
Enhanced
TP-UART interface board

Andreas Fernbach

Project supervised by

Georg Neugschwandtner

A-Lab @ Automation Systems Group
Institute of Computer Aided Automation

Vienna University of Technology

November 25, 2009

afernbach@auto.tuwien.ac.at

1

Contents
1 Introduction 3

2 Requirements 4
2.1 Hardware . 4
2.2 Firmware . 4

3 Hardware 6
3.1 Microcontroller selection . 6
3.2 Interface board . 6

3.2.1 TP-UART circuitry . 7
3.2.2 Microcontroller . 8
3.2.3 User interface . 8
3.2.4 RS-232 level conversion . 9
3.2.5 Jumpers and connectors . 10
3.2.6 Schematics . 12
3.2.7 Board layout . 13

3.3 External power supply board . 13
3.4 Part lists . 15

3.4.1 External power supply . 15
3.4.2 Interface board . 15

4 Microcontroller Firmware 17
4.1 End-of-packet recognition . 17
4.2 Indication of a late U_AckInformation service 18
4.3 Software UART . 20

2

1 Introduction
KNX [2] is an open system standard for home and building automation. The KNX
standard defines multiple network media. The most commonly used among these is a
free topology twisted pair medium referred to as "TP1" [3]. TP1 provides link power
and uses balanced baseband signal encoding with asynchronous start-stop transmission
at 9600 bit/s.

The Siemens TP-UART-IC [4] – in the following simply referred to as "TP-UART"
– is designed for interfacing microcontrollers that operate KNX devices to the TP1
medium. However, it can also be used to build a simple yet highly versatile TP1 network
interface for PCs. For example, such an interface has benefits in a lab environment since
the TP-UART host protocol places very few restrictions on the frame format. While the
TP-UART handles most of the KNX protocol stack up to the data link layer (and thus,
the most critical timing requirements), higher level protocol aspects remain with the
host controller. This leaves ample leeway for, e.g., testing protocol extensions.

However, the TP-UART host protocol – being designed for microcontroller interfac-
ing – still contains some relatively tight timing constraints. While these are not a serious
problem for a microcontroller to handle and can be considered a fair price to pay for the
flexibility of the protocol, a PC without a real-time operating system will hardly be able
to meet them.

Linux kernel drivers have been developed to address this problem [11, 12, 14]. How-
ever, a kernel driver is operating system dependent and requires significant maintenance
effort (cf. [13]). Moreover, it introduces an additional proprietary protocol layer (ac-
cessed via ioctl calls), which can be an obstacle if program code is to be transferred
to an environment where such a driver is not necessary. Operating system independent
user mode solutions are possible [15], but require assumptions about the frame format
and special attention to recovery from error conditions.

The goal of the project described in this report was enabling access to the full flexibil-
ity of the TP-UART host protocol through a generic, operating system and programming
language neutral serial port abstraction. For this purpose, a microcontroller was to be
placed between TP-UART and PC to monitor the timing of the critical TP-UART ser-
vices and convert them to out-of-band communication where applicable. However, any
modifications to the protocol were to be stateless and as small as possible.

The approach chosen and the desired behaviour of the interface are discussed in detail
in a paper that was presented at the 2008 KNX Scientific Conference [5]. This paper
also presents the results of the detailed analyses of the TP-UART host protocol that were
made during the project and significantly extend the information available in the data
sheet ([4]).

While the following report shares some content with this paper, it focuses on the im-
plementation of the functional requirements described there. The KNX TP1 network
interface that was designed and built during the course of the project is presented. In
addition to putting the enhancements described in [5] into practice, the hardware plat-
form created is versatile enough to be useful far beyond this task. Its design is available
as Open Hardware; all design documents and source code are available on the A-Lab
website [1].

3

2 Requirements

2.1 Hardware
The design of the interface hardware should follow the overall goals of being simple to
build and easy to handle. No particularly expensive software or hardware tools should
be required for creating and/or modifying the design. Size and complexity (in partic-
ular trace width and spacing) of the PCB (printed circuit board) should allow low-cost
production. Pin-through-hole components should be used wherever possible. Mounting
holes were to be included in the layout design for applications where protecting the PCB
with an enclosure is necessary. However, the use of an enclosure should be optional.
Therefore, it should be possible for all components to be directly mounted on the PCB.
All terminals, jumpers, switches, push buttons and LEDs should also be labeled there
(within the limitations of available space).

In-system programming and debugging is standard on current microcontrollers and
was to be included. Also, a minimal user interface should be provided to allow modifi-
cation of program behavior as well as to trigger actions (such as sending a test network
message) and show status information (e.g., error conditions) – without reprogramming,
requiring a debug interface connection or using the RS-232 interface for this purpose.
Also, access to the TP-UART status signals should be possible.

The KNX TP1 medium is electrically isolated to ground. On the other hand, the RS-
232 interface on the PC is grounded. Therefore, galvanic isolation between the KNX
and the PC side of the interface should be provided. Although the interface is primarily
intended for laboratory use, this was made a requirement to avoid problems in case the
interface should be connected to a larger KNX installation.

Since any wire that is not strictly necessary is a nuisance on a lab desk, the interface
should not require an external power supply. Still, galvanic separation was not to be
compromised.

2.2 Firmware
There are two tight timing constraints in particular in the TP-UART host protocol a
PC application is not always able to handle. One concerns the end-of-packet (EOP)
recognition for frames propagated from the TP1 network to the host. The end of such a
received frame is indicated by the TP-UART as a certain (minimum) period of silence
on the host interface only. A reasonable condition for an end of packet is the observation
of 7 bit times (of 104 µs each) of silence on the TP1 bus or, likewise, on the TP-UART
host interface. This follows from the analysis and discussion in [5], pp. 6-8. The
task of monitoring such a time interval is very well suited to a microcontroller, since
its hardware timer and compare units make accurate time measurements easy. The
occurrence of this condition should be signalized to the PC application by inserting
explicit symbols into the TP-UART host data stream.

The other time critical matter is sending the U_AckInformation service. According
to the TP-UART data sheet, the “U_AckInformation-Service is to indicate if the de-
vice is addressed. This service must be send latest 1,7 ms (9600 Baud) after receiving
the address type octet of an addressed frame” ([4], p. 12). Measurements conducted

4

Figure 1: Time frame for U_AckInformation service

during this project show that the transmission of the U_AckInformation-Service (to the
TP-UART) must be completed not later than 1.54 ms after the TP-UART has started
transmitting the check octet (to the host); otherwise, the TP-UART does not generate
an Acknowledge frame. This corresponds exactly with the TP-UART datasheet (if the
cited sentence is completed with the missing information that the complete reception of
the sixth frame octet by the host, the start of the transmission of the U_AckInformation
character and the host interface data rate are referred to); it means that the stop bit of the
U_AckInformation-Service and the start bit of the Acknowledge frame lie edge to edge.
It must be considered that when a microcontroller is placed between the TP-UART and
the PC, the constraints described apply to its TP-UART side. The maximum allowable
response time for the PC is shorter due to the transmission delays between microcon-
troller and PC and processing delay in the microcontroller (the latter is not significant
and can be neglected in our case). The resulting time slot for the PC application to send
the U_AckInformation-Service to the microcontroller (MCU, microcontroller unit) is
illustrated in Fig. 1. In this diagram, a communication speed of 19,200 bps is assumed
between the TP-UART, the MCU and the PC.

As this is a relatively short time for a PC application to trigger specific actions, time-
outs can happen once in a while. These timing conditions should therefore be monitored
by the microcontroller firmware. The user should be informed about the occurrence and
the current count of timeouts via the user interface on the board.

5

3 Hardware

3.1 Microcontroller selection
The microcontroller is a key design component. Within this project, its task is not re-
source intensive with regard to processing power, memory size or I/O. It mainly consists
of communicating via two relatively low speed UARTs (Universal Asynchronous Re-
ceiver Transmitter) and checking the timing of incoming messages. Thus, it can be
optimized for low power consumption and easy manual soldering. In line with the over-
all project goals, the price of the programming adapter and the toolchain necessary for
developing and debugging the microcontroller software also have considerable impact.
First, microcontroller types available in packages with low pin count were selected from
popular product families (Table 1 shows the considered types).

Evaluating the types on this short list according to the above criteria, the TI (Texas
Instruments) MSP430-F123 [17] (and its F1232 sibling [18], which can be considered
identical for the purposes of this project) emerged as ideally suited for the project. It
provides a 16 bit RISC CPU, 8 kB Flash memory, 256 Bytes RAM, and can operate at
clock rates of up to 8 MHz. Even at 8 MHz, it consumes less than 3 mA in active mode.
In-system programming and debugging are possible via a standard JTAG (Joint Test
Action Group) interface. Low-cost JTAG adapters are available. Entry level versions of
two commercial toolchains are offered free of charge. In addition, a GCC based open
source toolchain exists.

The MSP430-F123 is available in a 28 pin small-outline package with 1.27 mm pin
spacing (the same as the TP-UART-IC has). The MSP430-F123 has only one hardware
UART (no microcontrollers in this class appear to be available that would have two;
rather, many have none at all, such as the entire ST7 family). This means that the UART
function has to be implemented in software, using a hardware timer. While the MSP430-
F123 has only one 16 bit hardware timer, it is equipped with three capture/compare
units. Using one of these units for software UART transmission and one for reception,
full duplex operation with minimum CPU load is possible. The third capture/compare
unit remains free for application timing tasks.

Manufacturer/Type UARTs Maximum supply current Debugging
ATMEL ATMega48 1 12 mA @ 8 MHz, Vcc = 5 V debugWIRE
ATMEL ATmega88P 1 9 mA @ 8 MHz, Vcc = 5 V; debugWIRE

2.5 mA @ 4 MHz, Vcc = 3 V
NEC 78K0S/KB1+ 1 14 mA @ 6 MHz, Vdd = 5 V MINICUBE
TI MSP430F1232 1 2.9 mA @ 8 MHz, Vcc = 3.3 V JTAG
ST ST7LITE19B 0 9 mA @ 8 MHz, Vcc = 5.5 V ICC

Table 1: Some of the considered microcontrollers [20, 21, 22, 17, 18, 23]

3.2 Interface board
In accordance with the goal that no expensive software should be required for modifying
the design, the free Light Edition of Cadsoft EAGLE [16] was chosen as the CAD

6

TP-UART MSP430
F123

JTAG

User
interface

RxD / TxD

3.3 V
Regulator

Polarity
check

RxD / TxD

O
pt

o-
is

ol
at

io
n

Level
conv.

K
N

X
 T

P
1

External
power supply

(optional)

RxD / TxD

V+/V-Vcc

CTS

RTS

DTR

VccVcc

RESET

SAVE/TEMP

GPIO

Push button

Figure 2: Block diagram

software to be used. EAGLE Light Edition supports PCBs with a size of up to 80 ×
100 mm and two layers. The PCB design goes to the limit set by these constraints. It is
shown in Figure 5.

Figure 2 gives a schematic overview of the interface board. The full schematic is
shown in Figure 4. Following the signal flow from the KNX bus lines to the RS-232
interface, the first part of interface board is the TP-UART with its external circuitry.

3.2.1 TP-UART circuitry

The support circuitry for the TP-UART-IC follows the "typical application circuit" shown
in its data sheet [4]. Directly connected to the bus terminal, the diode D1 protects the
circuit against overvoltage; another diode (D2) protects it against polarity reversal. A
jumper block (JP1) determines whether the TP-UART operates in normal mode or in
analog mode and connects the required passive components. In normal mode, the TP-
UART host interface is always running at 19200 bps. All status pins of the TP-UART
are also permanently connected to the microcontroller. The firmware can pass their
state to the PC via UART communication (this possibility is not used by the current
firmware). To make connecting an oscilloscope or logic analyzer for monitoring easier,
all TP-UART data and status I/Os (TSTOUT, TxD, RxD, RESn, SAVE) are broken out
on a pin header (JP2), as is the ground potential (X2). The RESn signal is additionally
connected to a pushbutton which allows the user to trigger a hardware reset.

To satisfy the claim of an interface board without an external power supply, the stable
5 V supply the TP-UART provides is used to supply the KNX side of the interface board.
The power is derived from the KNX TP1 network and provided at the VCC pin of the
TP-UART. However, according to the TP-UART data sheet, the maximum load must
not exceed 10 mA. Due to careful choice of the components, this is sufficient to power
the microcontroller, the user interface, one half of the optocouplers, and the required
support circuitry. The HCPL2530 optocouplers consume about 0.2 mA together. Since
the MSP430 requires a 3.3 V supply, a voltage regulator (IC1) is required, whose ground
pin current also factors into the equation. However, regulators with a ground pin current

7

as low as 0.15 mA at 10 mA load current are readily available. On this board, a LE33A
low drop regulator is used.

3.2.2 Microcontroller

The center part of the interface board, the microcontroller, is looped into the serial data
connection between TP-UART and PC. Since the TP-UART and the microcontroller are
powered from the KNX network, they are automatically reset when link power returns
after a failure or after being disconnected. Due to its integrated brownout detection,
the MSP430 reliably starts up once its power supply is stable. Therefore, a diode (D6)
protects it from being reset by the TP-UART RESn signal. Since the power supply (TP-
UART VCC) is stable for a considerable time before the TP-UART releases RESn, this
gives the microcontroller additional time to initialize. Therefore, it can correctly receive
the Reset.indication service, which is sent by the TP-UART almost simultaneously with
releasing RESn. An additional diode (D5) can be mounted in case something similar
should be necessary in the opposite direction; however, it will typically be replaced by a
wire jumper since the MSP430 RST pin is not bidirectional. In addition, a push button is
provided that allows to manually reset both TP-UART and microcontroller if necessary.
If this button is used, the MSP430 cannot start its initialization before the TP-UART and
therefore cannot finish it in time to correctly receive the Reset.indication service.

As mentioned in Section 3.1, the MSP430F123 only provides one hardware UART.
Since the microcontroller is looped into a bidirectional serial communication link, a
second UART is required. This one is implemented in software using the hardware
timer and two of its capture/compare units. The software UART is placed at the TP-
UART side to allow the usage of this timer hardware to perform the accurate bit timings
necessary (and still be able to use the hardware UART for communication with the PC)
when the TP-UART is operated in analog mode.

For in system programming and debugging, the JTAG interface of the MSP430 is
accessible via a 14 way pin header (PL1) which fits the programming interface of the
TI MSP430 flash emulation tool and compatibles.

For clock generation, the MSP430 uses an 8 MHz crystal oscillator (Q2). The value
of the two capacitances between the oscillator pins and ground (C7, C9) are taken from
the oscillator data sheet.

If the enhanced functionality provided by the microcontroller is not needed, the board
can also be assembled without the microcontroller. This allows immediate use with
existing TP-UART related PC software. The PCB layout includes the necessary optional
pass-through tracks and jumpers (BP1, BP2) required for the RXD and TXD lines.

3.2.3 User interface

A minimal user interface (UI) is included to allow interacting with the microcontroller
without requiring a debug interface connection or using the RS-232 interface. It consists
of four LEDs, two push buttons and two DIP switches, which are all connected to the
general purpose I/O (GPIO) pins of the microcontroller. The port allocation is shown
in Table 2. Pull down resistors are used to prevent voltage levels at the microcontroller
input pins where the switches and pushbuttons are connected from floating. In case these

8

UI element MCU port Port direction
LED1 3.0 Out
LED2 3.1 Out
LED3 3.2 Out
LED4 3.3 Out
SW1.1 2.0 In
SW1.2 2.1 In
PB1 2.2 In
PB2 2.3 In

Table 2: User interface

pins are erroneously configured as outputs, the current limiting resistor R13 prevents a
short circuit situation. For the LEDs, an ultra bright type was chosen that provides
reasonable brightness already at 0.3 mA.

3.2.4 RS-232 level conversion

On the PC side, the interface needs to generate RS-232 (EIA-232) signal levels. An
RS-232 receiver considers a line voltage of 3 to 15 V (“space state”) as a logic ‘0’ and
the corresponding negative voltage range (“mark state”) as a logic ‘1’. Transmitters are
required to output at least 5 V. To further increase the noise margin, levels around 10 V
are typical (see, for example, [24]).

Since most equipment today operates on +5 V or lower, ICs that generate these volt-
ages from a single +5 V supply and perform the necessary signal level conversion are
popular (a very common type being the MAX232 [25]). However, the power supplied
by the TP-UART cannot be used since galvanic separation has to be observed. Also,
there is no such thing as a +5 V power supply pin on an RS-232 interface. Power can
only be drawn from the signal lines (see, for example, [28] and [27]). The exact amount
depends on the driver circuits in the PC. Short circuit currents of about 10 mA are typi-
cal (with a single output shorted). The output voltage rapidly decreases with increased
load (see also the technical data for the 1488 series of RS-232 drivers that was once the
de facto standard in PCs, e.g., [26]).

In theory, it should be possible to pass the DTR signal through a voltage regulator to
obtain a stable 5 V supply that is independent of the voltage the line is actually driven to
by the PC, and use a standard RS-232 transceiver with a built in DC-DC converter for
level conversion. However, this method is not very efficient. In the experiments con-
ducted during this project, it was not possible to obtain stable operating conditions using
DTR alone, despite using low power ICs. The optocouplers could not be further opti-
mized for power consumption without increasing the signal rise time to unacceptable
levels.

Therefore, it was decided to use RTS as well as a negative power supply (requiring
the signal to be deasserted by the PC). This way, a (low power) RS-232 transmitter can
directly be provided with positive and negative input voltages. DC-DC conversion is
eliminated entirely. A low power type from the well known 1488 series of RS232 line
drivers, the MAX1488ECPD, was chosen. It loads the status lines lightly enough that

9

Figure 3: Jumpers, connectors and UI elements

the RS-232 output levels are in the non-critical range of +/- 8 to 10 V.
Correct DTR and RTS polarity is ensured via diodes and visually confirmed using

a LED (PWR_OK). If the PC does not provide an RTS output or if the signal has to
remain available for communication (selectable via JP5, see next section), a +/- 9..12 V
external power supply can be connected (EXT PWR).

It would also be possible to derive power from signal lines irrespective of their polar-
ity, leaving communication entirely undisturbed ([29]). This possibility was not pursued
since it would significantly increase circuit complexity. Rather, the goal was a simple
design that would eliminate the need for an external power supply in the majority of use
cases.

3.2.5 Jumpers and connectors

Figure 3 shows all jumpers and connectors placed on the interface board. An overview
of the functions and the various settings are given in Table 3. A detailed description of
each element follows.

JP1 This jumper block is used to determine the operation mode of the TP-UART IC.
To select normal mode, place one jumper over pins 4 and 6; in addition, place another
over pins 5 and 6. For analog mode, connect pins 1-3 and 2-4. In normal operation
mode both parts of the TP-UART, digital and analog, are enabled; the idle-level on its

10

Name Function Description
JP1 TP-UART mode 4-6/3-5 Normal, 1-3/2-4 Analog
JP2 TP-UART breakout RxD, TxD, TEMP, RESn, SAVE
JP3 CTS select 1-2 SAVE, 3-4 TEMP, 5-6 MCU Output
JP4 RTS select 1-2 RESET, 2-3 MCU Input
JP5 RTS select 1-2 Supply, 2-3 Data
EXT PWR External supply 1: +12 V, 2: GND, 3: -12 V
X1 KNX TP1 connector 1: TP1 -, 2: TP1 +
X2 Ground pin Signal common for test purposes
X3 Serial interface RS-232 pinout on DB9 female
BP1, BP2 MCU bypass Must be connected if no MCU is placed

Table 3: Jumpers

host UART interface is ‘1’ (high). In analog operation mode only the analog part is
enabled; the idle-level on the host UART interface is ‘0’ (low) ([4], pp. 8-9).

JP2 For test purposes, the TP-UART I/O signals are broken out. RxD, TxD, TEMP,
RESn and SAVE are provided. GND is available on X2.

JP3 The RS-232 CTS status line (which is connected to the right column of pins) can
be fed with one of the following signals: SAVE (jumper position 1-2), TEMP (jumper
position 3-4) and MCU port 1.1 (jumper position 5-6), which has to be configured as
output in this case. This way, additional status information can be propagated to the PC.

JP4 Via this jumper, the RS-232 RTS status line can be used to reset the microcon-
troller and the TP-UART (jumper position 1-2) or as additional data path from the PC
to the microcontroller (jumper position 2-3). The signal is connected to port 1.0 of the
MSP430.

JP5 This jumper determines if the RS-232 RTS status line is used as the power supply
for the level conversion part of the interface board (jumper position 1-2) or for data
(jumper position 2-3). In the latter case, the function of RTS is determined by JP4 and
an external power supply has to be connected to EXT PWR.

EXT PWR If the host device connected via RS-232 does not provide status lines on
this interface where power can be drawn from or if JP5 is set to “Data” (jumper position
2-3), an external symmetric 9..12 V DC power supply must be connected to these pins.

X1 The bus connector has a dual footprint. On the one hand, spring terminals can be
fitted on the inner pads (X1) to directly connect the TP1 wire pair. On the other hand,
two pins can be soldered to the outer pads (TP1, TP2). This is intended to obtain a
standard “type 5.1” connector that is usually found on KNX devices; however, the outer
pads do not have the correct distance in the current layout.

11

X2 This ground pin for test purposes is connected to the TP1 ground wire.

X3 RS-232 serial interface with standard pin assignment.

BP1, BP2 These jumpers connect the TP-UART RxD and TxD pins to the TxD and
RxD pins of the galvanic isolation and level conversion block (RS-232 side). These
connections need to be made if no microcontroller is installed on the board.

3.2.6 Schematics

Figure 4: Interface board: Schematic

12

3.2.7 Board layout

Figure 5: Interface board: Layout (not to scale)

3.3 External power supply board
If for any reason no power can be drawn from the RS-232 interface where the interface
board is connected (no status lines available, status lines used for data communication),
an external power supply must be used. It supplies the level conversion part (and half of
the optocouplers) of the interface board with the necessary +/- 9...12V. A small board
was built that connects to a stock AC (mains) power adapter via a standard low voltage
connector and provides these voltages. The power supply board accepts input voltages
from 12 V–35 V DC or 12 V–25 V AC. For mobile use, it is also possible to use a
9 V block battery as the power source. PP3 connectors are fitted on the power supply
board where the battery can be attached. To avoid damage, an AC adapter and a battery
should not be connected simultaneously. Figure 6 shows the schematic of the power
supply board. The board layout is shown in Figure 7. Table 4 gives an overview of the
connectors placed on the board.

A bridge rectifier (B1) at the input takes care of the right polarity of the input voltage.
The voltage is stabilized by an electrolytic capacitor (C1) and a 12 V linear voltage
regulator (IC2) to obtain V+ (and GND). V- is generated from V+ by a voltage inverter
IC (IC1) that uses C3 to form a charge pump. The inverted voltage is buffered in C4.

13

In case a 9 V battery is used, there is no need for stabilisation, so the battery voltage
is fed directly into V+ and GND to drive the voltage inverter. The output voltages are
provided on JP1, whose pins have to be connected to the corresponding pins (V+, V-,
GND) of JP6 on the interface board.

Figure 6: External power supply: Schematic

Figure 7: External power supply: Layout (not to scale)

Name Function Description
X1 Low voltage connector (input) 12–25 V AC/DC
JP1 Output voltage (to interface board) 1: +12 V, 2: GND, 3: -12 V
9V 9 V battery clip Standard PP3 connector

Table 4: External power supply: Connectors

14

3.4 Part lists
Farnell (www.farnell.com) is a large distributor of electronic components. Where appli-
cable, Farnell order numbers are provided for better documentation of part specifications
(manufacturer, packaging, characteristics, ...).

3.4.1 External power supply

Part Value Device Farnell order no.
B1 1A, 600V Bridge rectifier 4077300
C1 47µF, 50V Electrolytic capacitor 1144660
C2 47nF, 100V Ceramic capacitor 1141782
C3 10µF, 50V Electrolytic capacitor 1144604
C4 10µF, 50V Electrolytic capacitor 1144604
IC1 ICL7662 Voltage inverter 1228203
IC2 78L12Z Voltage regulator +12V 9490272
JP1 3 pin header 1022248
9V PP3 connector 723988
X1 Low voltage connector 224960

3.4.2 Interface board

Part Value Device Farnell order no.
C1 47nF, 100V Ceramic capacitor 1141782
C2 47nF, 100V Ceramic capacitor 1141782
C3 100µF, 16V Electrolytic capacitor 1144614
C4 47nF, 100V Ceramic capacitor 1141782
C5 6.8µF, 50V Electrolytic capacitor 1144603
C6 10nF, 100V Ceramic capacitor 1216425
C7 33p, 100V Ceramic capacitor 1141761
C8 100nF, 100V Ceramic capacitor 1141784
C9 33p, 100V Ceramic capacitor 1141761
C10 100nF, 100V Ceramic capacitor 1141784
D1 P6KE51CA TVS 1467630
D2 HER158G Fast Diode 1625088
D3 1N4148 Small signal diode 9843680
D4 1N4148 Small signal diode 9843680
D5 1N4148 Small signal diode 9843680
D6 1N4148 Small signal diode 9843680
D7 1N4148 Small signal diode 9843680
D8 1N4148 Small signal diode 9843680
IC1 LE33CZ Voltage regulator 3.3V 9755349
IC2 MAX1488E RS-232 line driver 1188031
JP1 6 pin header 3418492
JP2 5 pin header 588428

15

JP3 6 pin header 3418492
JP4 3 pin header 588404
JP5 3 pin header 588404
JP6 3 pin header 588404
LED1 TLDR4400 LED3MM ultrabright 1045471
LED2 TLDR4400 LED3MM ultrabright 1045471
LED3 TLDR4400 LED3MM ultrabright 1045471
LED4 TLDR4400 LED3MM ultrabright 1045471
MSP430F123 MSP430F123 TI low power MCU 1471266
OK1 HCPL2530 Optocoupler 1021246
OK2 HCPL2530 Optocoupler 1021246
PB1 Pushbutton 1217775
PB2 Pushbutton 1217775
PL1 JTAG connector 1106785
PWR_OK LED3MM ultrabright 1045471
Q1 4.9125MHz Crystal 9712925
Q2 8.000MHz Crystal 9712844
R1 68/1W Resistor 1357878
R2 24k/0.25W Resistor 9341609
R3 3k9/0.25W Resistor 9341854
R4 910R/0.25W Resistor 9342311
R5 24k/0.25W Resistor 9341609
R6 910R/0.25W Resistor 9342311
R7 4k7/0.25W Resistor 9341951
R8 24k/0.25W Resistor 9341609
R9 33k/0.25W Resistor 9341757
R10 47k/0.25W Resistor 9341960
R11 3k9/0.25W Resistor 9341854
R12 24k/0.25W Resistor 9341609
R13 10k Resistor 9341110
RESET Pushbutton 1217775
RN1 4k7 Resistor network 9356100
RN2 47k Resistor network 9356118
SW1 DIP switch 9479155
T1 BC547 Bipolar transistor 1467869
TPUART1 Siemens TP-UART IC
X1 Terminal Block 4016129
X2 Ground pin
X3 DB-9 socket 1207597

16

4 Microcontroller Firmware
This section gives an implementation description of the main microcontroller firmware.
It is split in two parts, the description of how the end of an L_Data frame coming in from
the KNX network is determined and the procedure of detecting late U_AckInformation
services sent by the PC. For testing TP-UART output in analog mode, an alternative
firmware was developed, which is not described here.

4.1 End-of-packet recognition
In the chosen implementation, a hardware timer increments a software counter (bit-
times_since_rx) periodically every medium bit time (1/9600 s). It starts to run imme-
diately after power up. If a UART character is received by the software UART (at the
TP-UART side), bittimes_since_rx is reset to zero by the receive callback function of
the software UART once the character has been fully received. If the threshold of seven
bit times is reached, the hardware UART (at the PC side) is triggered to send an end
of packet signal. This is either a break signal or the escape sequence ’0x1B 0x00’, de-
pending on the positions of the DIP switches. If they are identical, a break signal is sent
(the host protocol is not altered otherwise). If they are odd, the escape sequence is sent.
The threshold can be adjusted by setting the macro PACKET_TIMEOUT to the desired
value of bit times.
if (bittimes_since_rx == KNX_CHAR_DURATION + PACKET_TIMEOUT)

// End-of-packet timeout elapsed on the medium?

{
if (((P2IN & P2_SW1) == P2_SW1) ^ ((P2IN & P2_SW2) == P2_SW2))

// DIP switches in different positions?
{
// user selected "escape mode" -> generate escape sequence
U0TXBUF = 0x1B;
esc_status = INSERT_00;

}
else

{
// user selected "break mode" -> send a UART break signal
P3SEL &= ~P3_SERIAL_TO_PC; // detach HW USART module from pad

// to force TXD low
}

}

The reason why KNX_CHAR_DURATION (the time for the transmission of one
character on the TP1 medium, in bit times) is added to PACKET_TIMEOUT in the if
statement is the following: Consider the situation that the stop bit of the last character
was received seven bit times ago (bittimes_since_rx == PACKET_TIMEOUT). If an-
other character has just begun to come in from the network now (which would mean
that the timeout has not elapsed), we will not see it until we have waited for another
KNX_CHAR_DURATION bit times. Since bittimes_since_rx only measures the dura-
tion between two receive callbacks – that is, from the end of one character to the end
of the next –, but we require the duration between the end of one character and the be-
ginning of another character to determine the end-of-packet timeout, its value has to be
compensated by KNX_CHAR_DURATION.

17

If ESC signalization is chosen, a ’0x1B’ character is sent immediately after the end
of packet condition becomes true. The following ’0x00’ character is appended when
the next UART transmit interrupt occurs. The variable esc_status is used to store the
information about this, which can be seen in the UART transmit interrupt service routine
(ISR):
usart0_tx_isr (void)
{

if (esc_status == INSERT_ESC)
{

U0TXBUF = 0x1b;
esc_status = INSERT_NOTHING;

}

if (esc_status == INSERT_00)
{

U0TXBUF = 0x00;
esc_status = INSERT_NOTHING;

}
}

Depending on esc_status (whether it is INSERT_ESC or INSERT_00) the corre-
sponding character is transmitted in the subsequent transmit ISR.

To prevent any misinterpretation of an ESC character by the host controller software
it must be taken care that any ’0x1B’ appearing in a KNX frame is marked somehow.
Therefore, a second ’0x1B’ is added if one is received from the TP-UART.
if ((c == 0x1b) && // is this an ESC character and are we in ESC mode?

((P2IN & P2_SW1) == P2_SW1) ^ ((P2IN & P2_SW2) == P2_SW2))
esc_status = INSERT_ESC;

A single ’0x1B’ received from the bus is converted to the sequence ’0x1B 0x1B’ on
the PC side.

4.2 Indication of a late U_AckInformation service
When the TP-UART is passing a data indication from the network to the host, the host
is expected to answer with a U_AckInformation service in time so the TP-UART can
generate the Acknowledge frame on the KNX medium. A timeout is determined by
the microcontroller firmware as follows: Whenever the start of a (standard or extended)
data frame is detected (i.e., a L_DATA.ind or L_LONG_DATA.ind service is received
after a long enough pause), the variable dataframe_octets is incremented every on every
software UART receive interrupt (at the TP-UART side) to count the number of octets
the data frame consists of. Again, bittimes_since_rx is used in the calculation.

void
sw_uart_rx (unsigned char c)
{

TACCR0 = TAR + KNX_BITTIME; // align timer interrupt with end
// of character

if (dataframe_octets)
dataframe_octets++;

18

// Is this the start of a new L_Data message cycle?
if (bittimes_since_rx > (ACK_TIMEOUT + 1))

{
if ((c & DATAIND_MASK) == 0x10) // catch L_DATA, L_LONG_DATA

{
dataframe_octets = 1;
ackinfo_do = 255; // make certain a timeout will be detected

// if no U_AckInformation is sent at all
}

else
{
dataframe_octets = 0;

}
}

From this point in time the reception of an U_AckInformation service is expected.
Whenever the host sends a U_AckInformation, the microcontroller program stores the
current time relative to the start of frame. This is done in the receive ISR of the PC
side (hardware) UART. The variable ackinfo_do stores the count of (data) octets already
completely received, ackinfo_bsr stores the medium bit time offset since the last stop
bit.

#pragma vector=USART0RX_VECTOR
__interrupt void
usart0_rx_isr (void)
{

swu_tx_byte (U0RXBUF); // propagate character to TP-UART

if (dataframe_octets
&& (U0RXBUF == U_ACKINFO_ACK || U0RXBUF == U_ACKINFO_NACK

|| U0RXBUF == U_ACKINFO_BUSY))
{

ackinfo_do = dataframe_octets;
ackinfo_bsr = bittimes_since_rx;

}

}

Whenever the end of a data frame (L_DATA, L_LONG_DATA) is detected (if (bit-
times_since_rx == ACK_TIMEOUT)), the microcontroller program evaluates this stored
timestamp to determine if the TP-UART has received the U_AckInformation in time or
not. For this purpose, the actual point in time when the U_Ackinformation service has
been received is compared to the latest possible point in time an U_Ackinformation ser-
vice must come in to be propagated to the TP-UART in time. Both durations are calcu-
lated in medium bit times from the beginning of the frame. The time it takes to send one
character between the TP-UART and the microcontroller (TPU2MCU_CHAR_DURA-
TION) has to be included in the calculation twice to account for the fact that it causes
the MCU to see the data frame later than it actually occurs on the medium on the one
hand and, on the other hand, that the U_Ackinformation service has to be transmitted to
the TP-UART before it can start generating the Acknowledge frame.

#pragma vector=TIMERA0_VECTOR
__interrupt void
timer_a0_isr (void)
{

TACCR0 += KNX_BITTIME;
if (bittimes_since_rx < 255)

bittimes_since_rx++;

19

if (bittimes_since_rx == ACK_TIMEOUT)
{

if (dataframe_octets && // only data frames need to be acknowledged

(((unsigned int) (ackinfo_do - 1) *
(KNX_CHAR_DURATION + KNX_MIN_CHAR_GAP)
+ ackinfo_bsr + TPU2MCU_CHAR_DURATION) >

((unsigned int) (dataframe_octets - 1) *
(KNX_CHAR_DURATION + KNX_MIN_CHAR_GAP)
+ ACK_TIMEOUT - TPU2MCU_CHAR_DURATION))

)

{
ackinfo_timeouts++;

if (ackinfo_timeouts < 0x10) // display on LEDs, holding the
P3OUT = ackinfo_timeouts; // highest value that can be shown

}
}

If the host fails to meet this timeout, a counter is incremented. LED1–LED4 on the
interface board display the current counter value in BCD format. The counter does not
wrap, but is frozen when it reaches the value 15. It can be reset by pressing the reset
button.

4.3 Software UART
Since the MSP430F123 provides only one hardware UART, it was necessary to imple-
ment a software emulation of this interface. The best way to avoid jitter and high CPU
loads is to use a hardware timer with its capture/compare interrupts. The basic concept
of the software UART implementation follows application notes available from Texas
Instruments [30, 31]. However, it was rewritten in C, significant performance improve-
ments were made, and parity support was added.

Initialization After connecting the RX pin (port 1.2) and the TX pin (port 1.3) to
the capture/compare units one and two of Timer_A, these units have to be set to the
right mode. The capture/compare unit at the input pin runs in capture mode; the one
connected to the output pin runs in compare mode and is set to high, representing the
UART idle level.

Transmission When the transmit function (swu_tx_byte(unsigned char c)) is called,
the timer is started and the output pin is set to low to transmit the start bit. The character
to be transmitted is buffered. Depending on its LSB, the output unit at the TX pin is
programmed to bring the pin to the proper level at the next compare interrupt. The
capture/compare register is updated with the value representing one bit time. When the
compare event occurs and the ISR is called, this bit time value is added again to the
capture/compare register value to trigger the next compare interrupt. The output unit
is prepared with the value of the second bit of the character to be transmitted. This
procedure repeats with all data bits and the parity bit, which has been calculated before.
In the last ISR call, the output pin is set to high again for the stop bit and the following
idle level.

20

Reception When a character is received, the level at the input pin changes from high
(idle level) to low (start bit). This edge is used to trigger a capture interrupt. In the
ISR, the capture/compare unit is set to compare mode and its capture/compare register
is loaded with the current timer value plus an increment corresponding to 1.5 UART bit
times. Therefore, the ISR is next called in the middle of the first data bit; its value is
sampled and buffered. This time, the capture/compare register is incremented by a value
corresponding to one bit time to reach the middle of the second data bit. This continues
till all data bits and the parity bit are received. The receive callback function is then
called and the capture/compare unit is set to capture mode again, making the software
UART ready to receive another byte.

21

References
[1] Automation Systems Group A-Lab website,

http://www.auto.tuwien.ac.at/a-lab

[2] KNX Association, KNX Specifications (Version 2.0), Diegem, 2009.

[3] KNX Handbook, Vol. 3, Part 2, Ch. 2, System Specifications: Communication
Media: Twisted Pair 1, v1.1 AS

[4] Siemens EIB-TP-UART-IC Technical Data,
http://www.automation.siemens.com/et/gamma/download/tpuart.pdf

[5] G. Neugschwandtner and A. Fernbach, “Design of an enhanced TP-UART based
KNX PC interface”, KNX Scientific Conference 2008, St. Katelijne-Waver,
http://www.auto.tuwien.ac.at/g̃neugsch/knxsci08-tpuart_if.pdf

[6] Schematic of the Siemens-TPUART-interface for the serial port,
http://os-projects.fh-deggendorf.de/images/tpuart-interface.png
(retrieved in November 2001, no longer available online)

[7] TP-UART interface by C. Troger,
https://www.auto.tuwien.ac.at/downloads/eib4linux/tp-uart-interface.zip

[8] Disch Systems TP-UART Interface,
http://disch-systems.de/download/tpuart_interface_en-datasheet.pdf

[9] Siemens Bus Transceiver Module PCB Technical Data,
http://www.opternus.com/uploads/media/BTM_PCB_datasheet_V2.0.pdf

[10] F. Praus, W. Kastner and G. Neugschwandtner, “A versatile networked embedded
platform for KNX/EIB”, KNX Scientific Conference 2006, Vienna.

[11] R. Stocker and A. Grzemba, “Linux Device Driver for the TP-UART interface”,
EIB Scientific Conference, October 2001, Munich.

[12] W. Kastner and C. Troger, “Interfacing with the EIB/KNX: A RTLinux device
driver for the TPUART”, Proc. 5th IFAC Intl. Conference on Fieldbus Systems
and their Applications (FeT ’03), pp. 29–36, 2003.

[13] TP-UART Linux kernel driver updates by R. Buchinger and M. Kögler,
https://www.auto.tuwien.ac.at/a-lab/eib4linux.html

[14] Disch Systems EIB Driver for Linux,
http://disch-systems.de/download/edrv_en-datasheet.pdf

[15] eibd daemon homepage,
http://www.auto.tuwien.ac.at/~mkoegler/index.php/eibd

[16] CadSoft online,
http://www.cadsoft.de

22

[17] TI MSP430x12x Mixed Signal Microcontroller (Rev. C) Datasheet,
http://www.ti.com/lit/gpn/msp430f123

[18] TI MSP430F11x2, MSP430F12x2 Mixed Signal Microcontroller (Rev. D)
Datasheet,
http://www.ti.com/lit/gpn/msp430f1232

[19] TI MSP430x1xx Family User’s Guide (Rev. F),
http://www.ti.com/litv/pdf/slau049f

[20] ATmega48/88/168 Datasheet (Rev. R),
http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf

[21] ATmega48P/88P/168P Datasheet (Rev. K),
http://www.atmel.com/dyn/resources/prod_documents/doc8025.pdf

[22] NEC 78K0S/KB1+ 8-bit Single-Chip Microcontrollers User’s Manual,
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U17446EJ*

[23] ST7LITE1XB Datasheet,
http://www.st.com/stonline/products/literature/ds/11929/st7lit19bf1.pdf

[24] Maxim Application Note 83: Fundamentals of RS-232 Serial Communications,
http://www.maxim-ic.com/appnotes.cfm/an_pk/83/

[25] MAX232, MAX232I Dual EIA 232 Drivers/Receivers Datasheet,
http://focus.ti.com/lit/ds/symlink/max232.pdf

[26] ON Semiconductor MC1488 Quad Line EIA-232D Driver Datasheet,
http://www.onsemi.com/pub_link/Collateral/MC1488-D.PDF

[27] Microchip Appl. Note AN519: Implementing a Simple Serial Mouse Controller,
http://ww1.microchip.com/downloads/en/AppNotes/00519c.pdf

[28] Tomi Engdahl, “Get power out of PC RS-232 port”,
http://www.epanorama.net/circuits/rspower.html

[29] United States Patent 7,291,938, “Power supply apparatus and method based on
parasitic power extraction”, 2007.

[30] Texas Instruments Application Report SLAA078A, “Implementing a UART func-
tion with Timer A3”, http://focus.ti.com/lit/an/slaa078a/slaa078a.pdf

[31] TI Application Report SLAA307A, “Using the Timer_A UART Library”,
http://focus.ti.com/lit/an/slaa307a/slaa307a.pdf

All URLs last visited 2009-11-25.

23

	Introduction
	Requirements
	Hardware
	Firmware

	Hardware
	Microcontroller selection
	Interface board
	TP-UART circuitry
	Microcontroller
	User interface
	RS-232 level conversion
	Jumpers and connectors
	Schematics
	Board layout

	External power supply board
	Part lists
	External power supply
	Interface board

	Microcontroller Firmware
	End-of-packet recognition
	Indication of a late U_AckInformation service
	Software UART

