
KNX for OPC UA

Patrick Ruß
Reg.#: 0728142

Automation Systems Group
Vienna University Of Technology

November 14, 2011

Abstract

The existence of several protocols and products in the area of home and
building automation brings along the question of interoperability. There is a
need for an overlaying system which can easily integrate and control all kinds
of fieldbus protocols. This paper gives an insight into OPC UA and KNX,
on one hand, and, on the other hand, presents an approach to combine these
technologies. Thereby the strong information modelling capabilities of OPC
UA will be used, which is ideally suited for modelling different data models.

1

Statement

Hereby I declare that this work has been written autonomously, that all used
sources and utilities are denoted accordingly and that these points of the work -
including tables, maps and figures - which where taken from other creations or the
Internet have been marked as borrowing by quoting the original sources. This doc-
ument at hand will not be submitted to any other course.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

2

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Aim of this work . 4
1.3 Structure . 4

2 KNX 5
2.1 Introduction to KNX . 5
2.2 Physical media . 5
2.3 Topology . 7
2.4 Interworking . 7

2.4.1 Functional blocks . 8
2.4.2 Data points . 9
2.4.3 Communication model . 11

3 OPC Unified Architecture 12
3.1 History of OPC . 12
3.2 OPC Unified Architecture . 13
3.3 Information modelling in OPC UA 13

3.3.1 Why use information modelling? 13
3.3.2 Nodes . 15
3.3.3 References . 16
3.3.4 Objects, Variables and Methods 16
3.3.5 Type definitions . 18
3.3.6 DataTypes . 19

3.4 Services . 19
3.4.1 Basic concepts . 20

4 KNX for OPC UA 21
4.1 Laboratory environment . 21
4.2 HB-Softsolution Model Designer 21
4.3 KNX information model for OPC UA 21
4.4 HB-Softsolution OPC UA Driver Framework 23

4.4.1 Framework structure . 23
4.4.2 Server application . 25
4.4.3 Integrating a custom driver 26

4.5 KNX driver implementation . 26

5 Conclusion and Outlook 30

3

1 Introduction

1.1 Motivation

As home and building automation is getting used more and more, a variety of

automation products of different vendors are coming up. These different prod-

ucts use different technologies that are based on communication protocols that are

incompatible with each other. Therefore a proprietary mapping between these tech-

nologies (by e.g., using gateways) is necessary. Moreover, this can only be done at

great expense. This being the case, the need for interoperability becomes apparent.

Naturally, a possible solution for this problem should be extensible and platform

independent. These requirements are fulfilled by OPC Unified Architecture (OPC

UA) [1], which, in this paper, will be combined with KNX [2] using information

modelling.

1.2 Aim of this work

The main objective of this work is to showcase a possible implementation of how

KNX systems can be modelled and represented using OPC UA. As a prerequsite,

this paper aims at conveying a basic understanding of the used technologies.

1.3 Structure

The paper is structured as follows: In the following section the reader gains an

insight into the functionality of and the possibilities of KNX. Section 2 describes

OPC UA and exposes details of information modelling. The third section presents

the implementation of a KNX-OPC UA interface using information modelling.

4

2 KNX

2.1 Introduction to KNX

In May 1999, the members of the EHSA (European Home System Association), the

EIBA (European Installation Bus Association) and the BCI (BatiBUS Club Interna-

tional) founded the KNX Association and decided to merge their three standards,

EHS, EIB and BatiBUS, into KNX with the goal to define a standardized and open

communication standard for home and building automation. The founding members

are as follows: Albrecht JUNG GmbH & Co.KG, Bosch Telecom GmbH, Delta Dore

S.A, Électricité de France, Electrolux AB, Hager Holding GmbH, Merten GmbH &

Co.KG, Siemens AG, Division A&D ET and Siemens Building Technologies Ltd.,

Landis&Staefa Division.

Since December 2003, the KNX protocol has been included in the EN 50090

series of standards. In November 2006, the specification became part of the inter-

national standard ISO/IEC 14543-3-x [3]. The current valid standard is the KNX

specification 2.0 [2]. Furthermore the KNX Association is the publisher of the so

called “KNX Handbook”, which contains the complete system specifications and is

available for members of the KNX Association.

KNX was designed to control

• Lighting and

• HVAC (heating, ventilating and air condition)

in a comfortable, flexible, energy-efficient and economic way.

To ensure full mutual compatibility, all KNX products have to pass several cer-

tification tests performed by third party testing labs, which test whether a certain

product conforms to the KNX specification. In this way, it is possible to combine

KNX products of different manufacturers in a home or building.

2.2 Physical media

KNX defines several ways for how to communicate over physical media, which is

also depicted in the overview of the KNX architecture in Figure 1.

• Twisted Pair 1 (TP1)

• KNX RF (Radio Frequency)

• Powerline (PL 110)

• KNXnet/IP

• KNX/IP

5

Figure 1: KNX architecture [2]

Currently, KNX TP1 is the most used physical medium. It uses shielded Twisted

Pair cables, through which the signal as well as 30V DC link power is transferred.

For data transmission, a balanced baseband signal coding is used with a baud rate

of 9600 bits per second. TP1 allows a total cable length of 1000 m per physical

segment and a maximum distance of 700 m between two devices. There are no

restrictions with regard to topology wiring. Some details on possible KNX topologies

will be illustrated in Section 2.4.3. Medium access on TP1 is controlled by using

CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) with bitwise

arbitration.

KNX RF enables KNX devices to communicate via radio by using a medium

frequency of 868.3 MHz in the ISM (Industrial, Scientific and Medical)-Band for

short range devices. KNX RF devices can transfer data with up to 16.4 kbit/s,

using Frequency Shift Keying (FSK) Modulation. It allows bidirectional as well as

unidirectional communication.

With KNX Powerline 110, KNX devices can be connected within a 230V power

grid. PL110 modulates signals with Spread Frequency Shift Keying (SFSK) and

can reach a speed of up to 1200 bits per second. The wiring of PL110 devices is

unrestricted by specification, but in real-world applications it is constrained by the

given power network. For medium access control, TDMA (Time Division Multiple

Access) is used.

6

KNX/IP devices communicate directly via IP, which has several advantages:

First, there is no need to install additional cables, as already existing office or

home LANs can be used easily. Moreover, due to the high bandwidth of IP, new

possibilities like multimedia transmission are imaginable. It may be possible that

KNX/IP will replace TP1 in the future.

In comparison with KNX/IP, KNXnet/IP routers are used to interconnect KNX

networks over IP networks. The KNX devices themselves are not directly connected

with an IP network. Both KNXnet/IP and KNX/IP use Ethernet as medium and

control access to it via CSMA/CD (Carrier Sense Multiple Access with Collision

Detection).

2.3 Topology

KNX allows up to 65536 devices to be installed. Each device gets its own individual

address in a 16-bit address space. Subtracting the addresses reserved for couplers,

there remain 61455 addresses for KNX terminal devices. This amount can decrease

in consequence of implementation or environmental factors.

Logical subnetworks can be built with the aid of lines which can contain 256

devices in each case. Lines may be grouped together with a main line into an area.

Up to 15 of these areas, connected with a backbone line, make an entire domain.

In order to link lines and areas, KNX uses line repeaters, line couplers and backbone

couplers. A possible logical KNX topology is depicted in Figure 2. This logical

structure originates from the structure of a building.

2.4 Interworking

Since devices in a KNX network have to share process control data, Interworking is

the major part of the KNX technology and is defined as

The situation where products sending and receiving messages can

properly understand signals and react on them without additional equip-

ment. [4]

The phrase “without additional equipment” is particularly important for commu-

nication between products of different manufacturers, be it in the same application

or across application borders (Cross Discipline Interworking). To achieve this goal,

it is necessary to define the Interworking model on a very high level of abstraction,

which is done in the “Application Interworking Specifications”, where functional

blocks and datapoints are defined.

7

Figure 2: Logical topology of KNX [2]

2.4.1 Functional blocks

A functional block describes the standard specification of the chosen solution for

one given task of an application. The implementation of the data points contained

in and their functionality is left to product developers. Figure 3 shows the standard

representation of a functional block.

Figure 3: Standard representation of a functional block [2]

Functional blocks consist of data points which can be inputs, outputs, param-

eters or diagnostic data. Parameters are special inputs which determine the way

outputs are generated out of inputs. Diagnostic Data is a special form of an output.

8

It is only used for debugging during installation, service and maintenance. One or

more functional blocks can be grouped to form a device.

A specific example of a functional block is the Light Switching Actuator Basic

(LSAB), as depicted in Figure 4. This functional block supports the binary switching

of light.

Figure 4: Light Switching Actuator Basic (LSAB) [2]

2.4.2 Data points

Data points are the interfaces of a functional block via which data can be received

and/or transmitted. Every data point definition consists of the following elements:

Format describes the length and semantics of the fields used to build up the data

point type.

Encoding describes how data shall be coded using the given format.

9

Range describes the possible range of values that can may be used. This can be a

maximum and a minumum or a list of possible values.

Unit describes the unit of the information carried by the data point type.

Figure 5 shows a part of the specification of the data point types B1, i.e., all

data point types that represent one binary value. Although the data point value

can only be “0” or “1”, the semantics can differ in each case. The column “Use”

specifies whether this datapoint type can be used without restrictions. Datapoint

types with use G (General) can be used without any restrictions. Datapoint types

with use FB (Functional Block) are subject to regulations and shall only be used for

implementations of standard functional blocks where this datapoint type is used.

[2]

Figure 5: Data point types B1 [2]

10

2.4.3 Communication model

As already pointed out in Section 2.3, each KNX device must have its unique

physical address. Once assigned, this address is stored permanently in its EEPROM.

Physical addresses can be assigned randomly, but should factor in the building

layout. This means, for example, three devices that are located physically next to

each other, should receive consecutive addresses like 3.5.1, 3.5.2, 3.5.2. Besides

clearly identifying a device, a physical address also provides information on the

topographical position as an address follows the format area.line.device. For the

given example this would mean that the three devices are part of line 5 and area 3.

Multicast group addresses are used to enable communication between two or

more KNX devices. There are two types of them:

Two-level addressing A group address consists of a main group and a sub group.

Three-level addressing A group address consists of a main group, a middle group

and a subgroup.

Group addresses are independent from a device’s location. They represent logical

communication links. If an actuator in a communication group changes a value, all

other devices in this group are informed about the change and enabled to react. A

simple example of communication via group objects would be a light switch and two

lights. All devices have a data point which shares the same group address. When

the light switch is pressed, this information is sent to all other devices in this group

object, in this exemplary case, the two lights, which are turned on, or, if pressed

again, turned off.

11

3 OPC Unified Architecture

3.1 History of OPC

Since PC- and software based automation systems became more popular in industrial

automation in the 1990s, a variety of vendor specific field bus systems, protocols

and interfaces have arisen. These different products often pursue the same goal,

but accomplish it in different ways, a fact that makes it difficult to let them com-

municate with each other. Therefore, products of different vendors can be hardly

used together in one big superior system. For this reason, the OPC Foundation was

founded in 1995 consisting of Fisher-Rosemount, Rockwell Software, Opto 22, In-

tellution, und Intuitive Technology. As the first result of their work, they published

the first OPC DA (Data Access) specification in August 1996. This specification

heavily relies on the usage of Microsoft’s COM (Component Object Model) and

DCOM (Distributed COM).

As time passed, the OPC Foundation has published several other OPC specifi-

cations to react to new extended needs of their users. Among many others, three

important specifications are:

• OPC Data Access (OPC DA)

• OPC Alarm & Events (OPC A&E)

• OPC Historical Data Access (OPC HDA)

As the name already implies, Data Access describes the read and write access

of automation data, whereas Alarm & Events is responsible for event based com-

munication and Historical Data Access provides services to access historized data of

automation products. Each specification is implemented as an independent server.

By using Microsoft’s COM and DCOM API, the OPC Foundation can release

their products faster than others can do, which is the decisive factor of OPC’s

success and which makes the majority of automation products vendors join the

foundation. But there are pros and cons either way. First, COM and DCOM are

both platform dependent so they can only be used on Microsoft-based systems and,

secondly, DCOM is highly sophisticated in its terms of configuration and cannot be

used for communication over the Internet. [5]

OPC XML-DA is the first try to make OPC platform independent. As its name

implies, XML-DA adopts the XML format which is widespread over all platforms.

Instead of using COM and DCOM for communication it makes use of HTTP/SOAP

and Web Services to provide the same functionality as OPC DA in a platform in-

dependent way. But also this new OPC specification has its disadvantages, for

instance a very high resource consumption and, compared to COM, the bad perfor-

12

mance of XML, which was evaluated in [6]. Hence, this new specification cannot

entirely convince the users.

3.2 OPC Unified Architecture

In the course of time, OPC has become very popular and got used in many fields

of application, including some where OPC was never thought to be used. As OPC

XML-DA cannot satisfy in terms of both platform indepence and performance,

OPC DA still needs to be used. Let us again summarize the insufficiencies in a neat

arrangement.

1. OPC can only be used on Microsoft-based platforms since it uses COM/D-

COM.

2. Due to the used communication protocol, DCOM cannot be used over the

Internet.

3. The independent servers of DA, H&E and HDA are complex to handle.

4. It lacks in security.

Finally, OPC Unified Architecture shall overcome all these disadvantages and

create a fast and platform independent technology that can become a worthy suc-

cessor of OPC DA. The new OPC UA specification doesn’t only remove the COM

dependency, but also introduces a new way of modelling automation data, which is

described in the following sections.

The OPC UA specification is a multi-part specification which is divided into 13

parts and replaces the OPC DA specification and all other OPC specifications in all

respects. To be able to use existing OPC DA devices there exist so called OPC UA

wrappers. Figure 6 shows an overview of the OPC UA specifications.

3.3 Information modelling in OPC UA

3.3.1 Why use information modelling?

In classic OPC DA, only pure data and no additional information on how to interpret

the read value is available. An example of an OPC DA datapoint is the speed of

a cooling fan. To interpret the speed value, nothing more than a tag name and

some elementary information like the measuring unit will be provided. With the

new concepts of OPC UA, it is now possible to provide more information on a

datapoint’s semantics. The exemplary cooling fan can now be an instance of a

specific device type which allows clients to browse for specific types. As the usage

of types and instances already discloses, OPC UA uses object orientated modelling

structures wherewith even complex structures can be modeled.

13

Figure 6: OPC UA multi-part specification [1]

The OPC UA specification only defines the fundamental infrastructure for in-

formation modelling. How information finally gets modeled in detail, is left to the

vendors. Nevertheless the OPC Foundation wants to ensure a unified modelling

style, which is the reason why there is a predefined base frame vendors can build

on, i.e., there already exist some basic DataTypes, VariableTypes and more from

the OPC Foundation, which can be extended by vendors to meet their requirements.

The following listing gives an overview of the basic principles of information

modelling in OPC UA [5].

Object-orientated modelling Object-orientated modelling benefits from the fact

that type definitions can be reused by creating an infinite number of instances.

Type hierarchies and inheritance ease the modelling of data.

Type information Not only instances of a type get stored in the information model,

but also their type definitions. This means that a client can browse for type

definitions in exactly the same way it browses for datapoints. By having type

information available, a client can filter datapoints for specific types.

Full meshed node networks OPC UA information modelling uses Nodes and Ref-

erences, which allows the creation of every thinkable model.

Extensibility Already existing types can be extended to fit your personal needs.

14

This doesn’t only work for ObjectTypes, but also for VariableTypes, Refer-

enceTypes, DataTypes, etc..

No model limitations Since there are no limitations on how to make a model, it

is very easy to port existing models to OPC UA.

Modelling on server side Only an OPC UA Server needs to save an information

model. Clients or Servers with a Client part can browse a server’s address

space.

In the next sections, some basic concepts and components will be introduced,

which will be needed for the practical part.

3.3.2 Nodes

The starting point of every information model is a Node, which contains Attributes

and References. References again point to other Nodes. Figure 7 illustrates this

node model.

Figure 7: Node model of OPC UA [1]

Attributes are data elements of a Node, which can be accessed with the Services

Read, Write, Query and Subscription/MonitoredItem. The concepts of Services

will be discussed in Section 3.4. Every Attribute consists of an Attribute ID, a

Description, a Name, a DataType and an indicator, which determines if the attribute

is mandatory or optional. There are some basic Attributes which appear in every

Node and which are listed in Table 1. There may be additional Attributes depending

on the NodeClass of the Node.

The NodeId is needed to identify a Node conclusively. Depending on the Node-

Class, several additional Attributes are added to the basic Attributes. The Browse-

Name of a Node is used as textual representation which is shown and used when

browsing nodes. It is a non-localized String, which is the reason why it shouldn’t

be used as node name. The localized name of a Node is stored in the Attributes

15

Attribute DataType

NodeId NodeId

NodeClass NodeClass

BrowseName QualifiedName

DisplayName LocalizedText

Description LocalizedText

WriteMask UInt32

UserWriteMask UInt32

Table 1: Standard Attributes of a Node [5]

DisplayName and Description, which are therefore usable as node name. The last

two Attributes specify which Attributes of a Node are readable in general and

individually by a user. [5]

3.3.3 References

References connect two Nodes with each other. References are not Nodes, but

their type is expressed within the address space. Table 2 lists the Attributes of a

ReferenceType.

Attribute DataType

IsAbstract Boolean

Symmetric Boolean

InverseName LocalizedText

Table 2: Standard attributes of a ReferenceType [5]

The Attribute IsAbstract defines whether this ReferenceType is abstract. Ab-

stract ReferenceTypes are used to organize a type hierarchy and to group other

ReferenceTypes. The Attribute Symmetric determines whether the meaning of

the reference is the same for both directions. For non-abstract and asymmetric

RerefenceTypes it is mandatory to define an InverseName for inverse navigation.

To take advantage of object orientated modelling, ReferenceTypes are organized

in a type hierarchy that allows to extend existing reference types and to create more

spezialized ones. [5]

3.3.4 Objects, Variables and Methods

Modelling the real world in an OPC information model is like modelling it in an

object-orientated programming language with objects, variables and methods. Ob-

jects consist of one or more variables and can execute methods.

16

Nodes of the NodeClass Variable represent a value. Depending on the value

type, a Variable is called a Property or a DataVariable. Properties are used for

“virtual“ data, e.g. set points and engineering units. DataVariables are used to

model real world data, for instance a room temperature. Table 3 summarizes the

additional attributes for Variables.

Attribute DataType

Value Specified by other Attributes

DataType NodeId

ValueRank Int32

ArrayDimensions UInt32[]

AccessLevel Byte

UserAccessLevel Byte

MinimumSamplingInterval Duration

Historizing Boolean

Table 3: Additional Attributes for Variables [5]

The three Attributes DataType, ValueRank and ArrayDimensions specify the

data type of the Value Attribute. The Attribute AccessLevel specifies whether the

Value and the history of the value is readable or writeable. UserAccessLevel has

the same function as AccessLevel but takes user rights into account. The Attribute

MinimumSamplingInterval defines the minimum time it takes to detect changes of

the Value Attribute. This is useful for values not directly managed by the server, for

example temperature values of a temperature sensor. The last Attribute, Historizing,

specifies whether the Value shall be historized.

Nodes of the NodeClass Method represent methods that can be called by a

client and returns a value. Methods are specified through their input and output

arguments. They ought to be fast in execution, that is, if a client calls a method via

the Call Service, the response of this call should already contain the return value

of the invoked method. Otherwise Programs should be used which are designed

for more time expensive tasks. Table 4 shows additional Attributes and Standard

Properties for Methods.

Attribute DataType

Executable Boolean

UserExecutable Boolean

InputArguments Argument[]

OutputArguments Argument[]

Table 4: Additional Attributes for Methods [5]

17

The Attributes Executable and UserExecutable define whether the Method is

executable in general and by users. The optional Properties InputArguments and

OutputArguments define arrays of input and output arguments.

Nodes of the NodeClass Object are used for structuring an information model.

They do not contain data other than the standard node Attributes. Values of an

Object get represented via Variables, so Objects do not contain a Value Attribute

like Variables. Besides the standard node attributes, Nodes of the NodeClass Ob-

ject have only one additional Attribute, which is named EventNotifier and which

determines whether a client can subscribe to the Object to receive Events or not.

[5]

3.3.5 Type definitions

Like instances of Objects and Variables, also their type definitions are defined in the

information model. All advantages of object-orientated modelling can be used to

model type hierarchies. This means, for example, that you can create a model of a

couple of temperature sensors by defining a base temperature sensor type and then

let other vendor-specific temperature sensors inherit the node structure they have

in common. With this approach, for instance, OPC UA clients can be programmed

using the knowledge of the used types to create a device tailored graphical UI.

OPC UA uses the NodeClass ObjectType for object definitions and the Node-

Class VariableType for type definitions. Methods are defined by their browse names

and arguments and are bound to a specific ObjectType, so they don’t need to have

their own type definitions.

ObjectTypes and VariableTypes can be divided into the simple and the complex

ones. Simple ObjectTypes are used for organizing the address space. An example

would be FolderType which is used to group other objects. Simple VariableTypes

can be used to ease the interpretation of a Variable. Generally speaking, simple

ObjectTypes and VariableTypes cannot contain other nodes in their definition. For

modelling such cases you have to use complex type definitions.

Complex types define a structure of Nodes beneath them, that is available on

each instance of the Object- or VariableType.

Besides the standard attributes for nodes, an object definition only adds the

Attribute IsAbstract. This Attribute defines whether the ObjectType is abstract.

Table 5 lists all additional Attributes for VariableTypes.

Like ObjectTypes, VariableTypes can be simple and complex as well. The con-

cept is the same as above. [5]

18

Attribute DataType

Value specified by other Attributes

DataType NodeId

ValueRank ValueRank

ArrayDimensions UInt32[]

IsAbstract Boolean

Table 5: Additional Attributes for VariableTypes [5]

3.3.6 DataTypes

As already said in Section 3.3.4, the Attribute DataType defines the type of a Vari-

able together with ValueRank and ArrayDimensions which again specify whether

the Variable is a scalar value or an array. This enables servers to define their own

DataTypes and clients to access information about them browsing the information

model.

There are four sorts of DataTypes in OPC UA [5]:

Built-in DataTypes These are types, predefined in the OPC UA specification,

which cannot be extended by vendor-specific DataTypes. They include DataTypes

like Int32, Boolean, Double and also OPC UA specific types like NodeId, Lo-

calizedText and QualifiedName.

Simple DataTypes Simple DataTypes are subtypes of built-in DataTypes. An

example of a Simple DataType is Duration which is a subtype of Double. It is

handled on the wire as Double, but the user can read the DataType Attribute

and interpret the value as duration.

Enumeration DataTypes These DataTypes represent a discrete set of named val-

ues.

Structured DataTypes Structured DataTypes are the most powerful tool when it

comes to defining a complex, user-defined model.

3.4 Services

Services are used in the OPC UA client/server model to define data communication

on application level. They provide methods for clients to access data of an informa-

tion model stored on a server. Unlike OPC DA, OPC UA separates the definition of

the services from the used transport protocol and programming environment. This

is a fundamental difference and means that OPC UA is not bound to a specific

transport protocol like COM.

19

To make this possible, it is necessary to define Services on a very abstract level.

This abstract definition can then be applied to several transport mechanisms by the

usage of OPC UA Stacks, which are available in different programming languages.

Currently two transport mechanisms are defined: OPC UA Binary based on TCP/IP

and a Web Service transport mechanism based on SOAP/HTTP.

The OPC UA Services are grouped into the following Service Sets.

• Discovery Service Set

• SecureChannel Service Set

• Session Service Set

• NodeManagement Service Set

• View Service Set

• Query Service Set

• Attribute Service Set

• Method Service Set

• MonitoredItem Service Set

• Subscription Service Set

3.4.1 Basic concepts

All Services in the Service Sets follow the request and response pattern. This means,

in order to call a Service’s method in a server, the client has to send a request. After

this request has been processed by the server, it sends back a response. By using this

pattern, all Services are asynchronous by definition. A client does not have to wait

for the completion of its request and can invoke other requests in the meantime.

As the client and the server do not have to run in the same process or network

node, there can always be transmission failures. For this reason, the client can

configure its own timeouts to define how long it will wait before taking action.

20

4 KNX for OPC UA

The main objective of this paper is to show how to combine the two technologies,

KNX and OPC UA, described in the previous sections, in Java. For this reason,

the “KNX for OPC UA” driver, which will be presented in the following sections,

is based on the KNX Java library Calimero, which offers all desired possibilities

to easily access KNX data points via KNXnet/IP. The OPC UA part builds on

the Comet OPC UA Driver Framework from HB-Softsolution [7]. This framework

provides a driver interface and a server instance which integrates the KNX-specific

driver.

4.1 Laboratory environment

For the practical realization of the data model presented in the following sec-

tions three lights were on hand which were integrated into a KNX network via

a KNXnet/IP-Router. These three lights were assigned the group addresses 0/0/1,

0/0/2 and 0/0/3. Figure 8 shows the laboratory environment.

4.2 HB-Softsolution Model Designer

OPC UA information models are stored in XML format. This format can be easily

processed by computers, but as the amount of elements in an XML file grows,

the data gets harder and harder to read for the human eye. For this reason, HB-

Softsolution provides a model designer which enables the user to create information

models with a graphical user interface, which is depicted in Figure 9.

With the help of this tool it is possible to define OPC UA namespaces and

add nodes and references. It allows to add new types and instances of references,

variables and objects.

4.3 KNX information model for OPC UA

In order to build an information model for KNX, it is necessary to map the KNX

Interworking model with its functional blocks and data point types to nodes and

references in the OPC UA address space. As already stated in [8], the best way to

do this is to use complex OPC UA objects.

As with the current version of the HB-Softsolution Model Designer it was not

possible to create data types, the given model from [8] had to be adapted by

replacing all complex data types with primitive data types like String or Boolean to

map KNX data point types. Figure 10 shows the KNX information model which

will be used in the following sections. It introduces new reference types, variable

types and object types.

21

Figure 8: Laboratory environment

The reference type HasKNXAddress, a subtype of NonHierarchicalReferences,

is one of the most important types. It connects a data point of a functional block

with a GroupObject (KNXGroupObjectType) and its group address (KNXGroupAd-

dressType) and therefore represents the KNX multicast communication model. Fur-

thermore, there are three new subtypes of HierarchicalReferences called HasInput-

Datapoint, HasOutputDatapoint and HasParameter, which are used to connect the

different types of data types (Input, Output, Parameter) with a functional block.

The new abstract variable types, KNXAddressType and KNXDataPointType,

are both subtypes of the BaseDataVariableType. They are, in turn, supertypes of

other non-abstract variable types like the KNXGroupAddressType mentioned above

and some KNX data point types like SwitchOnOffType, InfoOnOffType, etc.. As

object type, the model introduces the KNXFunctionalBlockType, which shall be the

supertype of all KNX functional blocks, and the KNXGroupObjectType. The only

modelled functional block for this work shall be the KNXDimmingSensorBasicType,

which allows to switch on and off a light and view its current status. The dimming

22

Figure 9: HB-Softsolution Model Designer

functionality was not implemented.

Figure 11 shows a specific example for how to use the newly introduced object,

variable and reference types.

4.4 HB-Softsolution OPC UA Driver Framework

As mentioned above, the Comet OPC UA Driver Framework, developed by HB-

Softsolution, was used as base for the OPC UA Server and its KNX driver. The

framework provides an OPC UA Server instance which loads included driver JAR

packages from the classpath.

4.4.1 Framework structure

With the help of a wizard for the IDE Eclipse which allows the creation of all needed

Java files in just a few clicks, the user can easily start with a new Comet OPC UA

Server instance and an empty driver project. The wizard generates two Eclipse

projects, one for the OPC UA Server and one for the driver package.

23

F
ig

u
re

10
:

K
N

X
in

fo
rm

at
io

n
m

o
d

el
fo

r
O

P
C

U
A

24

Figure 11: Model example

4.4.2 Server application

Figure 12 depicts the folder and file structure of the server project. The server

application contains only one Java file which represents the OPC UA Server instance

and therefore is the main class used to launch the server.

The other folders and files have the following purpose:

certificateStore stores all the public and private keys and certificates which are

used for authentification.

InformationModel stores the information models for this server instance in XML

format. The KNX Server discussed in this work will only load the information

model depicted in Figure 11, which is stored in the file knx.xml.

lib contains all the necessary additional libraries, for instance, the HB-Softsolution

OPC Server SDK or Calimero, the KNX Java library.

serverconfig contains a file named serverconfig.xml, which stores all server specific

information like the server’s address, its name, available security policies, etc..

serverconfig.properties stores the IP address of the computer that runs the server.

This is necessary to successfully connect to the KNX router. If this file does

25

Figure 12: Server application structure

not exist or is empty, the user has to manually enter the IP on the server’s

startup.

4.4.3 Integrating a custom driver

A Comet driver project has the following structure:

lib contains all the libraries needed for the specific driver. In this case, only the

Calimero Java library, the OPC UA Java stack and some logging utilities are

needed.

src contains two Java files: the interface ICometDriverConnection, already imple-

mented by HB-Softsolution, provides useful methods to work with nodes,

which will be described above. The class CometDRVManager contains the

implementation of the read, write and subscribe methods and will be discussed

in the next section.

Integrating a custom driver can be easily done by just packing the driver project

into a JAR and then adding this JAR to the server’s classpath.

4.5 KNX driver implementation

As already mentioned, all communication between OPC UA and KNX takes place

in the Java class CometDRVManager, which is depicted in Figure 13. This class

then gets accessed from the server, which executes methods to read, write and

26

subscribe nodes of the KNX information model. These methods are described in

the following:

Figure 13: Communication between Server and Driver

p u b l i c StatusCode l o a dD r i v e r s ()

This method gets called during the server startup. It stores the namespace index

for the KNX driver and initializes the connection to the KNX network. To be able

to do this via Calimero, it is necessary to know the computer’s IP address. For this

reason, the already mentioned serverconfig.properties file was created. Without this

file the user has to manually enter the IP address.

27

p u b l i c ReadResponse syncReadValue (NodeId nodeId , l ong s e nd e r S t a t e)

This method gets called at every read request of a client. As not all nodes are

of interest to every driver, it comes to decide if the node belongs to the driver’s

information model. For KNX, this can be done by trying to find the node’s group

address since Calimero needs to know the corresponding group address to read a

value.

p u b l i c WriteResponse syncWr i t eVa lue (NodeId nodeId , DataValue va lue ,

l ong s e nd e r S t a t e)

Analogous to the read method, the write method also needs to know, if the

node to be written belongs to the driver’s sphere first. If so, the driver again uses

Calimero to write a value to the corresponding group address.

p u b l i c WriteResponse a syncWr i t eVa lue (NodeId nodeId , DataValue va lue

, l ong s e nd e r S t a t e)

p u b l i c ReadResponse asyncReadValue (NodeId nodeId , l ong s e nd e r S t a t e)

Besides the synchronous read and write methods, there are also their asyn-

chronous counterparts.

p u b l i c v o i d prepareRead (NodeId node Id)

p u b l i c v o i d p r epa r eWr i t e (NodeId node Id)

Before each read and write request, one of these methods gets called. When the

desired node is ready to be read or written, a flag is set, which is the prerequisite

for the read and write method to be called.

p u b l i c StatusCode r e g i s t e r N o t i f i c a t i o n (Node node ,

Mon i to r ed I t emCrea teReques t i temToCreate)

p u b l i c StatusCode u n r e g i s t e r N o t i f i c a t i o n (NodeId node Id)

p u b l i c StatusCode mo d i f yN o t i f i c a t i o n (NodeId nodeId ,

Mon i to red I temModi fyReques t itemToModify)

These three methods are responsible for OPC UA subscriptions. As their names

already imply, they allow to register, unregister and modify a subscription/notifi-

cation. On every registration of a node, its node id is stored in a Java hash map.

This map maps a group address to a list of nodes which have data points connected

to this group address. The KNX driver uses a Calimero LinkListener to listen to

28

changes on the KNX bus. On every change at a KNX group object, a method is

called, which processes the change. This means, all nodes mapped to the group

address are updated.

p r i v a t e S t r i n g getGroupAddres sVa lue (Node group)

p r i v a t e L i s t<GroupAddress> getGroupAddress (NodeId node Id) throws

KNXFormatException

The last two methods are private helper methods. The first expects a node as

parameter, which has a KNXGroupAddressType connected to it (see Figure 11) and

returns the value of the GroupAddress variable. The latter calls the first method

and converts the group address from String to Calimero objects.

29

5 Conclusion and Outlook

This paper showed how an information model for a KNX network can be created

with the help of the possibilities given by OPC UA. Furthermore, it presented the im-

plementation of a KNX driver for the Comet Driver Framework of HB-Softsolution,

with the help of which it is possible to receive read-, write- and subscribe commands

from OPC UA clients and further automatically convert these into KNX commands.

OPC UA, compared to OPC DA, offers many new features like platform inde-

pendence and strong information modelling capabilities. But it will take some time

until these features will be in wide use. In the meantime, the OPC Foundation

offers a OPC DA wrapper that maps Classic OPC DA data to OPC UA base types

and, in this way, ensures backward compatibility and eases the change to the new

technology.

The data model used in this paper contains three lights which were modelled

as KNX functional blocks of the type DimmingSensorBasic. In order to model

a whole building, other KNX functional blocks such as light dimming actuators,

sunblind sensors/actuators, HVAC sensors/actuators, etc. could be modelled as

OPC UA objects. Besides KNX, other protocols like ZigBee [9], BACnet [10][11]

or LonWorks [12] can be controlled via separate drivers1. Thus, various protocols

could be operated platform independently and with only one management tool in a

building.

1The implementation of a BACnet driver can be found in [13].

30

References

[1] OPC Unified Architecture Specification. OPC Foundation, 2009.

[2] KNX Specification Version 2.0. Konnex Association, 2009.

[3] Information technology - Home Electronic Systems (HES) Architecture.

ISO/IEC 14543-3, 2006.

[4] KNX Association. Interworking. http://www.knx.org/knx-standard/

interworking/, November 2011.

[5] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC Unified

Architecture. Springer, 2009.

[6] Hidehiko Wada Katsuji Usami, Shin-ichi Sunaga. A Prototype Embedded XML-

DA Server and its Evaluations. Technical report, Yokogawa Electric Corpora-

tion, October 2006.

[7] HB-Softsolution. http://www.hb-softsolution.com/, November 2011.

[8] Wolfgang Granzer, Wolfgang Kastner, and Paul Furtak. KNX and OPC UA.

In Konnex Scientific Conference, November 2010.

[9] Zigbee specification 2007, 2007.

[10] BACnet – a data communication protocol for building automation and control

networks. ANSI/ASHRAE 135, 2008.

[11] Building automation and control systems (BACS) – part 5: Data communica-

tion protocol. ISO 16484-5, 2010.

[12] Control Network Protocol Specification. ANSI/EIA/CEA 709 Rev. B, 2002.

[13] Andreas Fernbach, Wolfgang Granzer, and Wolfgang Kastner. Interoperability

at the Management Level of Building Automation Systems: A Case Study

for BACnet and OPC UA. In Proc. of 16th IEEE Conference on Emerging

Technologies and Factory Automation (ETFA ’11), September 2011.

31

http://www.knx.org/knx-standard/interworking/
http://www.knx.org/knx-standard/interworking/
http://www.hb-softsolution.com/

	Introduction
	Motivation
	Aim of this work
	Structure

	KNX
	Introduction to KNX
	Physical media
	Topology
	Interworking
	Functional blocks
	Data points
	Communication model

	OPC Unified Architecture
	History of OPC
	OPC Unified Architecture
	Information modelling in OPC UA
	Why use information modelling?
	Nodes
	References
	Objects, Variables and Methods
	Type definitions
	DataTypes

	Services
	Basic concepts

	KNX for OPC UA
	Laboratory environment
	HB-Softsolution Model Designer
	KNX information model for OPC UA
	HB-Softsolution OPC UA Driver Framework
	Framework structure
	Server application
	Integrating a custom driver

	KNX driver implementation

	Conclusion and Outlook

