Faculty of Informatics

FAKULTAT
FUR INFORMATIK

Fine-grained authorization in
Constrained RESTful
Environments

BACHELOR'’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Bachelor of Science
in
Software and Information Engineering
by

Thomas Schmidleithner
Registration Number 1025525

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.-Prof. Dr. Wolfgang Kastner
Assistance: Dr. techn. Markus Jung

Vienna, March 16, 2015

Thomas Schmidleithner Wolfgang Kastner

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Thomas Schmidleithner
Abelegasse 26/11/11, 1160 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit -
einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) Thomas Schmidleithner

Abstract

Since the Internet of Things enables access to real-world objects which gather data about their
environment, access to these objects has to be secured. Consequently, an authentication mech-
anism is needed to grant proper protection. Therefore, the ratified standard XACML, an access
control policy language, is used to provide fine-grained access to these objects. The scope of
this work is to extend an access control concept in order to authorize objects on a domain level
for maintainability reasons. State-of-the-art technologies for a middleware and the access con-
trol concepts are presented. Furthermore, a Policy Decision Point which acts as an endpoint
for authorization requests is implemented as a proof-of-concept for both protocols HTTP and
CoAP.

iii

(I Introduction|

Contents

[I.1 Technologies for the Internet of Things|.

[1.2 Privacy

Challenges in the Internet of Things|

2.2 6LoWPAN|

2.3 Representational State Transfer{.

[2.4 Constrained Application Protocol|. o0

[2.5 Open Building Information Xchange|

2 A

ntroll e

[2.7 eXtensible Access Control Markup Language|

I3 Access Control Concept|

3.1 System Overview| e

[3.2 Motivation to fine-grained XACML-policies|

[3.3 Authorization with constraints on history objects|

4 Proof-of-Concept|

AT The IoT

SyS integration middleware|o o000 oo L

4.2 Implementation|

6 Conclusion

v

L W D -

S O 0 3N L

15

16
16
17

19
19
20

25
25
25
27
30

37

39

55

59

CHAPTER

Introduction

The Internet has a massive and permanent influence on our everyday life. Within this global
system of interconnected devices and networks, data generation and data exchange is one of the
main tasks in a network of networks but this process is still dependent on the input of human
beings. Regarding the term Internet of Things (IoT), in which a large number of (tiny) networked
devices are communicating with each other, data are generated and shared between a variety of
things or objects. Haller et al. [4] defined the term IoT as follows:

“A world where physical objects are seamlessly integrated into the information net-
work, and where the physical objects can become active participants in business
processes. Services are available to interact with these ’smart objects’ over the
Internet, query their state and any information associated with them, taking into
account security and privacy issues”.

Considering potentialities, a wide spectrum of applications in different domains is offered by the
IoT. Atzori et al. [1] grouped these domains in different categories, namely:

e Transportation and logistics domain: instrumenting vehicles with sensors, actuators
and processing powers, roads and transported goods with tags and sensors, which allow
sharing traffic and transportation information.

o Healthcare: tracking of objects and people such as staff and patients, identification and
authentication of them as well as collecting and sensing data automatically.

e Smart environment (home, office, plant) domain: distributed sensors and actuators in
buildings which automatically self-adjust environment settings and/or monitor and react
on specific threshold settings.

e Personal and social domain: populate information from the recent past between social
relationships. Information refers to traveling, losses (last recent location information of
objects) and security concerning devices which have been removed from a restricted area.

1.1 Technologies for the Internet of Things

Advances in the field of the [oT have created a broad range of technologies in this area. A slight
impression of the key and enabling technologies is provided by Atzori et al. who classified these
technologies in two primary categories [[1]:

Identification, sensing and communication technologies

As a key component, RFID tags which are characterized by a unique identifier and used for
identifying real physical objects are mentioned. RFID is an abbreviation for radio-frequency
identification and is used for identifying and tracking objects automatically.

Observing the environment with sensor networks and communicating sensing information
between devices is another challenge in the IoT. Here, the wireless personal area network (WPAN)
comes into play which is mainly based on the IEEE 802.15.4 standard with low-power and a
low-bit rate communication [3]].

Middleware

A software layer, which connects different enterprise applications and technologies in a dis-
tributed computing system to offer a single, standardized API is called a middleware. Hiding
implementation details of different applications and technologies is one of the main tasks and
therefore, it should be easier for the developer to focus on details in terms of the specific ap-
plication instead of the entire environment. Furthermore, a middleware is important for linking
modern applications with legacy systems.

1.2 Privacy Challenges in the Internet of Things

Having everything connected in the IoT is not only representing an advantage: objects must also
be ensured to prevent unauthorized access and identification in privacy terms [14]. This autho-
rization and authentication process is difficult to fulfill, even more difficult if such environments
should be scalable. Thus, an advanced and fine-grained authorization concept is needed, which
handles these problems [6]]. This work should provide an overview of some related technologies
for authentication in the Internet of Things, furthermore a fine-grained authorization approach is
suggested and implemented.

1.3 Motivation

Such domains which were defined by Atzori et al. [1]] entail different constraints that have to be
considered. Power limitations and security authentication mechanisms are only a small propor-
tion of these:

e Low power in constrained environments: As devices in the IoT will be more and more
battery-operated, a power-efficient protocol has to be used. The Constrained Application
Protocol (CoAP) by Shelby et al. [11]], which is a proposed standard since June 2014, was

designed for IP(v6) based communication using RESTful Web services for most of the
constrained devices by the Internet Engineering Task Force (IETF) Constrained RESTful
environments (CoRE) Working Group.

o Authentication mechanism: Communication between different things has to be ensured
that unauthorized access and unauthorized identification is prevented. Certainly autho-
rization and authentication in such environments can be difficult to establish considering
the problem, that the access control policies are stored at a centralized machine and not re-
dundantly on each device. Therefore, devices need to be verified for proper authorization
rights which, especially in environments with small devices and weak processing power,
is a challenging topic.

1.4 Aim of this Thesis

The scope of this work is to provide a fine-grained authorization mechanism for dealing with the
control of objects and information in a constrained environment as a proof-of-concept. Further-
more, latency within constrained environments of this proof-of-concept should be evaluated for
recursively capsulated objects. Additionaly, the current IoTSyS middleware has to be extended
to allow authorization on HTTP and CoAP requests.

1.5 Structure of the Thesis

Chapter [2| provides state of the art concepts and technologies used within this work. For each
of the technologies, a short overview is presented. In Chapter [3| we describe the fundamental
access control concept which is used for the proof-of-concept described in Chapter 4 Chapter
5] provides an overview of the performance evaluation with various use cases in constrained
environments. The last chapter contains the conclusion, summarizes the results and provides an
outlook for possible extensions and further thoughts of this work.

CHAPTER

State of the Art Concepts and
Technologies

2.1 Internet Protocol version 6

Due to the depletion of the address space of unallocated Internet Protocol version 4 (IPv4) ad-
dresses, the Internet Protocol version 6 (IPv6) was developed as the successor protocol to IPv4.
By using a 128-bit address in IPv6 [2]] instead of a 32-bit address which was used in IPv4, IPv6
expands the address space from 232 to 2'2® unique Internet addresses (approximately 3.4 x 1038
addresses). Thus, more levels of addressing hierarchy and a larger number of addressable nodes
are supported. The stateless address auto-configuration simplifies address assignment by auto-
matically configuring a host itself when connected to an IPv6 network. Another change to IPv4
is the simplified header. Some fields have been dropped, others have been made optional to
reduce the bandwidth cost of IPv6. Furthermore, an IPv6 header allows greater flexibility for
enabling new options and traffic handling, such as quality of service or “real-time” service with
the new flow labeling capability. Support for authentication, data integrity and data confiden-
tiality are also specified as an extension to IPv6. Identification of an IPv6 host is enabled by an
IPv6 address which consists of eight blocks separated by colons. Each of these blocks contains
four hexadecimal digits. The IPv6 header is shown in Figure[2.1]

0 1 2 3
01234567890123456789012345678901
e e T T e a2

|Version| Traffic Class | Flow Label IPvé
e e e T R i Tt e T e e et Tt o et Tk el R |
| Payload Length | Next Header | Hop Limit

R e e s s T ok it dE SR T

Source Address

|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
Destination Address +
|
+
|
+

+
|
+
|
+
|
+
|
e T s s e A e e e e e e
|
+
|
+
|
+
|
+

R e e i it e T e R R

Figure 2.1: Standard IPv6 header without payload field [9]]

2.2 6LoWPAN

The IPv6 over Low-Power Wireless Area Networks (6LoWPAN) concept is a standard for en-
abling IPv6 communication in networks with very limited processing capability and low-power
devices. Shelby et al. [9] defined 6LoWPAN as follows:

“6LoWPAN standards enable the efficient use of IPv6 over low-power, low-rate
wireless networks on simple embedded devices through an adaptation layer and the
optimization of related protocols.”

Compared to the traditional IP protocol stack, the IPv6 protocol stack with 6LoWPAN has some
different aspects which are shown in Figure[2.2] One of the main characteristics for (LoOWPAN is
the header compression, which limits the payload size of packets provided by IEEE 802.15.4 and
making it most efficient if all IPv6 packets can fit into a single IEEE 802.15.4 packet. Further,
different aspects compared to the traditional IP protocol stack are enumerated as follows:

e Support for IPv6 only (implemented in the LoOWPAN layer which is often part of the
network layer).

e The user datagram protocol (UDP) is the most commonly used protocol in the trans-
portation layer. Due to performance, efficiency and complexity reasons the Transmission
Control Protocol (TCP) is typically renounced.

e Control messaging (e.g., ICMP echo, destination unreachable) is implemented by the
Internet Control Message Protocol v6 (ICMPv6).

e Application specific formats or binary formats are often used for the application proto-

cols.
IP Protocol Stack 6LOWPAN Protocol Stack
HTTP RTP Application Application protocols
TCP UDP ICMP Transport UDP ICMP
IP Network IPv6
_ LoWPAN
Ethernet MAC Data Link IEEE 802.15.4 MAC
Ethernet PHY Physical IEEE 802.15.4 PHY

Figure 2.2: IP and 6LoWPAN protocol stacks [9]]

2.3 Representational State Transfer

The architectural style of the World Wide Web is based on Representational State Transfer
(REST) which follows a simple request/response pattern. On the one hand, a client accesses a
resource on a server which is identified by a Uniform Resource Identifier (URI) by specifying an
operation. On the other hand, the server sends back a response in a semistructured format like
XML or JSON to the client. Mapped to HTTP, operations are GET, PUT, POST and DELETE,
just to name the most important ones. The interaction between requests is stateless, thus, each
request by a client has to contain all information which are necessary for the server to handle the
request (like a session state). Compared to the SOAP- or RPC protocol, REST aims to provide
a lightweight way for operating on distributed resources but is not an official standard.

2.4 Constrained Application Protocol

The Constrained Application Protocol (CoAP) by Shelby et al. [11] was designed for IP(v6)
based communication using RESTful Web services for most constrained devices. It was released
by the Internet Engineering Task Force (IETFE Constrained RESTful environments (COREf]
Working Group and is a proposed standard since June 2014. In the 10T, devices provide informa-
tion for instance about their environment via sensors and actuators. This information should be

"http://www.ietf.org, access on 30 July, 2014
Thttp://datatracker.ietf.org/wg/core/documents, access on 30 July, 2014

http://www.ietf.org
http://datatracker.ietf.org/wg/core/documents

accessible via a Web server running on these devices, but since IoT devices are often very small
in sense of processing and memory capabilities, a lightweight protocol like CoAP is needed.
Since CoAP is a RESTful protocol, it can be simply modified to enable HTTP support. The
protocol supports the basic method types GET, PUT, POST and DELETE and also OBSERVE
which allows subscription to another device to receive push notifications on resource changes.
A CoAP request is sent by a client to request an action of a resource on a server and is similar to
an HTTP request. The response is sent back by the server with an appropriate response code. As
CoAP is bound to a datagram-oriented transport protocol such as UDP (which is connectionless)
by default, these interchanges are asynchronously. Furthermore, unicast and multicast requests
are also supported.

2.5 Open Building Information Xchange

Open Building Information Xchang{] (oBIX) is an industry-wide initiative to define XML- and
Web Service-based mechanisms for building control systems [13]] and was developed by the
Organization for the Advancement of Structured Information Standards (OASIS). oBIX is im-
plemented as a RESTful approach, a resource centric architectural style for Web Services [[7].
The aim of oBIX is that each device in a building automation environment should be represented
as an oBIX object (which contains information about the environment) and accessible by a URI
(Uniform Resource Identifier). In detail, oBIX is built on following concepts:

A flexible object model for describing data and operations is provided by oBIX. The object
model defines a set of base objects with data types like booleans, numerics, strings, datetimes,
enumerations and URIs. In oBIX, everything is realized as an object and every object can be
accessed by a URI. Objects are mapped to physical entities and they represent their own state
(e.g., a temperature sensor with a temperature value, a light with a boolean value). An object
is based on the object model and can be encapsulated recursively with child objects. This gives
the concept a high flexibility when dealing with compositions of complex building abstractions.
Subtyping (is-a) as well as composition (has-a) are supported. Setting the is value of an object
ensures that at least all fields of the according type are available. Choosing a semistructured lan-
guage like XML as encoding syntax for oBIX objects makes requests and responses machine-
and also human readable. Base object types like int are directly mapped to individual XML
elements. Individual attributes for an object are subobjects and nested within their parent object.
An example for an oBIX object is represented in XML Listing 2.1 which shows a smartmeter
object that refers to the type 1ot : SmartMeter with a power and an energy value.

Listing 2.1: oBIX object

<obj href="smartmeter/" is="iot:SmartMeter">
<real name="power" href="smartmeter/power" val="0.0"
unit="obix:units/watt"/>
<real name="energy" href="smartmeter/energy" val="0.0"
unit="obix:units/kilowatthours"/>
</obj>

3See also http://www.obix.org/what.htm, accessed 14 February, 2014

An object must have a name to identify a subobject within a composite object (e.g., in Listing[2.]
the smartmeter has two values, every value with a distinct name like power and energy). A set
of operations (read, write, invoke and delete) which are mapped to HTTP operations
like GET, POST, PUT, DELETE enables control over these resources. Even custom operations
are supported and have to be defined like any other custom object. Support for binary encoding
allows a compact representation and makes oBIX well suited for 6LoWPAN devices and in
general for low bandwidth usage.

A history object provides a list of timestamped changes correspondly to the object. As soon
as an object changes one of its values, a new timestamped entry is added to this list. Querying
this list is possible by setting a start time, an end time and the maximum number of entries in
this list.

With the lobby object, an overview of all gateway handled oBIX objects is provided as a
tree with concrete href values and can be accessed by the well-known address.

2.6 Access Control

Authorization and authentication has to be part of data sensitive systems. Such systems have to
ensure that access is granted to authorized users and objects only. Ravi Sandhu and Perangel
Samarati [8]] described the access control concept as follows:

“The purpose of access control is to limit the actions or operations that a legitimate
user of a computer system can perform. Access control constrains what a user can
do directly, as well as what programs executing on behalf of the users are allowed
to do.”

Various interconnected accessible objects in the IoT make it necessary to provide an access
control concept which fits into the security and privacy prescription. Different access control
requirements result in various access control approaches [10].

Mandatory Access Control

One access control mechanism is called Mandatory Access Control (MAC) which uses a subject
to perform an operation on an object. Typically, a subject represents a user, a process or a
thread. An object (also known as target) represents some sort of constructs such as files, devices,
systems or others. This system-controlled policy mechanism restricts access to operations by
subjects on selected objects. Subjects in such systems do not have the ability to override the
policies and, therefore, have to be controlled by a security administrator.

Discretionary Access Control

The decision result for accessing a resource in the Discretionary Access Control concept is based
on the identity of the subject which enables access control per subject. A subject can also pass
the permissions to another subject, if the subject has the privilege to grant such permissions.

Role Based Access Control

In a system with Role Based Access Control (RBAC) permissions are associated with roles and
each user is assigned to at least one role (or a set of roles). If the system has more different users
than different roles, the management of permissions in such systems is rather simplified. This
concept is a mitigated form of the Discretionary Access Control concept.

Attribute Based Access Control

An Attribute Based Access Control concept (ABAC) uses attributes which are combined to a
policy. A policy contains types, such as user attributes, resource attributes and environment at-
tributes. This modern concept allows fine-grained access control. One standard that implements
this concept is called XACML.

2.7 eXtensible Access Control Markup Language

One implementation of the ABAC concept is called the Extensible Access Control Markup Lan-
guage (XACML) which is a standard that defines a declarative access control policy language.
Its schema is provided in XML [[12f]. An XACML-engine provides a request with information
regarding the requested information and a policy with the constraints of an environment. As a
result, the XACML-engine gives an output which is Permit, Deny or NotApplicable:

e Permit means that access to a requested resources is positively authorized and therefore
the requested action can be performed.

e Deny is the decision result, if access to a requested action is not authorized and therefore
access is denied.

e NotApplicable means that the engine could not find any policies for making a deci-
sion and, therefore, access is not possible.

An architectural view of the policy language model is shown in Figure 2.3

History

The Organization for the Advancement of Structured Information Standards (OASIS) ratified
eXtensible Access Control Markup Language v1.0 in February 2003. In February 2005, OASIS
ratified XACML v2.0 which is currently used within this thesis.

The current version of XACML is v3.0 which was standardized by OASIS in January 2013.

XACML-request

An XACML-request is based on data values which are necessary for making an authorization
decision. These data values are separated by different elements with Sub ject-, Resource-,
Action- and Environment information. Every single element contains various informa-
tion such as a subject-id, a resource—-id, an action-id and can hold also custom

10

1 PolicySet

1

Policy
Combining
Alogorithm

1 B
0.* 0..

Target < Policy Obligation

0.* 0.*

Subject Resource Environment Rule
Combining

Algorithm

0.1 1

Condition Effect

Figure 2.3: XACML Policy Language Model

information. Listing [2.2] provides the basic structure of an XACML-request. Within a basic
XACML-request, a subject (Line 6) requests a specific resource (Line 7) to execute an action
(Line 8). Additionally, environment settings (Line 9) such as the current system time can be
attached to the XACML-request.

Listing 2.2: Basic XACML-request

<Request xmlns="urn:ocasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:oasis:names:tc:xacml:2.0:context:schema:os
xacml-2.0-context.xsd">

<Subject><Attribute AttributeId="..." /></Subject>
<Resource><Attribute AttributeId="..." /></Resource>
<Action><Attribute AttributeId="..." /></Action>

<Environment />

</Request>

11

XACML-policies

XACML-policies are separated by different Po1icy-elements withinaPolicySet. APolicySet
can contain different Policy-elements which can also be recursively encapsulated and each
Policy-element can contain different Rule-elements. Furthermore, the Rule-element can
contain a Description- and a Target-element.

Listing 2.3: Basic XACML-policy

<PolicySet xmlns="urn:ocasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os
http://docs.ocasis-open.org/xacml/access_control-xacml-2.0-policy—
schema-os.xsd" PolicySetId="..." PolicyCombiningAlgId="...">

<Target />
<Policy PolicyId="..." RuleCombiningAlgId="...">

<Description>The policy description</Description>
<Target>...</Target>

<Rule RuleId="..." Effect="Permit">
<Condition>...</Condition>
</Rule>
</Policy>
</PolicySet>

XACML decision-making

In order to make decisions, we extract the XACML-request and apply it to the XACML-policies.
As we have multiple policies in one policy set, the question about the final result of conflictive
policy decisions arises. XACML specifies two combining algorithms for this problem:

o If at least one policy decision response is permit (and optional all others are deny) and the
final evaluation output is permit, the algorithm is called permit-overrides.

/\ Permit, | A /\ Deny,, | = Permit

n>0 m>0

e By analogy, if at least one policy decision response is deny (and optional all others are per-
mit) and the final evaluation output is deny, the algorithm is called deny-overrides.

/\Permz’tn A /\ Deny,, | = Deny

n>0 m>0

e If no policy is applicable, the decision response is NotApplicable.

12

Listing shows an XACML-decision response evaluated and positively emitted by the Policy
Decision Point (PDP), which is responsible for evaluating access requests against authorization
policies.

Listing 2.4: XACML decision response

<Response xmlns="..." xmlns:xsi="..." xsi:schmemalLocation="...">
<Result>
<Decision>Permit</Decision>
</Result>
</Response>

A Policy Enforcement Point (PEP) can be used to intercept access requests and forwards a deci-
sion request to the PDP. Depending on the decision response, the PEP can execute any action.

Enterprise-Java-XACML compared to Sun’s XACML implementation

The most popular implementation of XACML is realized by Sun. Compared to the Enterprise-
Java-XACML implementation, the implementation of Sun has some missing features like caching
of the policy evaluation result, or the missing policy search mechanism. On incoming requests,
Suns XACML implementation applies each policy which results in heavily reduced performance
for a high number of requests. Furthermore, it is not possible that multiple policies match a sin-
gle request. Another problem is, that, without writing a wrapper, it is only possible to share
policies in files.

13

CHAPTER

Access Control Concept

3.1 System Overview

The system is composed of constrained wireless motes, a gateway and a RPL border router. Pol-
icy decision requests can be performed from outside of the constrained network by a requestor
but also inside by the motes. An overview is given in Figure [3.1]

e Constrained wireless motes: In a sensor network, a mote represents some type of sensor
hardware. These motes are responsible for collecting information within its scope. Since
most of these motes are very limited by their processing power and memory capabilities,
it is not possible to perform powerful actions on them.

o RPL border router: The RPL border router provides the PEP. It is responsible for for-
warding resource requests to the PDP, as soon as the policy decision arises, it can be
forwarded to its motes.

e Gateway: The gateway provides the Policy Decision Point for granting authorization to
specified resources based on the incoming XACML-request.

15

Constrained Network

()

Mote Y
[ﬁflncoming Request—
RPL border rduter with PEP
Raspberry Pl with PDP ((()>
Mote X

Figure 3.1: System Overview

3.2 Motivation to fine-grained XACML-policies

By the use of the oBIX standard, it is possible to fetch detailed information about the behavior of
users. Thus, protection of data privacy is an important part of such environments. Therefore, the
XACML policy language is used as a generic access control concept. To give the user a higher
control of the corresponding oBIX objects, it is necessary to increase the generic access control
to a fine-granular access control on an environment domain level.

3.3 Authorization with constraints on history objects

For making an authorization decision about requests on history objects, it is necessary to supple-
ment the default decision request with additional start- and end date constraints. The start- and
end date attributes can fit as part of one of the elements like Sub ject-, Resource-, Action-
and Environment and just depend on the corresponding implementation and their policy.

Listing 3.1: Extended XACML-request (History)

<Attribute AttributelId="start-date"
DataType="http://www.w3.0rg/2001/XMLSchema#dateTime">
<AttributeValue>history-start-datetime-value</AttributeValue>

</Attribute>

<Attribute AttributeId="end-date"
DataType="http://www.w3.0rg/2001/XMLSchema#dateTime">
<AttributeValue>history-end-datetime-value</AttributevValue>

</Attribute>

The policy in Listing[3.2] can be wrapped within a PolicySet. The Effect attribute can
either be Permit or Deny. It is possible to replace applying functions by other functions with

16

the condition, that these operate with datetime values. With the

SubjectAttributeDesignator the dynamic parameters are passed to the request (and

could also be replaced by ResourceAttributeDesignator, ActionAttributeDesignator
or EnvironmentAttributeDesignator). The custom namespace for the history con-

straints is urn:tuwien:auto:iotsys.

Listing 3.2: XACML-policy (History)

<Policy PolicyId="..." RuleCombiningAlgId="...">
<Description/>
<Target/>
<Rule RuleId="..." Effect="...">
<Condition>

<Apply FunctionId="function:dateTime-greater-than-or-equal">
<Apply FunctionId="function:dateTime-one-and-only">
<SubjectAttributeDesignator AttributeId="start-date"
DataType="http://www.w3.0rg/2001/XMLSchema#dateTime" />
</Apply>
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchemafdateTime">
matching-datetime-value
</AttributeValue>
</Apply>
</Condition>
</Rule>
</Policy>

3.4 Authorization on a domain level

To allow domain control for oBIX objects, the IoTSyS-XACML module needs to be extended.
Permitting or denying requests on a domain level is only possible, if the requested resource
knows to which domain it belongs. Thus, iterating the basic oBIX lobby tree to get information
about which domains the requested object belongs to, is the presented approach. Within this
approach, a recursive function which tries to iterate through the tree is needed. The function
iterates until it finds a domain object to which the requested oBIX object belongs to. The domain
attribute can also be part of one of these elements such as Subject-, Resource-, Action-
or Environment. The attribute element may contain various AttributeValue elements
and each of these elements represents a domain from the iterated oBIX tree.

Listing 3.3: Extended XACML-request with a set of domains

<Attribute AttributeId="domain"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>first-domain</AttributeValue>
<AttributeValue>second-domain</AttributeValue>
<AttributeValue>x-domain</AttributeValue>
</Attribute>

The policy below can be wrappedinaPolicySet with anattribute PolicyCombiningAlgId
and as a value either permit-overrides ordeny-overrides, the value for Ef fect can

17

be Permit or Deny. A matching function (e.g., string—-equal) can be chosen to match
one or more domains. The custom namespace for the work with domain objects in Listing[3.4]is
urn:tuwien:auto:iotsys.

Listing 3.4: XACML-policy (Domain)

<Policy PolicyId="..." RuleCombiningAlgId="...">
<Description>Policy </Description>
<Target />
<Rule RuleId="..." Effect="...">
<Target>
<Resources>
<Resource>
<ResourceMatch MatchId="function:string-equal">
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string">
matching-domain
</Attributevalue>
<ResourceAttributeDesignator AttributeId="resource:path"
DataType="http://www.w3.0rg/2001/XMLSchemaf#string" />
</ResourceMatch>
</Resource>
</Resources>
</Target>
</Rule>
</Policy>

18

CHAPTER

Proof-of-Concept

4.1 The IoTSyS integration middleware

A combination which provides the technologies from Chapter 2 in a middleware is realized in
the IoTSyS middleware [5]] which is defined as follows:

“IoTSyS is an integration middleware for the Internet of Things. It provides a com-
munication stack for embedded devices based on IPv6, Web services and oBIX to
provide interoperable interfaces for smart objects. Using 6LoWPAN for constrained
wireless networks and the Constrained Application Protocol together with Efficient
XML Interchange an efficient stack is provided allowing using interoperable Web
technologies in the field of sensor and actuator networks lightingand systems while
remaining nearly as efficient regarding transmission message sizes as existing au-
tomation systems. The IoTSyS middleware aims at providing a gateway concept
for existing sensor and actuator systems found in nowadays home and building au-
tomation systems, a stack which can be deployed directly on embedded 6LoWPAN
devices and further addresses security, discovery and scalability issues.”

oBIX gateway

IoTSyS provides a gateway with an OSGI based oBIX server, an HTTP Server, a CoAP Server,
a RESTful Web service endpoint and a SOAP Web service endpoint to enable the necessary
communication functionality and the appropriate protocol bindings HTTP, CoAP and SOAP.

For the evaluation of this fine-grained authorization concept, the IoTSyS middleware has to
be extended to provide a working prototype with the ability, to analyze its performance. Since
XACML is based on the XML standard, it is possible to implement this concept in another
coding language than Java and is furthermore not restricted to the [oTSyS middleware.

19

4.2 Implementation

We extended the IoTSyS middleware by a PDP endpoint for interacting with HTTP and CoAP
which implementation can be partly seen in Listing [A.2] If an incoming request path on the
Apache Tomcat server ends with PDP (e.g., http://GATEWAY/PDP), the request is intercepted
by the PDP endpoint, which evaluates the incoming XACML-request against the XACML-
policies and is responding with an XACML-decision response as an XML payload (see Listing
[A77). The same holds for a CoAP-request (e.g., coap://GATEWAY/PDP), where the interception
is implemented within the CoAP server (see Listing[A.6)).

To allow support for decision making on a domain level (such domains as e.g., base floor,
lighting, heating) we need to bypass environment parameters to the XACML-request. Thus,
extending the request template with domain attributes is a valid approach. This is illustrated in

Listing @.1}

Following source code is only a proof-of-concept and not intended to be used in production
environments. In terms of future prospect, this code should be refactored by making use of an
abstract class which implements methods for receiving the domains and domain objects to avoid

code duplication.

Listing 4.1: Extended IoTSyS XACML-request template

<?xml version="1.0" encoding="UTF-8"7?>
<Request xmlns="urn:ocasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:ocasis:names:tc:xacml:2.0:context:schema:os
xacml-2.0-context.xsd">
<Subject>
<Attribute AttributeId="urn:ocasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://www.w3.0rg/2001/XMLSchemaf#fstring">
<AttributeValue>{$SUBJECT}</AttributeValue>
</Attribute>
<Attribute AttributeId="urn:ocasis:names:tc:xacml:1.0:subject:ip-address"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>{$SUBJECT_IP_ADDRESS}</AttributeValue>
</Attribute>
<Attribute Attributeld="urn:tuwien:auto:iotsys:subject:start-date"
DataType="http://www.w3.0rg/2001/XMLSchema#dateTime">
<AttributeValue>{$SUBJECT_HISTORY_START_DATETIME}</AttributeValue>
</Attribute>
<Attribute AttributeId="urn:tuwien:auto:iotsys:subject:end-date"
DataType="http://www.w3.0rg/2001/XMLSchema#dateTime">
<AttributeValue>{$SUBJECT_HISTORY_END_DATETIME}</AttributeValue>
</Attribute>
<Attribute AttributeId="urn:tuwien:auto:iotsys:subject:history-count"
DataType="http://www.w3.0rg/2001/XMLSchema#integer">
<AttributeValue>{$SUBJECT_HISTORY_COUNT}</AttributeValue>
</Attribute>
<Attribute AttributeId="urn:tuwien:auto:iotsys:domain"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
{$SUBJECT_DOMAIN}
</Attribute>
</Subject>

20

<Resource>
<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource—id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>{$SRESOURCE}</AttributeValue>
</Attribute>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:protocol”
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>{$RESOURCE_PROTOCOL}</AttributevValue>

</Attribute>

<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:ip-address"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>{$SRESOURCE_IP_ADDRESS}</AttributeValue>
</Attribute>

<Attribute AttributelId="urn:oasis:names:tc:xacml:1.0:resource:hostname"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>{$RESOURCE_HOSTNAME}</AttributeValue>

</Attribute>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:path"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>{$RESOURCE_PATH}</AttributeValue>
</Attribute>
</Resource>
<Action>
<Attribute AttributelId="urn:oasis:names:tc:xacml:1.0:action:action—-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>{$SACTION}</AttributevValue>
</Attribute>
</Action>
<Environment />
</Request>

Domain level access control

Having plenty of devices connected in a smart building (such as light in different rooms, boiler,
cooler and much more), it could be useful to assign these devices to different domains. A
domain could represent the lighting of the entire building, the lighting of the first floor or the
heating of the building and every domain consists of a collection of such devices. By making
use of such domains, it is possible to manage access policies on a domain level, which makes
policy administration simpler and more efficient.

To decide whether it is possible to access a device, it is necessary to know to which domains
the device belongs to. Thus, our approach is, to expand the oBIX tree to get these mappings
between a domain and a device. Considering the fact, that the requested resource is not the
root node of the tree, we need to recursively iterate through the oBIX tree in backwards direc-
tion. Hence, we cannot miss any object. Passing the domain to a query can be enabled by the

21

extension of the XACML-request template with a new parameter SUBJECT_DOMAIN within
the custom namespace urn:tuwien:auto:iotsys:domain which gets substituted by an
AttributeValue for each domain related to the device in the oBIX tree. The request template
is shown in Listing 4.1} Since the oBIX tree consists of different types of nodes and we are
only interested in (parent) nodes, which are real devices (and not just instances of types such as
Domain or Unit), we need to implement a subtype interface called IDevice, implementing
the interface IOb j. By inheriting each device (e.g., Actuator, Sensor) from IDevice, we
can get all relevant instances from the oBIX tree. The rest of the objects can still implement the
interface TOb j. The UML diagram in Figure .1] provides an overview of the refactored oBIX
hierarchy, nevertheless, objects that implement the interface I0b j directly are not shown.

<<interface>>

|Obj

i

<<interface>>

IDevice

<<interface>> <<interface>>

Actuator Sensor

Figure 4.1: oBIX overview with new interface IDevice

Within the implementation, it is necessary to parse the related domains within the protocol
related server (e.g., Tomcat, CoAP) where the oBIX lobby is utterly available.

XACML Policy Decision Point

As already seen in the system overview (Figure [3.1) it would be useful to provide a PDP for
requesting authorization information by a PEP from outside the constrained network or directly
by other motes. Therefore, a PDP has been implemented and enabled for POST requests of the
protocols HTTP (accessible via http://GATEWAY/PDP) and CoAP (accessible via coap:
//GATEWAY /PDP).

Each POST request queried against the endpoint /PDP|is intercepted by its protocol related
server. The payload of the incoming request will be parsed by the XACMLRequestParser
and a Map with the parameters is provided. For domain access control, the requested resource
needs to be queried within the oBIX tree for fetching resource related domains. Now, the proto-
col related server intercepts the parameters to the PDPInterceptor which is responsible for

22

http://GATEWAY/PDP
coap://GATEWAY/PDP
coap://GATEWAY/PDP
/PDP

@ =

‘ :PEP | ‘ :iotsys-gateway ‘ ‘:xacmlRequestParser‘ ‘ :PDPInterceptor‘ ‘ :EnterprisePDP
T T

T

| " | |
DPPostRequest(> |

|

T
| |
| 1
sendPDPRequest() : :
| |
| |
< — — — iinceptionParameters()— — — — : :
| | |
| | |
pti . |
! |
| handleRequest()
|
|
|
|
N I Sl evaluate()— — — — —
'

—————————————— getPolicyDecision()}— — — — — — — — — — — — —

|

|

|

[<< —respond¢PolicyDecision() — - |
| |

| |

| |

| |

| |

| |

Figure 4.2: Sequence Diagram of a Policy Decision Request

execution of the evaluation process defined by the interface PDP, with the EnterprisePDP
instance. After decision making, a valid decision response can be fetched by the Response
object. At the end, the protocol related server provides the valid XACML-Response for the re-
questing party. An overview of the generic call sequence can be seen in Figure 4.2 Please note
that the type of the protocols is hidden within the lifeline of the communication party :iotsys-
gateway.

23

CHAPTER

Evaluation

To evaluate the Policy Decision Point with the protocols HTTP and CoAP, a benchmark too][]
was developed to measure the response time depending on different Policy Decision requests.
The benchmark tool is able to load one use case XACML-request scenario and sends a fixed
number of requests to the PDP to evaluate the response time. Furthermore, different use cases
have been compared by means of various XACML-requests and the corresponding response
time. Additionally, a comparison of the results was drawn to see the impact of the implemented
access control extensions.

5.1 Test Environment

For the evaluation of the performance, the extended 1oTSyS middleware was deployed on a
Raspberry Pi 2011.12 with a CPU frequency of 700 MHz and 512 MB memory, running a
Raspbian platform.

5.2 Use Cases

We define some use cases in a typical home automation environment and evaluate them in the
next section by means of their response time. All components are composed from oBIX objects.

Evaluation Scenario

Within a residential home (the oBIX name is residentialHome of type knx :Part), we define
components as followed:

e floorBasement (knx:Part)

— basementRoom (knx:Part): Represents the basement of the building

'https://github.com/tschmidleithner/Benchmark, access on 13th February 2015

25

https://github.com/tschmidleithner/Benchmark

x boilerBasement (iot :Boiler)

* coolerBasement (1ot :Cooler)

x smartBasement (1ot : SmartMeter)
virtualLightBasement (1ot : Light SwitchActuator)

*

e floorl (knx:Part): Represents the second floor of the building.

— rooml (knx:Part)

x virtualTempl (1ot : TemperatureSensor)
* virtualLightl1 (iot : Light SwitchActuator)

— copyRooml (knx:Part)
* virtualLightCopyRoom (iot :Light SwitchActuator)

e floor2 (knx:Part): Represents the second floor of the building.

- flatl (knx:Part)

x boiler2] (1ot :Boiler)
* virtualLight21 (1ot : Light SwitchActuator)

- flat2 (knx:Part)

* boiler22 (iot :Boiler)
* virtualLight22 (1ot : Light SwitchActuator)

To make access control more maintainable, some domains are defined to control a set of these
components, defined as follows:

e heating (knx :Domain): Represents the heating of the overall building.

— boilerBasement (iot : Boiler)
— coolerBasement (iot : Cooler)
— heatingfloor2 (knx : Domain): Represents the heating of the second floor.

x boiler2] (knx:iotBoiler)
x boiler22 (knx:iotBoiler)

o lighting (knx : Domain): Represents the lighting of the overall building.

— lightingFloor1 (knx : Domain): Represents the lighting of the first floor.
— lightingFloor2 (knx :Domain): Represents the lighting of the second floor.

The residentialHome with all related parts and components is built and wired together by the
use of the VirtualDeviceLoader within the iotsys-virtual package for simulation
purposes.

26

5.3 Benchmarks

Since this scenario offers various options to access the IoT devices, different access scenarios
have been benchmarked. For improved readability, the XACML-policies are reduced to the
minimum regarding namespaces and XML-syntax.

Deny lighting domain access

We define our XACML-policy in Listing [5.1] such that access to the domain lightingfloor] and
also the virtualLightBasement is restricted.

Listing 5.1: Deny lighting domain access policy

<?xml version="1.0" encoding="utf-8"?>
<PolicySet PolicyCombiningAlgId="rule-combining-algorithm:
deny-overrides:deny-overrides">
<Target />
<Policy RuleCombiningAlgId="rule-combining-algorithm:
deny-overrides:deny-overrides">
<Description>Deny access to virtuallLightBasement</Description>
<Target></Target>
<Rule Effect="Deny">
<Target>
<Resources>
<Resource>
<ResourceMatch MatchId="function:string-equal">
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string">
/residentialHome/floorBasement /basementRoom/virtualLightBasement
</Attributevalue>
<ResourceAttributeDesignator Attributeld="resource:path"
DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</ResourceMatch>
</Resource>
</Resources>
</Target>
</Rule>
</Policy>
<Policy RuleCombiningAlgId="rule-combining-algorithm:deny-overrides">
<Description>Deny access to domain lightingfloorl</Description>
<Target></Target>
<Rule Effect="Deny">
<Condition>
<Apply FunctionId="function:string-at-least-one-member-of">
<SubjectAttributeDesignator AttributeId="subject:domain"
DataType="http://www.w3.0rg/2001/XMLSchema#string"
MustBePresent="false" />
<Apply FunctionId="function:string-bag">
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string">
/residentialHome/lighting/lightingfloorl
</AttributeValue>
</BApply>

27

</Rpply>
</Condition>
</Rule>
</Policy>
<Policy RuleCombiningAlgId="rule-combining-algorithm:deny-overrides">
<Description>Permit if no deny happened</Description>

<Target></Target>
<Rule Effect="Permit"></Rule>
</Policy>
</PolicySet>

Deny heating domain access

We define our XACML-policy in Listing [5.2] such that access to the domain heating is denied,
except for the boiler boilerBasement in the basement floor. Thus, every request of a heating- or
cooling device will be denied except requests to the boiler in the basement floor.

Listing 5.2: Deny heating domain access policy

<?xml version="1.0" encoding="utf-8"?>
<PolicySet PolicyCombiningAlgId="rule-combining-algorithm:
deny-overrides:deny-overrides">
<Target />
<Policy RuleCombiningAlgId="rule-combining-algorithm:permit-overrides">
<Description>Deny access to domain heating except the boiler in the
basement floor</Description>
<Target></Target>
<Rule Effect="Deny">
<Condition>
<Apply FunctionId="function:string-at-least-one-member-of">
<SubjectAttributeDesignator AttributeId="subject:domain"
DataType="http://www.w3.0rg/2001/XMLSchema#string"
MustBePresent="false" />
<Apply FunctionId="function:string-bag">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
/residentialHome/heating
</AttributeValue>
</Rpply></Apply>
</Condition>
</Rule>
<Rule Effect="Permit">
<Target>
<Resources>
<Resource>
<ResourceMatch MatchId="function:string-equal">
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string">
/residentialHome/heating/boilerBasement
</AttributeValue>
<ResourceAttributeDesignator AttributelId="resource:path"
DataType="http://www.w3.0rg/2001/XMLSchema#string"/>
</ResourceMatch>
</Resource>

28

</Resources>
</Target>
</Rule>
</Policy>

<Policy RuleCombiningAlgId="rule-combining-algorithm:deny-overrides">
<Description>Permit if no deny happened</Description>

<Target></Target>
<Rule Effect="Permit"></Rule>
</Policy>
</PolicySet>

Deny lighting domain access except for a subdomain

We define our XACML-policy in Listing [5.3] such that access to the domain lighting (the entire
building) is restricted, except for the domain lightingFloorl.

Listing 5.3: Deny lighting domain access except for a subdomain

<?xml version="1.0" encoding="utf-8"7?>
<PolicySet
PolicyCombiningAlgId="policy-combining—algorithm:permit-overrides">
<Target />

<Policy PolicylId="restrict-domains—-except-one:restrict-lighting"
RuleCombiningAlgId="rule-combining-algorithm:deny-overrides">
<Description>Deny access to domain lighting</Description>
<Target></Target>
<Rule RuleId="restrict-domains-except-one:restrict-lighting:rule"
Effect="Deny">
<Condition>
<Apply FunctionId="function:string-at-least-one-member-of">
<SubjectAttributeDesignator
AttributeId="subject:domain"
DataType="http://www.w3.0rg/2001/XMLSchema#string"
MustBePresent="false" />

<Apply
FunctionId="urn:ocasis:names:tc:xacml:1.0:function:string-bag">
<AttributeValue

DataType="http://www.w3.0rg/2001/XMLSchema#string">
/residentialHome/lighting
</Attributevalue>
</Apply>
</Rpply>
</Condition>
</Rule>
</Policy>

<Policy PolicyId="restrict-domains—-except-one:permit-lightingFloorl"
RuleCombiningAlgId="rule-combining-algorithm:deny-overrides">
<Description>Permit access to domain lightingFloorl</Description>
<Target></Target>
<Rule RulelId="restrict-domains-except-one:permit-ligntningFloorl:rule"

29

Effect="Permit">
<Condition>
<Apply FunctionId="function:string-at-least-one-member-of">
<SubjectAttributeDesignator
AttributeId="subject:domain"
DataType="http://www.w3.0rg/2001/XMLSchema#string"
MustBePresent="false" />
<Apply FunctionId="function:string-bag">
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string">
/residentialHome/lighting/lightingfloorl
</Attributevalue>
</Apply>
</Apply>
</Condition>
</Rule>
</Policy>

<Policy PolicyId="restrict-domains—-except-one:restrict-rest"
RuleCombiningAlgId="rule-combining-algorithm:deny-overrides">
<Description>Deny if no permit happened</Description>
<Target></Target>
<Rule RuleId="restrict-domains—-except-one:restrict-rest:rule"

Effect="Deny">

</Rule>

</Policy>

</PolicySet>

5.4 Results

To evaluate the response time of the Policy Decision Point, requests with both HTTP and CoAP
have been measured by the use of the benchmark tool mentioned above. Requests are mea-
sured by recording their runtime and those requests are performed one after the other. Since the
presented access control concept is highly fine-grained, it would also be possible to define the
IP-address of the requestor, the used protocol, a hostname, the request type and more. All these
properties could be explicitly set within an XACML-policy and its corresponding XACML-
request but for reasons of clarity and comprehensibility, the only changing parameter between
these different requests is the resource path, whose parameter is in our case the most interesting
aspect whereas the resource path is also used by requesting the regarding domain objects. All
request examples below are based on the XACML-policies defined before, respectively. For the
benchmark, we assume that requests come from outside of the constrained network, pretend-
ing to act like a PEP and perform requests to the PDP which is deployed on the Raspberry PI
mentioned before.

30

Deny lighting domain access

To verify the policy decision response of this XACML-policy, a request shown in Listing[5.4]has
been formulated to query if the lighting in the first floor is accessible (which should be denied
because the domain lightingFloorl is restricted):

Listing 5.4: Request light access in the first floor

<?xml version="1.0" encoding="UTF-8"?>
<Request xmlns="urn:ocasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:ocasis:names:tc:xacml:2.0:context:schema:os
xacml-2.0-context.xsd">
<Subject>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>0:0:0:0:0:0:0:1</AttributevValue>
</Attribute>
<Attribute AttributelId="urn:oasis:names:tc:xacml:1.0:subject:ip-address"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>0:0:0:0:0:0:0:1</AttributeValue>
</Attribute>
</Subject>
<Resource>
<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource—id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>
http://localhost:8080/residentialHome/floorl/rooml/virtuallLightll
</AttributeValue>
</Attribute>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:protocol"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>http</AttributevValue>

</Attribute>

<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:ip-address"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>127.0.0.1</AttributeValue>
</Attribute>

<Attribute AttributelId="urn:oasis:names:tc:xacml:1.0:resource:hostname"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>localhost</AttributeValue>

</Attribute>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:path"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>
residentialHome/floorl/rooml/virtuallLightll
</AttributeValue>
</Attribute>

31

</Resource>
<Action>
<Attribute AttributeId="urn:ocasis:names:tc:xacml:1.0:action:action—-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>GET</AttributeValue>
</Attribute>
</Action>
<Environment />
</Request>

The corresponding response is shown in Listing [5.5| for principle of completeness. Remain-
ing responses in this chapter are not shown here. The benchmark is shown in Figure The
statistical outliers next to the whiskers can be explained by caching mechanisms of the PDP.
Therefore, those outliers next to the right whiskers have been observed at the beginning of each
benchmark. Outliers next to the left whiskers are requests that have been cached already. This
holds also for the rest of the benchmarks and is not mentioned again.

Listing 5.5: Response of light access first floor

<?xml version="1.0" encoding="UTF-16"7?>

<Response xmlns="..." xmlns:xsi="..." xsi:schemalocation="...">
<Result>
<Decision>Deny</Decision>
</Result>
</Response>
<! L] <] L] 0o
o j=}
O O
S { S
[Y i A I e E] ®© o o
T T
T T T T T T T T T
4000 4500 5000 5500 4000 5000 6000 7000 8000
Response Time (ms) Response Time (ms)
(a) Request light access in the first floor (b) Request light access in the second floor
Figure 5.1

Another request shown in Listing[5.6] may check if the light in the second floor is accessible
(as this request is not restricted by any policy, the request will be permitted). The benchmark
result is shown in Figure[5.1D]

Listing 5.6: Request light access in the second floor

<?xml version="1.0" encoding="UTF-8"?>
<Request>

32

<Subject><!-- ... —--></Subject>
<Resource>
= coo =2
<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource—-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>
http://localhost:8080/residentialHome/floor2/flatl/virtuallight2l
</AttributeValue>
</Attribute>

<Attribute AttributelId="urn:oasis:names:tc:xacml:1.0:resource:path"
DataType="http://www.w3.0rg/2001/XMLSchema#string">

<AttributeValue>
residentialHome/floor2/flatl/virtualLight2l
</AttributeValue>
</Attribute>
Llo= 500 =B
</Resource>
<Action><!-- ... —--></Action>
<Environment />
</Request>

Deny heating domain access

A query for checking access for the climate exchange in the basement floor can be seen in Listing
[5.7|where the access is denied. The results of the benchmark are shown in Figure [5.2a]

Listing 5.7: Request domain heating access cooler

<?xml version="1.0" encoding="UTF-8"?>
<Request>
<Subject><!-- ... —-—-></Subject>
<Resource>
== 00 =2
<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource—id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>
http://localhost:8080/residentialHome/heating/coolerBasement
</AttributevValue>
</Attribute>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:path"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>
/residentialHome/heating/coolerBasement
</AttributeValue>
</Attribute>
o= 500 =2
</Resource>
<Action><!-- ... —--></Action>
<Environment />

33

</Request>

CoAP
Il
CoAP
Il

HTTP

L

o

HTTP

L

)
8
°

T T T T T T T T T T T T
3000 3500 4000 4500 5000 5500 6000 6500 3500 4000 4500 5000 5500

Response Time (ms) Response Time (ms)

(a) Request domain heating access cooler (b) Request domain heating access boiler

Figure 5.2

A positively authorized query is shown in Listing[5.8| where the boiler is explicitly authorized
in its policy. The according benchmark is shown in Figure [5.2b]

Listing 5.8: Request domain heating access boiler

<?xml version="1.0" encoding="UTF-8"?>
<Request>
<Subject><!-- ... —-—></Subject>
<Resource>
Rl= oo =2
<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource—id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributevValue>
http://localhost:8080/residentialHome/heating/boilerBasement
</AttributeValue>
</Attribute>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:path"
DataType="http://www.w3.0rg/2001/XMLSchemaf#fstring">

<AttributeValue>
/residentialHome/heating/boilerBasement
</AttributeValue>
</Attribute>
== o050 =2
</Resource>
<Action><!-- ... —--></Action>
<Environment />
</Request>

34

Deny lighting domain access except for a subdomain

Since this XACML-policy restricts access to the domain lighting a request shown in Listing[5.9]
to the light in the second floor causes an access denied result. The benchmark is shown in Figure

.34
Listing 5.9: Request Lighting Second Floor

<?xml version="1.0" encoding="UTF-8"7?>
<Request>
<Subject><!-- ... —--></Subject>
<Resource>
Llo= 500 =B
<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource—-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>
http://localhost:8080/residentialHome/floor2/flatl/virtuallight21
</AttributeValue>
</Attribute>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:path"
DataType="http://www.w3.0rg/2001/XMLSchema#string">

<AttributeValue>
/residentialHome/floor2/flatl/virtuallLight2l
</AttributeValue>
</Attribute>
Q= co0 =S
</Resource>
<Action><!-- ... —--></Action>
<Environment />
</Request>

A subdomain lightingFloorl of the domain lighting permits requests to this domain which de-
cision request can be seen in Listing[5.10] The query targets the light of the copy room and the
benchmark result is shown in Figure

CoAP
Il
°

,,,,,,,,,,,,,,,,,, | oo

CoAP
I

o o
E - omom o |- @00 Edo comman % ,,,,,,,,,,,,,,,,, oo
T I
T T T T T T T T T T T T T
4000 4500 5000 5500 6000 6500 7000 3500 4000 4500 5000 5500 6000
Response Time (ms) Response Time (ms)
(a) Request subdomain second floor (b) Request light access copy room
Figure 5.3

35

Listing 5.10: Request domain lighting in first floor

<?xml version="1.0" encoding="UTF-8"?>
<Request>
<Subject><!-- ... —-—></Subject>
<Resource>
Rl== 5, =2
<Attribute
AttributelId="urn:oasis:names:tc:xacml:1.0:resource:resource—id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributevValue>
http://localhost:8080/residentialHome/floorl/
copyRooml/virtualLightCopyRoom
</AttributeValue>
</Attribute>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:path"
DataType="http://www.w3.0rg/2001/XMLSchema#string">

<AttributevValue>
/residentialHome/floorl/copyRooml/virtualLightCopyRoom
</AttributeValue>
</Attribute>
L= c00 =2
</Resource>
<Action><!-- ... —--></Action>
<Environment />
</Request>
Summary

It is obvious that all requests with HTTP show a faster response time compared to the CoAP
requests, probably caused by the block fragmentation of the CoAP protocol. Generally speak-
ing, the response time is also strongly dependent on the complexity of the XACML-policy and
furthermore the number of linked domains. The more complex the oBIX lobby is, the slower
the requests will be.

36

CHAPTER

Conclusion

In this work, a fine-grained authorization concept for the loTSyS middleware has been presented.
The implementation extends the existing IoTSyS middleware with access control on a domain
level and on history objects. In addition, a Policy Decision Point for requesting authorization
decision by a Policy Decision Request has been implemented in the protocols HTTP and CoAP.
A use case scenario with sample requests has been defined and a benchmark for the comparison
of these requests in the protocols HTTP and CoAP has been provided. The benchmark entails
very different response times in comparison of HTTP and CoAP requests. Furthermore, the
response time of requests is strongly dependent on the density of the oBIX tree and especially
dependent on the number of existing domains. In general, domains in automation environments
are a promising feature in sense of maintainability, given that granting access to e.g., the first
floor alone is more comfortable compared to granting access for each object in the first floor.

Since this concept is only implemented in the protocols HTTP and CoAP, it would be useful
to implement the access control concept in other protocols which can be easily done due to the
use of the PDPInterceptor.

Another import feature would be a serverside GUI for the composition of XACML-policies.
Due to complexity reasons of the XACML specification, it could be a challenging contribution,
especially in terms of usability reasons.

At the moment, the interface IDevice, which is necessary for the domain determination, is
only implemented in a few oBIX objects and should be extended to the rest of the o0BIX domain
belonging objects.

In avoidance of code duplication, the domain determination part in the server implemen-
tations could be outsourced in an abstract class like suggested in Appendix Listing [A.5] but at
the moment, the CoAP Server already extends the class Endpoint, therefore refactoring the
code in future versions should be considered.

37

APPENDIX

Listings

Listing A.1: PDP interface

package at.ac.tuwien.auto.iotsys.xacml.pdp;
import java.util.Map;
import at.ac.tuwien.auto.iotsys.commons.interceptor.Parameter;

/ * %

* Represents the interface of a policy decision point
*/

public interface Pdp {

[* %

* Evaluates a decision request against the underlying XACML policy. The

* three string attributes are mandatory. Additional parameters can be set
with the params Map.

* X

*

@param resource XACML resource-id
@param subject XACML subject-id
@param action XACML action-id
@param params additional parameters

* % of

*

* @return in case the request is evaluated to permit true, false
otherwise.

*/

public boolean evaluate(String resource, String subject, String action,
Map<Parameter, String> params);

Listing A.2: EnterprisePDP

package at.ac.tuwien.auto.iotsys.xacml.pdp;

39

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import java.util.logging.Logger;

import an.xacml.adapter.file.XACMLParser;
import an.xacml.context.Decision;

import an.xacml.context.Request;

import an.xacml.context.Response;

import an.xacml.context.Result;

import an.xacml.engine.EvaluationContext;
import an.xacml.policy.AbstractPolicy;
import an.xacml.policy.Effect;

import at.ac.tuwien.auto.iotsys.commons.interceptor.Parameter;

import at.ac.tuwien.auto.iotsys.util.FileHelper;

/ x %

* The enterprise PDP is responsible for handling
* PDP request within the gateway. The policy is injected
* by the PDPInterceptorSettings instance.

*/

public class EnterprisePDP implements Pdp {

private Logger log = Logger.getLogger (EnterprisePDP.class.getName ());

private String resourcePrefix = "res/";
private String requestTemplate = "";
private static final String requestTemplatePath = "request/request.xml";

private HashMap<String, String> policies = new HashMap<String,

public EnterprisePDP () {}

Constructor for the EnterprisePDP where a
directory string can be passed for the location
of the XML request template file.

@param resourcePrefix the path prefix for the
request template to pass

public EnterprisePDP (String resourcePrefix) {
this.resourcePrefix = resourcePrefix;
try {
String readFile = resourcePrefix + requestTemplatePath;

40

log.info ("Reading files from " + readFile);
requestTemplate = FileHelper
.readFile (readFile);
} catch (IOException e) {

String>();

e.printStackTrace () ;

@Override

public synchronized boolean evaluate (String resource, String subject,
String action,
Map<Parameter, String> params) {

log.fine ("Resource: " + resource);
log.fine ("Subject: " + subject);
log.fine ("Action: " + action);
if (params == null) {
params = new HashMap<Parameter, String>();

}

params.put (Parameter .RESOURCE, resource);
params.put (Parameter.SUBJECT, subject);
params.put (Parameter.ACTION, action);

// Set default values if no value set
if (!params.containsKey (Parameter.SUBJECT_HISTORY_START_DATETIME)) {
params.put (Parameter.SUBJECT_HISTORY_START_DATETIME,
"1970-01-01T00:00:00") ;
}
if (!'params.containsKey (Parameter.SUBJECT_HISTORY_END_DATETIME)) {
params.put (Parameter.SUBJECT_HISTORY_END_DATETIME,
"2030-01-01T00:00:00");
}
if (!params.containsKey (Parameter.SUBJECT_HISTORY_COUNT)) ({
Integer max = (Integer.MAX_VALUE);
params.put (Parameter.SUBJECT_HISTORY_COUNT, max.toString());

try {
System.setProperty (XACMLParser.CONTEXT_KEY_ DEFAULT_SCHEMA_FILE,
resourcePrefix + "xacml-2.0-context.xsd");
System.setProperty (XACMLParser .POLICY_KEY_ DEFAULT_SCHEMA_FILE,
resourcePrefix + "xacml-2.0-policy.xsd");

String xacmlRequest = replaceParams (requestTemplate, params);
log.info (xacmlRequest) ;

// parse the XACML-request to a request instance
Request reqg = XACMLParser.parseRequest (new ByteArrayInputStream (
xacmlRequest.getBytes()));

String policyFileName =
PDPInterceptorSettings.getInstance () .getPolicyFile();
log.info ("Using XACML-Policy File: " + policyFileName) ;
String xacmlPolicy;
synchronized (this) {
if (!'policies.containsKey (policyFileName)) {

policies.put (policyFileName, FileHelper
.readFile (resourcePrefix + "policies/" + policyFileName));
}
xacmlPolicy = policies.get (policyFileName) ;

}
log.info ("Policy: " + xacmlPolicy);

AbstractPolicy policy = XACMLParser
.parsePolicy (new ByteArrayInputStream(xacmlPolicy.getBytes()));

// evaluate the request against the policy
Result result = policy.evaluate (new EvaluationContext (req));
Response actualResponse = new Response (new Result[] { result });

ByteArrayOutputStream tempOut = new ByteArrayOutputStream();
XACMLParser.dumpResponse (actualResponse, tempOut) ;
Decision d = result.getDecision();

log.fine("decision request: " + d.toString());
// deny request if value is not permit
if (!d.equals (Effect.Permit)) {

return false;

}

return true;

} catch (FileNotFoundException e) {
e.printStackTrace () ;

} catch (Exception e) {
log.severe ("Exception occured");
log.severe (e.getClass () .getSimpleName ()) ;
e.printStackTrace () ;

return false;

/[*x
Replaces the injected parameters of the template and
returns well-formed Policy Decision Request

*

*

@param template the Policy Decision template
@param params injection parameters
@return the populated Policy Decision Request

* X

*

x/
private String replaceParams (String template, Map<Parameter, String>
params) {
if (params.containsKey (Parameter.SUBJECT_DOMAIN)) {
String[] domainArr = params.get (Parameter.SUBJECT_DOMAIN) .split(",");

String strDomains = "";
for (String d : domainArr) {
strDomains += "<AttributeValue

DataType=\"http://www.w3.0rg/2001/XMLSchema#string\">"

+ d + "</AttributeValue>" +
System.getProperty ("line.separator");

template = template.replaceAll ("\\{\\$" + Parameter.SUBJECT_DOMAIN +
"\\1}1", strDomains);

} else {
template = template.replaceAll ("\\{\\$" + Parameter.SUBJECT_DOMAIN +
"N\,
"<AttributeValue
DataType=\"http://www.w3.0rg/2001/XMLSchema#string\"></AttributevValue>");
}
for (Parameter r : params.keySet ()) {

if (!r.equals(Parameter.SUBJECT_DOMAIN)) {

template = template.replaceAll ("\\{\\$" + r + "\\}",
params.get (r) .trim());
}
}
template = template.replaceAll ("\\{\\S$(.)*=\\}", "");

return template;

package at.

import
import
import
import
import

import

at.

/ * %

org
org

org
org

Listing A.3: XACML response generation

ac.tuwien.auto.iotsys.xacml.util;

.w3c.
.w3c.
org.
.w3c.
.w3c.

w3cC.

dom
dom
dom
dom
dom

JAttr;

.Document;

.Element;
.1ls.DOMImplementationLS;
.1ls.LSSerializer;

ac.tuwien.auto.iotsys.commons.interceptor.InterceptorResponse.StatusCode;

* Creates a well-formed XACML decision response.

*/

public class XacmlResponse extends AbstractXacml ({
private Document xacmlResponse;

public XacmlResponse () {
xacmlResponse

/K x

= getBuilder () .newDocument () ;

* Creates the Response {@link org.w3c.dom.Element} of the XACML decision
* request depending on the given {@code StatusCode}.

*

* @param statusCode the status code
* @return the XACML Decision Response

*/

43

public Element getResponse (StatusCode statusCode) {
Element request = xacmlResponse.createElementNS (URN_XACML_CONTEXT,
"Response") ;

Attr xsi = xacmlResponse.createAttribute ("xmlns:xsi");
xsi.setValue (XML_SCHEMA_INSTANCE) ;
request.setAttributeNode (xsi) ;

Attr schema = xacmlResponse.createAttribute ("xsi:schemalocation");
schema.setValue (XML_SCHEMA_LOCATION) ;
request.setAttributeNode (schema) ;

Element result = xacmlResponse.createElement ("Result");
request .appendChild (result) ;

Element decision = xacmlResponse.createElement ("Decision");
result.appendChild (decision);

if (statusCode.equals (StatusCode.OK)) {
decision.setTextContent ("Permit") ;

} else if (statusCode.equals (StatusCode.ERROR)) {
decision.setTextContent ("NotApplicable");

} else {
decision.setTextContent ("Deny") ;

return request;

/ x %

* Creates the Response {@link org.w3c.dom.Element} of the XACML decision

* request depending on the given {@code StatusCode} and

* returns the result as a string.

*

* @param statusCode the status code

* @return String XACML Decision Response

*/

public String getResponseString(StatusCode statusCode) {
Element request = getResponse (statusCode);
Document document = request.getOwnerDocument () ;
DOMImplementationLS domImplLS = (DOMImplementationLS)

document .getImplementation () ;
LSSerializer serializer = domImplLS.createLSSerializer();

return serializer.writeToString (request);

Listing A.4: XACML request parser

package at.ac.tuwien.auto.iotsys.commons.util;

import java.io.ByteArrayInputStream;

44

import java.io.IOException;
import java.io.InputStream;
import java.util.HashMap;

import javax.xml.parsers.DocumentBuilder;
import Jjavax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;

import org.w3c.dom.NodelList;
import org.xml.sax.SAXException;

import at.ac.tuwien.auto.iotsys.commons.interceptor.Parameter;

/ **x
* Helper class for extracting the parameters
* of a given XACML-Request
*/
public class XACMLRequestParser {
public static final String ACTION_ID =
"urn:ocasis:names:tc:xacml:1.0:action:action-id";
public static final String RESOURCE_RESOURCE_ID =
"urn:oasis:names:tc:xacml:1.0:resource:resource—-id";
public static final String RESOURCE_PROTOCOL =
"urn:oasis:names:tc:xacml:1.0:resource:protocol";
public static final String RESOURCE_IP_ADDRESS =
"urn:oasis:names:tc:xacml:1.0:resource:ip-address";
public static final String RESOURCE_PATH =
"urn:oasis:names:tc:xacml:1.0:resource:path";
public static final String RESOURCE_HOSTNAME =
"urn:oasis:names:tc:xacml:1.0:resource:hostname";
public static final String SUBJECT_HISTORY_COUNT =
"urn:tuwien:auto:iotsys:subject:history-count";
public static final String SUBJECT_TO_DATE =
"urn:tuwien:auto:iotsys:subject:to-date";
public static final String SUBJECT_FROM_DATE =
"urn:tuwien:auto:iotsys:subject:from-date";
public static final String SUBJECT_IP_ADDR =
"urn:ocasis:names:tc:xacml:1.0:subject:ip-address";
public static final String SUBJECT_ID =
"urn:oasis:names:tc:xacml:1.0:subject:subject-id";
private String xacmlRequest;

/ **

* Initialize the parser

*

* @param xacmlRequest the XACML-Request

*/

public XACMLRequestParser (String xacmlRequest) {
this.xacmlRequest = xacmlRequest;

private DocumentBuilder getBuilder () {
DocumentBuilder builder = null;
try {
builder = DocumentBuilderFactory.newlInstance () .newDocumentBuilder ();
} catch (ParserConfigurationException e) ({
e.printStackTrace () ;
}

return builder;

/ x %
* Parses the XACML-request and returns a map with
* the parameters sent with the request
*
* Depending on the request, the map can contain keys
* such as a subject with a subject IP address, history start time,
+ history end time, a history count, a resource with a hostname, an ip
* address, a protocol and a resource id and an action parameter.
*

*

@return map with parameters of the request

x/
public HashMap<Parameter, String> parseRequest () {
HashMap<Parameter, String> params = new HashMap<Parameter, String>();

DocumentBuilder builder = getBuilder();
InputStream stream = new ByteArrayInputStream(xacmlRequest.getBytes());

Document document = null;

try {
document = builder.parse (stream);

} catch (SAXException e) {
e.printStackTrace () ;

} catch (IOException e) {
e.printStackTrace () ;

NodeList request = document.getElementsByTagName ("Request");

for (int i = 0; 1 < request.getLength(); i++) {
NodeList nodelist = request.item(i) .getChildNodes () ;
for (int j = 0; j < nodelList.getLength(); J++) {
if (nodelist.item(7j) .getNodeName () .toUpperCase () .equals ("SUBJECT"))
{
// parse and map SUBJECT
NodeList subject = nodelist.item(j).getChildNodes();
for (int k = 0; k < subject.getLength(); k++) {
Node attribute = subject.item(k);
1if (attribute.hasAttributes()) {
NamedNodeMap attributes = attribute.getAttributes/();
for (int 1 = 0; 1 < attributes.getLength(); 1++) {
String nodeV = attributes.item(l) .getNodeValue () ;
if (nodeV.equals (SUBJECT_ID)) {
params.put (Parameter.SUBJECT,

attribute.getTextContent () .trim());
} else if (nodeV.equals (SUBJECT_IP_ADDR)) {
params.put (Parameter.SUBJECT_IP_ADDRESS,
attribute.getTextContent () .trim());
} else if (nodeV.equals (SUBJECT_FROM_DATE)) {
params.put (Parameter.SUBJECT_HISTORY_START_DATETIME,
attribute.getTextContent () .trim());
} else if (nodeV.equals (SUBJECT_TO_DATE)) {
params.put (Parameter.SUBJECT_HISTORY_END_DATETIME,
attribute.getTextContent () .trim());
} else if (nodeV.equals (SUBJECT_HISTORY_COUNT)) {
params.put (Parameter.SUBJECT_HISTORY_COUNT,
attribute.getTextContent () .trim());

}
} else if
(nodeList.item(j) .getNodeName () .toUpperCase () .equals ("RESOURCE"))
{
// parse and map RESOURCE
NodeList resource = nodelList.item(j) .getChildNodes () ;
for (int k = 0; k < resource.getLength(); k++) {
Node attribute = resource.item(k);
if (attribute.hasAttributes()) {
NamedNodeMap attributes = attribute.getAttributes();
for (int 1 = 0; 1 < attributes.getlLength(); 1++) {
String nodeV = attributes.item(l) .getNodeValue () ;
if (nodeV.equals (RESOURCE_HOSTNAME)) {
params.put (Parameter . .RESOURCE_HOSTNAME,
attribute.getTextContent () .trim());
} else if (nodeV.equals (RESOURCE_PATH)) {
params.put (Parameter .RESOURCE_PATH,
attribute.getTextContent () .trim());
} else if (nodeV.equals (RESOURCE_IP_ADDRESS)) {
params.put (Parameter .RESOURCE_IP_ADDRESS,
attribute.getTextContent () .trim());
} else if (nodeV.equals (RESOURCE_PROTOCOL)) {
params.put (Parameter.RESOURCE_PROTOCOL,
attribute.getTextContent () .trim());
} else if (nodeV.equals (RESOURCE_RESOURCE_ID)) {
params.put (Parameter.RESOURCE,
attribute.getTextContent () .trim());

}
} else if
(nodeList.item(j) .getNodeName () .toUpperCase () .equals ("ACTION"))
{
// parse and map ACTION
NodeList subject = nodelist.item(]j).getChildNodes|();

47

for (int k = 0; k < subject.getLength(); k++) {
Node attribute = subject.item(k);
if (attribute.hasAttributes()) {
NamedNodeMap attributes = attribute.getAttributes/();
for (int 1 = 0; 1 < attributes.getLength(); 1++) {
if (attributes.item(l) .getNodeValue () .equals (ACTION_ID)) {
params.put (Parameter.ACTION,
attribute.getTextContent () .trim());

return params;

Listing A.5: Helper for domain determination
//

public abstract class AbstractDomain {

~

*

* Get the domains of the requesting resource
* out of the oBIX lobby, depending on the

* given URI.
*
*

@param uri of the requesting resource

* @return domains separated by commas

*/

private String getDomainsOfRequestingResource (Uri uri) {
ObjectBroker objectBroker = ObjectBrokerHelper.getInstance () ;
Obj currentElement = objectBroker.pullObj(uri, false);

// get requested object instance of IDevice
Obj requestedResource = getParentObj(currentElement);

ArrayList<String> domains = new ArrayList<String>();
// check if requested oBIX object exists

if (! (requestedResource instanceof Err))

{

Uri requestedObj = requestedResource.getHref ();

Object lobby = requestedResource.getRoot () ;

Obj lobbyObj = (Obj)lobby;

domains.addAll (getObjectDomains (requestedObj, lobbyObj.list()));
} else {

return "";

48

StringBuilder domainBuilder = new StringBuilder();

for (String d : domains) {
if (domainBuilder.length() > 0) {
domainBuilder.append(",");
}
domainBuilder.append(d) ;

return domainBuilder.toString () .trim();

[* %

Returns a list of domains according to the requested object.

* % ok X

*

@param requestedObj
@param children
@return a list of the domains

*/

private ArraylList<String> getObjectDomains (Uri requestedObj,
children)
ArrayList<String> domains = new ArrayList<String>();

for (Obj o : children)

{
if (o instanceof DomainImpl)
{

log.info("Domain found: " + o.getName());

if (o.getByHref (requestedObj) != null)
{

domains.add(o.getNormalizedHref () .getPath());
log.info ("Object " + requestedObj + " found in domain "

o.getNormalizedHref () .getPath());

// add parent domains

Obj parent = o.getParent();
if (parent != null)

{

Obj[]

domains.addAll (getParentsOfRequestedObject (parent));

}
domains.addAll (getObjectDomains (requestedObij,

return domains;

/ x %

*

*

*

Get the parent object if current
object is not an instance of IDevice.
If the given object is no instance of

o.list()));

+

49

IDevice, the request is applied recursively
until an instance of IDevice is found until
no more devices are in the tree.

% oF X

@param current

* @return object

*/

private Obj getParentObj(Obj current)
{

if (current instanceof IDevice)
return current;

Obj p = current.getParent();
if (p != null)
return getParentObj(p);

return current;

/ x %
* Returns a list of parent domains depending on the given
* request object. Within this method, the given object
* will be iterated to find instances of a domain.
*
*

@param req
* @Qreturn
*/
private ArrayList<String> getParentsOfRequestedObject (Obj req)
{

ArrayList<String> domains = new ArraylList<String>();

if (reqg instanceof DomainImpl)

{
log.info ("Domain found: " + reqg.getNormalizedHref ().getPath());
domains.add(reqg.getNormalizedHref () .getPath());

}

Obj p = reqg.getParent();

if (p !'= null)
domains.addAll (getParentsOfRequestedObject (p));

return domains;

Listing A.6: CoAP server implementation

package at.ac.tuwien.auto.iotsys.gateway.obix.server;
// imports
public class CoAPServer extends Endpoint {

700

50

@Override
public void execute (Request request) throws IOException {
String resourcePath = getResourcePath (request);
log.info ("Coap serving " + resourcePath + " for "
+ request.getPeerAddress () .getAddress());

// intercept PDP if request ends with PDP and request is a POST request
if (resourcePath.endsWith ("PDP") && request instanceof POSTRequest)

log.info ("PDP interception");
XACMLRequestParser xacmlRequestParser = new
XACMLRequestParser (getPayload (request)) ;

{

HashMap<Parameter, String> params = xacmlRequestParser.parseRequest ();
String result = interceptPDP (params, request);
log.info ("XACML Decision Response: " + result);

coapHelper.encodeResponse (result, request);
request.sendResponse () ;
return;

if (intercept (request)) return;

// handle multicast requests first
if (handleMulticastRequest (request)) return;

LOG.info (String.format ("Execution: %s", resourcePath));

try {
setCoAPResponse (request) ;

} catch (URISyntaxException e) {
e.printStackTrace () ;

if (request instanceof GETRequest) {
if (request.hasOption (OptionNumberRegistry.OBSERVE)) {

ObixObservingManager.getInstance () .addObserver ((GETRequest)

request) ;

request.sendResponse () ;
log.info ("Coap serving " + resourcePath + " for
+ request.getPeerAddress () .getAddress() + " done.");

//

/ x %

+ Intercepts a PDP request and returns a Policy Decision Response.

* The incoming parameters have to be parsed to a HashMap before
* a decision can be evaluated.

*

* @param interceptorParams parsed request parameters
* @param request the CoAP Request

51

* @return Policy Decision Response
*/
private String interceptPDP (HashMap<Parameter, String> interceptorParams,
Request request) {
boolean interceptorsActive = Boolean.parseBoolean (PropertiesLoader
.getInstance () .getProperties|()
.getProperty ("iotsys.gateway.interceptors.enable", "true"));

if (!'interceptorsActive || interceptorBroker == null
|| !'interceptorBroker.hasInterceptors())
return null;

log.fine ("Interceptors found ... starting to prepare.");
String resourcePath = interceptorParams.get (Parameter.RESOURCE_PATH) ;

InterceptorRequest interceptorRequest = new InterceptorRequestImpl ();

String domains = getDomainsOfRequestingResource (new Uri (resourcePath));
if (domains.length() > 0) {
interceptorParams.put (Parameter.SUBJECT_DOMAIN, domains);

interceptorRequest.setInterceptorParams (interceptorParams) ;

log.fine("Calling interceptions ...");
InterceptorResponse interceptorResp = interceptorBroker
.handleRequest (interceptorRequest) ;

if (!'interceptorResp.getStatus () .equals(StatusCode.OK)) {
if (interceptorResp.forward()) {
request.respond (CodeRegistry.RESP_FORBIDDEN,
interceptorResp.getDecisionResponse (),
MediaTypeRegistry.TEXT_XML) ;
}

} else {
request.respond (CodeRegistry.RESP_VALID,
interceptorResp.getDecisionResponse (),
MediaTypeRegistry.TEXT_XML) ;

return interceptorResp.getDecisionResponse();

//

Listing A.7: Tomcat server implementation

package at.ac.tuwien.auto.iotsys.gateway.obix.server;
// imports

public class TomcatServerNoSecurity {

52

//

public class ObixServlet extends HttpServlet ({
//
@Override

protected void doPost (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

StringBuffer obixResponse = null;
Obj responseObj = null;
String ipv6Address = "/" + getIPv6Address (req);

String uri = reqg.getRequestURI () ;
String data = getData (req);
String resourcePath = getResourcePath(uri, ipv6Address);

String response = "";
// intercept PDP if request ends with PDP and request is a POST
request
if (uri.endsWith ("PDP") && data != null) {

log.info ("PDP interception");

XACMLRequestParser xacmlRequestParser = new
XACMLRequestParser (data) ;

HashMap<Parameter, String> params =
xacmlRequestParser.parseRequest () ;

// call interceptors

response = interceptPDP (params, req, resp);
log.info ("XACML Decision Response: " + response);
}

//

* Intercepts a PDP request and returns a Policy Decision Response.
* The incoming parameters have to be parsed to a HashMap before
* its decision can be evaluated.
* @param interceptorParams parsed request parameters
* @param req the HTTP Request
* @param resp the HTTP Response
* @return Policy Decision Response
*/
private String interceptPDP (HashMap<Parameter, String>
interceptorParams, HttpServletRequest req, HttpServletResponse resp)
{
boolean interceptorsActive = Boolean.parseBoolean (PropertiesLoader
.getInstance () .getProperties ()
.getProperty ("iotsys.gateway.interceptors.enable", "true"));

if (!interceptorsActive || interceptorBroker == null

53

54

|| 'interceptorBroker.hasInterceptors())
return null;

log.info ("Interceptors found ... starting to prepare.");

InterceptorRequest interceptorRequest = new InterceptorRequestImpl () ;

String uri = interceptorParams.get (Parameter.RESOURCE_PATH) ;
String domains = getDomainsOfRequestingResource (new Uri (uri));
if (domains.length() > 0) {

interceptorParams.put (Parameter.SUBJECT_DOMAIN, domains);

interceptorRequest.setInterceptorParams (interceptorParams) ;
Enumeration<String> headers = reqg.getHeaderNames () ;

while (headers.hasMoreElements()) {
String k = headers.nextElement () ;
interceptorRequest.setHeader (k, reqg.getHeader (k));

Enumeration<String> params = req.getParameterNames () ;

while (params.hasMoreElements()) {
String k = params.nextElement () ;
interceptorRequest.setRequestParam(k, reqg.getParameter (k));

log.info ("Calling interceptions ...");

InterceptorResponse interceptorResp = interceptorBroker
.handleRequest (interceptorRequest) ;

if (!interceptorResp.getStatus () .equals (StatusCode.OK)) {
if (interceptorResp.forward()) {
resp.setStatus (HttpStatus.SC_FORBIDDEN) ;
}
} else {
resp.setStatus (HttpStatus.SC_OK) ;

resp.setContentType (MIME_XML) ;
return interceptorResp.getDecisionResponse () ;

//

List of Figures

[2.1 " Standard TPv6 header without payload field [9]] 6
[2.2 1P and 6LoWPAN protocol stacks []§|I|
237 XACML Policy Language Model [12]] 11
3.1 SystemOverview| e e 16
I oBIX overvi ith new interface TDevicel 22
|4.2 Sequence Diagram of a Policy Decision Request|. 23
B 32
B2 34
75 T 35

55

Listings

2.1 oBIXobjecd 8
2.2 Basic XACML-request] 11
2.3 Basic XACML-policy|. 12
2.4 XACML decisionresponse| e 13
3.1 Extended XACML-request (History)(. 16
3.2 XACML-policy (History) 17
3.3 Extended XACML-request with a set of domains| 17
3.4 XACML-policy (Domain)| 18
4.1 Extended [oTSyS XACML-request template|. 20
[5.1 Deny lighting domain access policy| 27
[5.2 Deny heating domain accesspolicy|. 28
[5.3 Deny lighting domain access except for a subdomain| 29
[5.4 Request light access in the firstfloor] 31
[5.5 Response of light access firstfloor| 32
[5.6 Request light access in the second floor] 32
[5.7 Request domain heating accesscooler| 33
[5.8 Request domain heating accessboilery 0oL 34
[5.9 Request Lighting Second Floor{ 35
[5.10 Request domain lighting in firstfloor| 36
[A.1 PDPinterfacel 39
[A.2 EnterprisePDP|.o 39
[A.3 XACML response generation| 43
A4 XACML requestparser] v i it e e 44
|A.5 Helper for domain determination| 48
|A.6 CoAP server implementation|, 50
|A.7 Tomcat server implementation| 52

57

Bibliography

Luigi Atzori, Antonio lera, and Giacomo Morabito. The Internet of Things: A survey.
Computer Networks, 54(15):2787 — 2805, 2010.

S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification, 1998.
IEEE 802.15 Working Group for WPAN. IEEES02.

Stephan Haller, Stamatis Karnouskos, and Christoph Schroth. The Internet of Things in an
Enterprise Context. In John Domingue, Dieter Fensel, and Paolo Traverso, editors, Future
Internet — FIS 2008, volume 5468 of Lecture Notes in Computer Science, pages 14-28.
Springer Berlin Heidelberg, 2009.

Markus Jung. IoTSyS - Internet of Things integration middleware. http://code.
google.com/p/iotsys/.

Markus Jung and Thomas Hofer and Wolfgang Kastner and Susen Dobelt. Protecting data
assets in a Smart Grid SOA. Journal of Internet Technology and Secured Transactions
(JITST), 2:155 — 166, 2013.

M. Neugschwandtner, G. Neugschwandtner, and W. Kastner. Web Services in Building
Automation: Mapping KNX to oBIX. In Industrial Informatics, 2007 5th IEEE Interna-
tional Conference on, volume 1, pages 87-92, June 2007.

R.S. Sandhu and P. Samarati. Access control: Principle and Practice. Communications
Magazine, IEEE, 32(9):40-48, Sept 1994.

Zach; Carsten Bormann Shelby. 6LoWPAN: The Wireless Embedded Internet, 2009.
R. Shirey. Internet Security Glossary, Version 2. RFC 4949 (Informational), August 2007.
The Internet Engineering Task Force. The Constrained Application Protocol (CoAP), 2014.

The OASIS technical commitee. XACML: eXtensible Access Control Markup Language
(XACML) 2.0, OASIS Standard, 2005.

The OASIS technical commitee. oBIX 1.1 Committee Specification Draft 02 / Public
Review Draft 02, 2013.

59

http://code.google.com/p/iotsys/
http://code.google.com/p/iotsys/

[14] International Telecommunication Union.
Things. 2005.

60

ITU Internet Report 2005: The Internet of

	Introduction
	Technologies for the Internet of Things
	Privacy Challenges in the Internet of Things
	Motivation
	Aim of this Thesis
	Structure of the Thesis

	State of the Art Concepts and Technologies
	Internet Protocol version 6
	6LoWPAN
	Representational State Transfer
	Constrained Application Protocol
	Open Building Information Xchange
	Access Control
	eXtensible Access Control Markup Language

	Access Control Concept
	System Overview
	Motivation to fine-grained XACML-policies
	Authorization with constraints on history objects
	Authorization on a domain level

	Proof-of-Concept
	The IoTSyS integration middleware
	Implementation

	Evaluation
	Test Environment
	Use Cases
	Benchmarks
	Results

	Conclusion
	Listings
	List of Figures
	Bibliography

