33
34
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1 Management Summary

This study examines the possibilities available to offer the VOCOS 0OS functionality on a
commercial platform. It was considered as a main goal to abstract from proprietary solutions by
using a more abstract base as provided by the POSIX (Portable Operating System interface)
standards.

As it is suggested by this study, it is possible to map the core VOCOS functionality (process
management, scheduling, IPC, concurrency-related features, Recovery, Error-Handling,
Startup, and Heap-Management) onto POSIX primitives. It must however be noted that this
mapping is not always straight-forward, and that it is not always possible to achieve 100%

compliance.

Moreover there exist certain aspects of VOCOS that are highly depending on the target
hardware, and it is therefore still open, whether the new target hardware will provide this
feature, and whether the target RTOS allows access to this feature. Finally it must be noted that
due to time constraints it was necessary to focus this study on important aspects of VOCOS
and to leave out other, presumably less difficult aspects. These aspects certainly impose a
certain amount of risk on the project.

Several topics have been identified so far that allow more then one possible solution. A decision
is needed in that areas. To facilitate the process of decision-finding we recommend to execute
simulations that aid in judging the feasibility of each solution as well as in analyzing the impacts

on the system.

Generally there can be no objection found that would prohibit the emulation of a given software
system by another software system. It is therefore rather a question of whether the given
requirements can be met under the imposed constraints. As requirements we denote the needs
of the VOCOS application- as well as supervisor software, and by constraints we consider the
need to come to a solution within reasonable time as most stringent. The required effort for the
project must certainly be considered in terms of man-years rather than man-month, and it is
highly dependent on the software process of the organization carrying out the project. Based on
the facts identified in this study the respective organization has therefore to provide an
estimate.

A go/no-go decision for the whole project at the present level of coverage must be considered
too early, the study can however be considered promising enough to justify the effort needed to
carry out the next steps such as solving the open points where this study currently offers
several possibie solutions and implementing a prototype of the most critical features of the

system.

...... eenreren.-06-7659 15
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SCOPE AND APPROACH

2 Scope and Approach

This document describes the outcomes of the feasibility study aimed at replacing the VOCOS
operating system by a commercial RTOS. For details concerning the scope of the study cf.

/Pflicht/.

2.1 Approach

In order to hide the underlying target RTOS from the application software, an additional layer,
called the Operating System Abstraction Layer (OSA), is introduced. The purpose of this layer
is to resemble the behavior of the VOCOS/CP OS in mapping its primitives onto primitives of
the target OS. In order to retain flexibility regarding the choice of the target RTOS an
abstraction based on POSIX, the Portable System Interface, is chosen to place OSA upon.
Since it becomes more and more common for commercial RTOS vendors to support POSIX,
there will become more and more platforms available that are capable of hosting the resulting
software system. Among the more prominent vendors already supporting the POSIX standard
are Windriver Systems with VxWorks and SUN with SOLARIS. As specified in /Pflicht/ the
current version of this study aims at an implementation atop of the POSIX interface of SUN
SOLARIS. As soon as the target RTOS and hardware have finally been chosen it has to be
examined whether a division of the OSA into a part executing on user level and another kernel-
level part (executing in supervisor mode through traps) is feasible. The current version of this
document does not require an OSA kernel, although it can be useful (e.g. to avoid race
conditions between processes of different priorities executing concurrently within OSA).

Application Software i
VOCOS/CP
;
‘ !
‘ Operating System Abstraction Layer ,
OSA User Level
OSA Kernel Level
I
OSAKemel |
' (optional) |
!
| ’ |
L
] v POSIX.1b
. X — I j
[l Target Operating System ~
L

Figure 2-1: Software Layers
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2.2 Structure

Section 3 introduces the reader to the POSIX standard, the following sections are dedicated to
distinct features of VOCOS/CP and their mapping onto POSIX primitives. Section 9 addresses
performance issues, Section 15 identifies several risks, gives a work breakdown structure of the
next steps that have to be carried out, and lists some effort figures, Section 16 finally presents
a summary and conclusion.

2.3 Coverage

Due to the sheer size of VOCOS/CP it was not possible to cover every aspect of the magnitude
of functionality offered therein. Preferred have therefore been what are usually regarded the
comer stones of an operating system: process management, scheduling, synchronization,
concurrency, interprocess communication, and timer management.

2.4 General Assumptions

In addition to the requirements stated in /Pflicht/ the following assumptions have been made:

2.4.1 Hardware

Although VOCOS is a multiprocessor OS, the new target hardware will not have multi-
processor capabilities. The system comprises one BAP-M, how this will be integrated with a
BAP-S is yet TBD.

2.4.2 Hardware Architecture

Intel hardware architecture favored due to simplified rework of CHILL compiler backend.

...... eerremrn.-06-7659 17
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3 POSIX

3.1 Overview

POSIX, the Portable Operating System Interface, is an evolving set of standards being
produced by the IEEE and standardized by ANSI and 1SO. The goal of those standards is the
portability of application software at the source-code level. POSIX standards addressing
operating system issues are closely related to (or based on) UNIX. The ratified POSIX
standards that generally pertain to real-time OS’s consist of:

1003.1: Nucleus of common OS functions like process-, filesystem- and device API (basic UNIX
system calls).

1003.2: Utilities (like the UNIX shell,...)

1003.1b: Real-time extensions of POSIX 1003.1 like shared memory, priority scheduling,
semaphores, real-time signals, message queues, synchronized I/O, time management

1003.1c: Provides the ability to run multiple, concurrent threads of execution (pthreads) within a
single POSIX process.

POSIX standards are explained in terms of interface descriptions and contain therefore not
more than what can be covered by such descriptions. Not every aspect is tightly specified, there
exist areas of implementation-defined behavior and even undefined behavior (e.g.
specifications in the time domain). However, on the whole POSIX provides a sound base that
facilitates porting of applications between operating systems, which is by far superior to
reverting to proprietary solutions.

Regarding proprietary solutions it has to be noted that it is common practice within OS vendors
to have the POSIX API co-exist with their proprietary APL. In this way it is possible to a certain
extend to mix (or interchangeably use) features of both APIs. This also provides a fallback-
solution if a certain POSIX feature, after all, should turn out to be inadequate for the needs of

the appilication.

Care must be taken with standard 1003.1b, since it is structured as a set of options (cf. Table
3-1), and it is sometimes considered good practice by OS vendors to claim POSIX compatibility
while only standard 1003.1 is covered and the options regarding 1003.1b are ‘switched off’. The
vendor-specific POSIX conformance statement is therefore an important document.

3.1.1 Shorthand Notation for POSIX Standards

Since this study addresses only OS-specific features of the POSIX standards, we use the
following shorthand notation for standards: POSIX.<x> where POSIX stands for POSIX 1003,
and <x> is usually one of (‘1’, .1b’, ’1¢).

...... reemeen06-7659 18




10

11
12

13
14

POSIX

3.2 POSIX Conformance of Commercial RTOSs

3.2.1 SOLARIS

According to /SolarisRT/ POSIX 1b is supported in SOLARIS Version 2.6 or later. For
POSIX.1c the following table is given:

POSIX Feature OS Version
2.6 7 8

_POSIX_THREADS Yes Yes Yes
_POSIX_THREAD_ATTR_STACKSIZE Yes Yes Yes
_POSIX_THREAD_ATTR_STACKADDR No Yes Yes
_POSIX_THREAD_ATTR_PRIORITY_SCHEDULING No Yes Yes
_POSIX_THREAD_ATTR_PRIO_INHERIT No No Yes
_POSIX_THREAD_ATTR_PRIO_PROTECT No No Yes
_POSIX_THREAD_ATTR_PROCESS_SHARED Yes Yes Yes
_POSIX_THREAD_SAFE_FUNCTIONS Yes Yes Yes

Table 3-1: Compliance of SOLARIS Threads to POSIX. 1 c

Therefore if POSIX threads are to be used SOLARIS Version 8 is recommended, otherwise
version 2.6 should be sufficient.

3.2.2 VxWorks

Not considered at great detail yet, a few already known deviations are listed below:

e POSIX processes are not supported, instead a mode! comparable to threads, called tasks,
is provided.

* Semaphores do not provide _POSIX_PRIORITY_SCHEDULING (i.e. they will not be
unblocked according to the process priority).
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4 Processes

Several approaches exist to map the /CHILL/ PROCESS primitive, each of which with its own
advantages and disadvantages.

4.1 PROCESS as a Regular POSIX-forked Process

When mapping the PROCESS primitive defined in /CHILL/ it has to be noted that on a single
legacy CP all processes run in the same address space. Creating a process as defined in
/PosixProg/ via the fork () SVC is different in that respect since the new process runs in a
separate virtual address space which is an exact copy of the parent's address space (the
parent is duplicated). Although forking a process does not double the memory requirements
imposed on the OS at once, at least as soon as the new process tries to access a portion of a
code or data segment, the OS will generate a page fault and map the corresponding page into
the address space of the newly created process (demand paging). Since this mechanism
represents a serious indeterminism in the time-domain of the OS, it is usually circumvented by
locking the pages of a process into main memory upon process creation time or before the
process enters a critical section. /Posix1b/ foresees two ways of locking pages into memory:

int mlockall (int flags) attempts to lock the complete code, date, heap, and stack of a
process

mlock(void *address, size ¢ length) allows to lock a given address range of the
virtual address range

Although mlockall () is the more convenient way to lock the memory of a process, it has to
be noted that in this way the amount of required memory is doubled, which can be a burden
especially with big statically linked applications where each process accesses only a (small)
part of the duplicated code/data thus creating huge areas of unnecessarily locked memory.

Figure 4-1 gives an example of such a statically linked application that contains code for two
processes named P7 and P2 and a section of code shared between those processes. The
leftmost image corresponds to the binary as it resides on the disk drive. Furthermore it is
depicted how pages of virtual memory are mapped to physical memory for P1. After a new
process is forked (P2), a new virtual address space containing the whole image is generated
(rightmost shaded area). Note that despite the fact that the images for P71 and P2 are in fact the
same the operating system does not treat them as such. Consequently the Common Data
section is not common anymore (it would have to be declared as shared memory if this was
desired). Furthermore it can be seen that in this example there are not enough pages of
physical memory left to lock the new process into memory thus inducing additional run-time
overhead due to page-faults.
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DiskImage

Vidual Memory P1

Comman Code

Physical Memory

Virual Memory P2

Code P2

Conmon Daa

Data P1

Figure 4-1: Memory utilization of process fork() from a statically linked application.

mlock () would provide us from unnecessarily locking memory, but it is a tedious task to

determine a PROCESS’ s particular pages and lock them separately.
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4.1.1 POSIX-forked Processes Using exec*()

Diskimage Virtual Memory P1 Physical Memory Virtual Memory P2
Shared Library QO_JLM qu_egg
Common Dea _Oﬂmwt: CodeP1 ’ Common_Code
Comman_De . Dampi Canmon Dahy
Common Code
Common_Dah
QM 2
Dag P2

Figure 4-2: Memory utilization of process fork() with exec and shared library.

In order to overcome the problem of duplicating one huge binary image in memory once for
every created process, the binary can be partitioned into separate processes started through
the exec* () SVC. Unlike fork(), this SVC reinitializes the memory space of the newly
created process with a new executable program which has to exist as a separate binary image
on the file-system. Note that for this approach to work it is necessary that code common to
several processes (e.g. library routines) has to be placed in shared libraries. Linking such code
statically to the process would again result in waste of (locked) memory. Figure 4-2 shows this
approach. The image is now split up into a shared library containing common code and data,
and two process images P71 and P2. Each code/data section resides now exactly once in
physical memory, and the common code/data of the shared library is mapped into the virtual
address space of P71 and P2.

Figure 4-3 shows the corresponding sequence diagram that leads to the activation of P7 and
P2. It starts with the user typing "P1<enter>" on the system console’. The shell itself forks a
new process that is going to be P71. On behalf of this SVC the OS kernel allocates the
corresponding data structures for a new process and creates it. The PID of the new process is
returned to the shell as a result of the fork () SVC. As soon as the new process is scheduled
for the first time, it issues SVC =xec- = (1 in order to overlay its virtual address space with the
image of P7. The OS loads itself loads the shared library needed by P1°. Thereafter P1 issues
SVC mlockall() to lock all its memory pages into physical memory. Later P17 itself forks a

' Assuming P1 is the root process of the application.

% In case of Solaris, this is determined by the environment variable LD_BIND _NOW. Other operating
systems might follow different strategies in that respect (e.g. with Linux the process itself consuits the
dynamic linker to acquire all shared libraries before it starts to execute).
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new process to start P2, which is done according to the same scheme, except that the shared
library common to P17 and P2 is already loaded and has only to be mapped into the virtual
address space of P27, ,

Swstem l
User Console { 05 Kemel P1 P2
H/ TJ I
P "t"<enter ! '
Parse User Command ] |
. ] | '
| |
fork() | !
Set up P1 | |
IR |
Schedule | |
pid (F1) |
execwe (P1) |
|
load shared lib |
] !
|
| !
miockall l
- '
Lock P1's pages |
- ] |
[
|
fork() I
Set up P2 !
] |
o - Schedule !
ust mapping the -
already loaded pd (P2)
library inbb the XRCe
vrual  addres - = ®
space of P2, load shared fib
milockalt
-
Lock P2's pages
» 2% ¢ f 4

I [ ! I I

Figure 4-3: Dynamic aspects of a process fork()

%It is TBD how to treat the Initialisierungsprozedur’ of a process in case of separated address
spaces. One approach is to put data that ought to be initialized into a shared library.
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4.2 PROCESS as a POSIX Thread

/Posix1003.1¢/ describes the interface for light-weight threads within a regular process that
share global data (global variables, files, etc.) but maintain their own stack, local variables and
program counter. Since their context is smaller than the context of processes (e.g. no separate
virtual address space), these threads are called ‘light-weight'. There are two broad categories
of thread implementation: user-leve threads (ULTs) and kernel-level threads (KLTs).
/Posix1003.1¢/ leaves it open whether threads are implemented within the kernel or on user-
level, even combined approaches are possible.

4.2.1 POSIX User-Level Threads

With a pure ULT implementation the complete thread management is done by the application
and the OS kernel is not aware of the existence of threads. This leads to the following

disadvantages:

1) A blocking system call of one thread blocks not only this single thread but all threads within
that process.

2) A ULT implementation cannot take advantage of a multiprocessing environment, since the
kernel can only assign the whole process and not threads of it to a processor.

4.2.2 POSIX Kernel-Level Threads

the threads within that process. In this way the two disadvantages of ULTs are overcome. The
disadvantage of KLTs on the other hand is that each thread-related activity (such as transfer of
control between threads) requires an SVC to the kernel, thus inducing increased runtime
overhead. Although this overhead can generally be expected to be smaller than the overhead
required for processes, it is not completely in line anymore with the original intention for threads
as a means of light-weight processes.

4.2.3 POSIX Threads a’la SUN SOLARIS

Figure 3-4 which is taken from /SolarisRT/ shows the process- and thread concepts of the
Solaris OS.
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User Layer
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Figure 4-4: SUN SOLARIS Thread Model
Solaris makes use of four distinct thread-related topics:

Process: Equivalent of the UNIX process including address Space, stack, and process control
block.

User-level thread: Implemented through a threads library in the address space of a process
and therefore invisible to the kernel.

Lightweight process: A lightweight process (LWP)is a mapping between ULTs and threads of
the kernel. Each LWP supports one or more ULTs and maps to exactly one kernel thread. Each
LWP is scheduled by the kernel independently, LWPs of one user-level process may even
execute on different processors.

Kernel threads: Fundamental units for Solaris scheduling.
As can be seen in Figure 4-4 this concept offers great flexibility to the user: the leftmost user

Itis also worth noting that Solaris supports the concept of processor sets to which single LWPs
or even whole (POSIX) processes can he bound to (in case of a whole process this simply
means that all LWPs of the process are bound to the processor set). This is also illustrated in
the above example where the three leftmost processors form a processor set to which the eight
leftmost LWPs are bound to. A processor set can contain as little as one processor, and serve
as little as one LWP. The SOLARIS system call int pPset_bind (psetid_t pset,
idtype_t idtype, id_t id, ...} binds the to-be-bound primitive 14 to the processor
set specified by pset. idtype determines the type of ig (LWP, process, ...).
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Furthermore it is even possible to bind single LWPs or even whole (POSIX) processes to single
processors (as illustrated by the rightmost user process in Figure 4-4) through the SOLARIS
system call int processorjaind(idtypeht idtype, id t id, Processorid_t
brocessorid, ...), where idtvpe determines the type of the to-be-bound primitive ig
(LWP, process, ...}, and brocessor:.c denotes the processor to which id should be bound to.

4.3 PROCESS as a Proprietary RTOS Primitive

Besides POSIX threads and processes RTOS manufactures have found ways to express
concurrency within application programs. A common approach is to have several threads of
control executing within one (virtual) address Space. Those threads of control are often called
tasks. Although they are similar to POS|x threads with respect to their memory address space,
inter-task communication and synchronization is often provided by means of the corresponding
POSIX inter-process communication and synchronization primitives (cf. e.g. VxGuide/).

4.4 Summary and Decision-Aid
Disadvantages of POS)|X Threads:

Suspended, stopped, profiled from the system console. Depending on the implementation
threads are more or Jess hidden within a process.

Disadvantages of POSIX Processes:

Separated address Space between processes induces a run-time overhead which is not
required since current VOCOSs implementation does not support it

Disadvantage of the proprietary task-model
Not POSIX-compliant

Overall the task-model Seems to be the method of choice. The reduced effort to implement it
might make it worth to sacrifice POSIX compliance in that respect. Note however, that e.g.
Solaris does not provide a task mode! and would therefore become a non-option!

‘or ohe resorts to a proprietary solution.
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5 Scheduling

5.1 Priorities

POSIX.1b requires an implementation to support at least 32 priority levels for SCHED_FIFO.
They can be queried by the calls

. sched_get_priority_min [SCHEZD_FIFO)

. schedﬁget_priority_max(SCHED%FIFO)

In addition to the 16 VOCOS priority levels given in /Proz/ five new priority levels are introduced.
Note that for priority levels that fall in between two adjacent VOCOS priority levels, decimal
numbers are used. As a matter of fact the resulting range of priorities (integer and decimal
numbers) have to be mapped in a second step (cf. below).

* 16: Bigger than every existing priority in VOCOS. Used to boost a process to a level un-
interruptible for other processes.

~* 17: Priority above all user-processes in the system, assigned to OSA.

* 18: Highest priority in the system. assigned to the OSA software watchdog.

* 12.5: Priority used for CALLP to support special scheduling mode during booting (cf.
Section 5.2). ’

* 1.5: Needed by the pAaUSE SVC. This priority level is chosen as a separation between
priority-levels too small to make use of a PAUSE SVC (priorities 0 and 1), and those
priorities that are high enough (>=2) to preempt a process offering to be paused by SVC
PAUSE.

* -1: Smalier than every priority currently Supported by VOCOS. Used to lock-out a process
from the processor (in fact the system idle process locks out processes of this level).

The resulting 20 priority levels have to be mapped accordingly onto the levels provided by the
underlying POSIX system. Note that POSIX leaves the actual values open, therefore this
mapping is implementation-defined, throughout the remaining document only the priority-levels
of VOCOS are therefore used.

5.2 Scheduling Algorithms

5.2.1 POSIX

With POSIX, processes run with a particular scheduling policy and associated scheduling
attributes. Policy and attributes can be changed on a per-process base®. The following
scheduling policies are supported:

SCFEI_B11C: Preemptive, priority-hased scheduling. The only attribute available with
SCHED_FIFO is the priority of a process.

° VxWorks is not compliant in that respect since the scheduling policy can only be set on a system-wide
base.
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SCEEL_FI: preemptive, priority-based scheduling with time-quanta according to round-robin
principle. Since with POSIX it is not foreseen to change time-quanta the only attribute available
with SCHED_RR is again the priority of a process.

SCEED_CTEEE: policy left to the implementation {e.qg. time-sharing scheduling policy).

5.2.2Vv0cCos

In principle the VOCOS scheduling policy can also be called preemptive priority-based, since
processes are selected based on their priority, and are left executing until they give up the
processor due to a blocking I/0-, semaphore-, etc. call or till they are preempted (‘vertagt’) by a
process of higher priority (cf. Scheduler). In addition VOCOS priorities are assigned statically
through the PROCESS TNFO attribute 22 ORITY> of the MDH (cf. /CHILLY).

SVC.

Normal Scheduling: equal to sCcHED Frvo.

Special Scheduling During Boot on BAPM: During this mode the CALLP (level 7) is favored
OVer processes within levels 8-12. Oniy every SPCDELAY"time is the process with the highest
priority within levels 7-12 selected. Processes of levels > 12 are not affected by this exception.
It is questionable whether this VOCOS-specific behavior can be exactly resembied on the target
RTOS (one way would be to shift the priority of the CALLP temporarily from 7 to 12.5 and
back), but it is on the other hand TBD whether scheduling during boot has to be resembled
exactly and at any price.

Reduced Scheduling During NSTARTO: In this phase the priorities in decreasing order are:
CALLP, OSAIM, IDLE. All other processes are locked out, which can be resembled by
assigning them a priority of —1. Processor utilization by OSAIM is enforced by the DROSSEL-
mechanism.

CALLP and IDLE processes are allowed to gain the processor. According to /Scheduler/
Section 3.3.3 this is realized that after blocking the calling sTopcarLp process it is checked
whether CALLP is the first process in its ready-queue. If this is the case, it is activated until it
blocks at one of the SVCs LORECEIVE, OUT, or XXREGEN, |f CALLP is not the first in the
queue, it is assumed that CALLP Is blocked in a consistent state.

Itis questionable whether peeking in the ready queue of the target RTOS will be possible. TBD:
what if we allow CALLP at any time to run until it blocks by shifting its priority temporarily to 16
as depicted in Figure 5-2? NOTE: This assumes that CALLP does not share any region or lock
with another process that prevents it from reaching a consistent state at one of the
TORECEIVE, OUT, or XXREGEL SVCs. If this was not the case, then the processes CALLP
depends upon will also gain the processor. Or we allow the whole process ensemble to go on
until we catch CALLP (without boosting CALLPs priority) !

®8VC STOPCALLP is only allowed on BAPM.
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5.3 Drossel Mechanism

/Scheduler/ Section 3.3.5 explains how the CALLP on the BAPM is sometimes restricted from
reading its IORECEIVE input list in order to free the processor in favor of O&M processes of
lower priority. In case of enough CAPs coping with the whole call-processing work the CALLP
on the BAPM is prevented from reading its input list at all. Since for the feasibility study no
CAPs are planned, we have to model the case where time on the BAPM is divided into two
time-slices namely NVT and VT. During NVT the Drossel bit is set which prevents CALLP from
reading its input list. During the VT time-slice reading of the input list is possible. The algorithm
that toggles the Drossel-bit can be implemented within OSA, TORECEIVE calls would be
processed accordingly.

CALLP LOSA':DROSSEL I
] / I Set and reset Drossel bit
! f
] DRECEVE ! vT
,  — ‘

! Read Input List
| ; J
| Retum  (lnpuy
I‘( ------------------- ] CALLPis
’ blocked untl the

| i NVT tme slice NVT
| PRECAVE | expires.
T rl‘* Block CALM?
, Read input List I VT
| ]
L( Retum  (input) fﬁ ‘! !

------------------------------------- |
! j ;
| i
I |
| | NVT
! |
| I
! f <
| !

Figure 5-1: Drossel Mechanism
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5.4 STOPCALLP, GOCALLP

] o JSa:STOP | o | |
ot | | rocess ol OSAXQUT. | | 08 Kemel |
S e =

! Ifru‘ STOPCALLP 44

‘ : -

T e - ®— sched_setparam (P, 17) y
! o L e T ETEETETA )
I | Due to the wait on Lﬁ ! o \%
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’;\ i

f gets blocked, and ' 3
| | CALLPactvated. ||~
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] IORECEIVE, OUT. XXREGEN

|

l

l L
l

[

]
Critical Section | !
GOCALLP

I i

| =

|

t

| —_—

Figure 5-2: STOPCALLP/GOCALLP SVCs

5.5 SCHON/SCHOFF

SVC SCHOFF is used to switch the scheduler off. The cailing process keeps the processor
even if processes of higher priority become ‘ablaufbereit’. SVC SCHON switches the scheduler
on again. For target RTOSs where he scheduler cannot be switched off’, the same effect is
achieved by assigning the calling process the highest priority in the system. Thus there is no
need for the scheduler to reclaim the processor from this process.

7 With VxWorks the scheduler is switchable.
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5.6.1 Simple Implementation

| | T o
| Processp | | OsA 0S Kermel
| f I )
e — ———
i .
’ Pause
—
I ' Nanosieen (Sims)
| - - - Block P and schedule other processes
| -
|
| Unblock P after »= 50ms
! L
| e o
| signal received? J If for some reason P receives
b 1 a signal while sleeping,
| e j nanosleep will return
| prematurely setting ermo to

e : | VEINTR,

Figure 5-4: Simple Implementation of SVC PA USE

Here a process issuing SVC rauske is delayed by the POSIX nanosleep () SVC for 50 ms.
Within this time other lower priority processes can gain the processor. Upon return of the
nanosleep () call it has to be checked whether the call returned because the requested sleep
time elapsed or whether the paused process received a signal that has to be handled. Care has
to be taken that the PAUSE SVG has to be reentrant since prijgp might be issued while some

processes are already paused.
Note that this simple implementation deviates from /Proz/ since it unconditionally pauses a

process whereas /Proz/ states that if no other process (except audits and idle processes) is in
state ‘ablaufbereit’, the calling process will be continued immediately.
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5.6.2 Complex Implementation
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6 Concurrency

6.1 Lock Sequences

As stated in /Concurrency/, a lock sequence is made up of all statements within a special Do-
Block, where, at the head, the rLocx option together with a list of all to-be-locked data is
specified.

Syntax:

DO <> LOCK X, Y <; /= Begin of Lock sequence */
o /* Code within the Lock sequence 7/

oD; /* End of Lock sequence ¥/

The purpose of a r.ock sequence is to protect data (X and Y in the above example) from

concurrent access by several processes. In order to have processes acquire a lock for the

shortest possible time and to avoid priority inversion, the priority of a VOCOS/CP process is

process and used by the scheduler, but the priority of the interrupt of the underlying processor.
Lifting a VOCOS/CP process from interrupt level 0 (application software) to interrupt level 2
means in fact that everything, including VOCOS itself, is switched off, to allow the process to
execute without any interruption.

For the uni-processor case this protection mechanism is already sufficient, since it ensures that,
once a process has acquired a o0 (no matter what lock), it executes until it is out of the Lock
sequence again. Note that on a uni-processor system acquiring a lock will always be successful
(otherwise the process asking for the Iock would not be in state “faufend’). Note also that on a
uni-processor system the L.oc« data is not relevant, since the question boils down to whether a

process has monopolized the processor or not.

In case of multi-processor systems additional semaphores are required to keep processes on
other processors from entering the oo sequence.

Mapping

As the new target hardware will be a uni-processor system, locking data is equivalent to raising
the priority of the process acquiring the lock to the OSA level Note that contrary to the current
approach in VOCOS we denote here the priority used by the scheduler, and not about interrupt
priorities. As long as OSA runs completely in user mode. this is sufficient (cf. also Section 1).
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[
]
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L R R ;
|
i |
! Acquire_LOCK /
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| F\'eféeaseﬁ\/\/atchdog

| —_ _ _

R
sched_setparam (P, PRIORITY_NUM)
— =

Figure 6-1: LOCK Sequences

Acquire LOCK and Free LOCE are calls implicitly generated by the backend. /Except/
contains already two SVCs calied * and UNLOK that might be already used for this purpose.
Within the Acquire_Locy call the priority of the calling process is raised to OSA-level, thus
preventing any other process {including OSA itself) from being scheduled. Once the process
has executed the Lock sequence it frees the ooy by calling Free _1.OCK which in turn lowers
the priority of the process to the level specified as specified in PROCESS_INFO. Since it is
checked by the compiler whether LoCk data is erroneously accessed outside a LOCK
sequence, OSA does not have to provide any means to ensure this.

To avoid a hangup of the complete system the OSA watchdog is initialized. In the test phase a
lock of more than 10ms would result in calling RESTART, at the customer NSTART1 is called

after 100ms. Those times will have to be adjusted due to different execution times on the new
target hardware.

Note that a nesting of Acquire LOCH within a sCHOR. scunes sequence cannot occur since
the process acquiring the lock cannot be in state ‘running” while another process is within
SCHON/ SCHOFF which also monopolizes the processor.

6.2 Regions

Assumptions: It is allowed to call a critical procedure within a critical procedure. It is assumed
that the backend does not generate a REGION_ENTEY SVC with such nested calls of critical
procedures.

Regions are very similar to the ADAGS language primitive of protected objects, where it is
enforced that procedures belonging to a given REGIC protected object cannot be executed in
parallel. Once a process is within the - seronrall other processes attempting to enter the same
region are blocked until the first process feaves it. By means of 4 DELAY statement a process
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might block itself within a RECGION. in such a case another process is allowed to enter the
region. With CONTINUE a process within a region can unbiock a process waiting at a DELAY
statement. This takes only effect after the process issuing the CONTINUE SVC has left the
region. Blocking of several processes at nzcron entry or at a DELAY statement is done in FIFO

order.

Mapping

The REGION concept is resembled solely by use of POSIX semaphores that are used to
block/unblock processes

(1) on entry to the REGTON.

ZON.

(2) that DELAY themselves within the =

For each REGION we use one so-cailed entry semaphore to guard against concurrent entry of
processes. Entry semaphores are initialized with one upon startup. In the sequence diagrams
given below this semaphore is named ‘Rx’.

Furthermore we require one so-called event semaphore for each =VENT which is used to block
processes delaying themselves on that particular &venT. Event semaphores are set to zero
upon startup. In the sequence diagrams given below one such semaphore named ‘EV’ is used.

Since POSIX requires that processes blocking at a semaphore are unblocked according to their
priorities, we cannot simply use a semaphore to have processes wait until they are allowed to
enter the REGION or continue after a D=Z.a7, because entrance to a REGION has to be granted
in the order of arrival (FIFO). To overcome this problem the priority of a process is set to 16
before entry of a REGION. In this way all blocking processes have the same priority (the
priorities are flattened) and are thus unblocked with the desired FIFO ordering. The first activity
after returning from the sem_waiz () operation is then to restore the original priority of the

process.

Data structures are needed within OSA to maintain e.qg. the correct ordering for the delivery of
CONTINUE statements. Care has to be taken in the OSA design that access to this data
structures is atomic (due to the fact inat interleaving between different processes entering
different regions is possible).

6.2.1 Simple REGION Entry and Exit

In order to map ongoing activiies to the corresponding regions it is required that the backend
generates the call REGION_=1T=Y at the place a process attempts to enter a REGTON. This call
must also contain the particular REGTO: the process is competing for. OSA must at first obtain
the pid as well as the current priority of the calling process. This is done by getpid() and
sched _getparam () . The pricrity couid also be obtained from the PROCESS_INFO description.
However, by dynamically querying the priority we also catch the case where the
PROCESS_INFO priority of the process has already been modified. The reason that OSA needs
the priority of the calling process is that it has to maodity this priority and needs to restore the
original priority later on. To enforce FIFO-order unblocking OSA then sets the priority of the
calling process to 16 and issues -ci waic () on the entry semaphore. Upon return of
sem _wailt () the REGION is dedicated to the calling process (P). OSA then restores the
original priority and passes control back to the controlling process to have it execute the critical
procedure.

Once the process reaches the end of the critical procedure, the backend-generated SVC
REGION_EXIT Is issued. Again we require that this call denotes the REGTON that will be exited.
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Since no CONTINUE has been issued in this example, OSA issues a sem_post () on the entry
semaphore to free the REGT 17 for other processes. Thereafter control ig passed back to the

calling process.

f’*‘*‘*ﬁf T T
j H
e QA 08 Ketnel
; -
| REGION_ENTRY (£, Mo T
L_LWEG“O;E, - . Maintain priority L—HI
f pid=getpial; FIFO for each
i ’ T ’ T process. Make this
i Must k whictk: - o . part of the SVC
! | re;;;otn.now o prio=scned getparamipid) + atomic therefore.
] . - - e - - s _

b
1 I—khh* - N N . —~
| Sthed setparamipid. 165

sem_wait (Rx) .
e — }.7

:3:cheajfsetparam(pid, [site)]

execute critical procedurc

REGION_EXiT (Rx)
——— — * -
B2 Post (Rx)

Figure 6-2° Free REGION

6.2.2 Contention at the REGION Entry

Multiple entry into the same 1o
the following example.

< lIs prevented by the entry semaphore (Rx) as depicted in
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Figure 6-3- REGION with Contention.
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6.2.3 Delay and Continue

| P ) o |
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Q | |e QSA OS Kernel |
| L - L |
f

aohes s

‘ ;’ Pid and entry-
) Fi i point priority
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e . ‘_,,,7>,,
' - SOme process pending on Ev? !

| ; ’ ‘ f
! I !
} put v in FIFO (Rx) |

[ - i
B B S ;

Corresponding!

REGION_EXIT(F)

Ev = yot FIFC (Ry)

P continues after it >

! | has been suspended | e
[ | duetoits delay . I
statement. S P
| 7
sched sulparamipid, prio) |
) —_—

Figure 6-4: Delay and Continye.

Upon the beginning of this example process P is already within a REGTON and issues SVC
DELAY on event Ev. OSA seis the priority of P to 18 and calls sem_post{) on the entry
semaphore in order to free the PEGION for another process and block P on the event
semaphore corresponding to event £y, Setting P's priotity to 16 has also the neat side effect
that there is no schedule switch between S0zt mand sem wait (Ev) which could

otherwise lead to race conditions with the process doing the Cimr g,

Eventually Q enters the FEGT 2 deft out in the drawing for space considerations) and issyes
SVC CONTINUE on event £y Since Qitself is still in the = .. all that OSA has to do at that
moment is to check whether 2 process is pending on £v. If this is the case, it stores Ev in a
FIFO queue that is used at the “Ec7 9N =¥ 77 call to unblock delayed processes in the correct
order. If no process was blocked on Ev, then OSA would simply discard this event (cf.
/Concurrencyy.

As soon as Q leaves the REGION, the corresponding REGION_EXTT call is issued. Due to the
preceding CONTINUE OSA must now get the first entry of the FIFO event queue (there is only
one in this example, namely £v) and unblock a2 process on the corresponding event
semaphore. Note that the entry semaphore s [eft unchanged. Thus the precedence of
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DELAYed processes over processes at the rpro-r 2ntry is enforced. Only after the last
REGION_EXIT where all delayed processes have been continued and the FIFO event queue js
empty will the entry semaphore be posted.

6.3 COMPARE_AND_SWAP. COMPARE_AND SWAP?2

These two commands are mapped on & hardware-feature of the Motorola processor
MC88020/MC68040 that allows an atomic read-modity vrite operation.

Syntax: ,

COMPARE_AND_SWAP ( compare_value,
new_value,
destination,
success,
result_value);

Semantics:

IF compare_value = destination

THEN

destination := new_value:
success := TRUE:

result_value :- new_value:
ELSE

SUCCeSS := FALSE:

result_value := destination:
FI;

Without interruption, the following steps are executeq:
Comparison of compare_value with the content of the memory content of destination.
If both are equal, destination is set to new_value, success isg returned

If not, false is returned.

COMPARE_AND_SWAP2 works analogous for two Lompare_values, where the update only
takes place if both compare_values are equal to their vorresponding destination.

Since those primitives are based on a hardware-feature. they are very efficient and cause little
blocking of other processes. It is therefore desirable to map them to a hardware feature on the
target hardware, too.

Note however that to prevent race condition among different processes a hardware feature is
not needed. If it turns out that a hardware-feature is not available, disabling interrupts or
boosting the calling processes priority can also be used to resemble the behavior of thoge two
features.
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7 Interprocess Communication

VISION O.N.E. software architecture consists of autonomous entities called Service Provision
Units (SPUs). A SPU is partitioned into a set of processes. Each process can be seen as a task
of independent actions, that may execute concurrently with other tasks. Since co-operating
tasks need to exchange data. to synchronize actions and to share resources, VOCOS provides
facilities for interprocess communication, synchironization and mutual exclusion.

Communication is possible between processes indeperndent of their location in the system. As
stated in /IPC/, processes can be located

* onthe same HW-platform running under the control of the same OS (intra-platform
communication) or
* ondifferent HW-platforms (inter-platform communication).

Since the new target hardware is not Supposed to have multi-processor capabilities, this
chapter deals only with intra-platform communication suitable for a desired uni-processor
environment. We start with a short survey on interprocess communication facilities in VOCOS.
Next, POSIX.1 and POSIX 1h interprocess niechanisris are discussed. Finally, we show one
possible mapping from VOCOS supervisory calls (SVCs 110 POSIX. 1b function calls.

7.11IPCinVOCOS

VOCOS supports asynchronous and synchronous communication. We use the term
asynchronous communication when the sending process is not suspended until a receipt
message arrives, whereas the term synchronous communication means, that the sender must
wait, until it gets the result of the request.

7.1.1 Asynchronous Communication

Message buffers provide a flexible, general-purpose 1110 “hanism to implement asynchronous
communication. Typically. a message buffer is associated with one particular process (i.e., a
particular incarnation of the process, that starts receiving from that buffer). However, if a
message buffer is declared with the special compiler directive - >THAREADED<>, it is owned by a
process type. Thus, messages of such buffers may be received by any process incarnation of
the corresponding process type. Since process incarnations are out of scope of this feasibility
study, we focus on normal buffers only.

<

A message buffer provides a tni-directional communication. if a bi-directional communication is
necessary, the application has to setup two message buffers. one responsible for the
communication between a sender and a receiver. the cther one responsible for acknowledge
messages back to the sender. The IPC related SVCs are listed below together with a brief

description:

CONNECT_SERVICE () and

GETUBI () The setup of a communication betweer a sender and receiver is done by
means of service management iLe. the SVC CULNECT _SERVICE). Main
result of the SVC is a reference to components of the given service instance
including a so-called Unique Buffer identifier (UBI), that has to be used for the
subsequent communication.
In case that sender and receiver are located in the same SPU, the system cali
GETUEZ may be used. As indicated in PG/ its envisaged use is to get the
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UBI of a local buffer in order to include itin a subsequent message. Using that
UBI, a receiver is able to return an acknowledge to the sender.

SERVICE_CAST and

CAST ()

SEND ()

PMPOST ()

RECEIVE ()

RECEIVE CASE

PMTAKE ()

GETDATA ()

The SVC cz=27 is used to transfer messages into message buffers. It is a
non-blocking routine. Hence. if the corresponding message buffer is full, the
sending process is not Suspended. but is informed about the situation by a
special error code. Messages sent by imeans of oo o must have a global
header containing some conirol formiation provided by the operating system
or the application. The application data part follows immediately after the
header with length from 800 bytes up to 32 Kbytes.

The SVC SERVICE _CAST s a shortcut to connect to a service and to send a
message. The sending functionality is the same as described above.

Alternatively to the SVC CAST, the SVC 32170 may be used to transfer a
message into a message buffer located within the same SPU. In addition a
priority may be defined determining the order. in which the corresponding
message is read from the buffer by the receiver. Notice, that SEND isa
blocking primitive! If a message buffer is already full, the message cannot be
queued and the sending process is suspended.

Similar to the SVC sSEND, the SVC PiomosT transfers a message to the
specified buffer within a SPU. Again priorities may be specified to alter the
queuing of the message. However, this SVC is non-blocking and allows the
transfer of 800 bytes user data.

Using the SVC RECEIVE, an application gets the oldest message with the
highest priority contained in the specified buffer. RECETVE is a blocking
primitive. If the specified buffer is empty. the receiver is suspended, until a
message eventually arrives.

By means of the SVC rEcE vy -~ - the receiver may wait on several
message buffers. If at least one buifer contains a message, the receiver gets
the oldest message with the highest priority contained in this buffer. When all
buffers are empty, the receiver is blocked. if no ELZE-part is specified.
Otherwise the statements following the =Lez-part are immediately executed.

Unlike the SVC RECEIVE, the PMTALE is & non-blocking SVC. Hence, if the
buffer is empty the receiver continues and will not be suspended.

VOCOS provides a facility to transfer aaia nlocks of up to 32 Kbytes. Such a
message consists of a trigger message (received by means of the SVC
RECEIVE) and a supplementary use: data biock retrieved afterwards by
means of the SVC GETDATZ. The ementary data are stored in the heap
space of the application, which in tur 15 0N one hand to ensure, that it has
allocated enough heap space. On the cther hand it is responsible to release
the heap, after the user data has been o

‘ocessed.

7.1.2 Synchronous Communication

Synchronous communication ailows processes to call procedures located on other machines.
This mechanism is widely known under the Synonym Hemote Procedure Call (RPC). When a
process on machine A calls a procedure on machine & the caliing process A is suspended and
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mation is transported from the caller to
result,

execution of the called procedure takes place on 8. Ini
the callee in the parameters and canreturnin the procooure

RPC achieves its transparency using so-called SWib processes, When a procedure is called,
that actually is a remote procedure, a client stub is invoked Unlike a normal procedure, it does
not put the parameters on a stack (or registers), but packs them into a message and sends
them to a stub-process on the callee side. The server-stub Unpacks the parameters from the
message and then calls the server procedure in the usual way. The server-stub gets control
back after the call has completed. It packs the result in 4 message and retransmits it to the
client-stub, where the client-stub inspects it, unpacks the result and passes it to the original
caller, which from now on may continue its work.

In VOCOS the definition of a Remote Procedure Call is ione 1 the module description header
in the REMOTE_PROC_ TnFOC section. Among other artibutes e programmer can specify how
many stub processes are generated by the compiler & started by VOCOS.

7.2IPC in POSIX.1 and POSIX.1b

Generally spoken, POSIX.1 and POSIX.1b supplies message gueues — like message buffers a
highly flexible, general-purpose mechanism to implement asynchronous communication,
discussed in more detail in the following sections. However, synchronous communication by
means of RPC are neither defined by POSIX.1 nor by POSIX.1h.

7.2.1 Asynchronous Communication

POSIX.1 provides a possibility for synchronous Comimnunication by means of pipes and their
named counter-parts FIFOs.

pipe() A message butfer usually has two types of users. A source (client), that posts
messages, and a sink (server), that consumes messages. Hence, a pipe
opened using the system call pipe ) returns two file descriptors. One is used
as the writing end of the Pipe, the other one is used as the reading end.

write () and

read () Communication is done like writing and reading of files, i.e., the standard
UNIX system calls write () and »o.. . have to be used to put messages
into the pipe as well as to read messages out of the pipe. By default reading
data out of a pipe will block (i.e. suspend the process), until data appears in
the pipe. To avoid this blocking, the standard UniX system call fentl () may
be used to set the a certain flag, cailed < 0 IBLOCK, for the file descriptors.

Notice, that a pipe is just a uni-directional mean for communication. Hence,
one process may put messages into the pipe, while the other one is reading
out of pipe. If both processes would write messages into the pipe at the same
time, messages get intermingled.

Hid process is started afterwards.
ne. That's the reason, why

A pipe requires to be set up in a parent process. where -
For a lot of distributed applications this hierarchy is ciine
POSIX.1 also defined FIFCs-

mkfifo () and
open () A FIFO is simply a Pipe, that has a name in the file system. Once created by
means of the system call mkr; ¢, | - yowinay open it using the standard
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UNIX system call open (), where you can specify its name and if you want to
use it for writing (O_WRONLY) or reading (o ~RLONLY). A FIFO cannot be
opened for both writing and reading!

There are a couple of limitations, that apply to both pipes and FIFOS:

* Pipes and FIFOs are strictly first-in-first-out communication mechanisms. Nevertheless, it is
not possible to post messages with higher priority in order 1o let it get in front of lower
priorities ones, that have been already queued. Sye). echanisms can only be built at the
application level using separate pipes or FIFQs

* Thereis no possibility to controf or even know the wirount of buffer space available for a
given pipe or FIFO.

* Pipes and FIFOs transport nothing more than & stream of bytes. Hence, on the source side
no structures can be put into a pipe or FIFO, unless they were converted to a simple byte-
stream. On the sink side such a byte-stream has to be rebuilt to the structure the client
wants to access.

¢ Since two file descriptors are nhecessary for each pipe (remember, one for each end) and
one file descriptor is needed for each FIFO, some UNIX Operating systems may get in
trouble with applications with hundreds of pipes, FIFOs and normally files opened.

Unlike pipes and FIFOs, message queues in POSIX 101 strictly first-in-first-out oriented.
Each message has a priority tfrom 0 to MO_PFTC ail usuully 32 detined in the header file
<limits.h>). Higher-pricrity niessages getin front of the cuene At a single priority level,
messages are still put in FIFQ order,

Since open (), wrire () and read () are standard UNIX system calls (usually used for
opening, writing or reading normal files), POSIX.1b decided 1o avoid the overhead associated,
when calling them, and defined a set of similar ones (yet being more efficient).

mg_open () The ma_open function call establishes a connection between a process
and a message queue. The arguments include the name of the message
queue, that has to be conform to the vebstiuction rules of regular path-names,
and flags. where you can Specity. If inc message queue should be created,
opened for writing, reading or both (i~ for simultaneously sending and
receiving of fiessages). In addition e parameter ng_attr can be used to
define some attributes of the message quele, like

mQ_maxmeg to set the maximum number of messages in the queue,
mg _rmsgs to set the maximum size of a single message,
mg_ flags to modify the behavior of the message queue (blocking or
non-blocking by means of C_NONELOCK),
mg_curmeasy to get the number of messages currently in the queue.
mng_send () Sending a message looks like wrilting 1o & tile except for one parameter, that

allows to set & message priority. If t 'message queue is not full, the
message is inserted into the queue dicated oy the priority parameter. If the
message queve is fulland o 0 o 10t been set, the function call

blocks untii space becomes avalable and the calling process is suspended.

fery o
(R

€

Mg _receive () This call removes the message at the fead of the corresponding message
queue and places it in a buffer. which has to be provided by the application as
function argument. The buffer 10 be passed has to be at least as large as the
maximum message size for the message queue. If the specified message
queue is empty and 0_NONBT. o has not been set, the function calt blocks,
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untit a new message arrives. If more than one process is waiting at an empty
queue, then the process with the highest priority, that has been waiting
longest is selected to receive the message and to continue ts work.

mq close() and

mq_unlink () By means of these function calls a Message queue may be closed and
unlinked. Latter means, that such a message queue becomes inaccessible for
any other process. |f messages still have riot been picked up, they get lost.

mg_getattr() and

mq_setattr() These functions should be used 1o read alf attributes (iLe., get the current
status of 4 fmessage queue, for instance (o <heck. whether it containg some
“pending” messages) or to set the 1. -+ 4e altribute associated with an open

message queue,

mg_notify() Lastbut not least, it should be mentioned, that the function mg_notify ()
provides a mechanism for Sinks to receive notice, that messages arrived in a

the function caj Ng_receive (!

While message queues in POSIX.1b are a better Mean ior mter-process communication (at
least they give you the facility to have a Jittle bit contro rthe internal structure), they still
have the limitation, that only byte-streams may be transierred. When transferring bulks of data,
this must of course be avoided (we will elaborate on that drawback at the end of the next
section).

7.2.2 Asynchronous Communication

It has already been mentioned, that neither POSIX.1 nor POSIX. 1p define mechanisms for
RPC. Nevertheless, most UNIX systems (including SUN Solaris) support RPC by means of
special library routines. These routines allow C languags programs to make procedure calls on
other machines across a network. RPC works as des above: first, the client sends a
request to the server. On receipt of the request. the server calis 4 dispatch routine to perform
the requested service and then sends back a reply.

7.3 Mapping VOCOS-IPC 1o POSIX.1(b)-IPC

This section surveys a possible mapping of interprocess communication facilities of VOCOS to
interprocess communication mechanisms defined by POSIX 1 (bj.

7.3.1 Mapping of asynchronous communication

VOCOSs message buffers are bound to processes. whg e
buffer. This is no problem for POSIX 1h message qu.
facilitating a common communication mechanisr, The... Fioeesses. who know the name of the
message queue, simply have aceesstoit. Hence. the vOCOS process, that declares the
message buffer, shouid be the one, who cares for the Proper creation and initialization of the
corresponding message queue. We suggest to set Ub @ message queue with the attribute

g _flags setto o_nomer o ensuring, that a subsequent sending function call will not block.
The attributes ng_maxinsg and imsgsize should be set according to the declaration of the
message mode and buffer mode,

ORI process may own more than one
i & accessed via names, thug

i
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, ;

| !
| Process | 0saA OS Kemel |
I f i
L [ S

G e e e )
e LDutter engh,

CHEATEIO RDONLY,..):

i Declaration of message bufler

i DCL buffer_name BUFFER mny !
|
[ \ s

Create POSIX. 1b
message queue

| 1 ’
2 Figure 7-1: Declaration of 5 rnessage buffer mapped to the creation of a message queye
3 Whenever the UB| of the message buffer is retrieve by means of the SVC
| 4 SERVICE_CONNECT or GETUZI. the OSA has to map it to the name of the corresponding
‘ 5 message queue. This happens transparently to the application, Notice, that the message queue
6  now has to be opened without the O_CREATE flag.
T e = — ’7**\[
[;’ Process 0s OS Kemel
L - .
: R
e butfer length, !
‘ WRLONLY,j;
2 " - ————— !
Reference to a message butfer | open existing
CONNECT_SERVICE or GETUE POSIX.1b
f message queus
T ——— | nspect return valye
set commor error code T e T ,
conformiint to VOCOS :
o j
,jg !
7 )
8 Figure 7-2- Reference of a message bufley mapped to mq_open()

9  We offer to map the SVCs U557 SEND and PMPUST 10 the function call mg_send ( ). However,
10 since mg_seng () allows to transfer byte-streams onily. it is lecessary to generate wrapping

11 functions, that convert the corresponding structures o streams and fill the message header, if
12 necessary. In case of SEND and ruposT g priority may be issued. Since the SVCs casT and

18 PMPOST are non-blocking SVCs. the message queue can pe used as it was initialized (with

4 O_NONBLOCK feature). Thus. the semantics is as follovs - it there is room in the message queue
15 for another message, the message will be added Witho. ! 2ms. Otherwise mg_send ()

16 returns -1 and the external variable errno, which is set. wi CVEr an error occurs, reads

17 EAGAIN, which in turn indicates. t1:at the specified me

vhRde quede is already full,

,,,,,,,,,,,,,,, e
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Process {{ OSA | U3 Kemel
, S S
CAST, PMPOST
- R convert structure 15 e Sire
| o f necessary, set prior;,
, mq_sendy...);
I - — B E—
; .
nessage in
! message queye
| . ‘
) nspect retum vajy,. K
] . — e
/ ) .
[ _Set common eror code :
‘  Message queue full,
CAST, PMPOST ' Ma_send() retums with -1
~ T T E convert struciure 1o byte stream, “NEEMmo set to EAGAIN

| . ifnecessary, set priority,

-~ Mq_send(...); T
r - - B
} »»‘ — — - ﬁ R 777——4‘
[ set common error code - if (return vogne -

ie., onpesS0_buffer f inspect errmgp
I

Figure 7-3 Mapping CAST ang PIMPOST to mq_sendy)

However, the situation is different for the SVC SEND, which should block, if the message queue
is already full, Fortunately, POSIX.1b provides the function call mq_setatry () to alter the
behavior of a specific message queue, thus enabling us to clear the 0_NONBLOCEK flag. Now the
Seémantics changed as follows: it there ig room in the Mmessage queue for another message, the
message will be added without problems. Otherwise the calling process g Suspended. If more
than one process is waiting to send, when space becomes availaple in the message Queue, the
process of the highest priority. which has been waiting the longest, is unblocked to send its
message.

T — — e S
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set priority,

mq_send(...);

‘nspect return value,

convert structure to pyre stream, o_send() is blocked, untif

© = = g~ setpriority,
mg_setattr(..); /* clear G_MOp
mq_send(...);

,,,w:,_\,,*,ﬁ,%,,,, -

Process is

|

set common er

suspended

inspect return value,
mq_setattr(...); /* set O_NONF
- R

ror code

Figure 7-4- Mapping SEND to mg_set

So far so good. Now let’

s have z glance at the SVCs g ¢
i

buffer. Since the corresponding SVC RECEIVE should L

mq_setattr(..); /* clear OO

ma_setattr(..); /* ser o oo it
e T S

convert structure 1o byte strearm.

iBLOCK -

REEE “ ———

Message queue full,

bufler space jg available

IBLCCR 7

putmessage in
hossage queue

Buffer space jg available and

the process is the first one in
. the waiting queue (has
*highest priority)

attry) and myg_send()

eceive g message out of g message
>k, the behavior of our message

or

INTERPROCESS COMMUNICATION
T T TNICATION

queue again has to be altered by means of e B
can be created without the O_MCNBLOCK feature). The function N

of the highest priority message from the specified mes

Queue is empty mg_receivas

1 will block, waiting until

message arrives at an e
highest priority, that has

mply queue and more than on

o talternatively, the message queue

Zceive () gets the oldest

sage queue. If the specified message

anew messag
€ process is w

€ eventually is queued. If 4
aiting, then the process of

been waiting the longest, is seje

cted to receive the Mmessage.

Once Mmore, it has to be stated

- that POSIX.1b message queues trapsfer byte-streams only.

‘ed structyre.

Hence, we need an extra wra
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return structure,
set common error code

Process is
suspended

return structure
set common error code
-

Figure |

The SVC rRECETVE CASE dema
Sequence of message buffers. Si

masetattr(...); /* set O_NONRL GOk ¢
T SO YU L

ma_setaftr(...); /* set O_NOE
R e

mq_setattr(..); /* clear C R

mq_receive(...);
N - - R

~onvert byte stream to structure,
fiispect return vafue;

sage queua empty,
ive() is blocked unti

mq_setattr(..); /* clear HNCLELL DK

my_receive(...);
DI —— - s

. i
. Yet message out of
. message queue
convert byte stream to structups, |
nspect return value, |

ge s available and the
255 15 the first one in the
wWailing queue (has highest
priority)

-5 Mapping RECE/ VE 1o my_receive()

nds to get a message from one message buffer out of g
ncemg_receive () permits to receive messages out of one
buffer only, we need Some workaround. What can be dene. is 10 use selact (), unfortunately,

not part of POSIX.1 or POSIX.1b. In fact, it is a standa; | NIX function!

By means of the function =1 ...
ready for reading or have an oo condition pending. i1 e Lpe i
=<t () normally blocks UP 10 @ user-defined timeout interval,
ccomes true for at least oo of the
an object, whose members are zepe
(which is extremely useful for 1. SVC RECETCE c: -

the specified file descriptors, -,

or until the specified condition b

the timeout argument points to

The seiect () function supports regular files, FIFOs and piges and other character based

devices. Unfortunately, the behavior of select () onfile descrivtors. that refer to other types of

- We may check, wiiicr st i

Separt).

DTS S, -
oowith an o

files is unspecified and thus has 1o be tested for POS/x 1 b message Jqueues.,

Suppose select will work for message Queues, the Sy -

follows:

secified file descriptors are
i=d condition is false for all of

specified file descriptors. If
“2=ct () does not block

".-% could be mapped as
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1. The file descriptor masks,
initialized with the macros

@ necessary argument, for the -..
“L_CLR() and Fp_sEgT ().

2. Afterwards seiect () is called.

3. If some message buffers contain a Mmessage, the messages
switch() statement list, for Instance) and converted inio the “orresponding structures.

4. Finally, the structures have to be returned to the calling process

If in addition the SVC rzop-=

ensuring, that the process ey immediately continue ever; id

Notice, although this looks quite simple in theory, the appropricte automatic mapping done by a

future compiler back-end seems 1o be hard to construct.
=R

Process

RECEIVE CASE

I

’ return structure,

| set common error code P

Processjs
suspended

)

Lo

7sfeifutimer(o<); o
- FD_CLR(...);FD_SET();
select(...);
switch (1..) {
case FD_ISSET(...): mqg_recerv. -
case FD_ISSET(..‘):

’ T o

convert byte stream to structyre
inspect return value

g T
set_timer(e<);
FD%CLR(,..);FD_SET();

select(...);
switch (...) {

. case FD_ISSET(...): mq_recewa

case FDJSSET(...):
.

e e

=SE contains an ELSE-Uart

-= == function have to be

are read out of jt (using a

1 limeout has to be set to zero
s8dages queues are empty.

S
[

T
sssage out of
age queue

]
|

age queue empty,
tis blocked until some
age eventually gets in
2 Message queue

T

1

|

et message out of

: ,"I‘IQSSHQ@ queue

convert byte stream to structure,
inspect return value,

‘,,,..‘,,ghN,,_, R

|
f
I

5 is available and
ces5 is the first one in
tng queue {has
Lriority)

Figure 7-6: An approach to map SVC RECE/ VE CASE to select() and maq_receive()

The SVC pyraky may be mappad to Md_receive (), toc. Since this SVCis non-blocking, we
Lo flag. Hence, if there is @ message stored in the message
Queue, it is picked up and converted to the defined data structule. Otherwise mg_receive ()
returns -1 and the external variable errno, which is set, whenever an error OocCcurs, reads
EAGAIN, which indicates. that the specified message queue is SMmpty,

can omit to clear the o
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— e
{ ‘
o ma_receive(...);

r i 9 Ci S

I .

: : !

| ik up message

3

: convert byte stream to structire ‘

' inspect return value

I . ———

creturn structure,

set common erior o -

Message queue emtpy
n4_receive() returns with -1
I “nd ermo set to EAGAIN

I " o

| S ma_receive(..); T —

I

! e ]
set common error code. i if (return value == -1)
ie., onpcsSO_,buffergen';;;xg.» inspect errno

- T

!
Figlire -7 Mapping PMTAKE to My _iucelve()

Finally, we have to discuss the SVC GETDATA () that is called. wvhenever g user receives a
trigger message, that describes a supplementary data biock. To map this functionality further
actions at the sender as well as at the receijver side are necessary (which we frankly omitted
above for the sake of simplicity;.

Whenever a SVC cagr is called including a VOCOS category ill or IV message (big and fat
messages with lengths up to 32 Kbytes), the sender has to rmay | ) the supplementary data
into shared memory area (operied as discussed earljer by means of srni_open()). At the
receiver side the wrapper function called after themg rec-:. | . has to examine the
message header. Once it discovered g header of category lif or |v messages, it has to mmap ()
the supplementary data block it user space. Afterwards the fiessage structure is rebuilt and
the receiver may call cxpp.~ Again, what seems easy in theury. could pe very hard to apply
in practice!
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if (message category Il or ')
shm_open(...);
mmap{...);

| ) write{...); -

] . Convert structure to byte stream,
) i ma_send(...);

I B ,7¥5M_ T - P ERIE— =

. 4e queue
i Inspect return value I 9

I *t —— B
‘ set common arror cods
Receiver
RECEIVE
!
mq_receivey...);
I e — _

i
L pick up message
: f

! inspect return valye
£ — S
J convert byte stream to structure,
| - if (message category ill or {v)
! shm_open(...); mmap(...);
P

return structure;

| set common error O . - ,\_\[;

“harcd memory access

"read data out of shared memory */ D
f read(...); '
- 77*_*,7.7;R~_\ fffff - %

return pointer
set common error code

Figure 7-5: Mapping SvVC GE TDATA to rmman()
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7.3.2 Mapping of synchronous tommunication

Since the future target systern wij be a uni-processor angd hence & brocesses may have
access to a common (virtual) address Space, we propose to optimize the performance of RPCs
by using normal Procedures, that can e bundled into a shared library.

Notice, that the caller of the forer RPC sees no difference. Hoy, .. I the procedure has to be
ré-entrant and must access datan a secyre manner (i.e., with 1,/ exclusion). As already
stated, in VOCOs the definiticr o 4 RPCs takes place in the ... @ description header in the
REMOTE_PROC_INFOg sectior. Among other attributes the Pregrammer can Specify how often
a RPC may be invoked concurrently. Therefore, before entering the normayl procedure, the OSA
has to check, if the entry is allowed. Thig can simply be done using a Semaphore and the
associated POSIX. 1p function caiis sem_wait () and sem_pco.-

I

I

i
| | osa
! i
L

i
i
I

- St owait(. )

“al procedure

J return Sl post(...);
calling process js  -—
suspended, sinec .
Semaphore has 4 | : o 71
been releaseq i | fﬂ""’ﬂ'v‘d'[<~-«);
: L ]
!
' 23 procedyre
“ return
{ ) P post(.L);

Figure 7-g- Mapping RPCs to normay Procedure calls

o 06768 - e —




ocooo\:cnmamm

mf\).a...._‘_a..._.._‘_....‘_x
-*OCDCb\lCDU‘lAQ)N-*

8 Time Management

Due to lack of time, we could only briefly survey the different kinds of timer facilities defined in
VOCOS, i.e.,

* relative timer jobs, which become due after a specified period of time,

* absolute timer jobs, that become due at a certain point in time anc

¢ time discontinuity jobs, that Keep user software informed about discontinuities in time of
day.

Since time granularity in VOCOS s around 50ms, we dare to say. that the POSIX.1b timer
Mmanagement facilities will Probabiy meet the desired functionan’ty, for instance,

timer_settime(), timer .. - ime, timer_delete,

—_— o ————
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9 Recovery

/ErrorH/ specifies four so-calics =ction groups which determine ihe actions that have to be
carried out during different lev.is of system recovery (‘Anlaufstufe:; ;. They can be summarized
as follows:

Phase Action Group ' Measurements

NSTARTO 1.0 (Re)startof all PROCESSes thal match the following process-
‘properties (ct. /Proz/, Section 3.3):

(CYCLIC=Yes (means that this process belongs to a
STARTGROUP)

LU TCHING _GROUP = NO

‘Hemarks: restart of all NVT processes,

NSTART1 1.1 "Tﬁfegstan of all processes with property CYCLIC=Yes,
 Initialization of the operating system

NSTART2 1.2 load semi-permanent data & NSTART1

NSTART3 1.3 “ioad code and transient data & NSTART2

Table 9-1: System Recovery Fhases

To emulate the functionality giver in Table 9-1 the following mechanisms have to be provided:
(1) (Re)start of a CHILL prO~ =,

(2) OS Initialization

(3) Write protection of semi-p-iiaient and permanent data

(4) Loading of transient and semi-permanent data

(5) Loading of code

A separate section is dedicated to the explanation of each of the mechanisms mentioned
above.

9.1 (Re)start of a CHILL PROCESS

Depending on how we map the CHILL procESS primitive we have to restart a
e POSIX process

e POSIX thread

* proprietary thread of control (¢.g. task)

Note, that although it is possibie for POSIX processes and i > 10 establish means to
cleanup before termination, undoing of acquired resources (e.g. =T 0NS) can only be done by
OSA itself, since the associated resources (e.g. entry- and event semaphores) are transparent
to the user PROCESSes.

9.1.1 POSIX Process

Restarting of a POSIX process can be achieved by sending the process the unmaskable signal
SIGKILL which inevitably terminates the process.

...... veeen=.n.=06-7659 55
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Afterwards a process of this type can be forked again. Note, that by that means there is also a
loading of code/data of the process involved, which is not specified for e.g. NSTARTO.

Sending a process an unmaskable signal means that it cannot accomplish any cleanup
functions (e.g. freeing acquire resources like semaphores), but cf note above!

By using a maskable signal. tlic rocess can achieve cleanup-functions in its signal handler.
However, it must then be mardaiory to call the exit function as the iast instruction of the signal
handler. Otherwise processes ~ouid be able to circumvent a terminating signal.

9.1.2 POSIX Threads

The following termination-relatzd interface is provided for POSIX threads (cf. /PosixThread/):

e pthread_cancel () : Cancels thread execution.

* pthread_setcancelst .z~ :;: GSets the cancellation state of a thread (disabled:
cancellation is kept pending uritil cancel-state is enabled again).

¢ pthread_setcanceltyi., Sets the cancellation type of a thread
(deferred/asynchronous).

* pthread_testcancel {, . Creates a cancellation point in the caiing thread.

* pthread_cleanup_push ' : Pushes a cleanup handler routine.

® pthread cleanup_pop - : Pops a cleanup handler routine.

Threads can be cancelled synchironously (only when they reach a cancellation point, such a
thread-related call), or asynchronously (cancelled immediately). Stacked cleanup handlers may
be used to cleanup a thread's acquired resources at the momeni of cancellation. After thread

cancellation the thread may be siaited again using phtread_cre..vv i) .

9.1.3 Proprietary Threads of Control

The following interface is supported by VxWorks to support deletion and start of tasks (note,
that this interface is not POSIX-compliant):

e taskDelete(): delete a 1ask

e tasksave(): (temporarily) protect a task against deletion (e.g. before entry to critical
region)

e taskUnsave () : allow delotion of task

¢ taskSpawn ():creates a ncw task

9.2 OS Initialization

Contrary to VOCOS the mea:ing of OS-initialization is limited o the OSA layer itself, since
commercial RTOSes do not wicy the user to trigger internal OS initialization. A shutdown and
restart of the target RTOS woula on the other hand imply a reload of ali process code, which
violates the semantics of the NSTART1 phase (besides imposing a severe penalty time-wise).
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9.3 Write Protection of Semi-Permanent and Permanent Data

In order to support semi-perinanent and permanent data it is necessary to protect memory
areas from write-access (cf. Section 0.5). in case of semi-permanent data only the UPTSPF
function (cf. /Update/) is allowed 1o write the protected data, in case of permanent data no write
access is allowed at all. In the foliowing sections two possible approaches to memory protection
are presented.

9.3.1 Protection According to POSIX

The POSIX.1b memory protection mechanism® distinguishes the following attributes for
memory pages:

PROT_READ: page can be rexd
PROT_WRITE: page can be writien
PROT_EXEC: page can be executed
PROT_NONE: page cannot be accessed

Attributes can be or-ed together as long as this is supported by the underlying hardware (e.g.
some machines require PROT_READ in order to allow execution of code). Attributes can be set
either through the POSIX.1b SVYC mmap() (cf. Section 9.4.2; or through the POSIX.1b

mprotect () SVC.

mprotect (const void *wawic  size_t length, int prozi: Allows to set the memory
protections prot of the mapp=d tirea starting at addr and proceeding for the given length.

The protection modification is duiie in units of PAGESIZE, to inciude the area specified. On
some systems it may be required to pass in an addr that is a multipie of PAGESIZE.

Note that POSIX.1b provides protection of memory pages only if they have been previously
mapped using mmap()! In this way memory protection is restricted to shared memory, and
further devices where mapping makes sense (cf. /Posix1003.1b/), such as regular files.

ftruncate (int fildes, «ff T length) can be used to (re)size the underlying
representation of the mapped zrea specified via £ildes to the specified size given in Length.
If £ildes was previously smaller than 1e=ngth, zeroes are inserted from the EOF onwards. If
fildes was previously longer. bytes past “ength will no longer be accessible. Note that this
does not automatically resize the mapped area also. Note, that w2 0) cannot be used to
implicitly resize the underlying representation of the mapped area Any reference to addresses
beyond the end of the object will result in the delivery of a SIGBUS signal.Violation of a memory
protection attribute results in POSIX signal SIGSEGV delivered to the causing process.
Treatment of this signal may ot be trivial as is depicted in Figure 9-1. Process P erroneously
sets the pointer ptr to address .::52000006°. Within the next instruction it attempts to assign
a value to the memory location pointed to by ptr. As p has installed a signal handler, the OS
calls this signal handler after the trap due to the erroneous statement. Note, that this trap
occurred prior to the execution of the erroneous statement! After attenpting a counter-measure
due to SIGSEGV in its signai nandler and passing control back o thie OS, P eventually gets
scheduled again. The program _uunter of e is still at the offerding instruction, and another

attempt is made to execute thc instruction. resulting in the same 1ap, and so on. It is yet to be
determined how this problen: v be treated, but a solution wili propably be based on stack
modifications (as done by =« "w; : / longimp (). If a POSIX process model is used, then it

® Not implemented in VxWorks.
® Or any other address it must not wiite 1o, such as an address within a write-protected area.
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might be easier since the offending process can be terminated in which case the POSIX.1
SIGCHLD signal is received by the parent process (OSA, in cur case). if threads can be
terminated out of a signal handler is yet TBD. A way to treat protection errors within OSA itself
must also be investigated.

anal Handler (P

! i
of = | :
000000000 | |

N | |
¢ Progiam countel | !
. ‘ of Foaid not
oF;';f-: o > between ! |
: T ] WO | | i
| RN | SIGSEGV
x | .
: | Treat Signai
—— e
| f
l y Sche&iule
*plr = P I
Op)df; ' T‘ [
l SIGSEGV

]

~lgere 9-17 Treatment of SIGSEGV

9.3.1.1 Permanent Data

For permanent data the contents can be mapped at startup and protected PROT_READ from
then on.

9.3.1.2 Semi-Permanent Data

For semi-permanent data the contents are also mapped at startup and protected PROT_READ.
In case of the procedure pToEF the protection s temporarily changed to
PROT_READ | PROT_WRITE.

9.3.2 Protection Through Run-Time Checks

Contrary to the approach presented in Section 9.3.1, where protection is achieved by OS
mechanisms, it is also possibie to achieve protection through run-time checks. Currently the
CHILL compiler backend already inserts several run-time checks inio the code (cf. /ErrorH/,
Section 3.2), e.qg. for checking ainay boundaries. For every statement that potentially accesses
a protected area a run-time chieck has to be inserted, this can also be achieved through a
dedicated OSA-Access Contrsl zumponent (cf. Figure 9-2). Since run-time checks impose a
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performance overhead, it is desiragle that the backend inserts such checks only at those places
where it cannot verify a statement's inoffensiveness at compile time.

2 OSAAC | OSASWET

pr = 0X00000000

.

!
!
|
|
l
|

t
!
|
l
l
"ptr = Oxff; |
protecied am:a accessed firough pt 7 !
check 'ptr !
P
] |
SWSG(-) rL handle emor
Here he [T

I
[
|
l
l
T i uvolatoin 1w
|
|
|
!
|

Figure 9-2. Menjory Protection Through Run-Time Checks

9.4 Loading of Transient and Semi-Permanent Data

9.4.1 Low-level Load

Given a binary image on disc C:A can at any time open this image and write its content to
dedicated memory locations through the standard POSIX ope:ii;, read(), and close()
system calls. In case of POSIX processes OSA (as a process) can only access data in shared
memory (e.g. libraries).

9.4.2 Loading by Mapping Files into Memory

void * mmap(void * =iz, &ize_ ¢ length, int pr.o:, Lot flags, int £4,
off_t offset) aliows a POSHx process to map the contents of a file into its address space
(cf. Figure 9-3).
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08 Kernei

5.

fd=open(“image") 1
. -

addr=mmap (star, len,....fd,...} °

vlosc (fd) |

aperate

terminate [

Figure 9-3: Mapping of Regular Fifes into the Address Space of a Process

The meaning of the parameters of amap (; is as follows:

e start: A pointer to the address where the mapped-in area should start. This usually cannot
be chosen arbitrarily by the application, since it often must be aligned to the page-size of
the OS.

e length: Length of the arca tiat should be mapped.

e prot: Protection of the mupp=a memory area (cf. also Section 9.3.1).

e flags: either MaAP_ sk, kel (this mapping is shared with other POSIX processes),
MAP_PRIVATE ({updates of ihe mapped area are only visibie to this process). Or-ing
MAP_FIXED to those flags teils the OS that it is required to map the memory definitely at the

address specified through - arc (otherwise the OS is free to map the area at any
address).

e f£a: Afile descriptor to an cpen file,
e offset: the offset into .. for tiie to-be-mapped data.

Care has to be taken that -~ .. contains a valid address, otherwisz ne OS may decide to
chose another address or the v may fail at all (in case of Mr: - =2}, The application can
determine the address where 2 US chose to map through the mn g value of mmap (), which
in fact is the address where the mapped in area starts.

e

If several POSIX processes 1
same address into the addre

me same file it is not guaranteed that the file is mapped at the
space of the respective processes. If this is needed (e.g. for
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trading of pointers), it has to be taken care of by the application itself. Note that mappings are
inherited through the fori: . system call. In this way it will be beneficial to establish all
mappings in OSA before forkinig ary POSIX child process.

In case of several POSIX proces:¢s, it has 10 be taken care tha! global data (accessible by all
processes) is mapped by e srocess as MAP_SHARED so that updates become visible to
other processes. Care must .. se taken on the performance penalty induced due to this kind
of file-based data. If it shouid wirr out that the OS overhead to maintain file-based shared data
is too high, then the approach depicted in Figure 9-4 has to be taken, where the to-be-mapped
area is copied into shared meniory by OSA. This approach has also to be taken if it is
undesirable that updates of the mapped data are reflected in the underlying file (e.g. for
transient data). Note, that the approach taken in Figure 9-4 is depending on the underlying
object file format of the target OS (e.g. ELF; a.out,...) and has therefore be subject to further
study.

As we already mentioned ditfcreri portions of a file can be mapped (o different memory areas.
By that means, it is possible tiat _cparate link sections (e.g. Ur:z.. - 2.0CON) that are placed
in one binary image are mag » distinct areas in the address space of the application.

OSA

__T__J

!

r—

Awid  accidental
tempenng of

“imaye” fuwough
-1 proper
(PROT

|

!

[

|
niuneap @ddr, len) l
>
[

I

|

|

I

|

!

i
|
Figure 9-4. : Copying afte: Mapping of Regular Files into the Address Space of a Process

9.5 Loading of Code

Loading code of a process is = fuiiction typically located in the realim of the operating system,
and not of the application scivwat-: being executed by the operating system. We recommend a
discussion whether this featuie 2 =ally needed.
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1 If it is needed, a possible sclutior would be to reduce the code of a process to just a wrapper
2 that calls a function e.g. in = ed library that can be m-mapped (and un-mapped, closed,
3 opened and mapped againj .tc i - address space of the process.
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STARTUP/TERMINATION OF PROCESSES

10 Startup/Termination ci Processes

10.1 START
START processname ffl':‘;,i: S zzart_no, <parameter::  aliows starting of a CHILL
process. The process with the iame ssname is started. on its stack it receives the

optional arguments given z>. This parameter-list is of variable length.
start_no is a number that is sci by the OS with the ‘Start-' and "Ende-Quittung’, it must be
kept by OSA for that purpose. == =2ex is the IPC primitive, t¢ which the ‘Start-* and ‘Ende-
Quittung’ has to be sent. This is mapped as specified in SeCTlO“ 7 and must also be kept by
OSA. Depending on the che nodel to map a CHILL procz 22 (POSIX process, POSIX
thread, or task) OSA has {0 take appropriate measures as detaited in Section 9.1 to start the
process. Note, that for POSIX tireads only one argument can be passed. Therefore it is
necessary in that case that the backend implicitly converts the variable-length argument list to
one single argument that is passad to the thread upon SVC stTz27m. Measures to dissect this
compound argument into its tnemers as expected by the CHILL 52253 code must also be
provided.

2l

10.2 PMSTARI

kind of SVC only usable during system startup. A detailed
2/ It can be considered as a ‘Special Deal between OS and

/Startup/ telis that this is a s
description is deferred to /Prc
application development.

7

10.3 OSSTPOO

0SSTPOO (process_name'! S@is a parameter less resident process. Depending on the
chosen model to map a CHILL = ~~uzze (POSIX process, POSIX thread, or task) OSA has to
take appropriate measures as et led in Section 9.1 Note, that due to mrocess_name being a
resident process, OSA must izck the pages of the process by the b/btem call mlockall ()in

case of a POSIX process.

10.4 OSSTPO2
0SSTPO2 (process_name, ro° vorameters) starts an MMI process. For the mode of
mmi_parameters cf. /Startt,. Tnis SVC is to be treated according to SVC 0SSTP0O.

10.5 OSSTPO3

0SSTPO3 (process._iome, ..o ters) starls a REGEN wrocess.

10.6 PMINCAR

Returns the incarnation number of the calling process. If several incarnations of the same
CHILL PrOCESS are possible then OSA has to keep track of them.
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10.7 PMINFPO_GET_OWii iNCAR NO
Same meaning as PMINCAR. ut available outside of the CP-SPU.

10.8 PMINFP1_GET_ALL_STARTED_INCARNATIONS

Returns all incarnations of the calling CHILL pROCESS. If several incarnations of the same
CHILL PROCESS are possible tner OSA has to keep track of them.

10.9 PMINFP2_GET_OWHN_FiD

Used to retrieve the so-callc.

the member variables of suct: &« process identifier, but defers the expianation of the meaning of
those variables to /ProzSpec/. wihich was not accessible at the time of this study. However, it
can be expected that the existing mechanism for maintaining the process identifier can be

resembled by OSA.

10.10 PMPRNO

This SVC returns the process-.:uiner of the calling process. Accarding to /Startup/ the process
number corresponds fo the a2 process as maintained by a UNIX OS. Therefore this call is
s 1A () system call.

directly mapped to the standai i U

10.11 PMGPRNA

This procedure returns the piocczs-name for a given process-number. OSA needs to maintain
adequate data structures to provide this mapping.

10.12 END

SVC END is used to terminate a process, freeing every resource associated with the PCB of the
process. If it is detected duriiig s SVC that resources are still heid by the process (such as
messages in a buffer or blocks of heap memory), adequate <rror handling methods are
invoked. On demand a so-calied ‘Endequittung’ has to be sent by OSA to the parent process. If
the parent process has already teiminated, this messages has to be suppressed. For a detailed
format of the ‘Endequittung’ c1. 'Startup/.

10.13 PMENDMS

ion of an ‘Endeqittung’ to its
cihier an ‘Endequittung’ is

A process within the CP-SPU i se this SVC to require transmis
parent. OSA has to maintain or each such process telling
requested. For non CP-SPUs this < required per default.
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11 Error Handling

SWSG (Software Safeguarding: = = mechanism defined in /Errci+, that allows the handling of
errors comprising determinatic:: i logging possible error caoses maintenance of error
statistics, and initiation of prope: - uvery routines .

SVC SwWsSG_x LAB:SWSC (F- Indizicnpakes - zoveryLevel) is the
interface to this mechanism, the . ..uneciers have the following ety

ErrorNumber: Number in the i=:ge of 1-127, choose-able by the uscr to distinguish different

kinds of errors.

Indizienpaket: A defined s of system-relevant data that is colected by the SVC and
stored in the so-called ‘Indiziensici:crstellungsbereich’, a memory area from where it is dumped
to the file SG.SESYMP on the disc. 14 Indizienpakete ranging from 0 to 13 are defined, several
of them are dedicated to certaii: ,:urts of the OS- or user-software (which means that no-one
except that certain OS or user sciivare part may use it). Each distinct system-relevant piece of
data contained in an Indizienpake: s called & component.

RecoveryLevel: System Recuvoiy Level desired by the SWSG user. The different recovery
levels are defined at the beginniie ur Section 9.

In addition to user-initiated SWSG calls several conditions exist that resuit in an SWSG initiated
by the HW or by parts of the VCCCS OS. Treatment of those conaitions is discussed in Section
11.2.

11.1 System-Relevant Data

iable lists those components
d from. In some cases
155 the description in the
«2r and how they will be
is marked as ‘TBD'.

/ErrorH/ enumerates all Indizien . ~ctr-components. The followiny
as well as the source of informu:. . 10
the component description givei. @ ErorH’ is unclear. for such
table is marked as ‘TBD’. For ... = components it is not clear
represented in the new system, ¢ iiose components the source

i error number, if wc‘iixyririg:'C‘)Sf‘«::S\/\/ET, tﬁe OSA

Compon 'Description : jSourc: S

Internal Error SWET-intc:

error treatinent an error OCccurs. equivalent  of the SWET
| component.
Recoverylevel System Recovery Level desired by the  SWSG SVC parameter
SWSG use:.
ErrorNumber Number i e eror picked by the S5vW3G SVC parameter
SWSG use
Modulname Name of . mcduie ;ssuyi’ng SWSG. st offective would be to

the name as a further
ficit) parameter to SWSG
‘ e checked with the
cutnpier backend). Otherwise
e code-address can be
derived  from the stack, a
raapning from this address to
module must be
sshed with help of linker

<

es.
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Module number

Similar to module name. "Ct Moduiname

SVC-Modul-Name

Name of the module that issued the|OSA nust remember the pid
fatest SVC to the OS. the latest calling CHILL
process. From that a mapping
'to the respective module can
‘b” established (with help of

L of

SVC-Modul-Version

: bracke zd)
Version of the module that issued the ! mably  the  version
latest SVC to the OS. ! cr comes from the
; t library. The current
hanism  on  how  this

informiation is passed to the
‘OS has to be examined and
| possibly rebuilt.

Fehler- Latest address, from where a call to \ OSA:SWSG stack
unterbrechungs- SWSG has been issued.
adresse [
SVC- Latest address, from which an SVC has ' OSA stack
Unterbrechungs- been issued. i
Adresse |
Codeumgebung The last 56 bytes of code before the OSA/OSA:SWSG
SWSG/SVC call ‘ stack-»calling process’s
Tprogram code
R-Modul Content of the semaphore-moduie of the \ TED whether this is kept.
interrupted code module. ‘
Gesperrter Content of the semaphore that has been ! OSA
semaphor locked for too long.
Dringlichkeit 68k processor interrupt level at the time ighiy target hardware-
of the error detection (range:0-7). dependent, to be customized
12 new hardware.
Registerstande Content of the 68k processor registers.  Highly  target  hardware-

dcperdent to be customized
‘ tu new hardware.

Prozessornummer

Number of the processor where an error,

| Hsghiy target hardware-
was encountered.

| dependent, to be customized
“to new hardware.

Prozef3 der LOCK-
Daten sperrt:

Process that keeEéwaVVLOCK data for too  OSA
long.

Deadlock-Proze3

Process respoiisibie for deadlock.

Aktueller PCB

Fpga)

Process conirol ticck of the currently  T8D how to get this from the
executing prozess. cnew target RTOS.

IRH-Daten/Stack

'TED whether OSA will contain
an interrupt handler.

Data/Stack of the interrupt hander.

Runtime-Stack

Stack of the currently executing process.

OSALSWET stack
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Master Stack BD - TBD
P-, T-Modul ‘TBD TBD
relevanter T-1TBD , TBD
Deadlockmodul ‘
SYMO-Flags ' System  Monitoring  Flags,TBD  how ! TBD
system monitoring will take place. ‘
SYMO-Trace- ‘lndiziensicherétei!ungsbereich’ of SYMO | TBD, OSA:SYMO?
Bereich ?

Dump-Bereich

-

8D 8D

Vermittlungstechinis
che Daten

TBD

“TBD

Interruptmaskierung

Interrupt mask before watchdog struck. ; Highlyw target hardware-
| dependent, to be customized
to new hardware.

SWET-
Communication-area

IOSA, since we will have only
| One processor.

Internal SWET data that gives an
overview regarding currently running
SWSGs on different processors

Dynamische AC- Memory area of the access control! TBD whether OSA will have an

Slot-Tabelle component AC component.

Access-Violation TBD ~ Highly  target  hardware-

Register ! ‘ dependent, TBD

Zyclus-Error- Errors regarding ChaY 'Highly ~ target  hardware-

Register 1 ‘ dependent, TBD

Zyclus-Error- Errors regarding LMY 'Highly  target hardware-

Register-2 ~dependent, TBD

Pl-Alarm-Register | TBD | TBD

ECC-Error-Register | TBD %TBD 7

ERR-Adress- TBD B 'TBD

Register

Grund fir| Cause for a  butter-overrun éné'OSA 'provided that OSA

Buffertberiauf subsequent biocking of a process maintains a shadow-state for
|the used POSIX.1b mqueue
"primitive.

Addresse des | Address of overrun buffer "OSA, address of the overrun

Buffers ‘ POSIX.1b mqueue.

Modulname zum | Name of the modul that contains theiﬁTBD, check current

Buffer overrun buffer ‘mechanism.

Prozess zum Buffer

Name and PCE of the blocked brocewsmsHOSA, TBD to what extend

'that ought to read trom the overrun PCB can be read out from the

buffer. target RTOS (no POSIX
| srimitives foreseen).
Belegte Ressource  Address of an occupied resource that|Buffers are  mapped  to

lead to the blocking of a process. gueues, regions and events
Resource may be a buffer, region, or are mapped to semaphores.
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event. ” This data is available in OSA.
Modulname zur | Name, version. and start-address of the TBD,  check current
Ressource ‘module  containing  the  occupied mechanism
resource.
Prozef3 der Processname ana FCB of the"p)'ocesé”wOSA, TBD to what extend
Ressource that occupiez the  resource  (buffer. PCB can be read out from the
region). target RTOS (no POSIX.1b
primitives foreseen).
Bufferdaten ' Additional data that may be specified at TBD

gcreation time of a buffer, TBD

Table 11-1. ‘Indizienpaket-Components

11.2 Modul-Independent SWSCs

Conditions that are specified uncleariy in /Errort/ are marked as ‘“TBD’.

11.2.1 HW-Detected

Several HW-related SWSGs of this Section are mapped to POSIX.1 signals that have to be
handled within the signal handler of the POSIX process.

£

llegaler Adresszugritt (Zugriff ~}71575{{%"'“'T;Ef'5'teifg';"é!{-u’épenden

Halbwortgrenze)

Adr. von nicht ausgebautem Speicher " SIGSEGV (memory access exception)

SW-Fehler in beiden Speichern o ;TBD N

falsche Einstellung in beiden B:CMY :TBD

beide Requestsperren sind eingelegt QTBD

AC Zugriffsverletzungen ;very broad area, what exactly meant here???
'->TBD. but cf. also Section 9.3.2.

Function Code Fehler -~ T1BD

WD-Ablauf  bedingt  durch  SW-Felier TBD
(Einzelprozessoraustall)

privilegierter Befehl in nicht privilegiertem target-dependent
Zustand

UnzulaBige Instruktion ~ SIGILL (illegal instruction exception)

Division durch 0 ~ SIGFPE {floa{iné 'ﬁxt excébtion)

Undefinierter Interrupt é target-dependent

Table 11-2: Mapping or HW-Detected Error Conditions

Note: only processes can receive signais. In this wav error treatment regarding the above
mentioned SWSGs is distributed winony o processes, as opposed o the current VOCOS
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solution where a central facility handles them. This could however be ciicumvented by standard
signal-handlers that call the central SWET facility on receipt of a signal. The problem does not
exist with threads though.

Note2: proprietary RTOSs can have their own idea of how to treat exceptions, VxWorks for
instance restarts the system if an illegal instruction is encountered in ar: interrupt service routine
(cf. /VxGuide/, Section 2.5.4 ("Exceptions at interrupt Levei’).

11.2.2 SW-Detected

11.2.2.1 System Monitoring

ndmon S i e ——ml'~f1ab<lj|,_; R S — _I

Deadlock of CALLP or SMOMD 'TBD
Timing-fault within certain priority level TBD R
Deadlock through buffer-overrun ~ Detectable through OSA:IPC, cf. Section 11.1.

Timing-fault within processor interrupt service  Target-dependent, dependent also on whether
routines OSA will have a kernei-ievel part or not.

Table 11-3: SWSG-Conditions Detected tiirough Systern Monitoring

11.2.2.2 Interrupt Handler

Handied by OSA. cf. Section 6.1,

Table 11-4: SWSG-Conditions Deteted by the interrupr Handler

11.2.2.3 Run-Time Checks

Those checks are inserted into the code by the compiler backend, cf. aiso Section 9.3.2.
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11.3 OSA::SWET

11.3.1 OSA::SWET Startup

| ] |
OSA ' OSASWET OSAFCP | OS_Kemel
I : J ! % ' l
init sofware eror teatment | | |
> | |
| i omalioc (Sidisetungsbereich))
- e — _—>‘
r< ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .l

L open (SGSESYMP)

J

I

I

!

init cyclic fle access dnver I
| — |
|

J

[

!

[

!

!
| copen (SGSESYRP. O RDWR,.)

!
!
f
!
!
|
l
!
!
I
!
!
|
!
I

Figure 11-1: [nitialization of OSA. . SWET

Initialization of component OSA::SWET comprises the following tasks (cf. Figure 11-1):

(1) Allocating a block of memory big enough to host the ‘Indiziensicherstellungsbereich’.
Contrary to the allocation of the heap area (cf Section 12.3) this is done via malloc()
instead of using shared memory since the ‘Indiziensicherstellungsbereich’ must only be
accessible for OSA::SWET and not for all processes in the system.

(2) Initialize the statistical data OSA::SWET has to maintain in order to maintain a view on what
SWSG calls were issued at which time in order to escalate to the proper recovery level
according to the procedures described in /Update/, Section ‘Eskalation’.

(3) Opening the cyclic file sG.SESu 2 that is used to dumnp the ‘indiziensicherstellungsbereich’
to. Since cyclic files are not provided by the standard UNIX file-systems, a separate
component named OSA::FCP is needed to take care of that.
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11.3.2 SASDAT

| |
E |

| |

. j r
I J
‘ enocounier eror Ex | |
| | |
< ' ! x
| SWSG(En, Packet SASDAT) | |
| T sched ceparamipd. 171 |
! i 1
l ! Saw Components according o Packet I Update/ leaves it
l ] | “open whether the
I I e rip is done as pant
‘ e SWSG SVC or

| schod separam (P, PEIORITY NUMY A Sieramst
| - -
f ) b T
I recower from emor Er Hunp indizen o SESESYMP |

| ! I
[ f |

Figure 11-2: SASDAT Recovery Level

SASDAT is the only recovery level that does not escalate to an NSTARTx. Thus it is the duty of
the calling process p to recover froii the encountered error =r - on its >wn. All SASDAT does is
to save all components of the ‘Indizienpaket’ racket in the "Sichersteliungsbereich’ which is
then dumped to disc (cf. Figure 11-2}. In order to make = Js6 un-interruptible the priority of the
calling process is temporarily raised to 17, the level of the OSA layer itself. /Update/ specifies
that the system is temporarily stopped at SVC SWSG by raising the processor interrupt level of
the SVC temporarily to 2 and later on even to 4. This benavior is highly target-dependent and it
is yet TBD whether it can be resembled in this way on the new target RTOS.

...... meeeeemren=06-7659 71




10
i1

ERROR HANDLING

11.3.3 SASDATS

H
[
P ‘ OSA OS5 _Kemel
| |
I I
' encounter emor Ef [
1

S

| SWSGER Facket SASDATS, |

I

I

J

!

!

| T osoned separamipia, 17 i f

! 1

I Ve CUlipunents  accoramy 1 Packe! |

I T _J | |

! — g ,

[ SASDATS fom ! Consobdate statstical SASDATS data |

] VT process —— | |
| escalaes © =

NSTARTY, for L. \{[__ma' @in swatisfcal dati ) !

! NVT processes T esculate o NSTART | |

only NSTARTO .

I I ONSTARTX L I

I i |

| ) : [

| o |

Figure 11-3: SASDATS Recovery Level

Contrary to SASDAT, SASDATS may escalate to NSTART1 in case of repeated SASDATS
occurrences.

11.3.4 NSTARTx

The progression from SVC swe - with an ‘Indizienpaket NTSTARTx is similar to the
‘Indizienpaket’ SASDATS (cf. Figure 11-3). The system is stopped (emulated by setting the
priority of the calling process to 17). the components of the relevant ‘Indizienpaket’ are
collected and stored in the respectve memory area, maintaining statstical data and initiating
the required system recovery level &s specified in Section 9.
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HEAP-MANAGEMENT

12 Heap-Management

Vision O.N.E. software applications x“ay alfocate and manipulate memiory in the free store (the
so-called heap). Space in the heap s allocuted am e cd on demand. When the blocks in
the heap are free to move, a heap-anac ofteri reorganize the Leap to free space when
necessary to fulfill a memory-allc_aton H st =ume perating systems (e.g.
VOCOS) blocks in the heap cannct move. | se cases. you need 1 pay close attention to
memory allocation and management to u\/Old fragmenting your hezp and running out of
memory.

In VOCOS, requests for heap memory, like requests for inter-process communication, are
made by special instructions, which trap to run-time system procedures. Therefore, we start
with a short survey on heap- mandgemcm facilities in VOCOS. Next. we discuss POSIX.1b
mechanisms for shared memory, which we are going to use for one possible mapping from
VOCOS heap-management (SVCs : to OSA.

12.1 Heap-Management in VOCOS

As indicated in /Heap/, the heap is a physically contiguous part of the general main memory.
VOCOS defines the following SVCs to access and release free storage out of the heap.

HM_GETHEAP_PAGED (), HMGETHP: . and
GET_HEAP () Heap-management provides these three different SVCs for requesting a free

store. Whereas the two SVCs #M_C=THEAP PAGE” and HMGETHP need a
parameter to ider \‘y the length of the requ lested heap, the required size is
determined at compile time rorthe SVC o imop,

REL._HEAP () Heaps. that are notwoncer ieeded, must be reicased nunediately via the SVC
RELE=~5i HEAP. peiore (e end of a process, it must be determined, that all
heaps are released. It this is not the case, heap-management will force the
release of these “open” heaps.

HMTRAHP () and

HMSNDHP () A process can transfer its allocated heaps to any process, that wants to
receive those heaps. Notification of the receiver is dependent of the used
SVCs: applying the SVC #TRAHP leaves it open to the responsibility of the
user to transfer the heap address to the recelving process (e.g. by the means
of inter-process commurication); issuing the SVC :1-DEP the receiving
process is informed by the heap-ma '*acemwf {i.e. without explicitly using
mechanisms of the nter-process communication at the application layer).

12.2 Shared Memory in POSIX.ib

In standard UNIX operating systm ns {and ANSIE C as well), library functions malloc (),
calloc() and realloc () are used to allocate free store and : ree  is used to release the
allocated memory back to the free store. Since heap memory of VOCOS can be passed
between different processes, we need a commor memory area to accomplish such
mechanisms. To meet this requircinent we propose the use of shared | memory, as explained
below.

= connection between a
il fave to be specified

shm_open () The =in . penc junchon o
shared memory Uljedt ang
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HEAP-MANAGEMENT

with the shm_or ¢ function define, whether the memory is used for
reading (O_FDOIL 7} or both reading and writing (05 7).

mmap () By means of the function wiap () the shared memory space may be mapped
into the address space of & specific process.

shm_close () and
shm_unlink () These function caus aliov o ciose o reinove & shareq memory object.

12.3 Mapping Heap-Management in vOCOS to OSA

This section provides a general description of how to manage blocks of 1 memory in OSA. Be
aware, that we focus on just one way to map the heap-management facilities of VOCOS to
OSA. Hence, features fike

« relocatable blocks,

» properties of relocatable blocks.
« heap purging and compaction,
» heap fragmentation,

« dangling pointers and

« low-memory conditions

are not discussed (since they are — as far as we know — not pait of the vOCOS heap-manager,
too).

During the initialization of OSA, the OSA Heap-Manager creates and upens a shared memory
object for the globally accessible heap by means of the POS!X 1b function calls shm_open ()
and mmap (). Since processes are able to allocate memory concurre) [ny we need a kind of
mutual exclusion mechanism, done via a speciai semaphore bound to 12 OSA Heap- Manager.
This semaphore is created by the function call sep_co oo

[ Process A A

i

i
L mernef ‘

Figure 12-1: Initialization of the OSA Heap-Manager

Afterwards processes may allocate memory space out of the heap. Depending on the issued
command the compiler back-end hias to compute the required memory >.ze However, before
requiring memory, the semaphore has to be checked (via s- -1 ). I no other process
has entered the Heap-Manager, memory can be granted (if available).
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f Process A ‘

[

Releasing the memory is again ta-
Manager can maintain a list conte
Dependent on the way the Heap-
algorithms to combat memory leaks.

[

Process A ‘ G

RELEASE HEAP

- —
|
!
|
\
V
’ return "NULL" .
o o
ng(;s‘ :

Transferring heap space between
strikingly simply — once it is discovared — Ly means of shared
HMSNDHP, that allows transfer oi neap

return heayp address

i pre

_—
test and set
semaphore

tree
~ semaphore

of the OSA-Heap-Manager For iiternal use the Heap-
ess descripturs and thelr hieap-memory allocations.
nager works, thie st can ve ut-d to implement further

i

T
sorhemel
|
sem_ vt )
- B T
test and set
semaphore
- : [
free” moraery
sem poust(..
_ L e .
tree
semaphore
g — -
iddress 2
V2R3 Releasing tieoap space
ifferent processes 1s a moie chadenging task. However,

wemory. In case of the SVC
ot the 2ceiver by the heap-

ication

with the

not

I
management, the mapping could be done as follows. The OSA-Heap-l.innagers extracts out of
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Afterwards the internal data struc
changed to the new process (i.e. il
using the POSIX.1b funiction mg_=.

| L

| ProcessA | | Processt 5o
[ i L
HMSNDHP -
- b, [ — - -

| g

| §—

E ! receiver waiti
| {5 forheap gets

uJ suspended

return "MNULL" address

mq_ o i),

Figure 12-4: Transterring

i d) Sidoe

o the mapped message queue.
Detween neap and process are
e heap addres= is sent to the receiver

28 Kemel !

test and set

semaphore
- =
e f'n S
| free
‘ semaphore
- 4
: S

Sy
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UPDATE MANAGEMENT

13 Update Management

According to /Update/ VOCOS SVCs provide mechanisms to modify semi-permanent data in
the main memory. Means to write-ziotect semi-permarient data have already been discussed in
Section 9.3. In order to provide 1 oo the new RTOS it is not necessary to
rebuild the whole update functiori.iity from scratch. iiistead it is recomniended to reuse the
existing update component from OCOS | Taken tiis assunipton for yranted the SEIZE-
interface of the existing update « letzimined (¢4, by checking the
update design specification).

MPONent 0 has b

In addition VOCOS provides mechanisms (o transfer s=mi-permanent data from main memory
to external storage by using the u: 7= SVC. Again, we reconimend rzusing the existing code
and adapt the sETzE-interface according to the design specification.

precificon,

%%

10 Keep in mind that transaction mechai i me are qot part of e POSEE g
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14 Performance Issues

Part of /Pflicht/, namely worst case verformance consicerations regarding VOCOS and the new
target RTOS, have not been consicered so tar. The reason for this is threefold:

(1) Timing specifications are not part of the VOCOS user documentation, although they contain

some figures regarding measurements of specific SVCs (e.g. SEND and RECEIVE). During
/Call2/ it was agreed that a comiplete instrumentation of VOCOS for measurement purposes
will clearly exceed the scope of the feasibility stuc, According to Call2/ the only stringent
performance checks are in teri.s of cuerall s noresporss ang thicughput to incoming
requests from the net. Since s in 5 Keinel but the whole user
software these measurements ... = pio Fleve. to uerive timing data for
the VOCOS/CP kemel from it.

(2) At the moment timing data of target RTOSs is not available. 100, In . SolarisRT/ performance

figures for the SOLARIS API are promised, a request to SUN regarding this data did not
produce any results. Availability of timing data regarding VxWorks is yet TBD.

(3) Estimations of the execution architecture of OSA can only be made as soon as the OSA

design has reached a sufficiently mature level. This is due to the fact that in order to match
the WCP of VOCOS/CP the foliowing equation must hold'":

WCP (target KTOS) + WCP (OSA) - = WCP (VOCOS)

Equition 14-7

" Note also that WCP need not equal measured performance aatal
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15 Outlook: Further Work. Risks, Effort Estimations. and Open Points

15.1 Work Breakdown Structu =

15.1.1 Review and Solving of Open Points

At several places this study prese:is several possibiiitics of recambling vOCOS/CP behavior.
Together with VOCOS specialists a decision has o be 11ade for those cases.

15.1.2 Create OSA Design Docun: it

15.1.3 Identify Interface to the CHi:LL Comipiler Backend

15.1.4 Verify Feasibility of Chosen Approach

Based on the selected target RTOS and (a part) of the O%a deszign implement an OSA
prototype in order to verify the feasibility of the chosen approach. Pick a few SPUs and have
them execute on OSA.

15.1.5 OSA Implementation

Based on the OSA Design and th. c:.its ot the OSA pioolype inplkonent the complete OSA
layer.

15.1.6 Performance Consideratic::s

As already pointed out in Section & worst case performance considerstions regarding VOCOS
and the new target RTOS have nct been considered o far. To meet the WCP of VOCOS/CP
this can be regarded an area of furtiier activity. The folivwing WES appies:

(1) Acquire VOCOS/CP performar.. .
(2) Acquire performance data of tar_ct [3

.
f

(3) Estimate performance of OSA L.seu o iis design
(4) Verify that Equation 14-1 holds

15.2 Risks

(1) Most considerations of this stucy are based on VOCOS usor-leve! documentation. When
delving into the corresponding «csiar cifications spec fnientioned in the user-level
documentation are often reveai. Nt oo be ssumed that the case is
more complex than it might app. .1

(2) Special Deals: VOCOS docun —nis L rentons t wpast irom the presented
possibilities special deals witii i 02 developnii sepirlnent are possible. It can be
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expected that not all those dewus are hiown at prewent oo that those special deals will
complicate the project.

(3) Implicit assumptions of the apy.: oitware on w OLOE dismaes are likely to be broken
if not explicitly incorporated intc ine USA design,

(4) Shortcomings: This study has alreauy Nrnd out hat cu= 1o e i many cases very
specialized nature of VOCOS/ (™ an enulati 3t rove o accept shortcomings if
it has to be done with an off-th:-sheif commercian HTOS (1 & suortcoming we denote a
feature that cannot be resembica 100% . It can af\//_u/b turn out that such shortcomings are
for various reasons in-acceptabi= from the point of view of the applcation software and that
alternatives have to be provide«

il

(5) Parts of the problem domain .
are prone to race conditions (& 4. G |
layer, due to the scheduler of 11 1 HIFS, an
process that has currently aciuired @ OSA re-ou
Section 6.2)).

(6) POSIX-compliance of the selected target RTOS: compliance tor ruther non-compliance) of
the selected target RTOS can add additional effort 1o the project.

VOCOS 2 heduling behavior)
NCTSTotet ‘A,,f;cuting in the OSA
s (=.9. by terminating a
a semaphore (cf. also

15.3 Effort Estimations

For the risks identified above and e
the project is not known (the natui . .
will influence the effort that has to 1.
effort estimations can only be giver i ot

tact that the softwars procoss of those carrying out
nware o | wei Nt elaborate, not-at-all)
: ot the project life cycle),

Estimations are even more complic.ica due 10 the fact i at 1o mieionc, dai of projects in that
specific area are available.

Based on the findings of this study und the identified ricks required effort has to be expected in
the range of man-years rather than man-months. Saveral of the iisks stated above add
uncertainty (and therefore possible project delays) to the estimations.

15.3.1 Historical Data

4 @xperience of the authors
> the same estimations with
su.ce this data will more
fur cost modeling can be

All historical data used in the esumaticin: s b
gained in various software projects. it | h
historical data gathered from Sieriens-irniernal bOwamu je oty
accurately match what we have to cxpect in reality. Fut ther figures
found in /Cost/.

The following figures have been usc:

Hours per Design Page: this figure determines the number of hours needed to produce one
page of design (including review, rework.

LOC per Design Page: this figure J=ter see lines that are generated on

average per design page.

Brutto Hours per MY: this is the t.: .
includes holidays. iliness. courses. .

SV E e paid for. This also

Netto Hours per MY this is the nuii.i-

Software Life Cycle Phases: the-s figy
software life cycle phase to the ove: 4 oot
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15.3.2 Selected Methods

For the following reasons we have rafrained from exlinating LOCs 1ur the number of SVCs

identified:

* Besides SVCs there exists also o prozedural AFI that has 1 be rebuilt, Estimating only
SVCs would therefore miss pait of the work that has to be carried out.

5 a wtal of 55 SVCs, but the
ont, 25 of those 55 SVSs.

¢ Not all SVCs have been consid
user-level documentation this .
Extrapolation would in theory
nothing is known regarding the

wsed upcn m
obut we _on

only later on in the

e LOC is a so-called Jate metric i cans tha

software life cycle. Regarding csiimations this me vitiew 1y the far future have to
be estimated, the base of which is currently not kn nd it inerefore more accurate

to put the next phase of the software life cycle, namely the desigr. phase, in the center of
our estimations, and to extrapclate from that phase instead of the coding phase (cf. Section
15.3.3.4).

15.3.2.1 Extrapolation Based on Detaiied Design Phase

e followh g L nses

We have divided the sottware life &, ic i1

fothe funct el the system. This

1) Functional Requirements: dei

includes also the software-s: = niertace and the compiler
backend.
2) Top Level Design: achieving a 1.p-leve! decomposiuon of the systein into subsystems.

3) Detailed Design: decomposing ihe subsystems inlo a seres of components for which a
component design has to be madae, which is the base for the coding phase.

4) Coding: self-evident.

5) Integration: putting together coinpeorents into subsystems. and =.bsystems into the final
system.

6) Testing: self-evident.

For the detailed design phase we have wentfied a liot of desion e s icf. Section 15.3.3.3)
which have to be covered. With our approach we try 1o estimate the required effort for those
design items. Given the effort-contribution of the desigi phase to the cverall software life cycle,
we can then extrapolate the overall effort from the estimated overall effort of the design phase.

15.3.2.2 Wideband Delphi

otz Wideband Delphi
sdvrauals in a so-called

e radically different
a sufficient degree
gie individuals since it

All estimations of the dstailed <.
technique, where each estimate |-
estimation round. Thereafter the ¢
are discussed. Estimation rounds
(10% in our case). This method is :
requires a common consensus (cf. . Cost .
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15.3.2.3 COCOMO

Developed by TRW (cf. ,Control
were divided into three separate <
of the project and its teari memb-.
own domain). The effort for each ¢oinains

' Mode
Organic

« 21 63 projects, which
tain characteristics

Semidetached
Embedded

Table 15-1: COCOMO Estimation % 1

MM denotes the number of man 1.
and KSD stands for thousands ¢ ©

wiuis 152 man hours),
. Section 15.3.2.1 we
: of Livjects. The reason to
choose the most costly developmc nt class is that e :rite'xa for ctass ‘Embedded’ are a
complex environment (RTOS) and constraints that can:ot be ch: wnged Jue to cost reasons (in
our case the constraints imposed Ly the use: software 1 a‘ the new taryst RTOS).

Note, that COCOMO does not incororate e effort nesded for sments phase, it only

ST

! ro
comprises design, code, mtegratlm and test phases. COCOMO reque sts another 8% of effort

for the requirements phase.

Lil

vid

15.3.3 Estimated Data

16.3.3.1 Accuracy

The following facts have to be considered when judging the accuracy o these estimations:

(1) Due to the fact that not all VOCOS SVCs are mentoned in tie user ievel documentation a
part of VOCOS has not been considered so far,

(2) The risks identified so far in the study (cf. corresponding Section in inain document).

15.3.3.2 Historical Data

This section gives the figures for t.c fistoreal data we & cotiecied,
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Historical Data =
Hours per Desicn Fag U
LOC per Des 50
Brutto Hours per Lo Yoo 192¢
Netto Hours per 1.veo 1604

jare Life Cycle e

Function=: Requirers, = . c
Top Level Do o 10
vetailed Do P
Cou 20
Integi: )
Te. 40

Table 15-2: Collected Historical D)

15.3.3.3 Estimates for Design lteiiis

Here we enumerate the items ider: oo o
column entitled ‘Pages’ tiie estimu:.. o SF LS 85
per design page and LOC per de s the effori -
calculated in column ‘Effort for Pa- {LOC for Paces’.

For all estimates we assume that 1. esiimatod desi

od ¢ il

focunen is

sar for whict s aesign specou

which means that no furiier partitici &g 1o sup-desigis v HeCer sy,
item Fages Effort for Pages  LOC for 'Pagas
ProzeBkonzept/Scheduling 114 PR 5500
Start/Endebehandlung a5 1250
IPC/Service Addressing 46 4500
Heap management 50 1500
Time Management o 1250
Concurrency Control 44 2000
IOCP 116 5500
Error Treatment 45 2250
Startup 25 1250
Recovery 60 3000
Sui; 56¢ 28000

Table 15-3: Estimates for identific.: I s

...... “ereenme..=06-7659
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15.3.3.4 Extrapolated Effort

Here the extrapolated effort basec - the crnon estimations of the detan 1 design phase is
given.

Accumulated/Extrapolated Effort

Pages Loy iy 5¢
Effort 584
Exirapolates 3294118

Extrapolsied Efforr - o
Extropolated £ vy,

Table 15-4: Extrapolated Effort

15.3.3.5 COCOMO

Here we list the effort tigures basec
excludes 8% effort for the requir
leads to the effort figure yiven in 7o 15..

COCOMO
Efiei e S
Effors o 1

E
Table 15-5: Effort Calcuisted by i ~O0DG Methon

15.4 Open Points

Several problem-areas have been
exist. For those cases we have au
assist the reader in bringing abou:
their respective Sections are lister
Moreover, in the course of the re
identified, which are also listed hers.

It w1 one possible solution
©Lsathout bias in order to
fvieo ese open points and

v ol Wiis documient further point. of interest have been

15.4.1 Mapping of the Chill PROCESS Frimitive

map a CHILL PROCESS onto either
il be chosen = yet TBD. Throughout

EFAEE

Section 4 gives an overview of feasibie approaches to
POSIX processes. threads, or task: Which approach
this document a process model is . sure o not stat

15.4.2 Number of CHILL PROCE = s

frent LUSL L stem consists of up to

In the course of the review it has ©. ;
s such proce

1400 CHILL PROCESSes. Anothe: .
For SUN SOLARIS™ /Mauros repe. - th

2 Figures for other RTOSs have not bee o deternined so far
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*... Systems with at leas: 256MB r

**...With default stack sizs for threa

*...1GB of physical meinory

It is however recommeriied to verir
EWSD system regarding
synchronization.

15.4.3 VOCOS Memory Frotectior: ;

Section 9.3 lists two possible Protec o e

15.4.4 Traps

Itis yet TBD whether it will be POLS
Section 2.1).

o

abp\,ws such  as

2wt e iew SYsiciin tO e

the puimbers mensoned Giove !

viecnanism

chedule-g U;nty\

Solaris 8
64 bit

87381 ***
>> 10000

~uyh a simulation of an

communication, and

U5 SVCs as traps (cf.
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16 Conclusion

cthe L0208 08 functionality
- -lract from proprietary

Vstandarage

In this study we have examined the ties avail.
on a commercial platform. It was red as &
solutions by using only functionality supported by the F

Generally there can be 11 objectior; tound that would Lrotubit the emuntion of a given software
system by another software systeni. It is therefore rather a questivi. of whether the given
requirements can be met under the miposed constraints. As requireme s we denote the needs
of the VOCOS application- as well A5 SLDSIVISo Y and Ly cottaints we consider the
need to come to a soluticn within r. Sty -1 .o 1o this constraint we
must consider the project as infe: wootarget RTOS are too
different from the requirements e c el o implement a real-
time scheduler from scraich on the (L

)

> lunctionality (process

ble 1o map ve
- o POSIX primitives). It

As it is suggested by this study, it .= poss)
management, scheduling, 1PC. and ncurrency-rels
must however be noted that this mapping is not ak

wd, and that it is not
always possible to achieve 100°, oMl

o

Hance. This wiposes a certalh, amount of risk on the
project (cf. also Section 15.2)L It mwust also be noted that due tc ume constraints it was
necessary to focus on important aspects of VOCOS and to leave out other presumably less
difficult aspects. Based on the fin e of this stud, it is ce Aanly ecessary to develop a
thorough and complete design a » ~ . s in the VOCOS
domain. As stated in S ion 15 ritical features is
also recommended. A (o N0-go dae

must be considered too cordys the o
the next WBS steps.

We would like to mention that, no m. platforem wip
source domain. then ther always « 55ibility 1o
should turn out that scime VOCOL Lenavior cannor E
domain.As a final note we recommend further investiaations finding o
for OSA and a radically different approach, namely @ pure hardwa;.
system on a given target RTOS.

;

S vel of coverage
1 whiough to carry out

oosen.if itis in the open-
= kemel itself in case it
“tly in the application
L more pros and contras
-emulation of the CP-

CONCLUSION
e EVOIUN
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