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Kurzfassung

Revised Parallel DEVS (RPDEVS) ist ein Formalismus für ereignisorientierte Model-
lierung, der vor kurzem an der Technischen Universität Wien entwickelt wurde. Dabei
handelt es sich um eine Modifikation der Parallel DEVS (PDEVS), welche wiederum
aus dem ürsprünglichen klassischen Discrete Event System Specification (DEVS) Forma-
lismus entstanden ist. Um Modelle in dem neuen Modellierungsformalismus RPDEVS
simulieren zu können war es notwendig eine neue Simulationsengine zu entwickeln. Auf
Basis eines klassischen DEVS-Simulators PowerDEVS wurde eine neue RPDEVS Engi-
ne programmiert. Der resultierende RPDEVS Simulator wird nun als PowerRPDEVS
bezeichnet.

Aufgrund der abgeänderten Simulationsengine sind die ursprünglichen PowerDEVS
Modell-Bibliotheken mit PowerRPDEVS nicht mehr kompatibel, das heißt es müssen
neue Modell-Bibliotheken entwickelt werden. Das Ziel dieser Bachelorarbeit ist eine Bond
Graph Bibliothek inklusive Kausalisierungsalgorithmus für PowerRPDEVS zu entwickeln.
Dadurch soll es möglich sein, akausale Bond Graph Modelle im Simulator einzugeben.
Die Bibliothek verbindet also ereignisdiskrete mit akausaler Modellierung.
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Abstract

Revised Parallel DEVS (RPDEVS) is a discrete event modelling formalism that was
recently developed at the TU Wien. It is a modification of the Parallel DEVS (PDEVS)
which was derived from the classic Discrete Event System Specification (DEVS) formalism.
For the new modelling formalism it was necessary to write a new simulation engine.
Based on the classic DEVS simulator PowerDEVS a new RPDEVS engine was written.
The resulting simulator is called PowerRPDEVS.

However, due to the different modelling formalisms, the original PowerDEVS model
libraries cannot be re-used and therefore, new model libraries have to be developed. The
goal of this bachelor thesis is to create and present a library for modelling and simulating
bond graphs in the PowerRPDEVS environment together with a causalisation algorithm.
Thereby it should be possible to enter acausal bond graph models in the simulator. Thus
the library connects discrete event and acausal modelling.
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CHAPTER 1
Introduction

1.1 Motivation
As described in [Pre15], the Discrete Event System Specification (DEVS) and also Parallel
DEVS (PDEVS) formalisms do not support the modelling of ’true’ mealy behaviour.
Furthermore the way concurrent input messages are processed in DEVS and PDEVS
forces the model developer to take into consideration all possible processing orders in
order to make an atomic component independent from its connected components. To
solve this problem, in [PHK18] Preyser et al. describe a derivative PDEVS formalism
and call it Revised Parallel DEVS (RPDEVS). For the new formalism a simulator based
on a DEVS simulator PowerDEVS1 was developed and called PowerRPDEVS2. However
the libraries from the PowerDEVS are not compatible with the RPDEVS formalism and
it was necessary to write new ones.

There already are bond graph libraries for the DEVS formalism, like for example the one
described by D’Abreu and Weiner in 2003 [DW03], however the bond graph models they
used, were already causalised. Using the RPDEVS formalism, we can facilitate the new
lambda-iteration (discussed in 2.1) to causalise the graph on the fly, determining the
signals in an iterative way for a point in time.

1.2 State of the Art
Bond graph simulation in DEVS like formalisms is not a very popular topic and it
was not reviewed for a long time. One of the first tries to develop such a library was
presented in 2001 by A. Naamane, N. Giambiasi and A. Damiba [NGD01]. They have
written a modelling tool for simulating bond graphs in Generalised Discrete Event

1Project available at sourceforge.com
2Project available at sourceforge.com
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1. Introduction

Systems (GDEVS) with the basic bond graph elements. In 2003, D’Abreu and Weiner
[DW03] presented another simulation tool to represent the bond graphs within DEVS
formalism. They used the CD++ tool kit and built their library based on QDEVS
(Quantised Discrete Event System) formalism. In 2005 [DW05], the same authors
presented another version of their bond graph library. This time the approximation is
based on the Quantized State System (QSS) method (discussed in section 2.3).

Bond graphs (briefly introduced in 2.2) to be valid must be causalisable. This means,
there must exist a solution to the set of mathematical equation representing the bond
graph. The process of causalisation determines in which order the equations need to be
solved. All the bond graph libraries previously mentioned run models which are already
causalised. The library presented in this work causalises bonds on the fly.

As this thesis is based on the RPDEVS formalism, it will be described in chapter 2.
Furthermore, chapter 2 contains a brief description of the bond graph framework and of
QSS - the numeric integration method used in PowerRPDEVS.

The developed library is designed for the PowerRPDEVS environment, which will be
described in detail in section 3.1. The detailed description of the bond graph library and
its components will be provided in section 3.2.

In chapter 4, we present simulation examples of the working bond graph library for
PowerRPDEVS.

2



CHAPTER 2
Theoretical Background

2.1 RPDEVS
RPDEVS is a discrete event system formalism for discrete-, hybrid- and continuous
system modelling. RPDEVS is an extension to the PDEVS formalism, as PDEVS do
not support ’true’ mealy behaviour [PHK18].

First, we begin with the ancestors of the RPDEVS. According to [CZ94], the DEVS
formalism was introduced in the early 70’ and allows the modellers to hierarchically
structure their models. The original DEVS model according to [ZKP00] is a tuple:

M =< X,S, Y, δint, δext, λ, ta >

where
X: a set of external events,
S: a set of states,
Y : a set of output values,
δint: S → S: the internal state function,
δext: Q×X → S: the external transition function, where Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}
and e is the time elapsed since the last state transition,
λ : S → Y : the output function,
ta : S → R+

0,∞ the time advance function (where R+
0,∞ is the set of non negative real

numbers).

A DEVS model updates its state via transition functions according to its current state
and input. The model reacts to an input running δext. Without any input, the model may
have its internal transition which first leads to a call of the output function λ possibly
producing output followed by an internal state transition δint. The state may only be
changed in the state transitions δint and δext.

3



2. Theoretical Background

PDEVS was introduced in [CZ94] as an extension to DEVS formalism to deal with
the problems revealed in the original DEVS. The main problem were collisions - when
δext and δint should be run at the same time. As a solution, a confluent transition
function δcon was added to the formalism. However, in PDEVS it is still not possible to
model ’true’ mealy behaviour, that is immediately reacting to an input event with an
output event without any state transition in between. In [PHRK16], an example of a
model using a switch element was presented and shown the unintended behaviour of the
PDEVS formalism. This led to a new extension to PDEVS, namely RPDEVS described
in [PHK18]. RPDEVS defines only one transition function δ which combines all three
transition functions from PDEVS. RPDEVS requires the input to stabilize before state
transitions are run. Therefore the λ function is allowed to read the input and λ is run
repetitively recalculating and resending the output until the input stabilizes (remains
the same in two consecutive iterations). The λ function is also allowed to save its state,
called lambda-state. Later, in the δ step the lambda-state maybe read and used for
the transition. The models in RPDEVS are made out of couplings and atomics in a
hierarchical structure. An atomic in RPDEVS is defined as a 6-tuple[PHK18]:

〈X,S, Y, δ, λ, ta〉,

where
X is the set of possible inputs,
S is the set of possible states, Sδ ⊆ S, Sλ ⊆ S,
Y is the set of possible outputs,
Q = {(s, e) |s ∈ S, e ∈ [0, ta (s)]},
δ : Sδ × Sλ × [0,∞)×X → Sδgeneric state transition function,
λ : Sδ × [0,∞)×X → Y × Sλ output function,
ta is the time advance function.

A coupled RPDEVS N is defined equally to the definition of PDEVS coupled N [PHK18]
and therefore

〈Xb
N , YN , D, {Md}d∈D , {Id}d∈DN

, {Zi,d}i,d∈DN
〉.

where
Xb
N is the set of possible inputs,

YN is the set of possible outputs,
D is the set of components,
{Md} is a component,
{Id}d∈DN

is the influencees of d,
{Zi,d}i,d∈DN

is an i-to-d output translation function,
For each d in D

Md = 〈Xd, Sd, Yd, δd, λd, tad〉,

is a RPDEVS structure.

The figure 2.1 presents a simplified schema of RPDEVS simulation.
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2.2. Bond Graph

Start

ta

exitinit

lambda

delta

Internal or external or confluent event Input changed

Input stable

Final time reached

Figure 2.1: RPDEVS simulation sketch

2.2 Bond Graph
The bond graph framework generalizes the constraints of the physics laws of many
domains (mechanical, electrical, hydraulic for example). In a bond graph, physical model
is built out of components connected by (power) bonds, where the components can
exchange power. The power flowing in a bond is the product of the effort (denoted e) and
the flow (f ). Every element of a bond graph can determine either the effort or the flow of
a (power) bond. The bonds are directed and the half-arrow represent the direction of the
power however the information between the elements are exchanged in both directions.
An example of a bond graph is depicted in the figure 2.2b.

There are nine basic Bond Graph components, furthermore they are domain independent.
We introduce them here briefly:

2.2.1 Source of Effort (Se)

The source of effort just sends the effort on the bond. It has only one outgoing port. The
element on the other side of the bond is supposed to provide the flow for the bond to be
causalised. In case of PowerRPDEVS the effort sent by Se may have any signal form like
for example: constant signal, an impulse, a pulsing source or a sinusoidal signal source.

2.2.2 Source of Flow (Sf)

The source of flow works analogous to the source of effort. It also has one outgoing port.
The Sf sends the flow on the bond and expects the component on the other side of the
bond to compute the effort.

5



2. Theoretical Background

2.2.3 Resistor (R)

The resistor has one ingoing port. The resistor is a passive element and it responds to the
given effort or flow with flow or effort respectively. The computation of the retuning signal
is based on the incoming signal and the resistance parameter R. Following equations
hold for the resistor:

f = e

R
e = fR

2.2.4 Capacitance (C)

The capacitance (sometimes also called capacitor) is an effort storage element with one
input port. The capacity is defined by the parameter C. For the given flow the capacitor
returns the effort according to the rule:

eC(τ) = 1
C

∫
fC(τ)dτ

2.2.5 Inertance (I)

The inertance component (sometimes also called inductor) is an flow storage element
with one input port. The inductor has its inertance parameter L. It expects to receive
the effort and returns the flow according to the rule:

fI(τ) = 1
L

∫
eI(τ)dτ

2.2.6 Transformer (Tr)

The transformer is an element with one input and one output port. It forwards the given
effort or flow according to the rules described below. The values given to a transformer
will be multiplied with the transformation factor r and forwarded at the other side of
the transformer. Following rules hold for the transformer:

e2 = e1r

f2 = f1
1
r

2.2.7 Gyrator (Gy)

The gyrator is an element with one input and one output port. It is similar to the
transformer however it converts the effort to flow and the flow to effort with an conversion
factor r and then returns it at the other side of the gyrator. The conversion factor of the
gyrator - gyrator ratio r is analogous to the transformation factor. Following equations
hold for the gyrator:

f2 = e1
r

e2 = f1r

6



2.2. Bond Graph

2.2.8 Junctions

Junctions are used to connect the elements described above. While thinking about
electrical circuits we can say, the 1-junction represents the serial connection of the
elements and the 0-junction represents the parallel connection of the elements. The
junctions may have arbitrary many input and arbitrary many output ports. We denote
the number of input ports with j ∈ N0 and the number of output ports with k ∈ N0.

One-Junction (1-Junction)

The one-junction has to fulfil the following equations regarding the efforts and flows (we
number the bonds of a junction from 1 to n=j + k and denote the effort on the bond
1 ≤ p ≤ n as ep and analogously for the flow):

f1 = f2 = . . . = fn

i∑
m=0

em −
j∑

m=0
em = 0

In other words the flow is the same for all the bonds connected to a one-junction and the
sum of all incoming efforts must be equal the sum of outgoing efforts. Therefore only
one neighbour element may provide the flow to a one-junction or n− 1 elements provide
the effort for the one-junction.

Zero-Junction (0-Junction)

The zero-junction must fulfil rules analogous to the rules for the one-junction (we keep
the variable notation):

e1 = e2 = . . . = en

i∑
m=0

fm −
j∑

m=0
fm = 0

In other words the effort is the same for all the bonds connected to a zero-junction and
the sum of all incoming flows must be equal the sum of outgoing flows. Therefore only
one neighbour element may provide the effort to a zero-junction or n−1 elements provide
the flow for the zero-junction.

2.2.9 Bond Graph Modelling

Having a physical model, we want to model it as a bond graph. As shown in [ŠHČG12],
there exists an iterative way to depict an electrical circuit as a bond graph. The figure
2.2a shows an example electrical circuit and the figure 2.2b shows its equivalent bond
graph.

7
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R1

R2

L1

C1

(a) A simple electrical circuit.

Se0

R

1

R

C

I
(b) The equivalent bond graph.

Figure 2.2: A bond graph out of electrical circuit.

2.3 QSS
QSS, according to Preyser [Pre15], refers to the class of continuous signal description
methods. These methods use numerical methods to describe continuous systems in a
discrete event manner. To achieve this, the continuous signals are piecewise approximated
by Taylor polynomials.

The order of the Taylor polynomial used for the approximation of the signal determines
the order of the QSS method. Having QSS first order, we use a piecewise constant
quantisation function. Having QSS second order we use the linear function to quantize
the signal. In general the QSS method d uses Taylor polynomials of degree d − 1 to
discretize the continuous signal.

Model simulation often requires solving differential equations, which again requires
computing integrals of functions. The integral of an Taylor polynomial g(t) of degree d
is a Taylor polynomial G(t) of degree d + 1. In QSS G(t) will be again approximated
by Taylor polynomials hi(t), i ∈ N of degree d. The approximation will be updated
whenever |G(t)− hi(t)| > q, where q is the quantum parameter. The q parameter drives
the precision of the numerical method.

The figure 2.3 presents f(t) = G(t)− hi(t). To know, when the approximation function
has to be updated, we are looking for the point in time, when f(t) exceeds q or −q. In
the figure 2.3 it is the point t0. From this point in time G(t) will be approximated with
some hi+1(t)

8



2.3. QSS

signal value

+q

-q
t0

f(t) + q

f(t)− q

f(t)

t

q

Figure 2.3: QSS: an example of signal difference f(t)

In PowerRPDEVS (described later in section 3.1) the maximum of QSS-order 4 is
supported, as there exist algebraic methods to compute zero-crossings of a 4th degree
polynomial function.

In the paper Kofman and Junco [KJ01] mention, that the discrete event simulation may
have some advantages over the discrete time simulation, considering the simulation speed
and the possibility of distributed simulation. Also discrete time systems may be simulated
by discrete event systems.

9





CHAPTER 3
PowerRPDEVS Bond Graph

Library

3.1 PowerRPDEVS
PowerRPDEVS1 is a simulation engine with a graphical user interface, supporting mod-
elling within RPDEVS formalism. The project was started as a fork from the PowerDEVS
project 2 however, the PowerDEVS engine only supports the DEVS formalism. Most of
the code is written in the C++ programming language, using the Qt3 framework for the
graphical user interface.

3.1.1 Overview

PowerRPDEVS offers a comprehensive toolset for modelling and simulation. The main
window of the program offers a sketch area to draw the graphs using drag-and-drop
method, a set of tabs with graph components to choose, and two toolbars leading to
other functionalities. The main window is depicted on figure 3.1.

1Project available at: https://sourceforge.net/projects/powerrpdevs/
2Available on sourceforge.com
3Available at https://www.qt.io/
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3. PowerRPDEVS Bond Graph Library

Figure 3.1: The main graph editor of PowerRPDEVS

The models in the PowerRPDEVS are built out of couplings which again consist of
couplings or atomics. Every PowerRPDEVS atomic represents specific behaviour during
the simulation and may communicate with other atomics or couplings through the input
and output ports. An atomic may be for example a signal generator, periodically sending
a signal of a specified value.

In the code, every PowerRPDEVS atomic is a C++ class extending the predefined
Simulator class. Additionally, atomics may have their own parameters and functions.
The RPDEVS formalism requires atomics to extend the Simulator class and therefore to
have following methods implemented:

• init - where the atomic is prepared for the simulation. In most cases, the initial
values for the atomic, such as parameters, will be read from the graphical user
interface,

• ta - the time advance function which says how to advance the time for this specific
atomic,

• delta - where the actual δ state transition function according to the RPDEVS
formalism will be coded,

• lambda - where the λ output function from the RPDEVS formalism should be
implemented,

• exit - defines actions taken at this atomic at the end of the simulation.

12



3.1. PowerRPDEVS

Code examples will be provided and discussed in detail later in section 3.2.

Atomics are organized into libraries (visible on the left side of the graphical user interface,
in figure 3.1). The graphical interface of PowerRPDEVS provides tools to create, edit,
load, remove and sort libraries. The libraries provided in the master branch of the project
are designed to group the atomics by their purpose. For now, there are following libraries
available: basic elements, continuous, discrete, hybrid, logistics, sinks, sources, common
elements, logic, bond graph.

PowerRPDEVS provides an interface to fully manage atomics. With a right click on
an atomic and the ’edit’ command we get a window, where we can change every detail
about the specific atomic such as: name, number of input ports, number of output
ports, dimensions, background, background icon, description, parameters and code source
(depicted in figures 3.2 and 3.3). Of course changes to the atomics code and parameters
need to be done carefully, the components are ready to use for the user and it should
only be necessary to set the ports and the parameters’ values.

Figure 3.2: The atomic editor of PowerRPDEVS

13



3. PowerRPDEVS Bond Graph Library

Figure 3.3: The atomic editor parameter tab

Apart from basic commands, almost every editor supports (open file, new file, etc.),
there are simulation specific commands available in PowerRPDEVS. When clicking on
’Simulate’ or hitting F5 the model consisting of couplings and atomics will be compiled
in the background and prepared to run. After a successful compilation, a window to
control the simulation like depicted in figure 3.4 shows up. It offers a possibility to run
the complete simulation, let it run a defined number of steps, run it for a defined time,
exit the simulation or show the log file.

14



3.1. PowerRPDEVS

Figure 3.4: The PowerRPDEVS simulation settings

The log file contains information about the simulation run. It may be a valuable source
of information while designing and implementing a new atomic or after a simulation
stopped unexpectedly. What information is written to the log file is defined by the log
level variable and the coded log expressions used in the single atomics. With a drop-down
menu "Set Log Level" we can easily choose the log level for the next simulation (it requires
recompilation of the code). There are six log levels:

• _ERROR - here only information about real errors should be written. For example,
when the simulation aborts,

• _WARNING - at this level the information about possibly wrong behaviour of
atomics should be given,

• _INFO - at this level the information about the normal progress of the simulation
should be given,

• _DEBUG_ROUGH - here a brief information, useful for the debugging should be
given,

• _DEBUG - should provide more information useful for debugging,

• _DEBUG_HARD - the highest logging level. It also provides the debug information
from the simulation engine.

15



3. PowerRPDEVS Bond Graph Library

It should be taken into consideration that writing into a file is a quite time consuming
operation (compared to numerical computations for example) and therefore, for faster
simulations, the log level should be kept as low as possible.

In case when the log file is not a sufficient debugging help, a dedicated debugging tool may
be used to analyse the simulation process step by step. At the moment, two debugging
tools for Linux operating systems are supported: KDbg4 and Nemiver 5.

Sometimes it is also necessary to recompile all the classes, also those where code was
not directly changed. It may be the case, when we change an enumerate class which
other classes use. If we do not recompile all classes, we will get wrong values for this
enumeration. To deal with this problem, there is a special button which erases all the
files compiled for the models and the simulation engine. All of them will be recompiled
while starting a new simulation.

In case we start a simulation and errors occurred during the compilation process, an
error dialog box pops up with a direct link to the compile.log file for further information
about the cause of the failure.

Coupled elements may be opened revealing their inner structure and parameters may be
set for them. It is not necessary to to change the source code to use these parameters,
but they can be referenced in the graphical user interface. It is possible to set the atomic
value as a reference to the coupling parameter in the form of "%parameter_name". It
should be automatically recognized by the PowerRPDEVS and the value should be shown
in a grey non-editable field.

During the simulation in the PowerRPDEVS, atomics are called in a specified order. First,
atomics without any input port are triggered because they can only send information and
therefore affect the output of connected blocks. Then the blocks with input and output
ports are called and at the end, the atomics with input ports only are triggered. Addi-
tionally, it is possible to manage the priority order of the atomics within a coupling. This
will not affect the outcome of the simulation however, it may speed up the computation
as the input messages may stabilize faster.

3.1.2 Simulation Engine

The simulation engine is responsible for the correct simulation, according to the RPDEVS
formalism. It creates the connections between the atomics or couplings and calls corre-
sponding functions at the right moment. Everything begins with the init function of
every coupling and every atomic within every coupling. Then the lambda function of
every element is run, in the order as described earlier. Later lambda iterations, delta
steps and ta are run alternating until the end of the simulation (see figure 2.1).

4Available at http://www.kdbg.org/
5Available at https://developer.gnome.org/nemiver/0.9/nemiver.html
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3.1. PowerRPDEVS

To communicate with each other, the atomics and the couplings send messages through
their output ports. These ports are connected to the input ports of some other atomics.
Splitted connections (one-to-many) are also possible.

In the PowerRPDEVS, there is a special DEVSMessage base class. Only messages of
this class or classes that are DEVSMessage derivatives may be sent in the simulation
engine. One of these subclasses of DEVSMessage is QSSDoubleArray. This class has a
container for double values to represent a QSS-signal. The numbers in this container
are coefficients of the polynomial approximating the signal. QSSDoubleArray supports
many mathematical operations on polynomials and also many mathematical operators
are overloaded.

The base class DEVSMessage has a member variables index which is intended to enable
vectorial communication. However, the index of a message can also be used to define
different types of messages at a communication line. Every index has its special meaning
defined internally for the atomics in a library. An experienced user may also mix atomics
across libraries.

After a model in the graphical user interface is built, it may be compiled and run on the
RPDEVS engine. PowerRPDEVS will automatically compile necessary files and create
background code of the model to run. Having successfully compiled code, the user may
start the simulation or adapt some simulation settings like the end time for example
(depicted on figure 3.4).
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3. PowerRPDEVS Bond Graph Library

3.2 Bond Graph Model Library
The bond graph library for PowerRPDEVS we recently created, is a collection of atomic
components used to build a bond graph. It supports all the basic elements of bond graphs
and there is also a sensor component added, to read the values of the effort and the flow
exchanged on the bonds. The following elements were implemented as PowerRPDEVS
atomics (in parenthesis we name their corresponding elements of electrical circuits for
easier imagination):

Resistance R (resistor) - has only one input port, immediately responds to the messages
in lambda function with the value computed according to its resistance parameter,

Capacitor C (capacitor) - has only one input port, sends the effort value and expects
the flow value to compute its integral,

Inductance I (coil) - has only one input port, sends the flow value and expects the effort
value to compute its integral,

Source of effort Se (constant voltage) - has only one output port, sends the effort value
specified as parameter,

Source of flow Sf (constant current) - has only one output port, sends the flow value
specified as parameter,

Sensor - has one input and one output port. It reads the values of the effort and the
flow messages floating on a specified bond and forwards these values on the output
port. There is a parameter to set, whether only effort, only flow or both values
should be forwarded. The sensor needs to be connected to a connection between
two bond elements (splitted connection),

Transformer Tr (transformer) - has one input and one output port. It represents
the behaviour of a transformer. It has two parameters specifying the number of
windings on the primary (n1) and on the secondary side (n2). These two values are
necessary to compute the transformation ratio r = n1

n2
.

Gyrator Gy (gyrator) - has one input and one output port. It represents the behaviour
of a gyrator.

One Junction (1-junction) (serial connection of elements) - can have any number of input
and any number of output ports. It represents the serial connection of elements.

Zero Junction (0-junction) (parallel connection of elements) - can have any number of
input and any number of output ports. It represents the parallel connection of
elements.

The detailed description of all components from bond graph library can be found in
section 3.2.3.
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3.2.1 Power Flow

As we already know from section 2.2, there is a power flow in every bond. One side of
the bond determines the effort and the other one determines the flow. PowerRPDEVS
supports directed messages only and bond graphs are undirected graphs, so to keep
the graph design clean and easy for the user we automatically create additional back
connections in the background while running the simulation. The back connections are
like normal PowerRPDEVS connections (from a specified element on a specified port to
another specified element on another specified port) however invisible for the user. While
creating these connections the bond graph atomics are filling their bond connection maps
with information. These maps contain information about neighbour atomics connected
and the input and output ports used to communicate with them. We designed a C++
class to hold this bond connection information:

1 bond_connection::bond_connection() {
2 id = -1;
3 bond_element_type = bond_component_type::undefined;
4 in_port = -1;
5 out_port = -1;
6 value = QSSDoubleArray(0.0);
7 }

1 std::map<int, bond_connection > bond_connection_map;

The index of the map is the input port, so every time we get a message at a certain bond,
we know where to send the answer.

To create the back connections, we have written a distributed algorithm running partly
in the init function and partly in the lambda function, for all elements where necessary.

The algorithm is represented with the following pseudo code 3.1:

The following drawing 3.5 shows the back connections (marked orange).

Se

S

R1

Figure 3.5: The back connections in the PowerRPDEVS bond graph (marked orange)
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Algorithm 3.1: Add back connection
Input: Pointer to current bond graph component object me
Output: void

1 for every initial input port ip of me do
2 Get the RPDEVS atomic element e and its output port op where the

connection to ip comes from;
3 Add an output port o at me;
4 Add an input port i at e;
5 Connect (me, o) to (e, i);
6 for every additional connection starting at atomic e, output port op, going to

atomic f , input port ip do
7 Connect (me, o) to (f, ip);
8 end
9 end

3.2.2 Indices

As we already discussed in section 3.1.2 every message has an index (a non-negative
integer) attached to it. In the bond graph library, these indices are facilitated to
distinguish different types of messages. For better readability, we created an enumeration
for the indices for the bond graph library (see code example below).

1 enum class bond_index_type : int{
2 effort, flow, value, ctype, Se, Sf, effort_equiv, flow_equiv,
3 ressistance_equiv
4 };

The meanings of the particular indices is the following:

effort is used to send the effort values,

flow is used to send the flow values,

value is used to send an atomic specific value or property like for example the resistance
of an resistor, which is a necessary information for a junction (if connected directly),

ctype is used to send messages with the element’s type to its neighbours,

Se is used by junctions to send thesum of flow values of all flow-dominant components
connected to them (if exists),

Sf is used by junctions to send the sum of effort values of all effort-dominant components
connected to them (if exists),
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effort_equiv is used to send the equivalent effort value by junctions during causalisation
(discussed later in section 3.2.3). phase when the junctions exchange their equivalent
circuit information,

flow_equiv analogous to effort_equiv,

resistance_equiv analogous to effort_equiv.

3.2.3 Library Components

Now, we will describe the components of the PowerRPDEVS bond graph library in detail.
Some parts of the code are similar for all the components so we will begin with a simple
one and discuss only the differences to the other components. For all the elements, we
will first discuss the init function, then the lambda function, and then the delta function.

The time advance function ta is common for all component of the bond graph library. This
function always returns the σ value. σ is the time to the next δ step at the corresponding
element. Additionally, debug information will be written to the log file according to the
log level set.

1 double sensor::ta(double t) {
2 printLogAtLevel(_DEBUG_ROUGH, "%s, %x, t=%G: ta \n", name, myself,

t);
3 return (sigma);
4 }

The exit function is also common for all the bond graph library components and it just
writes an entry to the log file.

1 void sensor::exit() {
2 printLogAtLevel(_DEBUG_ROUGH, "%s id=%x: exit \n", name, myself);
3 }

Sensor

The simplest atomic element of our bond graph library is the sensor. It expects effort
and flow messages on its input port and forwards these messages according to the rule
set. It may be only the effort, only the flow or both values. If the sensor gets a message
on another index, a warning will be written to the log file.

In the init function, we read the parameters from the graphical user interface and initialize
the state variables.

1 void sensor::init(double t,...) {
2 va_list parameters;
3 va_start(parameters, t);
4 type = va_arg(parameters,char*);
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5
6 if (strcmp(type,"Effort")==0) {
7 forward_flow = false;
8 forward_effort = true;
9 } else if(strcmp(type,"Flow")==0) {

10 forward_flow = true;
11 forward_effort = false;
12 } else {
13 forward_flow = true;
14 forward_effort = true;
15 }
16
17 sigma = 0;
18 }

In the λ function we iterate through all input ports and collect the input messages
that arrived. Having an effort or flow message, we forward it according to the variables
initialized in the init function.

1 void sensor::lambda(double t) {
2
3 if (!input_bag_empty()) {
4 DEVSMessage *in_msg;
5
6 unsigned int in_port = 0;
7 while (pop_input(&in_msg, in_port)) {
8
9 QSSDoubleArray *qm = ((QSSDoubleArray*)in_msg);

10
11 switch(qm->index) {
12
13 case static_cast<int>(bond_index_type::effort): {
14 if(forward_effort) {
15 add_output(qm, 0);
16 }
17 break;
18 }
19 case static_cast<int>(bond_index_type::flow): {
20 if(forward_flow) {
21 add_output(qm, 0);
22 }
23 break;
24 }
25 default: {
26 break;
27 }
28 }
29 }
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30 }
31 }

The sensor never changes its state and therefore the only thing we do in the δ function is
to set sigma to infinity.

1 void sensor::delta(double t) {
2 sigma = INF;
3 }

Resistor

The Resistor is a passive element and it responds immediately to effort or flow values
arriving at the input. The resistor has its resistance parameter R, which is in this
PowerRPDEVS bond graph library version only a static real number, however while
designing the library we also considered a temperature driven resistors whose value would
change in time. For this case, there are already parameter fields for the QSS-order and
the quantum value prepared. Or we could also allow the resistor to have an input port
and be controlled by another element.

The response to effort e or flow f is computed according to the following rules (Ohm’s
laws for electrical circuits): when we receive the effort, we compute the flow with the
function:

f = e

R

when we get flow, the computed effort is

e = f ·R

In the init function, we read the parameters from the graphical user interface and as the
resistor has one input port we need to run our back connection algorithm (see 3.1).

1 void resistor::init(double t, ...) {
2 va_list parameters;
3 va_start(parameters, t);
4
5 std::istringstream arguments (va_arg(parameters,char*));
6 arguments >> qss_order;
7 arguments.clear();
8 arguments.str(va_arg(parameters,char*));
9 arguments.seekg(0);

10 arguments >> quantum;
11 arguments.clear();
12 arguments.str(va_arg(parameters,char*));
13 arguments.seekg(0);
14 arguments >> resistance;
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15
16 // resistor has only one input and one output port, forming its one

single bond interface:
17 bond_connection_map[0]=bond_connection((Port)0);
18 bond_connection_map[0].add_return_connection(this);
19
20 causality = causality_type::not_yet_causalised;
21
22 initially = true;
23 sigma = 0;
24 }

In the lambda function, if we run it for the first time, we need to check the in-
put ports. It may be the case, that some other element created input ports for us
while running the back connection algorithm. If this is the case, we need to up-
date the information about the bond connections. Then, we also send out value in-
formation (in this case the resistance parameter) because this information was not
available to other elements before we finished our init function. This is done by the
send_introduction_and_value_message_at_all_output_ports function. After this, the
initialization phase for the resistor is finished.

1 if(initially) {
2 // determine bond output ports to new, externally created input

ports
3 for(Port iport=n_in_ports_initial; iport < n_in_ports; iport++) {
4 // search for connection with sink=myself and sinkPort = iport
5 bond_connection_map[iport].in_port = iport;
6 if(false ==

bond_connection_map[iport].get_output_port_and_id(this)) {
7 std::stringstream str_str;
8 str_str << "ERROR in block "<< name << ",

’bond_connection::get_output_port_and_id(Simulator *me)
returned false for input port "<< iport << "! \n";

9 throwException(str_str.str());
10 }
11 }
12 // introduce to neighbours:
13 send_introduction_and_value_message_at_all_output_ports(this,
14 bond_component_type::R, QSSDoubleArray(resistance));
15 }
16 initially = false;

Next, we check the incoming messages. First we check whether neighbour components
sent their component type. These are the messages with index ctype.

1 for(Port iport=0; iport < n_in_ports; iport++) {
2 if (pop_input(iport, static_cast<int>(bond_index_type::ctype),

24



3.2. Bond Graph Model Library

&in_msg)) {
3 QSSDoubleArray *qm = ((QSSDoubleArray*)in_msg);
4 bond_connection_map[in_port].id = (int)((*qm)[0]);
5 bond_connection_map[in_port].bond_element_type =

static_cast<bond_component_type>((*qm)[1]);
6 }
7 }

Later, we check for messages with effort, flow and value indices. We respond to the effort
and flow messages according to the rules described above. Messages on other indices are
ignored and a warning is written to the log file.

1 while (pop_input(&in_msg, in_port)) { // fetch all messages that
arrived at port port_number. This is the only in port for source
of effort

2
3 QSSDoubleArray *qm = ((QSSDoubleArray*)in_msg); //convert the

message to QSSDoubleArray because we caanot user pop_input on
QSSDouble Array, but only on DEVSMessage

4
5 switch(in_msg->index) {
6 case static_cast<int>(bond_index_type::value): { // receive

introduction message
7 bond_connection_map[in_port].value = (*qm);
8 break;
9 }

10 case static_cast<int>(bond_index_type::effort): {
11 QSSDoubleArray out_msg = QSSDoubleArray((*qm));
12 out_msg = out_msg/resistance;
13 out_msg.index = static_cast<int>(bond_index_type::flow);
14
15 add_output(&out_msg, bond_connection_map[in_port].out_port,

static_cast<int>(bond_index_type::flow));
16 break;
17 }
18 case static_cast<int>(bond_index_type::flow): {
19 QSSDoubleArray out_msg = QSSDoubleArray((*qm));
20 out_msg = out_msg*resistance;
21 out_msg.index = static_cast<int>(bond_index_type::effort);
22 add_output(&out_msg, bond_connection_map[in_port].out_port,

static_cast<int>(bond_index_type::effort));
23 break;
24 }
25 default: {
26 break;
27 }
28 }
29 }
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As the resistor has only a static resistance value for now, the state will never change and
therefore the delta function just sets sigma to infinity (cf. above code example).

Capacitance

The capacitance element is also a passive element storing the effort of the power flowing
into it. Capacitance in our library may have an initial effort (we may have a loaded
capacitor in an electrical circuit) and the capacitance parameter C. Also there are
QSS-order and quantum to control the QSS method used while running the simulation.
Capacitance expects to receive the flow and computes its effort eC(t) according to the
rule:

eC(t) = eC(t0) + 1
C

∫ t

t0
fC(τ)dτ (3.1)

where:
t0 is the current time,
fC(τ) is the last received flow value.

Since, using QSS, the flow fC(τ) is a polynomial, we can solve the integral algebraically,
again resulting in a polynomial for eC(t) (however, with a degree that is the flow’s degree
incremented by one).

The init function of the capacitance is almost the same like for the resistor - it reads the
parameters and creates back connections. However, there is an additional part where the
capacitance sets its initial value and its effort.

1 initial_value = QSSDoubleArray(initial_val);
2 initial_value.t_exp = t;
3 effort =QSSDoubleArray(initial_value);
4 effort_output = effort;

The initial value is necessary to be saved in case a zero-junction has more than one
capacitance or source of effort connected and needs to check whether they have all the
same initial effort value, otherwise the simulation breaks with an error. The effort_output
is a lambda state variable saving the last effort sent on the bond.

The lambda function of the capacitance is similar to the one of the resistor. It begins
with the back connections check and, then introduces itself to other elements. Later,
the messages are caught but only logged for debug purposes. It is more efficient to do
the computation only once in the delta function because the lambda function may be
run many times before the input bag stabilizes. A new part in the capacitance’s lambda
function is, the one where the effort message is sent.

1 if(t +(tn-t) == t) {
2 effort_output_new = effort;
3 effort_output_new.advance_time_to(t);
4 effort_output_new.cutoff(qss_order);
5 effort_output_new.index = static_cast<int>(bond_index_type::effort);
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6 add_output(&effort_output_new, 0);
7 }

This is always done when tn = t. In the code, we see t+ (tn− t) == t. This is due to
the arithmetic rounding errors that can occur in floating point arithmetic. The value of
the effort at current time is computed, then the coefficients of the QSS polynomial that
exceed the QSS order selected with the corresponding parameter are cut off, before it is
sent at index effort.

The delta function is the only one, in which the state might be changed. Every time the
delta function of the capacitance gets a new flow message, the effort has to be recomputed
and saved as current state. Having a flow message we compute the effort according to
equation 3.1. The QSS method is part of the simulation engine implemented with the
class QSSDoubleArray. QSSDoubleArray provide the method integrate for integrating
polynomials.

1 void capacitor::delta(double t) {
2 initially = false;
3 effort_output = effort_output_new;
4
5 Port in_port;
6 DEVSMessage *in_msg;
7
8 while(pop_input(&in_msg, in_port)) {
9 QSSDoubleArray *in_qss = (QSSDoubleArray*)in_msg;

10 switch(in_qss->index) {
11
12 case static_cast<int>(bond_index_type::flow): {
13 flow = QSSDoubleArray(*in_qss);
14 effort = effort.advance_time_to(t);
15
16 double effort_now = effort.value_at(t);
17 effort = flow;
18 effort.integrate();
19 effort = effort*(double)(1.0/capacity);
20 effort = effort + effort_now;
21 effort.t_exp = t;
22
23 break;
24 }
25 default: {
26 break;
27 }
28 }
29 }
30
31 ...
32 }
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With the new value of the effort, we need to check, when the difference between the
last effort value we sent and the newly computed one will exceed the quantum q. First,
we compute the difference f(t). Then, we compute f(t) − q and look for the next
zero crossing t01 using a function already provided by the QSSDoubleArray class -
time_to_next_root(t). Then, we add 2q to f(t)− q to get f(t) + q. We look for the next
zero crossing t02 of this function and then we take the minimum of t01 and t02 as the σ
time when we need to send an updated state of the capacitance.

1 void capacitor::delta(double t) {
2
3 ...
4
5 if(effort.t_exp == t || effort_output.t_exp==t) {
6 sigma = INF;
7 QSSDoubleArray difference = QSSDoubleArray(effort -

effort_output);
8 difference = difference - quantum;
9 sigma = difference.time_to_next_root(t);

10 difference[0] += 2*quantum;
11 Time t2 = difference.time_to_next_root(t);
12 if(t2 < sigma) {
13 sigma = t2;
14 }
15 }

Inductance

The inductance element in our bond graph library is analogous to the capacitor element
with effort and flow swapped. So the inductance has the parameters: initial flow,
inductivity L, QSS-order, and quantum. It computes the flow for a given effort according
to the rule:

fI(t) = fI(t0) + 1
L

∫ t

t0
eI(τ)dτ (3.2)

where:
t0 is the current time,
eI(τ) is the last received effort value.

The code is also analogous.

Tranformer

The transformer is an element with one input and one output port. The values given to
a transformer will be multiplied with the transformation factor r and forwarded at the
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other side of the transformer. Like in an electrical transformer, the factor r is computed
according to the primary parameter n1 and secondary parameter n2. When speaking of
an electrical transformer, the n1 would be the number of turns in the primary winding
and the n2 would be the number of turns in the secondary winding. The factor r is the
fraction r = n1

n2
. Additionally, the transformer has also an efficiency parameter h (like in

an electrical transformer there may be some power loss).

Like the resistor, the transformer responds to the messages immediately in the lambda
function and the delta function only writes a log entry. There are five types of messages
a transformer may respond to:

• effort message - the transformer sends to the other side an effort message e1 with
the transformed effort according to the rule: e1 = e0 · r · h

• flow message - the transformer sends to the other side a flow message f1 with the
transformed flow according to the rule: f1 = f0 · 1

r · h

• equivalent effort message - the transformer sends to the other side an equivalent effort
message with the transformed equivalent effort according to the rule: ee1 = ee0 ·r ·h

• equivalent flow message - the transformer sends to the other side an equivalent flow
message with the transformed equivalent flow according to the rule: fe1 = fe0 · 1

r · h

• equivalent resistance message - the transformer sends to the other side an equivalent
resistance message with the transformed equivalent resistance according to the rule:
Re1 = Re0 · r2 · h

The code for the transformer is similar to the code for the resistor. The main difference
is in the lambda function due to different functionality. The following code snippet from
the transformer’s lambda function represents the message handling of the transformer:

1 unsigned int in_port = 0;
2 while (pop_input(&in_msg, in_port)) {
3
4 QSSDoubleArray *qm = ((QSSDoubleArray*)in_msg); /
5
6 switch(in_msg->index) {
7 case static_cast<int>(bond_index_type::value): {
8 bond_connection_map[in_port].value = (*qm);
9 break;

10 }
11 case static_cast<int>(bond_index_type::effort): {
12 QSSDoubleArray out_msg;
13 out_msg = QSSDoubleArray((*qm)*r*efficiency);
14 out_msg.index = static_cast<int>(bond_index_type::effort);
15 if(bond_connection_map.count( in_port )) {
16 if(n_out_ports > in_port) {
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17 add_output(&out_msg, in_port,
static_cast<int>(bond_index_type::effort));

18 }
19 }
20 break;
21 }
22 case static_cast<int>(bond_index_type::flow): {
23 QSSDoubleArray out_msg;
24 out_msg = QSSDoubleArray(((*qm)/r)*efficiency);
25 out_msg.index = static_cast<int>(bond_index_type::flow);
26 if(bond_connection_map.count( in_port )) {
27 if(n_out_ports > in_port) {
28
29 add_output(&out_msg, in_port,

static_cast<int>(bond_index_type::flow));
30 }
31 }
32 break;
33 }
34 case static_cast<int>(bond_index_type::effort_equiv): {
35 QSSDoubleArray out_msg;
36 out_msg = QSSDoubleArray((*qm)*r*efficiency);
37 out_msg.index = static_cast<int>(bond_index_type::effort_equiv);
38 printLogAtLevel(_DEBUG_HARD, "%s t=%G, created response %s: \n",

name, t, out_msg.toString().c_str());
39 if(bond_connection_map.count( in_port )) {
40 if(n_out_ports > in_port) {
41 add_output(&out_msg, in_port,

static_cast<int>(bond_index_type::effort_equiv));
42 }
43 }
44 break;
45 }
46 case static_cast<int>(bond_index_type::flow_equiv): {
47 QSSDoubleArray out_msg;
48 out_msg = QSSDoubleArray(((*qm)/r)*efficiency);
49 out_msg.index = static_cast<int>(bond_index_type::flow_equiv);
50 if(bond_connection_map.count( in_port )) {
51 if(n_out_ports > in_port) {
52 add_output(&out_msg, in_port,

static_cast<int>(bond_index_type::flow_equiv));
53 }
54 }
55 break;
56 }
57 case static_cast<int>(bond_index_type::ressistance_equiv): {
58 QSSDoubleArray out_msg;
59 out_msg = QSSDoubleArray(((*qm)*r*r)*efficiency);
60 out_msg.index =
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static_cast<int>(bond_index_type::ressistance_equiv);
61 if(bond_connection_map.count( in_port )) {
62 if(n_out_ports > in_port) {
63 add_output(&out_msg, in_port,

static_cast<int>(bond_index_type::ressistance_equiv));
64 }
65 }
66 break;
67 }
68 default: {
69 break;
70 }
71 }
72 }

Gyrator

The gyrator is an element with one input and one output port. It is similar to the
transformer however it converts the effort to flow and the flow to effort with a conversion
factor r and then sends it at the other side of the gyrator. The conversion factor of the
gyrator - gyrator ratio r is analogous to the transformation factor of the transformer and
is computed according to the primary parameter n1 and secondary parameter n2. The
factor r is the fraction r = n1

n2
.

Like the transformer, the gyrator responds to the messages immediately in the lambda
function and the delta function only writes a log entry. There are five types of messages
a gyrator may respond to:

• effort message - the gyrator sends to the other side a flow message f1 calculated
from the effort according to the rule: f1 = e0

r

• flow message - the gyrator sends to the other side an effort message e1 calculated
from the flow according to the rule: e1 = f0 · r

• equivalent effort message - the gyrator sends to the other side an equivalent flow
message with the conversion result: fe1 = ee0

r

• equivalent flow message - the gyrator sends to the other side an equivalent effort
message with the conversion result: ee1 = fe0 · r

• equivalent resistance message - the gyrator sends to the other side an equivalent
resistance message with the converted equivalent resistance according to the rule:
Re1 = r2

Re0

The code for the gyrator is similar to the code for the transformer. The main difference
is in the lambda function due to different functionality. The following code snippet from
the gyrators’ lambda function represents the message handling of the gyrator:
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1 unsigned int in_port = 0;
2 while (pop_input(&in_msg, in_port)) {
3
4 QSSDoubleArray *qm = ((QSSDoubleArray*)in_msg);
5
6 //the flow does not matter for source of effort
7
8 switch(in_msg->index) {
9 case static_cast<int>(bond_index_type::value): {

10 bond_connection_map[in_port].value = (*qm);
11 break;
12 }
13 case static_cast<int>(bond_index_type::effort): {
14 QSSDoubleArray out_msg;
15 out_msg = QSSDoubleArray((*qm)/r*efficiency);
16 out_msg.index = static_cast<int>(bond_index_type::flow);
17 if(bond_connection_map.count( in_port )) {
18 if(n_out_ports > in_port) {
19 add_output(&out_msg, in_port,

static_cast<int>(bond_index_type::flow));
20 }
21 }
22 break;
23 }
24 case static_cast<int>(bond_index_type::flow): {
25 QSSDoubleArray out_msg;
26 out_msg = QSSDoubleArray(((*qm)*r)*efficiency);
27 out_msg.index = static_cast<int>(bond_index_type::effort);
28 if(bond_connection_map.count( in_port )) {
29 if(n_out_ports > in_port) {
30 add_output(&out_msg, in_port,

static_cast<int>(bond_index_type::effort));
31 }
32 }
33 break;
34 }
35 case static_cast<int>(bond_index_type::effort_equiv): {
36 QSSDoubleArray out_msg;
37 out_msg = QSSDoubleArray((*qm)/r*efficiency);
38 out_msg.index = static_cast<int>(bond_index_type::flow_equiv);
39 if(bond_connection_map.count( in_port )) {
40 if(n_out_ports > in_port) {
41 add_output(&out_msg, in_port,

static_cast<int>(bond_index_type::flow_equiv));
42 }
43 }
44 break;
45 }
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46 case static_cast<int>(bond_index_type::flow_equiv): {
47 QSSDoubleArray out_msg;
48 out_msg = QSSDoubleArray(((*qm)*r)*efficiency);
49 out_msg.index = static_cast<int>(bond_index_type::effort_equiv);
50 if(bond_connection_map.count( in_port )) {
51 if(n_out_ports > in_port) {
52 add_output(&out_msg, in_port,

static_cast<int>(bond_index_type::effort_equiv));
53 }
54 }
55 break;
56 }
57 case static_cast<int>(bond_index_type::ressistance_equiv): {
58 QSSDoubleArray out_msg;
59 QSSDoubleArray r2 = QSSDoubleArray(r*r);
60 out_msg = QSSDoubleArray((r2/(*qm))*efficiency);
61 out_msg.index =

static_cast<int>(bond_index_type::ressistance_equiv);
62 if(bond_connection_map.count( in_port )) {
63 if(n_out_ports > in_port) {
64 add_output(&out_msg, in_port,

static_cast<int>(bond_index_type::ressistance_equiv));
65 }
66 }
67 break;
68 }
69 default: {
70 break;
71 }
72 }
73 }

Source of effort

The source of effort is a simple element. It only sends the effort every time the lambda
function is called. In the init function, the effort parameter is read and saved. The delta
function sets the initialization variable to false and sigma to infinity, because the value of
the source of effort is constant. However, we have an idea to expand this element in the
future and allow it to have an input port and therefore to drive the effort with an input
signal.

Source of flow

Source of flow behaves analogous to the source of effort and the code is also analogous
using flow instead of effort.
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1-Junction

The junctions are the most complicated components in the bond graph library. They
may have an arbitrary number of input ports and also an arbitrary number of output
ports. When compared to the electrical circuit, junctions define how the components are
connected with each other.

The 1-Junction represents the serial connection of the elements. We know the flow in
the serial connected elements is the same for all of them and the sum of incoming and
outgoing efforts must be zero. So having n ∈ N bonds where j ∈ N0 are incoming and
k ∈ N0 are outgoing, the one junction must preserve:

f1 = f2 = f3 = · · · = fn (3.3)

and
n∑
i=1

ei = 0 (3.4)

or
j∑
i=1

ei = −
k∑
i=1

ei (3.5)

Causalisation As stated before, we causalise the bond graph on the fly and the main
part of this process is done by the junctions. We have elements defining effort (source of
effort, capacitor), we have elements specifying flow (source of flow, inductor), but we also
have elements without specified causality like the resistor, junctions, transformer and
gyrator. Now, we describe the causalisation process at the 1-junction.

A component x, which delivers flow to the 1-junction automatically causalises the junction
and we can forward the flow to all other elements connected to the 1-junction expecting
them to send their effort. Then, the sum of efforts of all of the elements but x is computed
and the remaining effort is sent to the x component, so it can update its flow.

1 if(this->causality == causality_type::flow || send_flow) {
2 //send flow to every node but the source node;
3 for (std::map<int, bond_connection >::iterator

it=bond_connection_map.begin(); it!=bond_connection_map.end();
++it) {

4 bond_connection bc = (bond_connection )(it->second);
5 if( bc.out_port != -1 && flow_in_port != bc.in_port) {
6 QSSDoubleArray flow_ret = QSSDoubleArray(flow);
7 flow_ret.index = static_cast<int> (bond_index_type::flow);
8 add_output(&flow_ret, bc.out_port);
9 }

10 }
11 }
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In case a 1-junction has more than one flow determining element with different values,
an exception is raised, and the simulation breaks.

1 int sources_of_flow =
bond_neighbour_type[bond_component_type::Sf].size();

2 int inductions = bond_neighbour_type[bond_component_type::L].size();
3
4 if(sources_of_flow > 1) {
5 MsgException illegitimateModel("There are too many sources of flow

connected to one-junciton. There may only be one source of flow
connected to one-junction");

6 throw illegitimateModel;
7
8 break;
9 } else if(inductions > 0 && sources_of_flow > 0 ) {

10 QSSDoubleArray sf_flow =
11 bond_connection_map[

bond_neighbour_type[bond_component_type::Sf][0]].value;
12 int f = 0;
13 for(; f<bond_neighbour_type[bond_component_type::L].size(); ++f) {
14 bond_connection bc_tmp =
15 bond_connection_map[bond_neighbour_type[bond_component_type::L][f]];
16 inductor* ind = (inductor*)this->father->D[bc_tmp.id];
17 if(!(ind->initial_value == sf_flow)) {
18 MsgException illegitimateModel("Initial flow of Inductor does

not match the initial value of source of effort. See log for
more information.\n");

19 throw illegitimateModel;
20 }
21 }
22 break;
23
24 } else if(inductions > 1) {
25 QSSDoubleArray c0_effort =

((inductor*)this->father->D[bond_connection_map[
bond_neighbour_type[
bond_component_type::L][0]].id])->initial_value;

26 int f = 1;
27 for(; f<bond_neighbour_type[ bond_component_type::L].size(); ++f) {
28 bond_connection bc_tmp =
29 bond_connection_map[bond_neighbour_type[bond_component_type::L][f]];
30 inductor* ind = (inductor*)this->father->D[bc_tmp.id];
31 if(!(ind->initial_value == c0_effort)) {
32 MsgException illegitimateModel("Initial flow of Inductors does

not match. See log for more information.\n");
33 throw illegitimateModel;
34 }
35 }
36 break;

35



3. PowerRPDEVS Bond Graph Library

37 }

Unfortunately, it is not always the case that we have the flow provided. Sometimes
all we know are just a few effort values. Assuming we are speaking of an causalisable
bond graph, the 1-junction needs to find out other values and causalise itself. A simple
case of a source of effort and two resistors is depicted in the figure 3.6. Now we only
know the effort coming from the source of effort and no component is determining the
flow. We have two uncausalised resistors. To resolve this problem, the 1-junction needs
knowledge about the neighbourhood. In every lambda iteration it may receive messages
with information about other components connected to it. The information will be saved
in neighbourhood vectors and also the value of resistance sum will be computed:

Rsum =
r∑
i=1

Ri (3.6)

Knowing this resistance sum, the 1-junction can compute the flow and send it to all of
the components connected. This part of code computes the flow and sends the messages:

1 else if(send_computed_flow) {
2 QSSDoubleArray flow_back = (effort_sum ) / ressistance_sum;
3 flow_back.index = static_cast<int> (bond_index_type::flow);
4 flow_back.t_exp = t;
5 equiv_flow = QSSDoubleArray(flow_back);
6 for (std::map<int, bond_connection >::iterator

it=bond_connection_map.begin(); it!=bond_connection_map.end();
++it) {

7 bond_connection bc = (bond_connection )(it->second);
8 QSSDoubleArray flow_send = QSSDoubleArray(flow_back);
9 add_output(&flow_send, bc.out_port );

10 }
11 }

Se

R

1R
Figure 3.6: A simple bond graph with serial connection

Having only one resistor in this example, we would just compute the effort it should get,
because there is only one element with unknown effort. Then the resistor will return us
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the flow. In the code we can see, that effort is sent to the only component with unknown
effort.

1 if(send_effort) {
2 QSSDoubleArray effort_back = QSSDoubleArray(effort_sum);
3 effort_back.index = static_cast<int> (bond_index_type::effort);
4 add_output(&effort_back, bond_connection_map[

unknown_effort_elements.begin()->first].out_port );
5 }

The effort_sum variable is updated with every effort message arriving unless it is an
effort computed by a resistor which got the computed flow earlier. The update is depicted
in the following code:

1 if(effort_value_map.find(in_port) != effort_value_map.end()) {
2 effort_sum = (effort_sum - (effort_value_map[in_port]) *

effort_factor) ;
3 effort_sum = effort_sum + ((QSSDoubleArray)(*qm) * effort_factor);
4 effort_value_map[in_port] = QSSDoubleArray(*qm);
5 if(known_effort_elements.size() == 0 && effort_from_junction ==

false) {
6 effort_from_junction = true;
7 }
8
9 for(int it2 = 0; it2 < known_equivalent_effort_elements.size();

it2++) {
10 if(known_equivalent_effort_elements[it2] == in_port) {
11 missing_efforts = missing_efforts-1;
12 unknown_effort_elements.erase(in_port);
13 known_effort_elements.push_back(in_port);
14 known_equivalent_effort_elements.erase(

known_equivalent_effort_elements.begin()+it2);
15 }
16 }
17
18 } else {
19 effort_sum = effort_sum + ((QSSDoubleArray)(*qm) * effort_factor);
20 effort_value_map.insert(std::make_pair(in_port,

QSSDoubleArray(*qm)));
21 missing_efforts = missing_efforts-1;
22 unknown_effort_elements.erase(in_port);
23 known_effort_elements.push_back(in_port);
24 }
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The 1-junctions also calculates the effective capacity Csum and the effective inductance
Lsum:

Csum = (
c∑
i=1

1
Ci

)−1 (3.7)

Lsum =
l∑

i=1
Li (3.8)

So we know, we can causalise a 1-junction with unknown values of effort/flow for resistors
only, but when having a 1-junction connected to a 0-junction or transformer or gyrator,
we do not have the information about the resistance. In this case, the junctions need to
exchange the information about their equivalent values. Transformer and gyrator will
only forward the appropriate value to the next junction as they should only be connected
with junctions.

The 1-junction sends its equivalent flow and its equivalent resistance to the 0-junction
and the 0-junction send its equivalent effort and its equivalent resistance to the 1-junction.
The following code shows how a 1-junction is sending the equivalent values:

1 else if(send_equiv_flow) {
2 if(known_equivalent_effort_elements.size() ==

unknown_effort_elements.size() &&
bond_neighbour_type[bond_component_type::Sf].size() +
bond_neighbour_type[bond_component_type::L].size() == 0) {

3 QSSDoubleArray flow_back = (effort_sum ) / equiv_ressistance;
4 flow_back.index = static_cast<int> (bond_index_type::flow);
5 flow_back.t_exp = t;
6 equiv_flow = QSSDoubleArray(flow_back);
7
8 //Send effort equivalent to all
9 for (std::map<int, bond_connection >::iterator

it=bond_connection_map.begin(); it!=bond_connection_map.end();
++it) {

10 bond_connection bc = (bond_connection )(it->second);
11
12 if(known_equivalent_effort_elements.size() > 0) {
13 if(bond_connection_map[known_equivalent_effort_elements[0]].id

== bc.id) {
14 continue;
15 }
16 }
17
18 QSSDoubleArray flow_send = QSSDoubleArray(flow_back);
19 add_output(&flow_send, bc.out_port );
20 }
21 }
22 }
23
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24 if(send_equiv_ressistance) {
25 for(unsigned int f = 0; f <

bond_neighbour_type[bond_component_type::ZeroJunction].size();
++f) {

26 bond_connection bc_tmp = bond_connection_map[
bond_neighbour_type[bond_component_type::ZeroJunction][f]];

27 QSSDoubleArray resistance_equiv = ressistance_sum;
28 resistance_equiv.index = static_cast<int>

(bond_index_type::ressistance_equiv);
29
30 add_output(&resistance_equiv, bc_tmp.out_port );
31 }
32 }

Zero-Junction

The 0-junction interpreted in an electrical circuit would be the parallel connection of the
components. The 0-junction is analogous to the 1-junction, however the rules for the
computations change.

For the 0-junction, the effort must be equal for all connected elements and the sum of all
flows (incoming and outgoing) must be zero. So having n ∈ N bonds, where j ∈ N0 are
incoming and k ∈ N0 are outgoing, the 0-junction must preserve:

e1 = e2 = e3 = · · · = en (3.9)

and
n∑
i=1

fi = 0 (3.10)

or
j∑
i=1

fi = −
k∑
i=1

fi (3.11)

To be causalised, the zero-junction needs exactly one component sending the effort or
n− 1 elements sending the flow.

The rules to effective resistance Rsum, the effective capacitance Csum, and the effective
inductance Lsum are also different compared to the 1-junction:

Rsum = (
r∑
i=1

1
Ri

)−1 (3.12)

Csum =
c∑
i=1

Ci (3.13)
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Lsum = (
l∑

i=1

1
Li

)−1 (3.14)

The code for the 0-junction is analogous to the code of the 1-junction.
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CHAPTER 4
Simulation Examples

In this chapter, we present simulation examples using our bond graph library in Pow-
erRPDEVS. The examples are electrical circuits, mechanical systems and models with
parts from electrical, mechanical and hydraulic domains. We will present a bond graph,
then its implementation with our library, followed by graphs showing the simulation
results.

4.1 Voltage Divider
The first example is based on an electrical circuit of a voltage divider. Our model consists
of a source of effort connected to three resistors in series. The electrical circuit is depicted
in figure 4.1a. Figure 4.1b presents the corresponding bond graph.

R1

R2

R3

(a) Electrical circuit.

1

R3

R2

R1

Se

(b) Bond graph.

Figure 4.1: Voltage divider
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

e0 + e1 + e2 + e3 = 0
e1 = R1 · f1
e2 = R2 · f2
e3 = R3 · f3
f0 = f1 = f2 = f3

=⇒ e0 = −R1 · f0 −R2 · f0 −R3 · f0 = −f0 · (R1 +R2 +R3)

⇐⇒ f0 = − e0
R1 +R2 +R3

f0 = e0
Rsum

In this example the causalisation algorithm is important. As we can see, no element
in this bond graph is predestinated to provide the flow. We have the effort and three
non-causalised resistors. In this case the 1-junction computes the equivalent resistance of
the connected elements and is able to compute the resulting flow. Later the computed
flow is sent to the resistors.

The PowerRPDEVS bond graph model for this example is depicted in figure 4.2. The
sensors were added to measure the effort and flow of the resistors. The source of effort
sends constant effort of 48V(Volt). The resistances are: R0 = 6Ω, R1 = 4Ω, R2 = 2Ω.
Solving the voltage divider we should get the voltages respectively: V0 = 24V, V1 = 16V,
V0 = 8V. The current in this circuit is same for all elements I = 2A(Ampere).

Figure 4.2: PowerRPDEVS bond graph of voltage divider.
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The simulation returns the expected values. Figures 4.3, 4.4, 4.5 depict the effort and
flow values of the resistors R1, R2, R3 respectively.

Figure 4.3: Effort and flow at the resistor R0.

Figure 4.4: Effort and flow at the resistor R1.
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Figure 4.5: Effort and flow at the resistor R2.

4.2 Mass-Spring-Damper
This example is a mechanical system of a mass-spring-damper based on [Sam03]. The
physical model is depicted in the figure 4.6a. In the figure 4.6b, we can see the bond
graph of the mass-spring-damper. In this model the source of effort is the force that acts
on the object, the capacitor represents a spring, the inductor represents the mass of the
object on the resistor represents the damper.
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M

RK

F(t)

(a) The physical model.

Se 1 R

C

I
(b) The corresponding bond graph.

Figure 4.6: A mass-spring-dampener model [Sam03].

Figure 4.7 shows mass-spring-damper bond graph built as a model in PowerRPDEVS.

Figure 4.7: The mass-spring-damper bond graph modelled in PowerRPDEVS
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We simulated this bond graph two times with the same parameters but using two different
QSS-orders. The parameters of the components are the following:

• spring C: stiffness: 0.2Nm(Newtonmeter ) and initial effort of: 24N,

• source of force Se: Force: 10N,

• resistor R: resistance: 0.1Nsm ,

• mass I: inductivity: 2kg and initial flow: 0ms .

We simulated this bond graph for 60s.

4.2.1 QSS2 Method

First time we used the QSS method second order and the quantum of 10−5. The
simulation took 5704ms having 66071 delta-steps and 295124 lambda-iterations. Figure
4.8 presents the simulation window after the simulation.

Figure 4.8: The PowerRPDEVS simulation window after simulation
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In the PowerRPDEVS, bond graph above we also attached sensors to the bonds. The
sensors receive every message flowing on the bond and forward effort and flow messages to
the next element GNUPlot Multiplot. The GNUPlotMultiplot component is taken from
the sinks library (also available in the PowerRPDEVS) and it generates scripts for gnuplot
1 and runs gnuplot with the scripts as input. The following figures present graphically
the results of the simulation. In this example the effort is given in N (Newtons), the flow
is given in m

s and the time is given in s.

Figure 4.9: Effort and flow at the capacitor

In the figure 4.9, we can see the effort begins with 24N as we set it to have this initial
value. Later the effort is oscillating around 10N which is the effort given from the source
of effort. The flow begins at 0ms , as there is no flow in the bond at the beginning.

1Avialable from Ubuntu’s apt repository
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Figure 4.10: Effort and flow at the resistor

Figure 4.11: Effort and flow at the inductor

From the figures we can state that the object was swinging at the start of the simulation,
with a trend to stabilize with the time progress.
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4.2.2 QSS1 Method

For the second simulation, we took the QSS method of first order and a quantum
parameter of 10−3. This simulation took a lot more time (on the same computer without
any load). It ended at 42835ms after running 579103 delta-steps and 2460466 lambda
iterations. We can see it depicted in the figure 4.12

Figure 4.12: The PowerRPDEVS simulation window after simulation

The following graphs present the result of the simulation (the units as before):
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Figure 4.13: Effort and flow at the capacitor

Figure 4.14: Effort and flow at the resistor
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Figure 4.15: Effort and flow at the inductor

As we can see, the values are quite the same, the difference is, how often the value will
be updated. It also depends on the quantum parameter however in this example the QSS
method of order 2 is much faster than the QSS method of order 1.

4.3 Electric Motor Running a Hydraulic Pump with
Mechanical Shaft

The following example, adapted from [Sam03], shows how we can model different physical
domains together in one bond graph. We could imagine an electric engine powering a
shaft which powers a water pump pumping water. In this example, we have the electrical
power, the mechanical power and the hydraulic power combined. This can be modelled
as one bond graph. We can see the model and the corresponding bond graph respectively
in the figures 4.16 and 4.17.

This model uses almost all components (apart from the source of effort) from our
PowerRPDEVS bond graph library. The figure 4.18 presents the bond graph modelled in
PowerRPDEVS.
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Electric motor
Pump

Figure 4.16: Electric motor running a hydraulic pump with mechanical shaft [Sam03].

Sf 1 Gy 1 Tf 0 1
V

i

τ

! !

τ P1

V1

P2

V2

I1

C1 R1

I0C0

R0

Figure 4.17: Electric motor - hydraulic pump bond graph [Sam03].

The source of flow models the electrical engine. Then with the gyrator the electrical
energy is converted to mechanical rotational energy. The inertial element I1 represents
the rotational energy storage in the mechanical shaft. The capacitance C1 represents the
torsion spring property of the rotating shaft. Then, the rotational energy is transformed
to hydraulic energy with a transformer. The inertial element I0 represents the moving
parts of the pump, the capacitance element C0 represents the compressibility of the fluids
in the pump (energy storage). The resistance elements are added, because a non ideal
pump will leak some energy on the moving parts.

Figure 4.18: Electric motor - hydraulic pump bond graph modelled in PowerRPDEVS.

We run the simulation with the QSS method of second order, a quantum of 10−8, and
the following parameters (using the International System of Units (SI)): Sf = 60 I0 = 80,
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C0 = 200, C1 = 150, R0 = 10000, I1 = 100, R1 = 10000, for the transistor n1 = 7 and
n2 = 6, and for the gyrator n1 = 2 and n2 = 7.

In the simulation, the electrical engine is powered for 600s and then turned off. We can
see this behaviour in the figure 4.19.

The following figures present the effort and flow at chosen bonds (units are also in SI):

Figure 4.19: Effort and flow at the electrical motor.

At the moment, when the electrical engine is turned off, the shaft still rotates and the
pressure rises, however the volume of the water flow decreases. The shaft slows down and
as the water pressure works against the shaft, at the time about 820, the shaft starts
rotating in the opposite direction (green line).
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Figure 4.20: Effort and flow at the I0.

The leakage of the pump is minimal. Therefore the pressure on the resistors is high, but
the water volume flowing is low, oscilating about 0 (figure 4.21).

Figure 4.21: Effort and flow at the R1.
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In the figure 4.22 we can see, that the pump pushes the water back at the time of about
820.

Figure 4.22: Effort and flow at the first part of the pump.
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CHAPTER 5
Conclusion and Outlook at the

Future Work

In this work, we have presented a new bond graph library for PowerRPDEVS. The
bond graph library implements all the basic bond graph elements. Using the RPDEVS
formalism, we also introduced a new distributed algorithm to causalise bond graphs.
This algorithm also works for bond graphs which, in principle can be causalised, but
which do not have a unique solution for the causalisation (e.g. voltage divider).

During our work on this first version of bond graph library for PowerRPDEVS, we
thought about some improvements and features we could implement in the future.

A further extension could be a switch element to switch parts of the bond graph active
during simulation.

Another suggestion we have in mind is a resistor with non-constant resistance parameter
(like for example temperature driven resistor) or with a non-bond resistance input port
to set the resistance from outside. This however also influences the junctions which
exchange their equivalent resistance during the causalisation phase.

The bond graph library for PowerRPDEVS may also be extended with new elements. In
a work from Borutzky [Bor15], we can find examples for other bond graph components
useful for the modelling of hybrid systems. Borutzky implemented the well known
bouncing ball model as bond graph, using a modulated transformer and a modulated
source element. Furthermore, he proposes switched power junctions.
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