
model-UA:
Ein Open Source Tool zur Transformation von UML

zu OPC UA Modellen

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Technische Informatik

eingereicht von

Sebastian Wiedemann
Matrikelnummer 1425647

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dipl.-Ing. Dr.techn Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Thomas Frühwirth

Wien, 9. November 2018
Sebastian Wiedemann Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

model-UA:
An open source tool for UML to OPC UA model

transformations

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Computer engineering

by

Sebastian Wiedemann
Registration Number 1425647

to the Faculty of Informatics

at the TU Wien

Advisor: Dipl.-Ing. Dr.techn Wolfgang Kastner
Assistance: Dipl.-Ing. Thomas Frühwirth

Vienna, 9th November, 2018
Sebastian Wiedemann Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Sebastian Wiedemann
Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 9. November 2018
Sebastian Wiedemann

v

Kurzfassung

Die moderne Industrie fordert zunehmend die steigende Nachfrage nach cyber-physischen
Systemen. Solche Systeme sind durch die hohe Komplexität, die durch den Verbund
von vielen heterogenen Komponenten kommt, bekannt. Um dieser Herausforderung zu
begegnen, gibt es Middleware-Technologien und standardisierte Ansätze wie beispielweise
OPC Unified Architecture (OPC UA). Der Nachteil dabei ist, dass Modellieren mit
dieser Modellierungssprache ein komplexer Vorgang ist. Zusätzlich gibt es kaum OPC
UA Modellierungswerkzeuge, schon gar nicht in der open-source Community. Hier kommt
Unified Modelling Language (UML) ins Spiel, ein alt-bekannter Modellierungs-Standard.
Diese Arbeit präsentiert ein open-source UML Modellierungswerkzeug mit einer OPC
UA-Erweiterung, um die Komplexität von OPC UA zu umgehen.

vii

Abstract

The rising demand of Cyber-Physical Production Systems (CPPSs) and their need for the
integration of Cyber-Physical Systems (CPSs) lead to a huge interoperability challenge.
OPC UA tries to tackle this problem. It is a fairly new communication standard which
allows to connect heterogeneous systems in a standardized way. The disadvantage of this,
however, is that OPC UA modelling is inherently complex and that OPC UA modelling
tools are scarce. Most importantly, there are no fully operational and actively worked on
open-source projects for OPC UA modelling. This is where UML, a well-known modelling
standard, comes in handy. This thesis presents an open-source UML modelling tool with
an OPC UA modelling extension and a UML to OPC UA transformation approach to
tackle the complexity of creating OPC UA information models.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation and problem statement . 1
1.2 Model representation . 2
1.3 Methodological approach and structure of this thesis 2

2 Technical background 5
2.1 UML . 5
2.2 OPC UA . 6
2.3 Model transformation . 9

3 State of the art 11
3.1 A systematic approach to OPC UA information model design 11
3.2 UML2OPC-UA – Transforming UML class diagrams to OPC UA informa-

tion models . 12

4 UML to OPC UA model transformation 15
4.1 UML XMI constructs . 15
4.2 Transformation rule set . 18

4.2.1 Classes and compositions . 18
4.2.2 Operations . 19
4.2.3 Attributes and variables . 19

4.3 The transformation in use . 21

5 Proof of Concept 23
5.1 Open source UML modelling tools . 23
5.2 Modelio with OPC UA extension . 25

5.2.1 Graphical user interface . 26
5.2.2 Back-end . 27

xi

OPC UA nodes . 27
OPC UA references . 27

5.3 Model transformation in Modelio . 27
5.3.1 Model transformation algorithm 28

Example transformation result 29
5.3.2 Adding the model transformation algorithm to modelio 30

6 Conclusion and future work 31

List of Figures 33

List of Tables 34

Acronyms 35

Bibliography 37

CHAPTER 1
Introduction

Today’s challenge in manufacturing is the transformation of common manufacturing
systems into CPPSs. This presupposes the integration of CPSs into these systems. The
usage of CPSs leads to a connection of sensors, machines and manufacturing systems. All
these subsystems with their own interfaces and communication standards make interop-
erability between different components challenging. OPC UA, the latest specification of
the OPC standard, accepts this challenge by allowing to connect heterogeneous systems
in a standardized way. Even though the usage of OPC UA in this domain seems to be
appealing, the problem with OPC UA is the lack of tools as well as the complexity of
the model creation, implementation and support [1]. This thesis offers a way to tackle
these problems by presenting an open source tool for UML with the ability to transform
UML diagrams into OPC UA information models.

1.1 Motivation and problem statement

This thesis is mainly motivated by the lack of tools for OPC UA support. While there are
some commercial products with full OPC UA functionality, the open-source community
has not seen any significant development in OPC UA modelling tools, especially not
actively worked on projects. Obviously, for the purpose of this thesis it would be a
feasible idea to contribute to one of the existing open source modelling tools.

Furthermore, the usefulness of OPC UA comes with the price of high modelling complexity.
This is where UML comes in handy. UML is a major established modelling language in
the modelling community, especially for software development. Additionally, it is also
used in the manufacturing environment. UML has various active open source modelling
tool projects and there already are UML to OPC UA model transformation approaches
available [1]. Subsequently, this thesis was born to modify an open source modelling tool
in order to create OPC UA information models by transforming UML diagrams.

1

1. Introduction

1.2 Model representation
A model is a simplified representation of the reality. A model can be physical like
the mould of a steel pipe, a representation of a real life object like a building plan or
theoretical like the hierarchical description of employers in a business. Modelling is the
process to simplify and abstract objects and actions to gain a better overview of a system.
There are different ways to describe a model. For instance, mathematical models describe
systems using mathematical concepts, while information models use abstract depictions
of objects in addition to their properties and relations between these objects to describe
a model. Mostly, models are somehow drawn with specific modelling standards which
describe the graphical notations. A metamodel is a model which describes the rules
of another model. Additionally, there are often equivalent textual representations of
graphical models. The process to get the textual representation of a graphical model is
one aspect of model transformation. However, model transformation is also the process
to transform one model standard into another. This is especially important for computer
systems to exchange models.

While textual representation can in theory be as random as an essay, there are standardized
ways to use them. Especially important are the ones for computers. One of them is
Extensible Markup Language (XML), a language with a well-defined hierarchical structure.
Additionally, there are some subtypes of XML like XML Metadata Interchange (XMI)
which works the same way but has some additional rules.

1.3 Methodological approach and structure of this thesis
Firstly, this thesis provides some technical background in Chapter 2. In detail, this
chapter contains general information about the two modelling languages (UML and
OPC UA) used in this thesis, as well as theoretical background information about model
transformations. After that, there are evaluations of existing work on the topic of UML
to OPC UA model transformation in the state of the art (Chapter 3).

In Chapter 4, the explanation for the model transformation that was developed for this
thesis is located. For the automated UML diagram to OPC UA information model
transformation, an XMI file of a UML diagram is needed which is provided by Modelio
3.7, the UML modelling software used in this thesis. Basically, this is a text file which
represents the UML diagram as text in an XML format. This file, as the starting point
of the transformation, in combination with a specific transformation rule set leads to a
OPC UA information model file in XML format. A small example is provided to show
one of the possible transformations between the used modelling languages.

The thesis continues with the proof of concept (Chapter 5) which starts by presenting
open source UML modelling tools with a special focus on Modelio 3.7. Furthermore, the
OPC UA modeling extension for Modelio 3.7 is discussed in this chapter. This extension
implements the UML-to-OPC UA Model-to-Model (M2M) transformation. Additionally,
it is possible to create OPC UA information models using its graphical notation, export

2

1.3. Methodological approach and structure of this thesis

these models in their respected XML representation, and also import OPC UA XML
files. This chapter concludes with the explanation of the algorithm used for the model
transformation in Modelio. The thesis ends with a short summary and ideas on how to
improve and extend the algorithm with additional features in Chapter 6.

3

CHAPTER 2
Technical background

This chapter contains the definitions and explanations of UML, OPC UA and model
transformation. These are the technologies used in the approach presented in this thesis.

2.1 UML

UML is an industry standard for visualizing, specifying, constructing and documenting the
artifacts of software systems. It has been established as the de facto standard modelling
language. It allows and is mostly used to develop diagrams for Platform Independent
Models (PIMs). UML is standardized by the Object Management Group (OMG) to
unify object oriented methods [2, 3]. Figure 2.1 shows an excerpt of the UML metamodel

Figure 2.1: Metamodel of UML (excerpt)[1]

5

2. Technical background

containing most elements which are relevant for the UML to OPC UA transformation.
In the metamodel, every element is a subtype of NamedElement. Very important for the
transformation idea are the relations between elements, especially the relation between a
Class and Property (ownedAttribute) (e.g. private global class variable) as well as the
relation between Class and Operation (ownedOperation) (e.g. a method of the class). In
UML the relationships are directly defined in the metamodel.

Figure 2.2: UML diagram example of a Car

Figure 2.2 provides a simple example of a UML diagram to showcase important UML
modelling concepts. The diagram describes a Car generalized as Vehicle which is
composed of at least one Tire. Furthermore, all classes have attributes which describe
the classes more precisely. Operations provide classes with the ability for interactions.

2.2 OPC UA

OPC UA is a M2M communication protocol which is developed and standardized by
the OPC Foundation. It is based on and extends Classic OPC. It was designed for the
automation industry but can be applied to many more areas. An important goal of
OPC UA is to achieve platform independence (see Computation Independent Model
(CIM)/PIM).

OPC UA builds on different layers shown in Figure 2.3 with the transport mechanism
and data modelling as fundamental components. OPC UA defines its own optimized
binary Transmission Control Protocol (TCP) protocol but also a mapping to well known
standards like XML and HTTP. The metamodel defines the rules and base building
blocks to expose an information model with OPC UA. The OPC UA Services are an
interface between the servers providing data and managing a system and the clients [4].
The metamodel is fundamental for this thesis. It also defines a graphical notation for
modelling an OPC UA information model (see Figure 2.4).

6

2.2. OPC UA

Figure 2.3: The foundation of OPC UA [4]

Figure 2.4: OPC UA graphical notation (adapted from [1])

Figure 2.5 shows the metamodel of OPC UA in "UML-style". The OPC UA metamodel
consists of nodes and references between them. In OPC UA, every node has a specific
type (leaf nodes in the type tree in Figure 2.5). Each node has predefined type-specific
attributes. Some of these, like the unique NodeId, are mandatory.

In OPC UA, relationships are defined as a list of references with a specific reference
type [1]. This enables one of the most important abilities of OPC UA: adding new
features to models without affecting existing ones. This can be seen in the metamodel.
Adding features would simply result in more UANodes and more references between
them. Nothing that previously existed is affected, wheras in UML for instance a new
variable would affect an instanced class composition directly. Depending on the feature
it may be necessary to change large portions of a UML design.

7

2. Technical background

Figure 2.5: Metamodel of OPC UA (excerpt based on UANodeSet.xsd,
http://opcfoundation.org/UA/schemas/1.02/UANodeSet.xsd)[1]

Figure 2.6: OPC UA information model example of a Car

Figure 2.6 provides a simple example OPC UA information model based on its UML
counterpart from Figure 2.2. This example omits many attributes from the UML example,
because OPC UA information models tend to get much bigger than their UML equivalent.
The example shows a Car node which has a Color and is composed of at least one Tire.
The composition is modeled via the Tire_Folder which manages <Tire_Object>s with a
"MandatoryPlaceholder" modelling rule.

8

2.3. Model transformation

2.3 Model transformation
The goal of Model-Driven Engineering (MDE) is to tackle the increasing complexity
of systems. With the principle "everything is a model", MDE ensures the coherence of
model-driven techniques just like the "everything is an object" principle helped object
oriented methods to improve their techniques. In 2001, the OMG adopted Model-Driven
Architecture (MDA). It supports MDE of software systems for the approach to use models
in software engineering. MDA has three goals: portability, interoperability and reusability.
A key technique of MDA is model transformation [1]. There are two important kinds of
model transformations which are relevant for this thesis:

Model-to-Text (M2T) transformation

• a program takes a model as input and transforms it into text. This can
result in a text file representing the model in e.g. XML or code generation
(synthesizing systems).

M2M transformation

• a program takes a model as input and transforms it into another model.

Transformations are specified on a metamodel level. Therefore, it is possible to reuse a
model transformation for all valid models conforming to the input metamodels.

9

CHAPTER 3
State of the art

3.1 A systematic approach to OPC UA information
model design

Referring [5]

This paper presents an MDA approach using UML class, state-chart, use-case and
component diagrams for virtual representation of manufacturing systems which allow an
OPC UA information model design in the manufacturing domain.

UML is the proclaimed modelling language for MDA. Mostly because it is well known
and often taught. UML also has an XMI representation which is used as an important
standard for MDA.

Figure 3.1 shows an overview of the developed approach. The domain description (or
CIM) is defined with UML diagrams. Component diagrams are used to define the
static structure while use-case diagrams describe the functionality of the system. The
CIM construction and the transformation to PIM are done manually and require the
knowledge of domain experts and system users. The proposed approach uses object
oriented modelling methods in addition to the information defined in the CIM to identify
the UML classes and their related attributes, operations and relations between the classes.
UML state machines are used to describe event-driven manufacturing systems. UML
has some model elements and concepts which cannot be used in OPC UA (e.g. multiple
inheritance). This problem is solved by defining some constraints to restrict the usage
of forbidden elements. The resulting model is called restricted (R)-PIM. On the other
hand, OPC UA has mandatory node attributes like ’NodeId’ and ’DisplayName’ which
are added to the UML diagram using a profile.

The transformation from UML to OPC UA (red circle in Figure 3.1) was done manually
at the time this paper was written. The automation of this process is the work of

11

3. State of the art

Figure 3.1: MDA based workflow for OPC UA information model design [5]

this thesis. This transformation follows a set of rules which are presented in [1] and
discussed in detail in Chapter 4. The result of this PIM to Platform Specific Model
(PSM) transformation is an OPC UA information model. Next, the information model is
instantiated for a specific entity. This results in an OPC UA address space model (cf.
[6]).

3.2 UML2OPC-UA – Transforming UML class diagrams
to OPC UA information models

Referring [1]

This paper aims to overcome the big implementation complexity of OPC UA. Pauker et
al. are trying to do so by enabling an automatic M2M transformation from UML class
diagrams to OPC UA information models using ATLAS Transformation Language (ATL)
and extending UML to guarantee information preserving transformations. UML class
diagrams are used to describe the static bahaviour and UML state machines are used for
the dynamic behaviour of a system.

12

3.2. UML2OPC-UA – Transforming UML class diagrams to OPC UA information models

UML Concept OPC UAConcept Comment

Class UAObjectType mapped
nodeID «BasicAttributes».ID
browseName «BasicAttributes».BrowseName
displayName «BasicAttributes».DisplayName

isAbstract isAbstract mapped
superClass HasSubtype inverse
ownedOperation HasComponent mapped
ownedAttribute HasProperty mapped
Enumeration UADataType mapped
ownedLiteral DataType-
Field

mapped

Property UAVariableType mapped
Operation UAMethod mapped

HasModellingRule «AdditionalAttributes».ModellingRule
ParentNodeID derived (NodeId from the related

Class)
Parameter UAVariable mapped

Reference derived (depends on the different re-
lations in UML)

UAObject derived (for Composition Relations
in OPC UA supplemented)

Table 3.1: Mapping between UML and OPC UA(excerpt)

The most important transformation mapping rules are summarized in Table 3.1. The
"« »" notations define the used package in UML diagrams. They are examples of the
additional information needed in a UML class diagram for the mapping.

Furthermore, the paper explains the mapping in greater detail and provides simple
examples on how single UML classes, attributes, operations and compositions are realized
in OPC UA.

The paper concludes with the idea to implement the presented M2M transformation
approach. This idea is the starting point of this thesis.

13

CHAPTER 4
UML to OPC UA model

transformation

This chapter contains the explanation of the MDA approach used in this thesis. The first
section contains the explanation of the UML XMI constructs, which are relevant for the
M2M transformation, followed by the transformation rules. A transformation example is
provided at the end of the chapter.

4.1 UML XMI constructs

UML element XMI representation Comment

class <packagedElement
type="uml:Class"/>

attribute <ownedAttribute/> has a parent (e.g. class)
operation <ownedOperation/> represents a method, has a par-

ent (e.g. class)
parameter <ownedParameter/> child of an operation
primitiveType <packagedElement

type="uml:PrimitiveType"/>
in addition to the predefined
types

association <packagedElement
type="uml:Association"/>

is not really needed for the
transformation

generalization <generalization/> has a parent (e.g. class), su-
pertype in "general" attribute

Table 4.1: Core UML elements and their XMI represenation

15

4. UML to OPC UA model transformation

Modelio’s UML M2T transformation (XMI export) needs to be analyzed in order to enable
the transformation between UML and OPC UA. Table 4.1 shows the XMI representation
of the most important UML constructs.

Additionally, following important rules apply to these elements:

• Everything is a child of <uml:Model/> (root XML node).

• Each XML element has an id attribtue (xmi:id) which is unique.

• An element’s XMI representation has a "name" attribute if the UML diagram
defines a name for the element.

• Each Class and PrimitiveType is represented in a "packagedElement" with all its
members as children.

• An ownedAttribute can either be

– A Class variable or

– A declaration of an association if the "association" and/or "aggregation"
attributes are present.

• The type of a variable is determined via

– The id in the type attribute which refers to a PrimitiveType or

– the <type/> child if the variable’s type is one of the predefined types of
Modelio.

An association is defined via the "<ownedAttribute/>" child element in its parent element
where the "type" attribute contains the id of the associated element. In this case, the
"<ownedAttribute/>" element has an "aggregation" attribute. For this thesis, the only
interesting aggregation is the composition, which means the "aggregation" attribute
should have the value "composite". An association’s XML element (packagedElement with
type "uml:Association") is not necessary in order to identify the relations between two
elements. The only additional information it offers is the association’s parent role label in
the "name" attribute of its child "ownedEnd" which is irrelevant for the transformation.

Listing 4.1 shows an example UML XMI export of a class "Person" containing one
variable called "name". The "type" attribute refers to another id which is not visible here.

The XMI representations of UML models can also contain additional information like
visibility (e.g. "name" is declared public in Listing 4.1). Many of these additional
attributes have default values and are not mentioned explicitly if they are not changed
in the diagram. Table 4.2 lists the most important XML attributes available in the UML
M2T transformations.

16

4.1. UML XMI constructs

<packagedElement xmi:type="uml:Class"
xmi:id="_9I6ihX4-EeeatJyGjfHDsg" name="Person">

<ownedAttribute xmi:id="_9I6ihn4-EeeatJyGjfHDsg" name="name"
visibility="public" type="_9I6ihH4-EeeatJyGjfHDsg"
isUnique="false"/>

</packagedElement>

Listing 4.1: XMI representation of a class with one attribute.

XMI element Attributes Comment

<packagedElement/>
xmi:type type of element (e.g. "class")
xmi:id unique id
xmi:name

<ownedAttribute/>

xmi:type id of type of variable or id of associ-
ation end

xmi:id unique id
xmi:name
optional
value constants or default value
aggregation kind of aggregation (e.g. "composi-

tion")
association contains the id of the

uml:Association, can be ignored

<defaultValue/>
xmi:type mostly uml:LiteralString
xmi:id unique id
value
symbol value attribute if type is not

uml:LiteralString

<ownedOperation/> xmi:id unique id
xmi:name

<ownedParameter/>

xmi:type type of element (e.g. "class")
xmi:id unique id
xmi:name
direction in/out or return

<generalization/> xmi:id unique id, is child of subtype
general contains id of supertype

<upperValue/> xmi:id unique id, is child of attribute
value contains multiplicity information

<lowerValue/> xmi:id unique id, is child of attribute
value contains multiplicity information

Table 4.2: Attributes of the relevant XML elements

17

4. UML to OPC UA model transformation

4.2 Transformation rule set

The transformation rule set is based on the paper presented in Section 3.2. This
section extends and explains these rules in detail. The transformation rules for classes
and compositions, attributes and variables, and operations have their own subsection,
respectively. All tranformation rule figures (Figure 4.1, Figure 4.3 and Figure 4.2) follow
the same convention: the original UML element is given on the left side, a transformation
comment can be found in the middle and the transformation result is on the right side.

4.2.1 Classes and compositions

Figure 4.1: Transformation of composition reference [1]

Figure 4.1 shows the simplified mapping between UML classes and their respective
representation in OPC UA. Basically, UML classes are transformed into ObjectTypes in
OPC UA. Hierarchical references are significantly different in both modelling languages.
In UML, a superclass relation is defined as a generalization of the subtype, thus the
link between hierarchical references starts at the subtype. A class in UML does not
necessarily "know" it has a subtype. However, OPC UA defines a "HasSubType" reference
which realizes the same hierarchical reference but the link starts in the supertype. In the
graphical notation of OPC UA, the "HasSubtype" arrow is then reversed resulting in an
arrow pointing in the same direction as the arrow in the original UML diagram.

This thesis’ transformation approach realizes compositions in OPC UA as ObjectTypes
having a FolderType component which organizes the composing classes. A FolderType is
a subtype of BaseObjectType. The purpose of a folder is to organize other nodes in the
address space [4].

18

4.2. Transformation rule set

Furthermore, this thesis uses a naming convention for transformed nodes. Principally,
an OPC UA node keeps the name of its correspondent UML element with following
additions:

• Objects have "_Object" postfixed.

• ObjectTypes have "Type" postfixed.

• FolderTypes have "_Folder" postfixed.

• Placeholders have their name within "<>" brackets.

4.2.2 Operations

Figure 4.2: Transformation of operations [1]

Figure 4.2 shows the transformation rules for operations. In OPC UA, operations have
their own node type: Method. Methods have HasProperty references to their input- and
output arguments. These are realized as Variables with the DataType "Argument" as their
properties. Arguments can either be InputArguments or OutputArguments. The number
of arguments is specified in the ArrayDimensions property. Details about arguments are
specified in the Value attribute of the VariableType and are called a "List of Extension
Objects". The return value of an operation is a value member of OutputArgument with
the name "ReturnValue".

4.2.3 Attributes and variables

Figure 4.3 shows the transformation rules for variables. In principle, UML variables
simply become a VariableType in OPC UA. The proposed rule set offers a special name
syntax to declare variables static (s), dynamic (d) or optional (o) which is specified in
round brackets. It is also possible to specify units for variables. The unit’s name has to
be put in square brackets. Additionally, it is possible to declare whether the variable is

19

4. UML to OPC UA model transformation

A
tt

ri
b

ut
es

 &
 V

ar
ia

bl
es

-Variable:datatype{r}

-Variable:datatype{w}

Attribut mit Leseberechtigung
Attribut AccessLevel =

CurrentRead

VariableType:Name

Attributes
DataType= Datatype
AccessLevel=CurrentWrite

Attribut mit
Schreibberechtigung

VariableType:Name

Attributes
DataType= Datatype
AccessLevel=CurrentRead

Attribut AccessLevel =
CurrentWrite

U
se

rA
cc

e
ss

-Variable[Unit](s):datatype
Attribut mit Einheit, der Wert

ändert sich nicht

BaseDataVariableType StaticInformationType

StaticItemTypeVariable

-Variable(s):Datatype Attribut ohne Einheit

Attribut mit Einheit, der Wert
ändert sich dynamisch

-Variable[Unit](d):datatype

BaseDataVariableType DataItemType

DynamicItemTypeVariable

Ty
p

eD
e

fi
n

it
io

n

BaseVariableType

PropertyType

Variable
[Mandatory]

Attributes
DataType= Datatype

-Variable(os):Datatype
Optionales Attribut ohne

Einheit

BaseVariableType

PropertyType

Variable
[Optional]

Attributes
DataType= Datatype

-Variable(d):Datatype
Veränderliches Attribut ohne

Einheit

BaseDataVariableT
ype

BaseDataVariable

Variable
[Mandatory]

Attributes
DataType= Datatype

-Variable(od):Datatype
Statisches optionales Attribut

ohne Einheit

BaseDataVariableT
ype

BaseDataVariable

Variable
[Optional]

Attributes
DataType= Datatype

Figure 4.3: Transformation of attributes and variables [1]

readOnly or writeOnly via the letters "r" and "w" written in curly brackets. The default
attributes of variables are: dynamic, read/write and no unit.

In OPC UA optional, mandatory and read-/write access properties can be specified
directly as VariableType properties. To specify static variables (constants) the Variable-
Type is declared as a PropertyType instead of a BaseDataVariableType. This thesis’ units
realizations differ from the reference approach. Here, units are realized as VariableType
nodes with the unit’s name as the node’s DisplayName. Other variables can have a
HasProperty reference on a unit node. This approach can be found in the OPC UA
specification [4].

20

4.3. The transformation in use

4.3 The transformation in use

Figure 4.4: UML diagram of a Person with a Name

The last section of this chapter presents a simple transformation example. Figure 4.4
shows the UML class Person with one argument name. Its XMI representation can be
seen in Listing 4.1.

Figure 4.5: OPC UA information model created by a transformation

Figure 4.5 shows the product of a finished UML to OPC UA transformation. As proposed
in the previous section, the class Person becomes an ObjectType node in OPC UA and
its attribute name becomes a Variable node. Name is a property of Person which is
shown with the HasProperty reference between both nodes.

21

CHAPTER 5
Proof of Concept

This chapter presents the realization of the motivation of this thesis. After explaining
the relevant modelling languages in Chapter 2 and explaining the modelling rules in the
previous Chapter 4, the only thing left to do is choosing an open source modelling tool,
contribute to it and put the presented model transformation to use. This thesis uses
an open source UML modelling tool as a starting point rather than an OPC UA one
because UML has more advanced tools and much more support. This is why this chapter
starts with presenting and comparing UML modelling tools before presenting the usage
of the UML to OPC UA model transformation in the most useful and therefore modified
open source UML modelling tool.

5.1 Open source UML modelling tools

Table 5.1 shows a list of open source UML modelling tools which were considered for the
implementation of the presented model transformation approach. Eclipse UML2 Tools
and Papyrus are both available as a plugin for Eclipse [7]. These two programs were ruled
out immediately because while testing both programs kept crashing with even the most
basic inputs. Using these programs seemed infeasible and they are not further discussed.

Name Latest stable release Programming language
ArgoUML 15.12.2011 Java, C++
Eclipse UML2 Tools 19.02.2009 Java
Papyrus 27.06.2013 Java
Modelio 02.10.2018 Java
EasyUML (NetBeans) 21.02.2013 Java

Table 5.1: List of open source UML modelling tools

23

5. Proof of Concept

Figure 5.1: ArgoUML GUI with a diagram

Figure 5.1 depicts an example diagram created with ArgoUML [8]. ArgoUML claims
to be the leading open source UML modelling tool and supports all standard UML 1.4
diagrams. The program is straight forward, easy to use with a simple user interface. It is
possible to export and import UML diagrams as XMI file. However, it does not use the
OMG UML XMI 2.1 schema from [9]. It appears to use its own export convention.

Figure 5.2: EasyUML (NetBeans) GUI with a diagram

24

5.2. Modelio with OPC UA extension

Figure 5.2 shows an example diagram created with EasyUML, a plugin from NetBeans
[10]. EasyUML has an even simpler user interface. It only supports the most basic UML
elements. Without additional plugins it is neither possible to export nor import diagrams
in any way. It is, however, possible to create Java code from diagrams.

Figure 5.3: Modelio GUI with a diagram

Figure 5.3 shows an example diagram created with Modelio 3.7 [11]. This program has an
easy user interface. It supports UML2 and the standardized XMI import and export of
UML diagrams defined by the OMG [9]. This modelling tool is often updated and has an
active community forum. Modelio is an Eclipse Rich Client Platform (RCP) application
which allows Modelio to be designed component based.

Modelio’s technical superiority in comparison to the previously mentioned UML modelling
tools and its modular code base makes it a clear choice to work with in this thesis. It is
possible to add the UML transformation and the ability to design OPC UA information
models without changing much of the existing code.

5.2 Modelio with OPC UA extension

Figure 5.4 shows a version of the work done for this thesis: Modelio 3.7 with the
OPC UA extension. It can be seen that with the extension it is possible to design
OPC UA information models. The extension basically adds an additional diagram type
(OPCUADiagram), all node types and the most important reference types which are
described in Figure 2.4.

25

5. Proof of Concept

Figure 5.4: Modelio 3.7 GUI with OPC UA extension

5.2.1 Graphical user interface

The Graphical User Interface (GUI) for OPC UA information models works similar to
the UML diagrams. To create an OPC UA information model in Modelio the user has
to create a diagram (right click on a Package in the project tree view) and choose the
OPCUA Diagram in the Creation Wizard. This option opens an empty diagram just like
the class diagram, but with a new palette (clickable icons just left of the information
model: see Figure 5.4). This is a feature provided by Eclipse RCP and is added similarly
to existing palettes. The palette contains all the node types and the most important
reference links from Figure 2.4 with their respective standardized shapes.

It is possible to drag-and-drop nodes from the palette into the diagram. The created
node automatically gets its mandatory attributes according to the OPC UA specification
[4]. To create a specific reference link between two nodes a link icon has to be clicked
and then both of the nodes in question need to be selected in the from-to order. Note
that the HasSubType reference is reversed accordingly. Additionally, it is possible to give
nodes extra attributes by clicking the "+OPC" icon and then the node in question. This
can be used to add one of the optional attributes or new attributes unfamiliar to the
OPC UA standard. The latter is ignored in the transformation process. This can be seen
as a potentially useful modelling feature.

Furthermore, it is possible to import and export the information models by right clicking
the Package in which the model was created and choose Import/Export and then OPCUA
Import to import valid OPC UA nodeset files, which are XML files. Additionally, it is

26

5.3. Model transformation in Modelio

possible to transform and export the information model into its textual representation by
clicking OPCUA to XML export. The imported and exported nodeset files are checked
for validity with the XML schema from [12].

5.2.2 Back-end

OPC UA nodes

In the back-end, the nodes are all a subtype of UANode which is a subtype of Classifier
(see Figure 2.1). This is done purely out of simplicity because the supertype Classifier
provides every UANode with all the modelling abilities they need. UANode is basically a
copy of Class with different properties. For instance, UANodes have to get rid of the
groupings of attributes, operations and inner classes (see the three rows after a classe’s
name in Figure 4.4) since they can only have OPCUAAttributes (e.g. "NodeId",...).

OPC UA references

A similar technique is used for the references which are all a subtype of Generalization
because this provides them with the ability to link two nodes without additional coding.
After that, it is possible to define every subtype of UANode as its own diagram element
which provides them with the ability to define their own figure. Similarly, references get
their respective shapes.

Afterwards, modelling rules need to be defined. Link rules are defined in DefaultLinkEx-
pert.java and structural rules are stated in DefaultMetaExpert.java. Listing 5.1 shows an
example of a link and structural rules. The provided example would allow the placement
of OPCUAAttributes inside OPCUAObjects and a HasSubType reference between two
OPCUAObjectType nodes.

addRule(OPCUAObject.MQNAME, OPCUAAttribute.MQNAME);

addRule(HasSubType.MQNAME, OPCUAObjectType.MQNAME,

OPCUAObjectType.MQNAME);

Listing 5.1: UA modelling rules

5.3 Model transformation in Modelio

Figure 5.5: Illustration of the model transformation process

27

5. Proof of Concept

The transformation process has been implemented as an independent program which
takes a UML diagram in its XMI representation as input and outputs an OPC UA nodeset
file. It builds upon the tranformation rules described in Section 4. Figure 5.5 shows the
simplified procedure of the model transformation. To make use of the proposed M2M
UML to OPC UA transformer program in Modelio, a user has to first create a UML
diagram of a system which then needs to be exported. To do so, the Package in which
the diagram was created needs to be right clicked and Import/Export → OPCUA Export
needs to be chosen. After declaring a save directory and a file name for the transformed
model, the transformation starts.

5.3.1 Model transformation algorithm

Figure 5.6: Schematic workflow of the UML to OPC UA transformation

The transformation program is an XML parser which uses the Java DOM Parser
(javax.xml.parsers.* and org.w3c.* packages) for reading the input file and creating
the nodeset file. The workflow of the program can be seen in the sequence diagram in
Figure 5.6. The input file is first parsed for relevant packagedElemets (see Table 4.1).
The found classes and primitiveTypes are then mapped to their OPC UA counterparts
and saved in their nodeset file representation. The nodes are given an incrementing id
starting from 1002. This starting number has been chosen because it is possible to assign
several thousand ids without interfering with any predefined indices. Their xmi:id as well

28

5.3. Model transformation in Modelio

as their newly given OPC UA id in combination with their respective DOM Element are
stored in HashMaps for future references. This is why packagedElements are all resolved
before checking their children. A child can be a hierarchical reference to a succeeding
element.

Sequentially, all found packagedElements are parsed for each of their children. Firstly,
every ownedAttribute is checked for its functionality. Therefore, variables become OPC
UA variables with either a HasProperty or HasComponent reference to their parents
depending on its definition (see Chapter 4). If the ownedAttribute turns out to specify a
composition, it is realized accordingly in the nodeset file. Afterwards, the packagedElement
is checked for ownedOperations. These are simply mapped to their OPC UA counterpart.
Lastly, generalizations are realized as HasSubtype references in the OPC UA information
model just as proposed. The finished OPC UA information model node set file is checked
for validity with its XML Schema Definition (XSD) from [12].

Example transformation result

<UANodeSet [...]>
<NamespaceUris>
<Uri>http://www.umltoopcua.com/yourproject</Uri>

</NamespaceUris>
<Aliases>
<Alias Alias="String">i=12</Alias>
[...]

</Aliases>
[...]
<UAObjectType BrowseName="1:PersonType" NodeId="ns=1;i=1002">
<DisplayName>PersonType</DisplayName>
<References>
<Reference IsForward="false"

ReferenceType="HasSubtype">i=58</Reference>
<Reference ReferenceType="HasComponent">ns=1;i=1004</Reference>

</References>
</UAObjectType>
<UAVariable AccessLevel="3" BrowseName="1:Name" DataType="String"

NodeId="ns=1;i=1004" ParentNodeId="ns=1;i=1002"
UserAccessLevel="3">

<DisplayName>Name</DisplayName>
<References>
<Reference ReferenceType="HasTypeDefinition">i=63</Reference>
<Reference ReferenceType="HasModellingRule">i=78</Reference>
<Reference IsForward="false"

ReferenceType="HasComponent">ns=1;i=1002</Reference>
</References>

</UAVariable>
</UANodeSet>

Listing 5.2: Nodeset file created by transforming Listing 4.1.

29

5. Proof of Concept

Listing 5.2 shows a transformation example. The input of the program was Listing 4.1.
The class Person becomes an ObjectType and its variable Name becomes a VariableType
in OPC UA. There is a HasComponent link from PersonType to Name to showcase
their hierarchical reference. Mandatory references to the node’s type definitions and
OPC UA base types are made automatically. The output files are edited so they can be
further worked on and imported by UaModeler [6]. Predefined indexes (e.g. i=12 for the
DataType "String") were observed and are used likewise in the transformer.

5.3.2 Adding the model transformation algorithm to modelio

All *.java files needed by the transformation are added as a new package in Modelio’s
"xmi" project folder. The transformation is added similarly to the existing imports and
exports of UML diagrams. A new window design is defined which fits accordingly to
the needs of all OPC UA import and export informations (e.g. textbox for file path).
Additionally, a new thread for all three newly added operations (import, and export of
OPC UA information models and the export of UML to OPC UA transformation) is
created which uses the respectively needed transformation objects.

30

CHAPTER 6
Conclusion and future work

Motivated by the lack of OPC UA modelling tools, especially on the open-source market,
this thesis presented Modelio (an open-source UML modelling tool) with an OPC UA
information model extension. This extension enables graphical modelling of OPC UA
information models in Modelio. Furthermore, these models can be exported as nodeset
files by making use of M2T transformations.

This thesis also presented a slightly modified approach from [1] for creating OPC UA
information models by transforming UML diagrams. This process was used to bypass the
modelling complexity of OPC UA models. The approach consisted of a mapping between
UML and OPC UA elements. UML was constrained by additional OPC UA friendly
rules to ensure UML could not use any features which were not supported by OPC UA.
The transformation approach was implemented in Java as an independent program. It
used the Java DOM Parser to parse the standardized XML representation (XMI) of
UML diagrams and for constructing the textual representation of OPC UA nodeset files.

Modelio was chosen as a starting point because it was considered the most suitable and
best open-source UML modelling tool available. Open-source OPC UA modelling tools
seemed infeasible as a starting point for this thesis because they were technically by
far inferior compared to their UML counterparts. Modelio was given a new OPC UA
diagram type and a new GUI for modelling OPC UA information models and the M2M
UML to OPC UA transformation program were also added.

The transformation worked pretty well in Modelio. In a next step, Modelio’s OPC UA
modelling capabilities should be improved, since Modelio neither checks for valid OPC
UA models nor respects any special OPC UA rules. It would also be wise to let Modelio
and the model-UA repository [13] stay up to date, especially when future UML to OPC
UA mapping are released since transformation rules for UML state charts are currently
worked on [1].

31

List of Figures

2.1 Metamodel of UML (excerpt)[1] . 5
2.2 UML diagram example of a Car . 6
2.3 The foundation of OPC UA [4] . 7
2.4 OPC UA graphical notation (adapted from [1]) 7
2.5 Metamodel of OPC UA . 8
2.6 OPC UA information model example of a Car 8

3.1 MDA based workflow for OPC UA information model design [5] 12

4.1 Transformation of composition reference [1] 18
4.2 Transformation of operations [1] . 19
4.3 Transformation of attributes and variables [1] 20
4.4 UML diagram of a Person with a Name . 21
4.5 OPC UA information model created by a transformation 21

5.1 ArgoUML GUI with a diagram . 24
5.2 EasyUML (NetBeans) GUI with a diagram 24
5.3 Modelio GUI with a diagram . 25
5.4 Modelio 3.7 GUI with OPC UA extension 26
5.5 Illustration of the model transformation process 27
5.6 Schematic workflow of the UML to OPC UA transformation 28

33

List of Tables

3.1 Mapping between UML and OPC UA(excerpt) 13

4.1 Core UML elements and their XMI represenation 15
4.2 Attributes of the relevant XML elements 17

5.1 List of open source UML modelling tools 23

34

Acronyms

ATL ATLAS Transformation Language. 12

CIM Computation Independent Model. 6, 11

CPPS Cyber-Physical Production System. ix, 1

CPS Cyber-Physical System. ix, 1

GUI Graphical User Interface. 26, 31

M2M Model-to-Model. 2, 6, 9, 12, 13, 15, 28, 31

M2T Model-to-Text. 9, 16, 31

MDA Model-Driven Architecture. 9, 11, 15

MDE Model-Driven Engineering. 9

OMG Object Management Group. 5, 9, 24, 25

OPC UA OPC Unified Architecture. vii, ix, xii, 1–3, 5–8, 11–13, 16, 18–21, 23, 25–31,
33, 34

PIM Platform Independent Model. 5, 6, 11, 12

PSM Platform Specific Model. 12

RCP Rich Client Platform. 25, 26

TCP Transmission Control Protocol. 6

UML Unified Modelling Language. vii, ix, 1, 2, 5–8, 11–13, 15, 16, 18, 19, 21, 23–26,
28, 30, 31, 33, 34

XMI XML Metadata Interchange. 2, 11, 15–17, 21, 24, 25, 28, 31, 34

XML Extensible Markup Language. 2, 3, 6, 9, 16, 17, 26–29, 31, 34, 35

XSD XML Schema Definition. 29

35

Bibliography

[1] Florian Pauker, Sabine Wolny, Solmaz Mansour Fallah, and Manuel Wimmer.
UML2OPC-UATransforming UML Class Diagrams to OPC UA Information Models.
Procedia CIRP, 67:128–133, 2018.

[2] OMG UML specification. "https://www.omg.org/spec/UML/2.5.1/PDF".
Accessed: 04-10-2018.

[3] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language
User Guide, The 2nd Edition; ISBN-13: 978-0-321-26797-9.

[4] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC Unified
Architecture. ISBN: 978-3-540-68898-3.

[5] Florian Pauker, Thomas Frühwirth, Burkhard Kittl, and Wolfgang Kastner. A
systematic approach to OPC UA information model design. Procedia CIRP, 57:321–
326, 2016.

[6] Unified Automation - UA Modeler. "https://www.unified-automation.
com/products/development-tools/uamodeler.html". Accessed: 04-10-
2018.

[7] Eclipse. "https://www.eclipse.org/". Accessed: 04-10-2018.

[8] ArgoUML. "http://argouml.tigris.org/". Accessed: 04-10-2018.

[9] OMG UML XMI standard. "http://schema.omg.org/spec/XMI/2.1". Ac-
cessed: 04-10-2018.

[10] NetBeans. "https://netbeans.org/". Accessed: 04-10-2018.

[11] Modelio. "https://www.modelio.org/". Accessed: 04-10-2018.

[12] OPC Foundation nodesetfile schema 1.03. "https://opcfoundation.org/UA/
schemas/1.03/UANodeSet.xsd". Accessed: 04-10-2018.

[13] model-UA: UML to OPC UA model transformation. "https://github.com/
model-UA/uml-to-opcua". Accessed: 04-10-2018.

37

"https://www.omg.org/spec/UML/2.5.1/PDF"
"https://www.unified-automation.com/products/development-tools/uamodeler.html"
"https://www.unified-automation.com/products/development-tools/uamodeler.html"
"https://www.eclipse.org/"
"http://argouml.tigris.org/"
"http://schema.omg.org/spec/XMI/2.1"
"https://netbeans.org/"
"https://www.modelio.org/"
"https://opcfoundation.org/UA/schemas/1.03/UANodeSet.xsd"
"https://opcfoundation.org/UA/schemas/1.03/UANodeSet.xsd"
"https://github.com/model-UA/uml-to-opcua"
"https://github.com/model-UA/uml-to-opcua"

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and problem statement
	Model representation
	Methodological approach and structure of this thesis

	Technical background
	UML
	OPC UA
	Model transformation

	State of the art
	A systematic approach to OPC UA information model design
	UML2OPC-UA – Transforming UML class diagrams to OPC UA information models

	UML to OPC UA model transformation
	UML XMI constructs
	Transformation rule set
	Classes and compositions
	Operations
	Attributes and variables

	The transformation in use

	Proof of Concept
	Open source UML modelling tools
	Modelio with OPC UA extension
	Graphical user interface
	Back-end
	opcua nodes
	opcua references

	Model transformation in Modelio
	Model transformation algorithm
	Example transformation result

	Adding the model transformation algorithm to modelio

	Conclusion and future work
	List of Figures
	List of Tables
	Acronyms
	Bibliography

