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Abstract

The Institute of Computer Aided Automation at the Technical University of Vienna
founded an interest group for autonomous driving. The idea is to attract students as
well as teachers to this topic and provide them with easy access to the required hardware
and software. Therefore a fleet of autonomous robots will be built. A prototype based
on a RC-model car equipped with a Raspberry Pi as computation unit and an Arduino
Uno as a micro controller to control the vehicle was already created [5]. In the future,
this robot will be extended with sensors to facilitate autonomous driving. In order to
achieve this goal, validation of systems and algorithms is imperative.
For that purpose, a physical simulation and visualization of the prototype is created.
The creation of the real and the simulated robot as well as their common interface was
presented within a student paper [3] at the ARW (Austrian Robotics Workshop) 2016.
The focus of this thesis is on the creation of this simulation and its accuracy. Since the
primary interest of the research is in the motion of the robot, it is sufficient to only
simulate the chassis. Specifically, the simulation of the steering which is the defining part
of Ackermann robots is explained. ROS [7] (Robot Operating System) is used as middle
ware for the simulation and visualization software [10]. A ROS node able to communicate
with the simulation and visualization tool is used to control the simulated robot. This
node is responsible for the steering, powering the wheels, and the necessary calculations.
Additionally, it enables communication between the robotic tools used. On the one hand,
the node receives motion commands and on the other hand it publishes velocity motion
model [9, 12] based odometry data as well as the ground truth based odometry data.
Different ways to visualize these kinds of odometry data will be introduced. A ROS node
is created to visualize the estimated pose and its uncertainty as well as the ground truth
pose. A pose by definition holds both the position and the orientation of the robot. The
comparative advantage of this node over previously existing nodes is the visualization
of the pose uncertainty. This is required to determine whether the estimated pose is
credible in comparison with the ground truth pose. Since the simulation and the tracking
system aim to be used for self localization, this is a important issue.
Conclusively, the comparison of the velocity motion model odometry data with the ground
truth odometry data will show that the simulation meets the requirements of accuracy
with respect to the tracking model. Ways to improve the accuracy of the simulation will
be introduced as well.
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Kurzfassung

Das Institut für Rechnergestützte Automation an der technischen Universität in Wien
gründete eine Forschungsgruppe für autonomes Fahren. Die Grundidee dieses Vorhabens
ist es, Studenten wie auch Lehrkräften das Thema nahe zu bringen und ihnen einfachen
Zugang zu Hardware und Software zu verschaffen. Dafür soll eine Flotte selbstfahrender
Roboter gebaut werden. Ein Prototyp basierend auf einem RC-Model ausgestattet mit
einem Raspberry Pi als Recheneinheit und einem Arduino Uno als Microcontroller, welche
die Steuerung des Fahrzeuges übernehmen, wurde bereits gebaut[5]. Es ist geplant, diesen
Roboter mit Sensoren zu erweitern um selbständiges Fahren in der Zukunft zu ermögli-
chen. Dafür ist die Überprüfung von diversen Algorithmen und Methoden unumgänglich.
Aus diesem Grund wurde eine physikalische Simulation und Visualisierung des Prototypen
erstellt. Der Aufbau des Fahrzeuges und dessen Simulation sowie deren gemeinsames
Interface wurden im Zuge eines Student Papers[3] auf dem ARW (Austrian Robotics
Workshop) 2016 präsentiert.
Diese Bachelorarbeit konzentriert sich auf die Erstellung der Simulation sowie ihrer
Überprüfung. Da das Forschungsinteresse der Bewegung des Fahrzeuges gilt, ist es ausrei-
chend, nur das Fahrgestell zu simulieren und visualisieren. Besondere Aufmerksamkeit
gilt der Ackermann Steuerung des Fahrzeuges. ROS [7] (Robot Operating System) fun-
giert als Zwischenanwendung für die Software [10] die die Simulation und Visualisierung
übernimmt. Ein ROS Node übernimmt die Lenkung des Fahrzeuges, den Antrieb der
Räder und desweiteren alle notwendigen Berechnungen. Eben dieser Node ist für die
Kommunikation der verwendeten Anwendungen verantwortlich. Einerseits empfängt er
Bewegungskommandos, andererseits stellt er zweierlei Odometrie Daten zur Verfügung.
Diese Odometrie Daten basieren zum einen auf dem Velocity Motion Model [9, 12], zum
anderen auf der tatsächlichen Position und Orientierung des Fahrzeuges.
In dieser Arbeit werden verschiedene Wege, die Odometrie Daten darzustellen, vorgestellt.
Um die berechnete Position und Orientierung des simulierten Fahrzeuges und dessen Un-
sicherheit darzustellen, wurde ein weiterer Node erstellt. Die Möglichkeit, die Unsicherheit
von Position und Orientierung darstellen zu können, zeichnet eben diesen Node gegenüber
anderen Nodes aus. Dies ist wichtig um die Glaubwürdigkeit der berechneten Daten im
Vergleich zur tatsächlichen Position und Orientierung prüfen zu können. Abschließend
wird anhand der Odometrie Daten des Velocity Motion Models und der Ground Truth
Odometrie gezeigt, dass die Simulation den Ansprüchen auf Genauigkeit im Bezug auf
das Tracking Model gerecht wird. Außerdem werden Möglichkeiten, die Genauigkeit der
Simulation weiter zu steigern, vorgestellt.
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CHAPTER 1
Introduction

Autonomous driving is currently a research topic of automobile manufacturers like Volvo,
Ford or Nissan and newcomers to the topic of automobiles such as Google [11]. At the
DARPA Urban Challenge1, universities like the Massachusetts Institute of Technology
and the Stanford University presented their research accomplishments [8]. The Institute
of Computer Aided Automation at the Technical University of Vienna founded a research
group for autonomous driving robots as well. It targets students as well as researchers
and provides them with the opportunity to conduct studies without needing the actual
robot. The group intends to create a fleet of autonomous robots with Ackermann steering
based on the prototype, see Figure 1.1a, created by a student in the group [5]. The
Ackermann steering is a geometrical design commonly used in automobiles, pictures of
an Ackermann steering will be shown in Chapter 3.
The prototype, a modified RC car, is equipped with a Raspberry Pi2 and an Arduino
Uno3 to run the required software, read sensor data and control the actuators. The RC
car as well as the Raspberry Pi and the Arduino Uno are cost efficient hardware.
A Raspberry Pi is a small computer used for computation of the robot and for running
ROS [7] (Robot Operating System), see Subsection 3.1.1. An Arduino Uno is a micro
controller used to control the actuators of the vehicle based on the commands it receives
from the Raspberry Pi. One actuator is a BLDC (Brushless Direct-Current) motor, the
other one is a servo motor.
The main software used to run this vehicle is the open source software ROS.
A simulation and visualization of this robots chassis is required to verify motion systems
and motion algorithms. Simulation is a necessary development tool for several robotic
tasks. This thesis presents the creation of such a simulation for robotic motions. It allows
to analyze the correct functionality of motion systems and algorithms without using the

1DARPA Urban Challenge: http://archive.darpa.mil/grandchallenge/ (20.07.2016)
2Raspberry Pi: https://www.raspberrypi.org/products/ (23.04.2016)
3Arduino Uno: https://www.arduino.cc/en/Main/ArduinoBoardUno (23.04.2016)
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1. Introduction

real robot. The work presented in this thesis is extendable to multiple robot simulation
as well as sensor simulation which is required for self localization. In order to achieve this,
the real car and the simulation each calculate their estimated pose and its uncertainty
based on the velocity motion model [9, 12]. A pose by definition holds both the position
and the orientation of the robot.
The robot introduced above is simulated with the open source robotic simulation and
visualization tool Gazebo. To keep the robot and its simulation compatible, Gazebo is
used in combination with ROS. ROS is used to allow communication with the same sort
of messages for the real and the simulated robot. This is necessary since the real and the
simulated robot share a common interface.
The simulation only contains the robots chassis since this thesis focuses mainly on motion
simulation and research. Simulating additional parts would not provide any useful impact
on motion research but would exceed the computational effort.
In order to include the impact the non-simulated parts would have on the motion, their
weight is taken into account. To create a model of the chassis two different file types
may possibly be used, the first of which is URDF (Unified Robot Description Format)
primarily used in association with ROS and the second of which is SDF (Simulation
Description Format) primarily used in association with Gazebo, for more details see
Section 3.1. Both are XML4 (Extensible Markup Language) files which allow to describe
robot models and their environment by defining their links, which specify bodys, and
joints, which describe the connections of the links.
Even though URDF is compatible with ROS it can be rendered compatible with Gazebo
if additional tags, which hold physical parameters like a mass and inertia of a link, are
included. SDF is compatible with Gazebo and at this moment not supported by ROS.
Because of this, URDF is the file format chosen for this project, even though SDF would
provide benefits allowing easier simulation of the chassis. When using a URDF file for the
robot model a plugin which simulates the mechanisms of Ackermann steering is required.
In comparison, using a SDF file would allow to simulate the steering just by assembling
links to an Ackermann steering with out an additional plugin. Since a plugin is required
for communication with the simulation anyway, it is well within the scope of this work
and does not require any additional programs. The reason why an Ackermann steering
can not be operated using URDF without a plugin will be discussed in Subsection 3.3.1.
The URDF file imported into Gazebo is shown in Figure 1.1b.
A ROS node which operates as a Gazebo plugin is responsible for the management of
the simulated robot, the computation required for this task and for the tracking. The
node controls the steering and powers the wheels with the same kind of messages that
the real robot is controlled by. Therefore the steering angles have to be calculated and
applied to the simulated vehicle. Additionally, the node fulfills the computation required
for the tracking system of the simulated robot in the same way the real robot does.
Both the estimated pose and its uncertainty gained this way as well as the ground truth
pose according to the simulation are published as ROS topics which are named buses
hosted by this node. The format of this odometry data is the same that the real robot

4XML: https://en.wikipedia.org/wiki/XML (23.04.2016)
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publishes. The node also hosts the topic from where the simulated vehicle receives
its motion commands. This is necessary to ensure the simulations compatibility with
different navigation nodes.
To show the accuracy of the robot model created this way the ground truth pose with
the estimated pose and its uncertainty are compared. A node is created to visualize the
ground truth pose during run time and the estimated pose with its uncertainty. Since
this node lacks the possibility to visualize the trajectory, RViz and MATLAB are used
for this task, see Section 3.5. RViz has the benefit of visualizing the trajectory during
run time, but it can not visualize the uncertainty of a pose. MATLAB can visualize both
the trajectory and the uncertainty of a pose, but it can not fulfill these tasks during run
time.

(a) The robot aimed to simulate. (b) The simulation of the robot in Gazebo.

Figure 1.1: Comparison of the real and the simulated robot.

Two specific test are carried out to ensure the simulations accuracy in comparison with the
tracking model used. MATLAB was chosen to visualize the tests because it is important
to compare the difference between the calculated trajectories with the pose uncertainty
of the simulation. The first test is driving a straight line and the second one a curve.
The difference between the calculated and the simulated trajectory will be discussed
and it will be shown that the simulation meets the requirements of accuracy. The same
tests with the calculated trajectory and the trajectory of the real car are discussed in the
thesis of another student [5]. Because of the close relation of the tests, the calculated,
the simulated and the real trajectories are visualized.
The creation of the real and the simulated robot as well as their common interface was
presented at the ARW (Austrian Robotics Workshop) 2016 within a student paper[3] .
This thesis primarily treats the creation of the simulation and the knowledge required for
it.
Firstly, the two robotic tools used and their main properties are introduced.
Secondly, required knowledge of the chassis and the approach to simulate it is described.
Finally, the quality of the simulation is ascertained based on the comparison of the
calculated trajectory and the ground truth trajectory. It will be shown that the simulation
meets the mandatory requirements while still leaving room for improvement. Some of
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1. Introduction

these improvements will be introduced.
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CHAPTER 2
Related Work

This chapter is organized as follows. Firstly, robotic challenges leading the way for the
development of robotics and specifically autonomous robotics are mentioned. Secondly,
the basis for the interface of the robot and its simulation are introduced. Thirdly, different
simulation tools as well as robots simulated with Gazebo are introduced.

2.1 Robotic Challenges

During the last years, many studies have been conducted in the field of autonomous
driving [11, 4]. In the last ten years, competitions in various robotic disciplines were
established. A famous operator of robotic challenges is DARPA (Defense Advanced
Research Projects Agency) which hosts multiple challenges for different kinds of robots.
The DARPA robotics challenge focuses on semi autonomous robots aimed to fulfill
complex tasks in dangerous human engineered environments. The robotics challenge
splits into three parts, a virtual robotics challenge, the VRC and two live hardware
challenges. The DARPA grand challenge is a race of autonomous vehicles in different
environments. The third grand challenge is known as urban challenge since it was the first
grand challenge including an urban course. Universities like the Massachusetts Institute
of Technology and the Stanford University participate in the DARPA challenges and
present their research accomplishments [8].
Events of a smaller scale like the Freescale Cup1 or the Carolo Cup2 and others are created
to interest students in participating. The task is to develop and build an autonomous car
based on a RC car which has to pass some classic road traffic tasks as fast and accurate
as possible. Conducting research for such challenges pushes the progress in robotics while
also motivating students.

1Freescale Cup: https://community.freescale.com/welcome (23.04.2016)
2Carolo Cup: https://wiki.ifr.ing.tu-bs.de/carolocup/ (23.04.2016)
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2. Related Work

2.2 Interface

Both the prototype and the simulation share a common boundary, the so called interface,
to exchange information with ROS. A typical ROS interface for differential drive and
holonomic robots uses twist messages which, are geometry messages created by the OSRF
(Open Source Robotics Foundation). For Ackermann drive robots these messages are not
sufficient since they do not provide required information such as the acceleration and the
jerk which are necessary for autonomous automobiles. Moreover, an Ackermann drive
robot is not able to fulfill all motions that a differential drive or holonomic robot could.
If twist messages are to be used for a differential drive robot, additional calculations are
required.
The disadvantages of twist messages in use with Ackermann drive robots compelled the
ROS Ackermann interest group3 to create a new kind of message solely for Ackermann
robots. Based on messages used by the ART (Austin Robot Technology) autonomous
vehicle they developed the Ackermann messages for ROS which are used for the interface
of both the real and the simulated robot. The ART messages4 are part of the Marvin
project of the University of Texas at Austin. Marvin is an unmanned ground vehicle
based on a sports utility vehicle which participated at the DARPA challenge. Members
of the Marvin-Team ported the software of the autonomous car to ROS and share it
with the robotics community through the Ackermann interest group. This software is no
longer supported since Marvin was retired after many years of operation.
Beside the ART and the Ackermann messages package the Ackermann interest group
also created an Ackermann QT5 operation package and a HKS operation package for the
HKS game controller.
An alternative Interface not based on ROS could be created with Player6. Player is a
cross-platform robotic network interface to a variety of sensors and hardware. Like the
interface created for the Ackermann robot fleet, Player also allows to control different
vehicles via the same interface. Adept Mobilerobots7 Pioneer2 as well as RWI (Real
World Interface) drivers use the same Player interface to control robot movement, to
name a few examples.
Both ROS and Player are compatible with multiple simulation tools, some of which will
be mentioned in the following section.

2.3 Simulation

Robotic simulations are used to create and verify embedded applications without the use
of the real robot. Thus, robotic simulations save time and money in the development of
robotic systems. For that reason multiple robotic simulation tools with a different focus

3Ackermann Interest Group: http://wiki.ros.org/Ackermann Group (17.03.2016)
4ART Messages: http://wiki.ros.org/art_nav (23.04.2016)
5QT Library: https://www.qt.io/ (23.04.2016)
6Stage Project: http://playerstage.sourceforge.net/ (17.03.2016)
7Adept Mobilerobots: http://www.mobilerobots.com/ (23.04.2016)
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2.3. Simulation

each developed.
A few commonly used simulation tools are:

• Stage, a two dimensional simulation software for mobile robots, sensors and objects.
Stage is frequently used with the Player network server.

• Gazebo8 [10], a three dimensional open source simulation and visualization tool for
the robotic middle ware ROS. Gazebo was developed to be fully compatible with
the Player device server [10] from the beginning. This Simulation tool is used for
the work presented within this thesis.

• V-REP9, a three dimensional cross platform simulation tool similar to Gazebo.

• Webots10, a three dimensional simulation and visualization tool liable to pay and
compatible with ROS.

DARPA recognized the importance of simulations in the growing field of robotics and
dedicated one third of the DARPA robotic challenge to robotic simulation known as
VRC (Virtual Robotics Challenge). DARPA announced that the standardized simulation
environment is based on Gazebo [1][2]. This has pushed the focus of the robotic community
onto Gazebo.
The humanoid robot Atlas11, created by Boston Dynamics, is used by multiple teams
for the DARPA robotics challenge. A tutorial12 showing how to spawn this robot into a
Gazebo world is available online.
Other robots supported by Gazebo are the previously mentioned Pioneer2 and the
Pioneer3AT, which are both research robots. The Pioneer2 is a differential drive and the
Pioneer3AT a four wheel drive robot. Their simple shapes allow to easily create models
of them using boxes and cylinders [10]. At the Vienna University of Technology, more
advanced models containing meshes and simulations of their sensors are used for research
and education.
An example for a commercial robot simulated with Gazebo is Robotnik’s Autonomous
mobile robot called AGVS13, which stands for automated guided vehicles. AGVS is a four
wheeled transport robot running ROS. A lot of the software used for this robot is shared
through a package14 on the website of the Ackermann interest group. This package
includes an model of the robot, multiple messages for navigation and path planning
as well as SLAM (Simultaneous Localization and Mapping) tools. To ensure detailed
simulation and especially visualization, the robot model is created with URDF and mesh

8Gazebo: http://gazebosim.org/ (17.03.2016)
9V-REP: http://www.coppeliarobotics.com/index.html (17.03.2016)

10Webots: https://www.cyberbotics.com/overview (17.03.2016)
11Boston Dynamics Atlas: http://www.bostondynamics.com/robot_Atlas.html (23.04.2016)
12Gazebo with URDF: http://gazebosim.org/tutorials at Connect to ROS - URDF in Gazebo

(23.04.2016)
13AGVS Robot: http://www.robotnik.eu/mobile-robots/autonomousagvs/
14ROS AGVS: http://wiki.ros.org/agvs (23.04.2016)
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2. Related Work

files. AGVS is equipped with a front and a rear laser range finder for SLAM and safety
reasons.
These are only a few of the robots simulated with Gazebo. There is a long list of different
kinds of robots simulated with Gazebo but mentioning them all would be beyond the
scope of this chapter.
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CHAPTER 3
Approach

The following chapter is about the creation of the Ackermann robot simulation. Therefore
the necessary functions of the robotic tools ROS and Gazebo used to achieve this will be
explained. Thereby the model description formats URDF and SDF will be introduced.
Also, the Ackermann steering and its geometrical basics are described. The main focus
is on the implementation of the Ackermann steering into the simulation tool Gazebo in
usage of URDF in combination with ROS. After that, the basis for the calculation of
odometry data will be defined along with ways to visualize the odometry data.

3.1 Facility
The work presented within this thesis is software based, therefore the used software
facilities will be introduced here. Both main software components ROS and Gazebo are
projects of OSRF (Open Source Robotics Foundation). The defined mission of OSRF
with respect to ROS and Gazebo is to ‘...support the development, distribution, and
adoption of open source software for use in robotics research and education...’ according
to their website1.

3.1.1 The Robot Operating System ROS

The open source software ROS [7] is a flexible platform for robotics. Since ROS Jade
Turtle2 is used for the robot, it is also used for its simulation to ensure their compatibility.
A ROS node is an executable that can fulfill calculation and computation tasks. ROS
nodes can communicate by services in terms of request and replay communication or by
topics where the nodes which are named buses can publish and receive messages. Types
of messages used for this project are:

1ORSF: http://www.osrfoundation.org/ (17.03.2016)
2http://wiki.ros.org/jade (20.07.2016)
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3. Approach

• Ackermann Messages3

• Geometry Messages, specifically Twist Messages4

• Navigation Messages, specifically Odometry Messages5

These messages are included in packages which are free to download. Beside the packages,
many nodes are free to download, one of them being RViz6 (ROS Visualizaton) which is
a useful visualization tool. Nodes can be written in Python which is supported by the
client library rospy, or in C++ which is supported by the client library roscpp, the latter
is used exclusively for nodes created within this project. An important feature of ROS
are publishers which are used to publish messages into topics and subscribers which are
used to receive messages from topics. The publisher and subscriber system allows to
combine different nodes by communicating via messages like the ones mention above.
An essential executable is roscore, which ensures the possibility for all other nodes to
communicate by tracking nodes to topics as well as services.
An important reason for the use of ROS is its ability to communicate with the simulation
and visualization tool Gazebo.

3.1.2 The Simulation and Visualization Tool Gazebo

In 2015, Gazebo established itself as a stand alone open source software for robot
simulation and visualization. Since its emancipation, Gazebo no longer has any direct
ROS dependencies, but it can still be integrated into ROS. ROS Jade Turtle, which is
the version used for the robot and its simulation, works with the Gazebo 5 series due to
the installation of the Gazebo ROS package7. The interaction between ROS and Gazebo
is achieved using ROS messages and services.
Gazebo provides a three dimensional robot physics simulation and visualization based
on the open source library ODE8 (Open Dynamics Engine). It offers the ability to
simulate realistic sensor feedback and physically plausible interactions between objects.
Additionally Gazebo provides a GUI (Graphical User Interface), which allows to change
simulation parameters and to manipulate the robot as well as the environment. Gazebo
splits into three executables:

• The gzserver which is responsible for the physical simulation and the generation
of sensor data. By default this command starts a world which only contains a solid
infinite flat surface, known as empty world.

3Ackermann Messages: http://wiki.ros.org/ackermann_msgs (17.03.2016)
4Geometry Messages: http://wiki.ros.org/geometry_msgs (17.03.2016)
5Navigation Messages: http://wiki.ros.org/nav_msgs (17.03.2016)
6RViz: http://wiki.ros.org/rviz (17.03.2016)
7Gazebo Ros Package: http://wiki.ros.org/gazebo_ros_pkgs (17.03.2016)
8Physics Engine ODE: http://www.ode.org/ (20.07.2016)
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3.1. Facility

• The gzclient which is responsible for the three dimensional visualization and
the GUI.

• The executable gazebo which runs gzserver as well as gzclient.

Since the visualization of Gazebo is computationally expensive, it is reasonable to run the
visualization only when it is required. Since it hosts the necessary topic the gzserver is
the essential executable for the communication between ROS and Gazebo, see Figure 3.1.

/joint_states

/ackermann/command

/gazebo/set_link_state

/gazebo/set_model_state

/gazebo

robot_state_publisher

/robot_state_publisher

ackermann

gazebo

/ackermann/odometry_godview

/ackermann/odometry_encoder

/gazebo/link_state

/gazebo/model_state

covariance node

Figure 3.1: Diagram of the connection between the different Gazebo and ROS nodes and
topics. The bold letters indicate name-spaces.

The GUI (Graphical User Interface) allows to change physics and computation parameters,
like the real time update and the maximum step size, while the gzserver is running.
Another feature of the GUI is to create and modify both the simulated environment as
well as the robot. For this project, the robot is created and imported to Gazebo with an
XML (Extensible Markup Language) file.

3.1.3 URDF and SDF

URDF9 (Unified Robot Description Format) as well as SDF10 (Simulation Description
Format) are XML files used to define a robots structure. URDF and SDF both use links,

9URDF: http://wiki.ros.org/urdf (23.04.2016)
10SDF: http://sdformat.org/spec (23.04.2016)
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3. Approach

which are bodies, and joints, which are link connections, to define the simulations visuals
and collision, but differ in their use of additional tags.
URDF is created to be used in combination with ROS and consists of a number of
different ROS packages. It is possible to use URDF files with Gazebo if the URDF file is
extended with additional physics tags, see Section 4.3. Additional ROS packages like
RViz and Graphviz can be used to visualize URDF models and their structure.
SDF is the file format created for Gazebo describing robots and their environment.
In order to use SDF files with ROS they need to be converted into URDF files first.
Therefore the chassis simulation is created with an URDF file.
A graphic created with Grapviz illustrating the URDF file is shown in Figure 3.3.

3.2 Ackermann Robot

In order to do research on autonomous automobiles, it is necessary to guarantee the
equality of their motions with those fulfilled by the robot and its simulation. Therefore,
an Ackermann steering similar to the one found in automobiles is implemented in the
robot. In the further, robots with an Ackermann steering will be mentioned as Ackermann
drive robots in relation to the differential drive robots. To understand the strategy of
simulating the Ackermann drive robot, a closer look at the geometry of steered vehicles
and specifically the Ackermann steering is necessary.

ICC

ϕL ϕC ϕR

vA

(a) The ICC of the Ackermann steering.

kingpin

w
heelbase

(b) The geometry of the Acker-
mann steering.

Figure 3.2: Schematic illustration of the Ackermann steering11.

The perpendicular line to each wheel of a steered vehicle should intersect at one point
to avoid skidding wheels. The point of intersection is the ICC (Instantaneous Center
of Curvature). The curve radius for each wheel is defined by the distance between the
wheel and the ICC. For Ackermann drive robots, a curve radius for the whole vehicle can

11Ackermann Illustrations: https://commons.wikimedia.org/wiki/File:Ackermann.svg (17.03.2016)
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3.2. Ackermann Robot

be defined by adding an imaginary third front wheel, centered between the two real front
wheels. This curve radius will be defined as RC and the dedicated steering angle ϕC .
The curve radii for the wheels can assume positive and negative values depending on the
chosen coordinate system. Usually, a Cartesian coordinate system with x in the facing
direction of the robot and y to its left is defined. Using this coordinate system, a left
turn assumes a positive and a right turn a negative radius. In case of driving straight
forward, the curve radius and thus the ICC goes to plus or minus infinity. If the ICC is
plus or minus infinity the perpendicular lines on all wheels are parallel.
These geometrical fundamentals are considered by the Ackermann steering, see Figure 3.2a.
Therefore, the Ackermann steering uses an arrangement of four links to ensure the correct
steering angle for the front wheels, see Figure 3.2b.
The steering angle has a maximum and minimum value that causes the smallest possible
curve radius for each wheel to be higher that zero. This in turn makes it impossible
for Ackermann drive robots to spin on one spot, unlike differential drive robots. To
render the Ackermann drive robots compatible with differential drive robots, a conversion
between the used motion commands will be introduced. This is important for when
systems or algorithms created for differential drive robots are used with Ackermann drive
robots. For the conversion, the knowledge of the structure of the motion commands used
for Ackermann drive robots and differential drive robots is required. Ackermann drive
robots receive Ackermann messages which hold a velocity and a steering angle. These
messages will be defined as uA, see Equation 3.1.

uA =
(
vA
ϕC

)
(3.1)

Differential drive robots commonly use twist messages, which are geometry messages.
Twist messages can hold six parameters, three linear velocities and three angular velocities.
A differential drive robot has three DOF (Degrees of Freedom) in a two dimensional space
but only two parameters are required to define its motions. Thus, one linear velocity and
one angular velocity of the twist messages is used. These are a linear velocity vD in x
direction and a angular velocity ωD around the z axis. This kind of twist messages will
be defined as uD because of their usage for differential drive robots, see Equation 3.2

uD =
(
vD
ωD

)
(3.2)

The linear velocity of the Ackermann drive motion command equals the linear velocity of
the differential drive motion command, see Equation 3.3.

vA = vD (3.3)

Because of the equality of these velocities, they will be handled as one velocity v. To
calculate the steering angle of the Ackermann drive motion command, first the curve
radius needs to be calculated, based on the differential drive robots motion command.

13



3. Approach

For that, the knowledge of the wheelbase wwb is required.

ϕC = arctan
(
wwb
RC

)
where RC = vD

ωD
(3.4)

Equation 3.4 allows values for ϕC ranging from −π
2 to π

2 . A common steering does not
allow such a big range for the steering angle. If ϕC is higher than the maximum given by
the vehicles steering, or lower than the minimum given by the vehicles steering, ϕC will
be set to the maximum or minimum value.
Based on the knowledge presented within this section, the URDF file and an executable
for the simulation are created.

3.3 Simulating the Robot
The simulation of the robot is designed to test motion algorithms and systems for the
Ackermann robot. Therefore, only the parts vital for the robots motion are simulated
and visualized, as seen in Figure 1.1b:

• The wheels establish physical contact between the robot and its environment. To
keep the computational effort low, the wheels are approximated by cylinders. The
friction parameter of the wheels is approximated to result in the expected behavior.

• The Ackermann steering, to ensure the correct steering angle of the left and the
right front wheel. The maximum and minimum steering angle are approximated
to ±0.4 rad. These ϕMAX and ϕMIN values allow the simulated robot to have the
same minimal curve radius as the real robot.

• A simple base link to visualize a connection between the before mentioned parts.
The base link also holds the weight of the parts that are not simulated, because
contrary to their function, their weight is essential for the motion. The total weight
of the prototype is 2.5 kg.

When simulating the above mentioned parts, steering is the focus point and can be
difficult when using URDF.

3.3.1 Four Linkage Problem

During the first attempt to simulate the Ackermann steering, a closed loop of four links
connected with joints was created as shown in Figure 3.2b. The parent-child structure of
URDF joints makes is impossible to create such a loop. A joint connects one parent link
with one child link. If a second parent link is defined for a child link, only the connection
to the first parent link will be considered.
This allows only treelike structures of links connected with joints, where the joints are
branches and links are contact points, as shown in Figure 3.3. The mimic function of
joints can solve this problem for loops created with equal sized opposite links. Since the
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Ackermann steering requires an isosceles trapezoid, see Figure 3.2b, this solution is not
usable for this project. A SDF file would allow to create such a loop but SDF is not
compatible with ROS and therefore no solution for this problem either. Because of this,
another way to simulate the Ackermann steering is needed.

3.3.2 Plug-in

A ROS node, functioning as Gazebo plug-in, is an executable which can read and
manipulate Gazebo and will be referred to as plug-in in this thesis. The plug-in is used to
control the Ackermann steering and power the wheels according to the motion command
it receives. This is achieved by reading and manipulating joints.
The plug-in handles the calculation of the estimated pose according to the velocity motion
model, see Subsection 3.4.1. It is also responsible for hosting topics to receive Ackermann
messages and to publish both the velocity motion model odometry messages and the
ground truth odometry messages.
Since the URDF file does not have to simulate the Ackermann steering, the kingpins
as shown in Figure 3.2b, are the only simulated part of the steering. The remaining
simulation of the Ackermann steering is fulfilled by the plug-in. The structure of the
resulting URDF file looks is shown in Figure 3.3
Based on the motion commands the plug-in receives, it calculates the steering angle for
the left ϕL and the right ϕR front wheel. The radii of both front wheels differ from
the curve radius of the imaginary third front wheel by the offset of their kingpin with
respect to the imaginary wheel. In the following, the distance between the left and the
right kingpin will be mentioned as kingpin width wkp. It is important not to use the
track width instead of the kingpin width, because this causes an offset in the steering
angle, which will cause an offset between the estimated and the ground truth pose. In
Equation 3.5 the calculation of both steering angles is shown.

ϕL = arctan
(

wwb
RC −

wkp

2

)
and ϕR = arctan

(
wwb

RC + wkp

2

)
(3.5)

These calculated steering angles are applied to the kingpins by the plug-in. This motion
is controlled by the ‘P’ part of a ‘PID’ controller. The controller causes the steering to
act as expected, but this is a simplification since the real robots steering is powered by a
servo motor. Contrary to the real robot, the simulated steering velocity is not constant.
This simplification can be applied because the steering velocity is fast compared to the
velocities driven by the car. Since the update rate of the plug-in is 100Hz, the calculation
is fast enough to avoid visible and consequential overdrive.
The rear wheels are simplified as well, as the plug-in does not consider their different
curve radii. In the real robot, this is considered using a differential between the left and
the right wheel. The four linkage problem of URDF, explained in Subsection 3.3.1, does
not allow to simulate such a differential. A differential would require its own plug-in,
but this would be beyond the scope of this thesis. To decrease the consequences of the
simplification, only the simulated robots rear wheels are powered. The real robot has all
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wheels powered.
To measure the accuracy of the simulated robots motions with this plug-in, motions of
comparison are required. Therefore, a tracking system is used.

base_link

base_link_to_left_front_wheelmount_box

xyz: 0.125 0.05 0 
rpy: 0 -0 0

base_link_to_left_rear_wheelmount

xyz: -0.125 0.055 0 
rpy: 0 -0 0

base_link_to_right_front_wheelmount_box

xyz: 0.125 -0.05 0 
rpy: 0 -0 0

base_link_to_right_rear_wheelmount

xyz: -0.125 -0.055 0 
rpy: 0 -0 0

left_front_wheelmount_box

left_front_wheelmount_box_to_left_front_wheelmount_cylinder

xyz: 0 0.0025 0 
rpy: 0 -0 0

left_front_wheelmount_cylinder

left_front_wheelmount_cylinder_to_left_kingpin

xyz: 0 0 0 
rpy: 0 -0 0

left_kingpin

left_kingpin_to_left_front_wheel

xyz: 0 0.01 0 
rpy: 0 -0 0

left_front_wheel

left_rear_wheelmount

left_rear_wheel_to_mount

xyz: 0 0.005 0 
rpy: 0 -0 0

left_rear_wheel

right_front_wheelmount_box

right_front_wheelmount_box_to_right_front_wheelmount_cylinder

xyz: 0 -0.0025 0 
rpy: 0 -0 0

right_front_wheelmount_cylinder

right_front_wheelmount_cylinder_to_right_kingpin

xyz: 0 0 0 
rpy: 0 -0 0

right_kingpin

right_kingpin_to_right_front_wheel

xyz: 0 -0.01 0 
rpy: 0 -0 0

right_front_wheel

right_rear_wheelmount

right_rear_wheel_to_mount

xyz: 0 -0.005 0 
rpy: 0 -0 0

right_rear_wheel

Figure 3.3: The structure of the URDF file used to simulate the robot. Links are
visualized with black boxes and joints with blue ellipses. The coordinates of the joint in
respective of the origin of its parent link are written above the joints.
What this file looks like in Gazebo is shown in Figure 1.1b.

3.4 Odometry

Robot motions are error afflicted because of factors like wheel slips, bumps or inaccuracies
within the robot. This causes the estimated robots pose to differ from the ground truth
pose. The robot simulation presented within this thesis is aimed for self localization and
path planning, whereby both benefit from an accurate pose estimation. Different ways to
calculate the estimated pose will be introduced in the following.

3.4.1 Velocity Motion Model

The velocity motion model is a tracking system to calculate the estimated pose of a
robot based on the motion commands it receives. The kind of velocity motion model as
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ascribed to Thrun [9] is designed for differential drive robots. Its simple structure allows
for it to be used with the transformation defined in Section 3.2.
In the following a two dimensional space will be assumed. In this case the pose holds
three parameters, see Equation 3.6.

xt =

 xt
yt
θt

 (3.6)

A motion command for an Ackermann steered vehicle is shown in Equation 3.7.

u =
(
v
ϕ

)
(3.7)

The velocity motion model recursively calculates the estimated pose and its uncertainty
which is represented by a covariance matrix Pt, see Equation 3.8.

Pt (Cov (xt)) =

 Cov (x, x) Cov (x, y) Cov (x, θ)
Cov (y, x) Cov (y, y) Cov (y, θ)
Cov (θ, x) Cov (θ, y) Cov (θ, θ)

 (3.8)

The uncertainty of the robots pose is a consequence of motion errors. The robots pose at
any time t is a function depending on the previous pose and the motion commands, see
Equation 3.9 .

xt (xt−1,u) =

 xt = xt−1 + v · cos (θt−1) ·∆t
yt = yt−1 + v · sin (θt−1) ·∆t
θt = θt−1 + v·tan(ϕ)

wwb
·∆t

 (3.9)

The initial pose and its covariance matrix need to be defined. The values in the diagonal
of the initial covariance matrix must be different from zero. In case of sure placement,
these values can be much smaller than one but need to be greater than zero. The change
of the pose is represented by the Jacobian matrix G, which is the derivative of the state
xt with respect to the pose xt−1, see Equation 3.10.

G = ∂xt (xt−1,u)
∂xt−1

=

 1 0 −v · sin (θt−1) ·∆t
0 1 v · cos (θt−1) ·∆t
0 0 1

 (3.10)

The Jacobian matrix V is the derivative of the pose xt with respect to the motion
command u and equals the change of the motion, see Equation 3.11.

V = ∂xt (xt−1,u)
∂u =

 cos (θt−1) ·∆t 0
sin (θt−1) ·∆t 0

tan(θt−1)·∆t
wwb

v·∆t
wwb·cos2(θt−1)

 (3.11)

For the matrices G and V , it is important to consider the case of velocities being smaller
than zero which equals driving backwards. This case can be treated as turning the vehicle
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around and assuming to drive forward. Mathematically, this amounts to shifting the
parameter θ by π

2 .
The error matrix M considers the effect of motion errors, while the four parameters α1
to α4 weight the motion noise, see Equation 3.12.

M =
(
α1v

2 + α2ϕ
2 0

0 α3v
2 + α4ϕ

2

)
(3.12)

The introduced matrices provide enough information to calculate the covariance matrix
for every time step.

Pt = G · Pt−1 ·GT + V ·M · V T (3.13)

The first term of Equation 3.13 represents the prediction step and the second term the
uncertainty in accuracy of the motion. The calculation made with Equation 3.10 to
Equation 3.13 equals the prediction step of a Kalman filter used for mobile robotics [9, 12].
The normalized eigenvectors of the x and y dependent submatrix of Pt, weighted by their
eigenvalues define the orientation and size of an ellipse. This ellipse represents the area
where the robot might be corresponding to the used α values. Without any correction,
the covariance ellipse will only grow whenever the robot receives motion commands. For
any kind of pose correction, sensor input is needed, but this is beyond the content of this
work.
The velocity motion model discussed thus far is used for the simulation and the real robot.
Its accordance to the simulation of the real robot will be discussed in Section 5.2. One
issue in the velocity motion model is that only motions caused by a motion command
are considered.

3.4.2 Odometry Motion Model

The velocity motion model is a tracking system which regards all motions carried out
by wheels and steering. Therefor, the odometry motion model [9] commonly uses wheel
encoders and in the case of Ackermann drive robots also a steering encoder to measure the
velocity and the steering angle. A relevant alternative to wheel encoders is a Hall sensor
in the BLDC motor, which is built into the prototype. The calculation for the odometry
motion model is the same as for the velocity motion model, see Subsection 3.4.1, but
they differ in the motion u used for this calculation. Thus, the odometry motion model
can regard rolling caused by the kinetic energy of the robot but drifting and slippage are
not considered. Nevertheless, it does not provide any kind of pose correction.

3.4.3 Kalman Filter

The Kalman filter is a mathematical method to improve error afflicted predictions. In
mobile robotics, the Kalman filter is used for pose estimation and self localization.
Therefor, the Kalman filter splits into two parts. Firstly, the prediction step, which
calculates the estimated pose of the robot based on the motion commands it receives.
This equals the calculations presented in Subsection 3.4.1. Secondly, the correction step,
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which improves the estimated pose based on sensor input. Thus, the robot needs sensors,
which will be attached in further work for the usage of a Kalman filter.
It is useful to visualize the odometry data gained with any of the before mentioned
motion models.

3.5 Odometry Visualization
Three programs are used to visualize odometry data. They will be introduced in the
following.
Firstly, the ROS package RViz which is a useful visualization tool for different kinds
of messages and URDF files, see Figure 3.4. RViz allows to display a number of poses,
which enables the visualization of a driven trajectory. The disadvantage of RViz is
that it is not possible to visualize the covariance ellipse. There is a package12 which
claims to provide this but when it was used, bugs caused the covariance ellipse to be
drawn incorrectly. Odometry visualization with RViz is useful to test the accuracy of the
simulation empirically.

Figure 3.4: A screen-shot of RViz where two trajectories are compared. The arrows
represent the estimated position as well as the estimated orientation at different time
steps. It is not possible to visualize the pose uncertainty with this tool yet.

12RViz Covariance Plug-in: http://wiki.ros.org/rviz_plugin_covariance (17.03.2016)
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Secondly, a node able to visualize the estimated pose, its covariance ellipse and the
ground truth pose is created, see Figure 3.5. This node is created to assume the task of
displaying the covariance ellipse, therefor it will be mentioned as covariance node. It is
based on the geometry library used for the ‘Mobile Robotics’ lecture13 at the Technical
University in Vienna. The geometry library in turn uses the OpenCV14 library for the
display window. The disadvantage of the covariance node is that it is unable to display
the driven trajectory. The created node is used to display the covariance and check its
plausibility.

Figure 3.5: A Screen-shot of the covariance node where the position of the estimated
pose and its uncertainty as well as the ground truth pose are visualized.

Finally, MATLAB15, which is a common tool for multiple mathematical applications is
mentioned. The tests presented in Chapter 5 are visualized with MATLAB, see Figure 5.1

13Mobile Robotics (LAV No.: 183.660) to find at: https://tiss.tuwien.ac.at/ (17.03.2016)
14OpenCV: http://opencv.org/ (17.03.2016)
15MATLAB: http://de.mathworks.com/ (17.03.2016)
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and Figure 5.2. The advantage of MATLAB is its ability to display the trajectory as
well as the covariance. Its disadvantage is that unlike RViz and the covariance node, it
cannot display the trajectory or the covariance during the run time of the simulation.
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CHAPTER 4
Applied Physics Engine

A core element of the simulation tool Gazebo is the physics engine. A physics engine is a
means to apply physical properties to software. The goal is to enable the software to
consider the relevant properties for a specific simulation.
Gazebo supports different physics engines for example Bullet Physics1, DART2 (Dynamic
Animations and Robotic Toolkit) and ODE3 (Open Dynamics Engine), which is its
default physics engine. On one hand the physics simulation depends on the chosen
physics engine on the other hand it depends on the used file format to define the robots
structure. In the following the physical simulation carried out with ODE and URDF will
be discussed.

4.1 Friction

Friction is a force that appears when two bodies share a common contact surface. Different
types of friction are defined according to their source. For this simulation dry friction as
well as rolling friction are regarded.
Dry friction can be subdivided into static friction and kinetic friction. Static friction force
FS appears between bodies with a common contact surface that are not moving relative
to each other. Kinetic friction force FN appears between two bodies which move relative
to each other along their common contact surface. The size of the contact surface does
not influence the friction force in either one of both cases. The dimensionless coefficients
for friction are usually denoted as muS for static friction and muK for kinetic friction.
These friction coefficients can differ for various directions of movement of the bodies
against each other. The static friction and the kinetic friction forces which depend on

1Bullet Physics: http://bulletphysics.org/wordpress/ (22.08.2016)
2Physics Engine Dart: https://dartsim.github.io/ (22.08.2016)
3ODE Physics: http://www.ode.org/ (20.07.2016)
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the normal force FN are denoted in the Coulomb friction Law, see Equation 4.1.

FS ≥ µS · FN and FK ≥ µK · FN (4.1)

The static friction coefficient is always higher than the kinetic friction coefficient. That’s
because the contact surfaces interlock. A force greater than FS is required to break the
interlock. Once the interlock is broken a force greater than FK is sufficient to maintain
the movement of the bodies.
Rolling resistance is the force which counteracts the rolling of a circular body on a
surface. It is caused by rolling friction and slippage between the circular body and the
surface. This slippage can cause static or kinetic friction. Rolling friction is caused by
attraction between atoms and deformation of at least one of the bodies. Analog to the
static and kinetic friction coefficient the rolling friction coefficient is denoted as µR with
the dimension of a length. The friction coefficient of rolling friction is usually much
smaller than the friction coefficient of static and kinetic friction [6]. A torque DR about
the contact axis is required to move the circular body, shown in Equation 4.2.

DR ≥ µR · FN (4.2)

Rolling friction is treated as friction because of the resemblance of Equation 4.2 and
Equation 4.1n even though it is not a friction per definition.

4.1.1 ODE Friction Approximation

The physics engine simulates friction at contact joints, which are joints without restrictions.
Such contact joints are created and deleted in response to collision detection. Therefore
contact joints usually have a lifespan of one time step.
For all contact joints the normal force FN is calculated assuming frictionless contact.
Two friction directions can be defined for a contact joint. The first friction direction
can be defined, but does not have to be. If the first friction direction is not defined it is
set to an arbitrary direction perpendicular to the normal of the contact surface. The
second friction direction is perpendicular to both the normal of the contact surface and
friction direction one. A contact joint of two bodies and its friction directions are shown
in Figure 4.1.
For each friction direction a friction coefficient µx can be defined. One friction coefficient
has to be set, the second coefficient is optional. In case of only one friction coefficient
both friction directions will use this friction parameter. According to the normal force
and the friction coefficient the maximum friction force FM is calculated for each friction
direction, see Equation 4.3.

FMx = µx · FN with x ∈ {1, 2} (4.3)

The friction coefficient can range anywhere from zero to infinity. For finite values friction
approximation will be calculated4. When a force lower than FMx is allied to a contact

4ODE Userguide: http://ode.org/ode-latest-userguide.html (22.08.2016)
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joint, the joint is in ‘sticking mode’ which means that the friction force prevents the body
from moving. When a force higher than FMx is applied, the joint is in ‘sliding mode’ and
the body moves. In case of the friction coefficient being set to zero the contact will always
slip, in case of the friction coefficient being set to infinity the contact will never slip. This
implies that no distinction between kinetic and static friction is made by the physics
engine. Furthermore rolling friction is not regarded within this friction approximation.
This simplification can be justified with the difference between the friction coefficients of
rolling and both static as well as kinetic friction. These simplifications help to minimize
the computational effort.

Figure 4.1: Visualization of a contact joint with friction direction one F − dir1 and
friction direction two F − dir2 used for friction approximation5.

When ODE is applied, Gazebo is able to simulate torsional friction6, which appears when
two bodies with a common surface rotate against each other on an axis normal to the
contact surface. In the simulation this kind of friction occurs when the front wheels are
rotating relative to the kingpins. Since this motion is small in comparison to the motion
of the robot this friction is not regarded either.
The knowledge of the mass which is in correlation with the inertia of the bodies is
essential for the friction approximation.

4.2 Inertia

Inertia is the property of bodies to remain in their state of motion unless an external
force or torque is applied. Generally friction prevents a body from retaining a state of
motion. Both the force and torque to change a bodies state of motion are depending on
its mass. Therefore mass can be defined as cause of inertia.
Two different kinds of inertia are significant for the simulation.

5Contact Joint Illustration: http://ode.org/ode-latest-userguide.html (22.08.2016)
6Torsional Friction: http://gazebosim.org/tutorials at Physics Library - Torsional Friction(22.08.2016)
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Firstly, the inertia of mass which is the property of every body to maintain their linear
state of motion.
Secondly, rotational inertia which is the property of rotating bodies to maintain their
state of motion. The inertia tensor, a symmetric tensor of degree two, of rigid bodies
defines the rotational inertia in the center of mass system. Assuming homogeneous bodies
the inertia tensor is shown in Equation 4.4.

I = m
∑
i

 y2
i + z2

i −xiyi −xizi
−xiyi x2

i + z2
i −yizi

−xizi −yizi x2
i + y2

i

 (4.4)

The vector ri (xi, yi, zi) in Equation 4.4 represents the position vector of an infinitesimal
volume [13]. The sum of the inertia of these infinitesimal volumes is the rotational inertia.
The diagonal elements represent the rotational inertia along the axes of the coordinate
system. With an arbitrary rotation axis all elements of the inertia tensor contribute to
the inertia.
Mass Inertia as well as Rotational Inertia are nessesary for the calculation of the kinetic
energy EKIN and rotational energy EROT , see Equation 4.5 [13].

EKIN = 1
2mv

2 and EROT = 1
2ω

TIω (4.5)

The kinetic and rotational energy is calculated by the physics engine and regarded during
simulation. This effects in rolling of the robot even if no more force is applied. This
rolling motion is stopped by friction.
How the implementation of both friction parameters as well as inertia parameters onto
the physics engine is achieved is presented in the following.

4.3 Physics Tags
The physics aspects of the physics engine introduced in the Section 4.1 and Section 4.2
are implemented into the simulation with multiple physics tags. These tags define certain
physics parameters with basic SI units.
By example of the robots front wheels the usage of these physics parameters will be
shown.
The front wheels’ collisions, which represent all possible points of contact, and inertia are
modeled as homogeneous cylinders. The front wheels are also shown as such cylinders to
manage the computational effort. This model contains simplifications, but the empirically
selected friction parameter compensates them, to ensure the expected behavior of the
simulation.
The code presented in Figure 4.2 is a snippet of the URDF file which defines the robot
model and will be discussed in the following. The code is reduced to the physically
relevant parts.
The <link> tag names and defines a link, which requires a collision tag as well as a
visual tag. These tags are a must for every link in a URDF file. The <origin> tag can
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be used to shift and rotate the origin away from the center of the link. The <geometry>
tag defines the shape of the link, which is a cylinder with the radius r and the height
respectively length h.
The <inertial> tag defines the mass as well as the inertia tensor of the link. This tag
is optional for a URDF file, but is required for physical simulation. The <mass> tag
must be set different from zero, otherwise Gazebo would ignore the link. The diagonal
elements of the inertial tensor, defined in the <inertia> tag, should be different from
zero to prevent nonphysical behavior.
Additional tags for links and joints need to be defined in external <gazebo> tags and
referenced to the according links and joints, since the URDF file format is not specifically
designed for physics simulation.

<link name="front_wheel">
<collision>
<origin xyz="0.0 wheelwidth/2 0.0" rpy="pi/2 0.0 0.0"/>
<geometry>
<cylinder radius="r" length="h" />

</geometry>
</collision>
<inertial>
<mass value="0.005"" />
<origin xyz="0.0 wheelwidth/2 0.0" rpy="pi/2 0.0 0.0"/>

<inertia
ixx="1/12 * mass * (3 * r * r + h * h)" ixy="0.0" ixz="0.0"
iyy="1/12 * mass * (3 * r * r + h * h)" iyz="0.0"
izz="1/12 * mass * r * r" />

</inertial>
</link>
<gazebo reference="front_wheel">

<mu1>10.0</mu1>
<mu2>10.0</mu2>

</gazebo>

Figure 4.2: Code snippet from the URDF file defining the Ackermann robot.

The <gazebo> tag can be used to define visual aspects and physics parameters as well
as simulation parameters.
The <material> tag can be used to set colors or materials for links. The friction coeffi-
cients µ1 and µ2 can be set with the tags <mu1> and <mu2>. The friction parameters
for tires on asphalt are µS = 1.2 and µK = 1.05 [6] if both the tires as well as the asphalt
are dry.
The friction parameter in the code shown in Figure 4.2 is found empirically. Therefore
friction parameters used for this robot simulation differ from the references. Since no
friction of any parts of the robots motor and steering is regarded the wheel friction also
includes these friction aspects. In combination with the friction calculation approximation
and the simplifications in the wheel model the influence of the friction parameter offset

27



4. Applied Physics Engine

can not be defined.
Simulation parameters such as ERP (Error Reduction Parameter) and the CFM (Con-
straint Force Mixing) can also be specified with in the <ERP> and <CFM> tags. Addition-
ally the contact stiffness and damping which are mapped to ERP and the CFM can be
set. These are the tags used for the simulation but many more are supported by URDF7.

7URDF Tags: http://gazebosim.org/tutorials at Connect to ROS - URDF in Gazebo (22.08.2016)
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CHAPTER 5
Results

The simulation and visualization is the primary goal of this thesis, whereby the focus is
on the simulation. Thus, the results shown in this chapter focus on their reliability with
respect to the used motion model. Both tests were also applied to the real vehicle, but a
detailed discussion of the motion is contained in another thesis [5].

5.1 Simulation
The simulation, performed by gzserver and visualized by gzclient, as well as the
plug-in, see Section 3.3.2, are launched together. Additionally, the URDF file is imported
to an empty Gazebo world, see Subsection 3.1.2, and the plug-in to control the robot, see
Subsection 3.3.2, is started. This is achieved with a .launch file1 which can be used to
launch multiple ROS nodes at the same time.
The previously mentioned URDF file has two weak points which will be introduced in
the following:

• The joints responsible for the kingpins, which are meant to act like hinge joints,
are acting like ball and socket joints in case of exceptionally strong forces. This
problem, known as ‘joint error’, can happen, during simulation, when error creep
and links are drifting off their pose. The ‘joint error’ problem of ODE2 is well
known along with ways to prevent it. A possible solution is introduced in the
following.

– For this simulation, the best way to prevent this error is to change the Gazebo
real time update from its default value of 1000Hz to 2000Hz. To ensure real
time simulation, the product of the Gazebo real time update and Gazebos

1.launch file: http://wiki.ros.org/roslaunch/XML (17.03.2016)
2ODE ‘joint error’: http://www.ode.org/ode-latest-userguide.html (17.03.2016)
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maximal step size should be one, therefore the maximum step size should be
changed from its default value 0.001 s to 0.0005 s.

• The simulation does not regard the vehicles damping which results in unsteady
contact between the wheels and the surface. The impact of this simplification is
not known at the moment, so two ways to avoid it are introduced.

– Firstly, the implementation of a damping. This could be realized by using a
different kind of joints3. The continuous joints which allow rotation around
one axis have to be replaced by floating joints which allow motions for all
six degrees of freedom. With the <gazebo> tag4 the joints can be extended
with a damping parameter. This is only one of multiple ways to implement
damping into the simulation.

– Secondly, the usage of Gazebo world which provides a ‘muddy’ surface, known
as mud world can be used to ensure more stable contact of the wheels and
the surface. The mud world surface would deform and cause stable contact
joints which cause friction, see Section 4.1. This could possibly replace the
implementation of damping to the vehicle. The impact of the use of the mud
world to the vehicles motion was not tested.

To ensure the simulations accuracy, the simulated vehicles motions and the real vehicles
motions are compared with the velocity motion model.

5.2 Simulation Accuracy

The accuracy of the simulated motions is tested in comparison to the velocity motion
model. Since the real vehicle is also using this motion model, it can be used as reference
for the real and the simulated vehicle. Two tests are carried out to quantify the accuracy
of the simulation with respect to the motion model and the real car. To avoid wheel
slipping and drifting during these tests, a low velocity was chosen. For both tests, the
error parameters α1 = 0.1 to α4 are set to 0.1.
For the first test, a straight line with the motion command shown in Equation 5.1 was
driven with both the real and the simulated vehicle.

u =
(
v = 0.1ms
ϕC = 0

)
(5.1)

The real and the simulated vehicle received this motion command until their velocity
motion model noticed a driven way of two meters. The resulting trajectory and pose
uncertainty are shown in Figure 5.1. The real car stops 4.5 cm before the reference
because of inaccuracies in the measurement of the wheel size. The simulated car stops

3URDF joints: http://wiki.ros.org/urdf/XML/joint (17.03.2016)
4URDF <gazebo> tag: http://wiki.ros.org/urdf/XML/Gazebo (17.03.2016)
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1.8 cm behind the reference. The reason for this deviation is that unlike Gazebo, the
motion model does not regard the kinetic energy of the vehicle. This deviation could be
suppressed by using the odometry motion model instead of the velocity motion model.
Since the real and the simulated vehicle use the same motion model to keep compatible,
the real vehicle should use the odometry motion model if the simulated one does. This
would require wheel encoders and a steering encoder in the real vehicle.

Motion Model
Real Car
Simulates Car
Covariance

Figure 5.1: Visualization of the trajectory driven with the motion command v = 0.1 m
s

and ϕC = 0 sent to both the real and the simulated vehicle and compared to the calculated
motion according to this motion command. The zoomed-in area presents a detailed
account of final part of the motion. The results discussed in Subsection 5.2.

For the second test, a semicircle with the motion command shown in Equation 5.2 was
driven with the real and the simulated vehicle.

u =
(
v = 0.1fracms
ϕC = ϕMAX

)
(5.2)

The real and the simulated vehicle received this motion command until their orientation
was shifted by π

2 . The resulting trajectory and pose uncertainty are shown in Figure 5.2.
Since a specific number of poses of is visualized the visualized end pose of the real and
the simulated vehicles in Figure 5.2 is not shifted by π

2 . The radius of the semicircle
driven by the real car is 5 cm bigger than the reference. This is because of the unsteady
steering of the RC-race car. The simulated vehicle drives a trajectory differing from a
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semicircle. The reason therefore is not yet clear. It might be due to the unsteady surface
contact or the ‘joint error’ discussed in Subsection 5.1.
While driving a straight line, the covariance ellipse only grows in the driving direction.
While driving a curve, the covariance ellipse is also growing in both directions and
rotating in the curve direction.
During both tests, the pose of the real and the simulated vehicle is inside the covariance
ellipse. This is very important for the use of the robot and its simulation with a Kalman
filter, which is an overall goal of the robot and the simulation.
The constituted tests are made with simple motions. The reason is a problem with
the used velocity motion model. Driving more complex trajectories sometimes causes a
shrinking covariance ellipse. The reason for this undesirable behavior is unknown and
requires more detailed research. In combination with a Kalman filter, this does not
influence the usability of this simulation, since the correction step rectifies this error.

Motion Model
Real Car
Simulates Car
Covariance

Figure 5.2: Visualization of the trajectory driven with the motion command v = 0.1ms and
ϕC = ϕMAX sent to the real and the simulated vehicle and compared to the calculated
motion according to this motion command. The zoomed-in area presents a detailed
account of final part of the motion. The results discussed in Subsection 5.2.
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CHAPTER 6
Conclusion

In the field of robotics, simulations are a commonly used development tool. They allow
analyzing the systems and algorithms even without access to the robotic hardware.
This thesis presents an introduction into the field of robotic simulation, using the open
source software ROS and Gazebo by means of a robot with an Ackermann steering.
Therefore knowledge of the Ackermann steering and the required facilities is provided.
The focus is on the creation and testing of the simulation.
The simulation and visualization within this work is designed for motion research.
Therefore, a URDF file holding the parts of the chassis which are vital for the robots
motion is imported onto Gazebo. Since it not possible to simulate a closed loop of four
links with a URDF file, a workaround is introduced.
A node functioning as a plug-in calculating the steering angle of the front wheels according
to the Ackermann steering geometry is created to be used for that purpose. Since it is
able to communicate with Gazebo, this plug-in is thereby controlling the simulated robot.
Furthermore this node is responsible for the calculation of the introduced velocity motion
model and for publishing the odometry data as well as the ground truth odometry data.
The velocity motion model, which calculates a predicted pose as well as pose uncertainty
based on the motion commands, serves as a base for the odometry data. This allows for
easy comparison between the motion error of the real and the simulated vehicle.
Two tests were carried out to show the accordance of the simulated motions, based on the
comparison between the different odometry data. These tests cover the minimum and
the maximum value of the curve radius. The simulation of straight movements results in
a small deviation of one percent. In turn, the simulation of winding movements is not
as accurate. The reason for this might be the unsteady surface contact of the wheels
or the ‘joint error’, see Subsection 5.2. The deviation of the simulated and real motion
from the calculated motion is verified within the tests. During the whole test, the before
mentioned deviation was covered by the covariance ellipse . This is essential for the
simulation, especially with respect to the overall goal which is to use the real and the
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simulated car for self localization and autonomous driving.
Even though the mandatory requirements are met as proven by the test results, the
simulations deviation from the velocity motion model can be further reduced by some
improvements such as:

• Measuring and implementing a damping to the URDF file and the plug-in. This
will enhance the surface contact of the wheels.

• Measuring the wheel friction and replacing the approximated friction parameter.

• Equipping the front and the rear wheels with a differential. This will help to avoid
wheels slipping while at the same time increasing steering accuracy.

• Powering the front wheels. This would only improve the accuracy if the last two
points are realized.

• Creating a more detailed model with more complex link and inertia structure. This
would allow for a more detailed simulation of the robot.

These pending improvements present an unavoidable necessity to further increase the
accuracy of the simulation and are vital due to the simplifications made within this
project.
The visualization of the vehicle could be improved by adding mesh files of the parts of
the prototype such as the chassis or the computation units.
Since an overall goal is to extend the robot with sensors for self localization it is important
to mention that the simulation can also be extended with sensors. The simulation tool
Gazebo allows for implementation of such sensors and sensor input simulation. Especially
the simulation of sensor noise, which is achievable with Gazebo as well, allows analyzing
self localization systems with realistic conditions. Tutorials on how to implement sensors
onto Gazebo can be found on its website1.
To render this simulation compatible with other robots of the fleet, a dynamic creation
of a URDF file applicable for every single robot of the fleet would be useful.
Thus the actual state of the simulation can evolve in two different ways. Firstly, into
a more specific simulation of the allready existing prototype created by a student [5].
Secondly, into a flexible simulation for different Ackermann robots based on model cars.
The simulation of a real car does not seem useful since the allocation of the weight should
be regarded in this case.
In the near future it is planned to provide the robotics community with this simulation
as well as a tutorial on assembling the corresponding robot. The Git2 repository hosting
service Github3 will be used as a means of communication and further development of
the simulation with the community.

1Gazebo Sensor Simulation: http://gazebosim.org/tutorials at Sensors (14.05.2016)
2Git: https://git-scm.com/ (14.05.2016)
3Github: https://github.com/ (14.05.2016)
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