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Abstract

This paper shows that deterministic consensus with writ-
ten messages is possible in the presence of link faults. As
in our analysis of consensus with oral messages (OMH),
we circumvent the impossibility result of (Gray, 1978) by
limiting the degree of inconsistency caused by link faults in
the broadcasts of a single sender resp. the receptions of a
single receiver. Relying upon a suitable perception-based
hybrid fault model, we prove that the ����� -round Au-
thenticated Hybrid Oral Messages (“Byzantine Generals”)
algorithm OMHA( � ) of (Gong, Lincoln & Rushby, 1995)
needs �	��

���� ������ ��
���������� ��� ��������� processes
for tolerating at most ���� receive link faults per process, � ��
broadcast link faults per process, and �!�#"$�&%'� , � � , �(�
arbitrary, symmetric, and manifest process faults. A consid-
erably better fault-tolerance degree is established for their
simple authenticated algorithm ZA( � ), which needs only
�)�*���� �+���� �+� � �+� � �,� � �#� processes for coping with the
same number of faults. In case of broken signatures, OMHA
degrades to OMH and hence requires an additional � � �� in
the above lower bound for � , where �-� �� is the number of
non-omission link faults. For ZA, a process with a compro-
mised signature must be considered as arbitrary faulty and
hence be counted in �(� . Authenticated algorithms for con-
sensus are therefore reasonably applicable even in wireless
systems, where link faults and intrusions are the dominating
source of errors.

Keywords: Fault-tolerant distributed systems, fault mod-
els, link faults, consensus, Byzantine generals, written mes-
sages, authentication.

1 Motivation

Due to the well-known impossibility of deterministic
consensus in presence of link faults [3], most existing work
on this problem considers process faults only, see [6] for an
overview. Still, in modern wireline and, in particular, wire-
less networks, the dominant cause of errors are message
losses/corruptions. Those errors occur on the links and/or

in the network interface of the receiving processes, hence
cannot reasonably be ascribed to faulty processes1. There-
fore, in order to reasonably use any distributed algorithm
in a wireless network like our W2F fieldbus2, a fault model
incorporating both process and link faults is mandatory.

In [9], we demonstrated that the impossibility result of
[3] can be circumvented by limiting the degree of incon-
sistency caused by link faults in the broadcasts of a single
sender resp. the receptions of a single receiver: The hybrid
oral messages algorithm (OMH) of [5] was shown to easily
tolerate a large number of link faults, provided that enough
processes are present and one additional round is used. An
analysis of the resulting assumption coverage revealed that
OMH can reasonably be employed even in wireless system
architectures, where link fault probabilities up to �/.1012 are
quite common.

In this paper, we address the question of whether authen-
tication can help with link faults, by considering the hybrid
written messages algorithms OMHA and ZA developed in
[2]. The remaining sections are organized as follows: In
Section 2, we briefly review the perception-based hybrid
fault model of [9]. Section 3 presents the Hybrid Oral Mes-
sages (OMH) algorithm of [5], along with the major results
of our perception-based analysis in [9]. Section 4 explains
authentication issues, Section 5 resp. 6 contains the analysis
of OMH’s authenticated version OMHA resp. the (superior)
authenticated algorithm ZA. In Section 7, we consider what
happens if signatures are broken, Section 8 is devoted to
using signatures in broadcast networks. Some conclusions
and directions of further research eventually round off the
paper.

2 Fault Model

Deterministic fault models, like the one that at most �
processes may behave Byzantine in each round, usually rest

1We use the terms process and node synonymously.
2This research is part of our W2F-project, which targets a wire-

line/wireless fieldbus based upon spread-sprectrum (CDMA) communica-
tions, see http://www.auto.tuwien.ac.at/Projects/W2F/ for details. W2F is
supported by the Austrian START programme Y41-MAT.
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upon the total number of faults in the entire system. Chan-
nel and/or receiver-originating link faults, however, are dif-
ficult to accommodate in such models: Consider the model
of [2], for example, where link faults are simply mapped to
(sender-)process faults. If we grant each receiving process � ,
�'"�� " � , just a single independent receive omission,
it may, e.g., be the case that each process ��� � (resp. pro-
cess � ) drops the message from sender � � � (resp. sender 1).
Hence, all � processes must be considered faulty in this
model. Even worse, since receiver-caused link faults of-
ten affect several consecutive messages, any � is quickly
exceeded in real systems even in presence of less “exotic”
fault patterns. The same argument obviously applies to fault
models like the one of [7], where receive omissions are
mapped to faults of the receiving processes. The particu-
lar distributed algorithm (in our case, consensus), however,
might work very well in such situations.

This problem is avoided in the perception-based fault
model introduced in [8], where the number of faults in the
processes’ perception vector —representing a particular re-
ceiver’s local view of the system, as conveyed by the send-
ing processes’ messages— is considered. In this model, a
sender process fault affects the sender’s perception at all
receiving processes in a correlated fashion, although prob-
ably inconsistently in case of a Byzantine fault. Therefore,
a global fault assumption like “at most � processes may ap-
pear Byzantine” also implies “at most � perceptions may
appear Byzantine”, for any pair of non-faulty receiving pro-
cesses. A perception-based fault model thus “preserves” the
corresponding global one, which means that classic impos-
sibility results like [1] remain valid.

A link fault, on the other hand, affects the sender’s per-
ception at the particular receiver only. Consequently, recall-
ing the above example of � ��� � receive omissions per pro-
cess, it is obvious that any two local views can differ only
in at most 

� ��� 
 perceptions, namely, the ones where ei-
ther receiving process experienced its omission. Moreover,
only at most � ��� � of the non-faulty perceptions present at
some non-faulty process can be missing at any other non-
faulty process.

For the analysis in this paper, we employ the particular
hybrid perception-based fault model already employed in
[9]. It is based upon the combination of a “link fault ex-
tension” of the oral messages model of [4] and the hybrid
process fault model of [5].

Definition 1 (System Model [9, Def. 1]) We consider a
synchronous distributed system of � processes intercon-
nected by a fully connected point-to-point network, which
has the following properties:

(A1 � ) If all processes �
	���
 of a set of non-faulty sender
processes send a message containing � ��� to some
single receiver process � , at most �-�� of the values � ����
may differ from � ��� . Let ��� �� "$���� be the maximum
number of non-omissive, i.e., non-empty and hence
value faulty, � ���� among those.

(A1 � ) If a single non-faulty process � broadcasts (= succes-
sively sends) a message containing � � to some set
of non-faulty receiver processes � , at most � �� of the
values � ���� may differ from � � .

(A2) The receiver of a message knows who sent it.

(A3) The absence of a message from sender � can be de-
tected at any receiver � , which leads to � �� ��� for
some distinguished value � .

(P1) In any execution, there may be at most � � , � � and � �
arbitrary, symmetric, and manifest faulty processes.

Process faults are classified as follows:

� A manifest faulty process � produces (detectably)
missing messages or leads to a value that all non-
faulty recipients can detect as obviously bad. All non-
faulty receivers � deliver the value � �� ��� in this
case.

� A symmetric faulty process � sends the same wrong
—but not usually detectably bad— value � � to every
receiver. All non-faulty receivers � deliver � �� � � �
—the value “actually sent”— in this case.

� An arbitrary (asymmetric) faulty process may incon-
sistently send any value to any receiver.

Remarks:

1. Process and link faults occur independently of each
other.

2. Faulty processes do not change their fault mode, i.e.,
must be counted in � � , � � or � � according to their
most severe behavior.

3. Each message reception resp. broadcast has its own
“budget” ���� resp. ���� of link faults.

4. The particular links actually hit by link faults are usu-
ally different for each message reception/broadcast.

5. It will turn out that receive link faults (A1 � ) resulting
in an omission are easier to tolerate than those that
produce a value fault. This is not the case for broad-
cast link faults (A1 � ).

6. Broadcast link faults (A1 � ) can also be interpreted as
restricted arbitrary process faults with “degree of in-
consistency” limited to �-�� . If at most ���� processes
suffer from such a fault, condition (A1 � ) holds as
well. Assuming at most �-�� restricted arbitrary pro-
cess faults with a degree of inconsistency of at most
� �� hence also satisfies the requirements of Defini-
tion 1; consult [9] for some interesting consequences.

Note carefully, however, that the two interpretations
are not equivalent, since (A1 � ) and (A1 � ) admit faults
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that are not captured by the alternative process fault
model. More specifically, a broadcast link fault may
hit any sending process in the former, but is restricted
to one of the ���� faulty processes in the latter.

3 The Hybrid Oral Messages Algorithm

In this section, we will provide the definition of the Hy-
brid Oral Messages algorithm (OMH) introduced in [5],
which is the basis of the authenticated algorithms OMHA
and ZA considered in Section 5 and 6. For compari-
son purposes, we also restate the major results of OMH’s
perception-based analysis conducted in [9].

We consider the consensus problem in the usual “Byzan-
tine Generals”-style, where the value � of a dedicated trans-
mitter is to be disseminated consistently to the remaining
� % � receivers. Eventually, each non-faulty receiver � 	
shall deliver a value ��� � ascribed to the transmitter that sat-
isfies the agreement and validity properties (B1) and (B2),
as specified below. A fully-fledged consensus algorithm is
obtained by using a seperate instance of Byzantine Gener-
als for disseminating any process’ local value and using a
suitable choice function (majority) for the consensus result.

The algorithm OMH as specified in Definition 2 below
uses two primitives:

� The hybrid-majority of a set � of values provides the
majority of all non- � -values in � ; if no such majority
exists, some arbitrary, but functionally determined,
value is returned.

� The wrapper function � ��� � encodes a statement “I
am reporting � ” as a unique value. Reporting is un-
done by means of the inverse function � 0�� ��� � , which
must guarantee � 0	� ��� ��� � � � � . Note that only � ,
� � � � , � ��� � � � � , � �
� �
� � � � � � , ���
� must actually be
distinguishable here; for each legitimate value � , we
can allow � ��� � � � 0������ � � � .

Consult [5] for a detailled discussion of the above primi-
tives.

Definition 2 (Algorithm OMH [5]) The Hybrid Oral
Messages algorithm OMH is defined recursively as follows:

OMH(0):

1. The transmitter sends its value � to every receiver.

2. Each receiver � delivers the value ��� received from
the transmitter, or the value � if a missing or mani-
festly erroneous value was received.

OMH( � ), � � . :

1. The transmitter sends its value � to every receiver.

2. For each � , let � � be the value receiver � receives
from the transmitter, or � if no value, or a manifestly
bad value, is received.

Each receiver � acts as the transmitter in Algorithm
OMH( ��% � ) to communicate the value � ��� � � to all3

receivers [including itself].

3. For each � and � , let ��� be the value receiver � deliv-
ers as the result of OMH( � %�� ) initiated by receiver �
in step 2 above, or else � if no ��� or a manifestly bad
value was delivered. Each receiver � calculates the
hybrid-majority value among all values ��� and ap-
plies � 0�� to that value. The result is delivered as the
transmitter’s value.

To solve Byzantine Agreement, an algorithm has to sat-
isfy the following properties:

(B1) (Agreement): If processes � and � are non-faulty, then
both deliver the same � � � ��� .

(B2) (Validity): If process � is non-faulty, the value deliv-
ered by � is

� � , if the transmitter is non-faulty,
� � , if the transmitter is manifest faulty,
� the value � � actually sent, if � is symmetrically

faulty,
� unspecified, if the transmitter is arbitrarily

faulty.

In [9], we showed that OMH guarantees (B1) and (B2)
under the system model of Section 2, provided that the con-
ditions given in Theorem 1 are satisfied.

Theorem 1 (Agreement and Validity [9, Thm. 1]) For
any � � ���)������� � ��� � �� � and any ��� , � � , ��� , � �� ,
���� , ��� �� , the algorithm OMH( � ) satisfies agreement
(B1) and validity (B2) if there are strictly more than

(���� � ���� � ��� �� � 
���� � � � � � � � � � � participating
processes.

To apply a deterministic fault model like the one of Def-
inition 1 in practice, one also has to address the question of
assumption coverage. More specifically, for the particular
system in mind, the probability of failure � implied by a
possible violation of the fault assumptions ( �!� , � � , ��� , ���� ,
���� ) needs to be evaluated. This is particularly important
with respect to our link faults, which cause � to increase
with every message broadcast during the execution of the
algorithm: According to (A1 � ) resp. (A1 � ), no message
broadcast/reception may suffer from more than � �� resp. ����
link faults. Given the fact that the algorithm OMH sends
many, many messages, the question arises whether � can

3There are  "!$# receivers in the first instance OMH( % ) of the algo-
rithm; the transmitter does not participate in any way in further recursive
instances.
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eventually be made as small a desired by choosing suitable
values of �-�� and ���� .

In [9], we derived an upper bound on the probability of
failure ��� of OMH( � ) for a simple probabilistic model of
link faults: We assumed that the probability of loosing or
corrupting a single message at the link or the receiver’s net-
work interface is . � � � � , and that such events occur
independently of each other. Theorem 2 gives the appropri-
ate result, which shows that the probability of failure � �
� rapidly grows with � and hence with the number � �

of arbitrary faults,

� marginally grows with � and hence with the number
� � resp. � � of symmetric resp. manifest faults,

� rapidly decreases with the number of tolerated link
faults � � (and with decreasing � , of course).

Theorem 2 (Assumption Coverage OMH [9, Thm. 2])
For � % ��% � � % 
�� � and � � � � sufficiently small, the
probability of failure � � of OMH( � ) satisfies � � " � ��
with

� �� "
�
� � �

�#% �	% � � % 
���� � % �	�
����
���� � � 
 � � �
� � � �'� �	�

� � � � ��� � � � � 
 � � �� � � �'� �	� �
where a term of order at most � ������������ ! 0 
 � 0�2#" � � has been ne-

glected.

Note carefully that Theorem 2 is valid for the authenti-
cated algorithms considered in this paper as well, since both
OMHA and ZA send and receive messages exactly as OMH
does. In Tables 1–4, we give numerical values for � �� for
different values of � and � � and � �%$ � � �'&(� �*� , which
allows �-�� � ���� � � � , � � � � % � and � � � � � � � or,
alternatively, � � � . , � � � 
 by Theorem 1.

(*) +-,/.0+-,%12+-,�34+-,05/+-,%62+-,�7. 8:9 ;=< # 9 # 9 # 9 # 9 # 91 8:9 >@? # 9 # 9 # 9 # 9 # 93 8:9 >@A # 9 # 9 # 9 # 9 # 96 8:9 B@; # 9 # 9 # 9 # 9 # 9C 8:9 A@A # 9 # 9 # 9 # 9 # 9.ED 8:9 8@?@> # 9 8 # 9 # 9 # 9 # 9.:6 8:9 8 # ? 8:9 F@; # 9 # 9 # 9 # 91GD 8:9 8@8@B@;H8:9 B	I # 9 # 9 # 9 # 9
Table 1. Value of probability of failure � � for � �
. � � and � �%$ � � �J&�� �*� .

Whereas the probability of failure of OMH( � ) given in
Tables 1–4 is not bad, even in case of a typical “wireless
loss probability” � � . � .�� , it is nevertheless clear that an
algorithm that uses less messages is preferable with respect

(*) +-,/.K+-,21L+-,�3L+-,�5M+-,%6N+-,%7. 8:9 8 # 8:9 B # # # #1 8:9 8@8@A 8:9 8=< # # # #3 8:9 8@8@8@A 8:9 8@8@; 8:9 B # # #6 A:9 # 8PORQS8:9 8@8@8@8@?T8:9 8@8@> 8:9 B # #C A:9 # 8PORU # 9 # 8:OVQN8:9 8@8@8@8@?W8:9 8@8	I 8:9 ; #.ED A:9 # 8 OYX�X A:9 # 8 OVZ A:9 # 8 O\[ 8:9 8@8@8@8@AT8:9 8@8@A 8:9 A.:6 A:9 # 8POYX�QJA:9 # 8:O]X�^_B:9 # 8POYXa`b<P9 # 8:O]X�c_>:9 # 8PORUSF:9 # 8:OVQ1GD A:9 # 8 O\`dX A:9 # 8 O]X�Z <P9 # 8 OYXa[ IE9 # 8 O]Xae # 9 # 8 OYXa` A:9 # 8 O]X�c
Table 2. Value of (approximate) probability of failure
� �� for � � . � . � and � ��$ � � �J&�� �'� .

(*) +-,/.K+-,21L+-,�3L+-,�5M+-,%6N+-,%7. # 9 # 8 ORQ 8:9 8@8@8@8@BT8:9 8@8@8@? 8:9 8@B # #1 A:9 # 8PORZK<P9 # 8:OVUNA:9 # 8PORQS8:9 8@8@8@8	If8:9 8@8=< 8:9 A3 A:9 # 8 OYXa` ;:9 # 8 O]X�X B:9 # 8 ORZ # 9 # 8 OR[ IE9 # 8 ORQ 8:9 8@8@8=<6 A:9 # 8POYX�UJ?:9 # 8:O]Xa[g>:9 # 8POYXae'B:9 # 8:O]X�h_A:9 # 8POYX�XiA:9 # 8:OVZC A:9 # 8 O\`�^ # 9 # 8 OR`�` ?:9 # 8 O\`dX IE9 # 8 O]X�Z ;:9 # 8 OYXa[ >:9 # 8 O]Xae.ED A:9 # 8 ORh�h A:9 # 8 OVhjX A:9 # 8 O\`�Z A:9 # 8 OR`�[ A:9 # 8 O\`�e A:9 # 8 OR`�h.:6 A:9 # 8POR^�UJA:9 # 8:OV^�Q_B:9 # 8POR^�^'<P9 # 8:OV^#`g>:9 # 8POR^�cJF:9 # 8:OVh�U1GD A:9 # 8PORQ�hJA:9 # 8:OVQjXk<P9 # 8PO\e�ZgIE9 # 8:ORe�[ # 9 # 8PO\e�^JA:9 # 8:ORe�`
Table 3. Value of (approximate) probability of failure
� �� for � � . � .
.(.�� and � �0$ � � �'&(� �*� .

(*) +-,l. +-,%1 +m,�3 +-,05n+m,%6L+-,�7. # 9 # 8 O]X�c B:9 # 8 ORZ ?:9 # 8 OVU B:9 # 8 ORQ 8:9 8@8@8 # 8:9 8@8	I1 A:9 # 8 O]Xae <P9 # 8 OYX�^ A:9 # 8 O]Xa` IE9 # 8 OYX�X <P9 # 8 OVZ A:9 # 8 O\[3 A:9 # 8 OR`�c ;:9 # 8 OYX�Z B:9 # 8 O]Xa[ # 9 # 8 OYXae IE9 # 8 O]X�^ >:9 # 8 OYXa`6 A:9 # 8:OVh�cN?:9 # 8:O\`�Zo>:9 # 8:OR`�[oB:9 # 8PO\`�e'A:9 # 8:OR`�h_A:9 # 8PO\`dXC A:9 # 8:OV^�c # 9 # 8:ORh�Uo?:9 # 8:OVh#[NIE9 # 8PORh#e';:9 # 8:OVh�h_>:9 # 8PORhjX.:D A:9 # 8 ORe�e A:9 # 8 O\e�h A:9 # 8 ORedX A:9 # 8 OR^�Z A:9 # 8 OV^#[ A:9 # 8 OR^#e.P6 A:9 # 8:OVU�cNA:9 # 8:O\[�UoB:9 # 8:OR[�Qo<P9 # 8PO\[�^J>:9 # 8:OR[�`gF:9 # 8PO\[�c1pD A:9 # 8 O]X�c#e A:9 # 8 OYX�c�h <P9 # 8 O]X�cjX IE9 # 8 ORZ�Z # 9 # 8 OVZ�Q A:9 # 8 ORZ�^
Table 4. Value of (approximate) probability of failure
� �� for � � . � .
.(.(.
.�� and � �0$ � � �J&�� �'� .
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to our fault model. In [9], we therefore considered a mod-
ified algorithm OMH as well, which combines all round-�

-messages that a process sends during OMH into a single
message. Theorem 3 shows that the resulting probability of
failure � � does no longer grow with � . Tables 5 and 6
contain a few numerical values for �

�� for different values
of � and � � and the same � ��$ � � � &(�'� � as used before,
cp. Tables 1 and 2.

Theorem 3 (Assumption Coverage OMH) For �)% � %
� � % 
�� � and � � � � sufficiently small, the probability of
failure � � of OMH( � ) satisfies � � " �

�� with

�
�� " � �,�'�	� 
 � ��� % � �#% � � 
 � ���

� � �'& � � 
 � � �
� � � �'� �	�

�K� � � � � � � � 
 � � �� � � � 
 �	� �
where a term of order at most ��� � � �� � 2�� has been ne-
glected.

(*) +-,/.0+-,%12+-,�34+-,05/+-,%62+-,�7. 8:9 F@F # 9 # 9 # 9 # 9 # 91 8:9 F@> # 9 # 9 # 9 # 9 # 93 8:9 F@8 8:9 ?@? # 9 # 9 # 9 # 96 8:9 ;@A 8:9 ?@B # 9 # 9 # 9 # 9C 8:9 <	A 8:9 I@I 8:9 ?@; # 9 # 9 # 9.ED 8:9 A@8 8:9 <	B 8:9 I # 8:9 ? # 8:9 ?@? # 9.:6 8:9 8=< # 8:9 # 8 8:9 A # 8:9 B	I 8:9 >@F 8:9 I=F1GD 8:9 8@8	I=FH8:9 8 # ? 8:9 8=< # 8:9 8@F 8:9 # < 8:9 A=<
Table 5. Value of (approximated) probability of fail-
ure � � for � � . � � and � �%$ � � �J&�� �'� .

(*) +-,/.K+-,%1N+ ,�3L+-,05n+ ,�6L+-,�7. 8:9 8=< 8:9 # 8:9 < 8:9 ? # 9 # 91 8:9 8@8=< 8:9 8@A 8:9 8=< 8:9 # 8:9 A 8:9 <3 8:9 8@8@8=< 8:9 8@8@A 8:9 8@8=< 8:9 8 # 8:9 8@A 8:9 8=<6 >:9 # 8PORQS8:9 8@8@8@8@AW8:9 8@8@8@8@>T8:9 8@8@8 # 8:9 8@8@8@A 8:9 8@8@8@>C >:9 # 8 ORU A:9 # 8 O\[ >:9 # 8 O\[ # 9 # 8 ORQ B:9 # 8 ORQ >:9 # 8 ORQ.ED >:9 # 8POYX�XiA:9 # 8:OYX�c'<P9 # 8POYX�c # 9 # 8:ORZSB:9 # 8PORZS;:9 # 8PORZ.:6 <P9 # 8 OYX�Q # 9 # 8 OYXae <P9 # 8 OYXae # 9 # 8 OYX�^ A:9 # 8 OYX�^ >:9 # 8 OYX�^1GD <P9 # 8 O\`dX # 9 # 8 O\`�c B:9 # 8 O\`�c ?:9 # 8 O\`�c A:9 # 8 OYX�Z >:9 # 8 OYX�Z
Table 6. Value of (approximate) probability of failure
�
�� for � � . � .�� and � �%$ � � �J&(� �*� .

4 Authentication

Consensus with written messages (introduced in [4]) as-
sumes that no process can make undetectable modifications
to messages and that the originator of a message is always
known. It is generally agreed that electronic signatures can

be used to achieve these goals, although there are some pit-
falls [2].

The assumptions placed on the authentication scheme
are:

(SA1) A process cannot change the contents of a message.
(SA2) A process cannot forge a signature.
(SA3) A process can only relay a message it has previously

received in the same execution run (this prevents a
faulty process from replaying an earlier message).

(SA4) A valid signature cannot be mistaken for an invalid
one (i.e., the signature does not introduce new errors).

Generally, every process � uses its signature � � to sign
a message � , generating the signed message � � ��� � . So
all messages received in stage

�
of the algorithm bear the� � � signatures of the previous transmitters. A value

� that has been sent from process � � along the chain of
processes � 2 �
�����	� must be packed into a message 
 �
� ��� �*�E� � ��
 ��� � , which allows a node to recognize several
more manifest faults upon reception of a message:

(M1) The message contains ���� � but has not been signed
by the original transmitter first.

(M2) If a message arrives in round
�

, then it must either
bear

� ��� signatures, the first of which is from the
original transmitter, or it must contain the value � .
All other messages are manifest faulty.

(M3) The message arrives on the link from process � 	 but
has not been signed by � 	 last.

(M4) The message contains a signature at least twice (i.e.,
one node has signed the message twice).

(M5) Two messages bear the same signature chain and con-
tain different values.

The reaction of the node to these manifest faults depends
on its own fault status. We assume the following:

� A non faulty node recognizes (M1)-(M5) and dis-
cards the message received in (M1)-(M4), reporting
� instead. In (M5), it only recognizes the manifest
fault upon reception of the second message and sim-
ply discards it. It will, however, forward the first
message. If that behavior is not desired, we can cir-
cumvent the problem by demanding that all processes
wait until they receive all messages from stage

�
of

the algorithm before sending these values in the next
stage of the recursion. In that case, the node will dis-
card both messages in (M5) and report � instead.

� A manifest faulty node produces a manifest fault on
all receivers regardless of what it receives.
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� A symmetric faulty node may ignore (M1)-(M4) and
send the manifest faulty messages. If the signatures
are secure, then it may also ignore (M5) and send both
messages it has received. However, if we assume that
signatures are broken, then we must assume that a
symmetric faulty node recognizes (M5) and does not
send two different messages along, cf. Lemma 3.

� A arbitrary faulty node ignores (M1)-(M5) and sends
along whatever it likes. In particular, it may send a
message it should have recognized as manifest faulty.

Using signatures has a beneficial effect on process faults,
because faulty processes cannot introduce new values into
the system, as will be proved in Lemma 3 in Section 7. A
faulty process that relays a message can only choose not to
relay it at all, or to report that it has experienced a manifest
fault.

How does authentication affect link faults? Obviously,
a link fault can either produce a detectable fault or replace
the original message with some other valid message sent by
the same process. In case of a non-arbitrary faulty process,
replacing the message has no effect since all valid messages
are the same, and in case of an arbitrary faulty process, the
value sent is not important anyway. So authentication does
have a positive effect on the severity of link faults as well,
since it prohibits value faults.

5 Algorithm OMHA

In this section, we will analyze a variant of the algorithm
OMHA developed in [2] under the system model of Sec-
tion 2. The original algorithm OMHA is the same as OMH
except that every message sent in OMHA( � ) with � �$.
must be signed.

As we have argued in the previous section, faulty pro-
cesses cannot generate new values, so the only values that
do occur are those originally sent by the transmitter, � , and
various � � � � ’s. In the hybrid fault model of [5], the fact
that a faulty process can inject an � � � � value is enough
to make the performance of OMHA no better than that
of OMH. But how does authentication affect link faults in
OMHA? The previous section tells us that link faults do not
introduce any new values if authentication is used. How-
ever, the original version of OMHA does not sign messages
in OMHA( . ), and at this stage, a link fault could insert a bo-
gus � � � � value. Therefore, we must assume that messages
are signed even in OMHA( . ).

Lemma 1 (Validity) For any � � � � � � ��� � �� � and any
� � , � � , � � , � �� , � �� , algorithm OMHA( � ) satisfies the validity
property if there are strictly more than 
(� �� � ���� � 
 � � � �
� � � � � � � � participating processes.

Proof: The proof is by induction on � . If � �� � . , i.e.,
if there were no link faults in message broadcasts, every re-
ceiver simply uses OMHA( . ), which obviously guarantees

(B2) since the transmitter must not be arbitrary faulty. The
induction starts at � � . in this case.

If �-�� �&. , however, induction must start with � � �
as the base case: According to the definition of OMHA( � ),
every (non-faulty) receiver � of step 1 of OMHA(1) uses
OMHA( . ) to disseminate its ��� to all other receivers � . Ab-
breviating the number of initially participating receivers by

� � � 
(� �� � � �� � 
���� � � � � � � � � � � � (1)

with � �� " ��� manifest faulty ones among those, there must
be at least � � % ���� % ��� % � � %*� �� non-faulty receivers �
of step 1 of OMHA( � ) that get the same � � ��� (recall that
� � � in case of a manifest faulty transmitter), despite the
at most ���� link faults according to (A1 � ).

It hence follows that any non-faulty receiver � of step 1
of OMHA( . ) obtains at least � � � identical values � � � � with

� � � � � � % � �� % � � % � � % � �� % � � �� � % � � �� � � (2)

where ��� �� � resp. ��� �� � " ��� �� with ��� �� � � ��� �� � " ���� de-
notes the number of omission resp. value faults caused by
link faults according to (A1 � ). Due to the signatures, both
omission and value faults are detectable. Note carefully that
(2) is also true for the transmitter ( � � � ), which must be
non-faulty if counted here and must hence have “sent” itself
the correct value � � � � . Since there are � �� manifest faulty
receivers, each non-faulty receiver � obtains a minimum of
� �� � ��� �� � � ��� �� � values equal to � . Therefore, a non-faulty
receiver � can get at most � � �� � � � %+� �� %+� � �� � %+� � �� � values
different from � .

Hence, recalling (2), we find


�� � � % � � �� � � � % 
(� �� % 

� � % 
(� � % � �� % � � �� � % � � �� �
� � �� % � � �� � % � � �� � �'����� % � �� � � �
� .

since � � � and ��� �� � � ��� �� � " ���� , which implies that � � � �
wins the hybrid-majority at any non-faulty receiver. Since
� 0�� is applied to the result, the final value � is obtained as
required.

Assuming now that the lemma is already true for � % � �
� � � � ��� ���� � , we will show that it is also true for � : The
proof is almost the same as the one for the base case;
we only have to replace the application of OMHA( . ) by
OMHA( ��% � ) with � � participants: As above, we have
at least � � %*���� %'� � % � � %'� �� non-faulty receivers � of
step 1 of OMHA( � ) that apply OMHA( �&%'� ) to consis-
tently disseminate their � ��� � � � � � � � . Since both � and
the number of participants decreased by one, we can apply
the induction hypothesis to OMHA( ��%)� ) to conclude that
any non-faulty receiver � actually delivers � � � � in this step.
Consequently, any non-faulty receiver � must have at least

� � � � � � % � �� % � � % � � % � ��
values equal to � � � � among the at most � � �� � � � %�� �� non- �
values it may have got at all. Since � ��� ,


 � � � % � � �� � � � % 
(� �� % 

� � % 
(� � % � ��
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� � �� � � � � % � �� � � �
� .

as before, so � � � � wins the hybrid-majority at any non-
faulty receiver and the final value � � � 0�� ��� � � � � follows.

�

Theorem 4 (Agreement and Validity) For any � � �!� �
� � � � ��� ���� � , algorithm OMHA( � ) satisfies agreement and
validity if there are strictly more than 

� �� �'���� �'
���� � �
� � � � � � � � participating processes.

Proof: The proof is by induction on � . In the base case
� � � � � � ��� � �� � , we have � � � . such that the transmitter
must not be arbitrary faulty. Hence, Lemma 1 holds and
validity implies agreement.

Let us now assume that the assumption holds for
OMHA( � %�� ). If we look at OMHA( � ), we only have
to consider the case where the transmitter is arbitrary faulty
(otherwise, validity already implies agreement). The trans-
mitter sends its values to the receivers, which in turn call
OMHA( ��%$� ). Since the transmitter is arbitrary faulty,
OMHA( � %'� ) is called with one process less and �!� %'�
arbitrary faults and the induction hypothesis applies. Hence,
every non-faulty process uses the same set of delivered val-
ues for OMHA( � ) and agreement is fulfilled.

�

Remarks:

1. Note that the proof for agreement only uses the va-
lidity property and the fact that � � is added to the �
required by validity. Hence, every consensus algo-
rithm of this type that achieves validity for a given �
will also achieve agreement for � � � � � ��� .

2. We already mentioned that the original version of
OMHA in [2] avoided signing the messages sent by
OMHA( . ). Recall that (A2) in Definition 1 assumes
a point-to-point network where the transmitter of a
message can be uniquely identified. If a link fault
can only cause an omission or a manifest fault, The-
orem 4 would remain valid for this original algo-
rithm as well. However, if a link fault can substitute
an � � � � value for the real message, then the origi-
nal algorithm performs no better than OMH. Hence,
by Theorem 1, we would need strictly more than

(���� ������ � ��� �� ��
������ ��� ��� � �(� �'� processes
for this variant of OMHA.

Since OMHA just adds signatures to OHM, both algo-
rithms send and receive the same messages. Therefore, the
results of OHM’s assumption coverage analysis (Theorem 2
and 3 as well as Tables 1–6) are also valid for OMHA.

6 Algorithm ZA

In this section, we will analyze the authenticated algo-
rithm ZA of [2] under our perception-based fault model.

The algorithm ZA has been derived from the flawed algo-
rithm Z of [10] and provides a much better fault-tolerance
degree than OMHA. However, its correctness depends crit-
ically upon Assumptions (SA1)–(SA4) (but see Section 7)
and upon the fact that the transmitter must be known.

Definition 3 (Algorithm ZA [2]) The algorithm ZA is de-
fined recursively as follows (we assume that � is assigned
whenever a message was not received or manifest faulty or
incorrectly signed):

ZA(0):

1. The transmitter sends its value to every receiver.

2. Each receiver delivers the value obtained from the
transmitter, or some fixed value � .

ZA( � ), � � . :

1. The transmitter signs and sends its value to every re-
ceiver.

2. For each process � , let ��� be the value � has obtained
from the transmitter, or � . Each receiver � acts as
the transmitter in algorithm ZA( � %�� ) to send the
value � � to the � % � receivers [including itself].

3. For each process � and � , let ��� be the value � has
obtained from receiver � in step (2) using algorithm
ZA( � % � ), or � if no such value of a manifest faulty
one was delivered. Each receiver � calculates the
majority value among all non- � values ��� it has re-
ceived; if no non- � -value exists, � is delivered, if no
majority exists, some arbitrary but fixed value is used.

Note that the strength of the signed algorithm lies in the
fact that the only values that can occur are the values sent
by the original transmitter and � . So if the transmitter is
not arbitrary faulty, then every process can only receive the
original value and � .

Lemma 2 (Validity) For any � � � ��� � ��� �-�� � and any
� � , � � , � � , ���� , ���� , algorithm ZA( � ) satisfies the validity
property if there are strictly more than � �� � ���� � � � � � � �� � �'� participating processes.

Proof: Let us assume a non-faulty transmitter which
sends value � . Then we only have to show that every
good receiver obtains at least one � in the first � � � � ��� � �� �
rounds, because once it has obtained the value, it will also
deliver it. Recall that any transmitter “sends” its value to
itself in step 2 of ZA( � ) as well.

If � �� � . , then we allow � � . . However, since the
transmitter is non-faulty and the links are non-faulty as well
(note that �-�� � . implies ���� � . ), every good receiver will
obtain � in ZA( . ) and will deliver it.

Now let � � � . In ZA( � ), the transmitter signs and
sends its value � to all receivers. If we assume � � non-faulty
receivers, at least � � % ���� of these will receive � , and at most
���� will receive � . In the second round, the � � % ���� receivers
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will broadcast � to the other � � % � non-faulty receivers. So
each non-faulty receiver gets � from at least � � % ���� % ����
processes and all we have to do is to ensure that the number
of non-faulty processes is � � ������ �*���� , so the number of
processes must be ���	� �� � � �� � ��� � � � �'��� ��� (the
+1 comes from the transmitter). As soon as a process has
obtained at least one � , it will deliver it, so for all � � � ,
any non-faulty receiver will deliver � .

�

Theorem 5 (Agreement and Validity) For any � � � � �
� � � � ��� ���� � , algorithm ZA( � ) satisfies agreement and va-
lidity if there are strictly more than � �� � ���� � ��� � � � � �(�/�,�
participating processes.

Proof: As argued in Remark 1 on Theorem 4, the proof
is the same as that for agreement in OMHA.

�

Remarks:

1. We have changed the definition of ZA so that every
receiver relays the message to all other receivers in-
cluding itself in step 2 of ZA( � ). In the original pa-
per [2], the message was only relayed to the other
� %)
 receivers. However, the receiver needs the own
value for step 3, so it should “send” that value to itself
as well.

2. Since ZA does not distinguish between � and � � � �
as OMHA does, using signatures means that the only
possible values a process ever encounters are those
originally sent by the transmitter and � values. Link
faults are also recognized as manifest faults in all sub-
sequent stages of the algorithm. Contrary to OMHA,
where the algorithm benefits from signing messages
in OMHA( . ), link faults can only insert the values
� or a valid signed message � in ZA( . ), so we do
not require signatures in this last stage if the mes-
sage has been signed at least once (hence, we require
� � � � � � ��� ���� � ).

Like OMHA, ZA also sends and receives the same mes-
sages as OMH. The results of OMH’s assumption coverage
analysis, namely, Theorem 2 and 3, hence remain valid for
ZA as well. Note carefully, however, that the numerical re-
sults in Tables 1–6 assume � �0$ � � �i&�� � � and not ZA’s
minimum setting � � � � � � �*� .
7 Broken Signatures

In the original Byzantine Generals paper [4], it was as-
sumed that only messages from non-faulty processes cannot
be forged. If we translate that to the hybrid fault model, then
messages from arbitrary faulty processes can be forged, i.e.,
their signature is not secure. If we take this one step fur-
ther, we can assume that the signatures of all arbitrary faulty
processes as well as the signatures of at most ��� non arbi-
trary faulty processes (i.e., processes which are not arbi-
trary faulty) are common knowledge. Knowing a signature

allows a node to generate a message in the name of some
other node, although this does not imply that it is able to
eventually generate a valid chain of signatures.

Lemma 3 (Signatures) At the end of the execution run,
there are no two messages 
 � � � � ����� ��� 
 ��� � and 
 � �
� ��� ���
� � ��
 ��� � � with � �� � � , if at least one signature � � � in
M, M’ is from a non arbitrary faulty node � 	 with an unbro-
ken signature.

Proof: Let us assume that two such messages 
 and

 � exist. If we consider one node � 	 which has signed
both messages, then this node must have received both
��� ��� 
 ����� ��� 
 ��� � and � � ��� 
 �
��� ��� 
 ���

�
� . But according to

(M4) in Section 4, every non arbitrary faulty node at most
signs the first message, but not the second one. So if � 	 has
signed both messages, it must be arbitrarily faulty. If the
node has not signed the messages, then someone else must
have done so in its name, so its signature must have been
broken.

�

If we recall how the consensus algorithms we have an-
alyzed work, we see that in stage � of the algorithm, that
is, in OMHA( � ) or ZA( � ), each non-faulty process uses the
hybrid-majority of an input set whose chain of signatures
only differs in the last signature. The chains may have dif-
ferent lengths, though, but if a chain has less than � signa-
tures, then it must contain the value � . For all chains with
length � , we can deduce from Lemma 3 that each process
will work with the same input set if there is at least one
non arbitrary faulty process in the chain whose signature
has not been broken. So we will solve the problem by treat-
ing nodes with compromised signatures like arbitrary faulty
nodes.

Theorem 6 (ZA with Broken Signatures) For any � �
��� � ����� � ��� � ��� ���� � , algorithm ZA( � ) satisfies agree-
ment and validity if there are strictly more than � �� � ���� �
� � � � � � � � � � � �'� participating processes.

Proof: For validity, it is easy to see that if the transmitter
is not arbitrary faulty (and thus due to our assumption has
no broken signature), then the only values that a non-faulty
node considers are the value � sent by the transmitter and
� . Therefore, the argument of Lemma 2 still holds.

For agreement, we now use enough rounds to ensure that
every message received in ZA( . ) has been signed by at least
one non arbitrary faulty process or contains � . Therefore,
Lemma 3 guarantees that no fictive messages can occur, and
the algorithm is still the same as without broken signatures.
So the proof of Theorem 5 still holds if we count broken
signatures as arbitrary faults.

�

Algorithm OMHA could be made tolerant to broken sig-
natures in the same fashion as ZA. However, for OMHA it
is probably cheaper with respect to the required number of
nodes to simply let it degrade to OMH. So in fact, if there
is a possibility that signatures might be compromised, then
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one should spend additional �-� �� nodes according to Theo-
rem 1 or, preferably, simply dispose of authentication and
use OMH instead.

8 Broadcast Networks

The consensus algorithms analyzed in this paper assume
a point-to-point network. This implies that the sender of a
message is always known. But what happens if we use those
algorithms on a broadcast network? If we do not sign mes-
sages, we obviously loose the ability to identify the sender
of a message, thus allowing faulty processes to imperson-
ate non-faulty processes. So the oral messages algorithms
would not work in this case. Written messages algorithms,
however, should reasonably4 work because they do not al-
low impersonation. In fact, without link faults, these algo-
rithms would even benefit from the broadcast network, be-
cause arbitrary faulty processes are not possible anymore.
Since only one message is sent by every process, every re-
ceiver must get the same value. So we can in fact set �!� � .
and count all arbitrary faults as symmetric faults for any
written messages algorithm analyzed under the hybrid fault
model.

If link faults are possible, however, we find that they
now have a lot more power on the algorithm than before.
Whereas they can simply be caught by adding an appro-
priate multiple of �-�� and ���� to the number of processes
in the point-to-point case, we experience the unpleasant ef-
fect that they make arbitrary faults possible in the broadcast
case. Consider a message from an arbitrary faulty process
which is not received by � �� receivers. If that process sends
a second message containing a different value, which is not
received by another �-�� receivers, then at most 
(�-�� receivers
will only get one message and will assume that the message
is valid. The rest do detect the second message from the
same receiver and will use the value � due to the manifest
fault. So the obvious solution is either to count arbitrary
faults again, or to count sender link failures twice, i.e., re-
quire $ ���� instead of 
(�-�� additional processes.

Note that an arbitrary faulty process can do the worst
damage by sending two messages. With a third message,
again only �-�� receivers might not detect a manifest fault.

9 Conclusions

We analyzed two different authenticated algorithms for
consensus (Byzantine Generals) under a hybrid perception-
based fault model, which captures both process and link
faults. For the � �	� -round Authenticated Hybrid Oral
Messages algorithm OMHA( � ) of [2], we showed that
�)�*
(���� � ���� � 
���� � � � � � � � � � � processes are needed
for tolerating at most �-�� receive link faults per process, � ��
broadcast link faults per process, and � � " � % � , � � , � �

4Besides of the problem of jamming.

arbitrary, symmetric, and manifest process faults. A consid-
erably better fault-tolerance degree was established for the
simple authenticated algorithm ZA( � ) of [2], which needs
only � � �-�� � ���� � ���
� � � � ��� � � processes for coping with
the same number of faults. The impossibility result of [3]
was circumvented by limiting the maximum number of link
faults affecting the broadcast of a single message resp. the
reception of a message from multiple senders to � �� resp. ���� .
According to the results of the assumption coverage analy-
sis in [9], this is not too severe a restriction even in today’s
wireless system architectures, where link fault probabilities
up to �/. 0�2 are quite common.

Our results show that the usefulness of authentication de-
pends heavily upon the particular algorithm used. In fact, a
consensus algorithm should be specifically designed for us-
ing written messages and not simply adapted from an oral
messages solution: Whereas OMHA did not profit much
from authentication, ZA benefits considerably — but also
depends critically upon its strength. It turned out, how-
ever, that both algorithms can withstand intrusions to some
extent: In case of broken signatures, OMHA degrades to
OMH and hence requires an additional �-� �� in the lower
bound for � . For ZA, a process with a compromised sig-
nature must be considered as arbitrary faulty and therefore
counted in � � . As far as link faults are concerned, authenti-
cation serves to identify and tolerate link value faults: Any
algorithm that requires �-�� � ��� �� processes to tolerate link
faults will only require �-�� processes in the authenticated
version. Apart from that, authentication is the only means
to (more or less) safely employ algorithms like OMHA on
top of broadcast networks.

We can hence conclude that written messages consen-
sus algorithms are definitely more powerful than their oral
messages counterparts. They can reasonably be employed
even in wireless system architectures, where link faults and
intrusions are the dominating source of errors. However,
signing a message is a time-consuming operation, so algo-
rithms that require few messages would be preferable. Part
of our further research will address this problem.
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