
KNX to MQTT/AMQP

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Felix Walcher
Matrikelnummer 01427555

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof.Dr Wolfgang Kastner

Wien, 3. März 2019
Felix Walcher Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

KNX to MQTT/AMQP

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Felix Walcher
Registration Number 01427555

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof.Dr Wolfgang Kastner

Vienna, 3rd March, 2019
Felix Walcher Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Felix Walcher
Kaserngasse 28, 1230 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. März 2019
Felix Walcher

v

Danksagung

Herzlichst bedanke ich mich bei Herrn Professor Kastner für die richtungsweisende und
tatkräftige Unterstützung und der das Gelingen meiner Bachelor Arbeit ermöglicht hat.
Bedanken möchte ich mich auch bei denjenigen, die mich während meines Studiums
begleitet und unterstützt haben.

vii

Acknowledgements

I want to thank professor Kastner for the indicatory support during my work and the
possibility for this thesis. Furthermore I want thank everybody who supported me during
my study days.

ix

Kurzfassung

Ziel dieser Arbeit war es, die Kommunikation zwischen Geräten aus dem IoT (Internet
der Dinge) und Gebäudeautomationssystemen mithilfe eines IoT-Brokersystems zu ermög-
lichen. Der erste Teil der Arbeit gibt einen groben Überblick über Gebäudeautomation
und dem IoT. Weiters werden MQTT und AMQP, zwei der meist verbreiteten IoT
Kommunikationsprotokolle, vorgestellt und miteinander verglichen. Außerdem wird KNX
vorgestellt, ein internationaler Standard für Gebäudeautomationssysteme. Der zweite
Teil der Arbeit besteht aus der Dokumentation des entworfenen und implementierten
IoT-Brokersystems.

xi

Abstract

The aim of the work was the design and implementation of an IoT protocol broker in
order to enable communication between IoT devices and building automation systems
(BAS). The first part gives a short overview on BAS and the IoT. Furthermore, MQTT
and AMQP, two common IoT communication protocols are discussed and compared.
Next, a short overview of KNX is given, an international standard communication system
for BAS. Finally, the work presents a documentation of the implemented IoT broker.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Building Automation Systems and the IoT 3
2.1 Building Automation Systems . 3
2.2 Internet of Things . 4
2.3 Integration of BAS into the Internet of Things 6

3 IoT Communication Protocols 7
3.1 MQTT . 7
3.2 AMQP 0.9.1 . 10
3.3 AMQP 1.0 . 12
3.4 MQTT and AMQP 0.9.1 Comparison 13

4 KNX 17
4.1 Transmission . 18
4.2 KNX Gateway . 18
4.3 KNX Information Modeling . 19

5 Practical Part 23
5.1 Applications Architecture . 24
5.2 Components . 26
5.3 Test Cases . 29

6 Conclusion and future work 35

Bibliography 37

xv

CHAPTER 1
Introduction

By 2020, more than 25 billion devices are expected to be connected through the Internet
of Things (IoT) [1]. The IoT expected to find usage in smart infrastructure, traffic
management, healthcare or logistics. In the sector of smart infrastructure, there is a trend
toward intelligent homes and buildings. These systems require a high device integration
and a high degree of communication [2].

Because of the increasing usage of the IoT, it is important to integrate building services
into the IoT. The underlying building automation systems (BAS) could benefit from
this integration by offering new features. For example, it could improve maintenance
and be useful for the realization of applications related to smart grids (e.g. demand side
management). Furthermore, it enables data monitoring for IoT devices [3].

This bachelor thesis shows a simple integration of a BAS into the IoT. MQTT and
AMQP, two very common IoT communication-protocols are discussed and compared.
Furthermore, there will be a short overview of KNX, a communication system used for
BAS. The second part is directed to the design and implementation of a Java application,
that bridges a KNX system and the IoT with MQTT and AMQP as communication
protocols.

1

CHAPTER 2
Building Automation Systems

and the IoT

2.1 Building Automation Systems
A building automation system (BAS) is a system installed in a building that is responsible
for the controlling and monitoring of building services [4]. In large functional buildings,
typical services for BAS are, for example, heating, cooling, air conditioning, ventilation,
lighting and shading, life safety and alarming. The benefits of the use of BAS are the
reduction of energy consumption costs, simplification of building operations, monitoring
and better maintenance. For example, the information of temperature, CO2 concentration
or building occupancy influence the building control in order to reduce resources and
maintain comfort. Costs can be also downsized by centralized monitoring and control
centres [3]. With the help of these centres, faulty conditions can be detected in an early
stage with less personnel effort. Though BAS will result in higher construction and
engineering costs, the long-term benefits result in a better economic behaviour. Because
of this, it is important to choose a building concept that ensures the optimal life-cycle
costs contracting the concept with the lowest initial costs.

2.1.1 Architecture

BAS are distributed systems that are orientated on a computerized control and manage-
ment of building services. The architecture of a BAS can be organized by three layers
(Figure 2.1).

Field Layer:
The Field Layer is the lowest layer where the interaction with the physical world takes
place. Sensors are collecting environmental data, for example, temperature values which
get transformed into a processible representation. On the other hand, actuators influence

3

2. Building Automation Systems and the IoT

the behavior of the physical process (e.g. thermal or visual control).

Middle Layer:
The Middle Layer is also known as the Automation Layer of the system, where all kinds
of autonomous tasks are done with the prepared data received from the Field Layer.

Top Layer:
In the Top Layer or also called Management Layer, information through the entire system
is accessible. Values of the Middle Layer are accessible in order to change parameters like
for example for schedules. Alerts can be also created for unusual conditions or technical
faults. Furthermore, long-term historical data storage is a part of this layer.

Figure 2.1: BAS architecture [5]

2.2 Internet of Things

The Internet of Things (IoT) consists of devices that communicate with each other over
the Internet [1]. These devices collect and exchange data following a machine-to-machine
communication. IoT devices are used in industry, transportation, logistics, healthcare,

4

2.2. Internet of Things

smart environments, etc. By 2020, more than 25 billion devices are expected to be
connected to the IoT.

2.2.1 Architecture

The architecture of the IoT can be generally described into six layers (Figure 2.2).

Figure 2.2: IoT architecture adapted from [1]

Coding Layer:
The Coding Layer is the foundation of IoT that offers identification. Each device is
associated with a unique ID.

Perception Layer:
The Perception Layer is the device layer of the IoT and it gives physical meaning to
objects. It can consist of sensors in different forms like RFID tags or IR sensors for
temperature, speed or location of the objects. The Perception Layer bundles the sensor
information of the linked devices and converts the information into digital signals which
are then sent to the Network Layer.

Network Layer:
After receiving the digital signal information from the Perception Layer, the Network
Layer transmits this information to the processing system in the middleware. This
transmission can be done through transmission media like Wi-Fi, Bluetooth, GSM, 3G,
or with protocols like IPv4, IPv6, MQTT, DDS, AMQP.

5

2. Building Automation Systems and the IoT

Middleware Layer:
This layer processes the information from the sensor devices. It includes technologies like
Cloud computing or Ubiquitous computing, that enables access to databases to store all
necessary information in it.

Application Layer:
The Application Layer represents the application of IoT for all kinds of industry, based on
the processed data. IoT related applications could be smart homes, smart transportation,
smart city, etc.

Business Layer:
The Business Layer manages the applications and services of IoT devices and generates
business models for business strategies.

2.3 Integration of BAS into the Internet of Things
One way to integrate BAS into the IoT realm is by means of a centralized server (gateway)
[6]. The server hides the complexity of the BAS from the IoT and provides a translation
between two worlds. Another way would be to connect all field devices in the Field Layer
to the IoT. The advantage is that no gateway is needed, but it is very costly to connect
each device alone to the IoT.

Besides the exchange of runtime information, the integration of BAS into the IoT is
useful for the device maintenance [7]. For example, if a device reports a faulty state, the
relevant supplier can be automatically contacted to arrange a service. With the help of
BAS in combination with the IoT, smart grids can be realized. For example, with the
help of external services, BAS could know when much renewable energy is viable or the
electronic grid is not overloaded. With this information, BAS can plan to shift energy
consumption of HVAC devices to times when it is most efficient.

6

CHAPTER 3
IoT Communication Protocols

IoT protocols enable the communication between IoT devices. For this, many different
communication protocols have been developed. In this section, MQTT and AMQP, two
of the most frequently used protocols, will be discussed. Advanced Message Queueing
Protocol (AMQP) is an open standard and currently available in two different versions
(1.0 and 0.9.1) [8]. Both protocols are completely different and not compatible. AMQP
0.9.1 and AMQP 1.0 have to be seen as completely different protocols and because of
this they will be discussed separately.

3.1 MQTT

Message Queuing Telemetry Transport (MQTT) is a lightweight transport protocol,
which efficiently uses the network bandwidth with a 2-byte fixed header [9]. Otherwise
MQTT works on TCP and can assure the delivery of messages [10]. MQTT was released
by IBM in 1999. It was developed to send data taking into account long network delays
and low bandwidth and has been recognized as standard by the Organization for the
Advancement of Structured Information Standards (OASIS).
MQTT is based on a publish/subscribe paradigm. Any connection in MQTT involves
two different kinds of agents (MQTT clients and an MQTT public broker) (Figure 3.1).
Messages that are sent with MQTT are typically application messages. Hardware or
software that is connected with MQTT and is exchanging application messages, is called
an MQTT client. An MQTT client can be a publisher or a subscriber. An MQTT
client publisher publishes application messages and MQTT subscribers are requesting
application messages. An MQTT broker can be a device or program, that interconnects
MQTT clients, accepts and forwards application messages. Usually, devices like sensors
are MQTT clients. When an MQTT client has information to broadcast, it publishes the
data to an MQTT broker. The MQTT broker receives the message and delivers it to
other clients that subscribed to it. An MQTT broker is responsible for the organization

7

3. IoT Communication Protocols

and collection of data. In MQTT, the complexity is concentrated only in the broker.
Publishers and subscribers are isolated from each other and do not have to know of the
existence or the underlying application of each other. A topic in MQTT offers the routing

Figure 3.1: Simple MQTT transmission

information. Each topic consists of a topic name and topic levels associated with it. It is
possible, that a topic tree consists of multiple topic levels and these are separated by
"/". Wildcard characters, like + and #, are used to match multiple topic levels [9].

Before the transmission of the application messages, control packets have to be exchanged
based on the Quality of Service (QoS) associated with them. An MQTT control packets
contains a fixed header, a variable header, and the payload. Some of the control packets
for the exchange between clients and broker are CONNECT, CONNACK, PUBLISH,
PUBACK, PUBREC, PUBREL, SUBSCRIBE and SUBACK (Figure 3.2).

Connection setup:
To enable a connection between an MQTT client and an MQTT broker, control packets
have to be exchanged. The MQTT client, that wants to connect to an MQTT broker
needs to send a CONNECT packet to the broker specifying its identifier, flags and
protocol level. A broker accepts the connection with a CONNACK packet and with a
return code to specify the status of the connection.

Publishing:
A client needs to send a PUBLISH packet to the broker, if it wants to be a publisher. The
PUBLISH packet contains details about the QoS level of the transmission, a topic name
and the payload. Generally, MQTT supports 3 levels of QoS. With QoS0 the MQTT
client does not receive any acknowledgment for the published packet from the broker.
With the use of QoS1, the client receives back a PUBACK packet including the packet
identifier. 4 Packets are exchanged with the use of QoS2. The broker acknowledges
the PUBLISH packet with the PUBREC packet. Next, the MQTT client sends the
PUBREL packet. Then, the broker sends the PUBCOMP packet back to the client and
this indicates the publishing of a message on the given topic.

8

3.1. MQTT

Figure 3.2: MQTT sequence diagram

Subscription:
To subscribe a topic, an MQTT client has to send a SUBSCRIBE packet to the MQTT
broker including the topic name in UFT-8 encoding. The broker accepts the subscription
with a SUBACK packet including a return code denoting the status of the request. If
the subscription has been successfully setup, the broker messages the client constantly
with the maximum QoS to maintain the connection. To cancel a subscription, a client
sends an UNSUBSCRIBE packet to the broker. The Broker then sends an UNSUBACK
packet back to the client in order to confirm a cancelation of the subscription.

Maintaining a connection:
A connection has to be maintained, because a connection between a client and a broker
is terminated after a while. To maintain a connection, the MQTT client has to send a
PINGREQ packet to the server. An MQTT broker sends then a PINGRESP packet back
to the client and maintains the connection alive.

Connection close:
To terminate a connection, the MQTT client sends a DISCONNECT packet to the
server. After this, the MQTT broker does not acknowledge this packet and the client
gets disconnected from the broker.

9

3. IoT Communication Protocols

3.2 AMQP 0.9.1

AMQP was developed for financial transactions such as for trading and banking systems,
which require high reliability, scalability, and manageability. The protocol is designed
for interoperability and this allows that different platforms, implemented in different
languages can exchange messages.
AMQP 0.9.1 follows, like MQTT, the publish/subscribe paradigm [11]. The main part
in AMQP 0.9.1 is the broker which consists of exchanges and message queues. Unlike
in MQTT, publishers do not directly send the messages to the queues. The messages
are sent by the publishers to "exchanges" that route an incoming message to a dedicated
queue whose binding key matches with the message’s routing key. If more subscribers
are interested in a message, the message can be duplicated and sent to more queues. A
message stays in a queue until it is received by a subscriber (Figure 3.3).

Figure 3.3: Simple AMQP transmission

3.2.1 Queues

A message queue stores messages and distributes them to one or more clients [12].
Here it is important to mention, that each queue is independent. A queue has various
properties like private or shared, durable or temporary, broker-named or client-named.
Because AMQP queues are not formally defined it is possible to create custom queues by
combining different properties. Usually subscription queues are temporary, broker-named
and private to one client. For example, a private subscription queue holds messages from
various publishers and sends the messages to only one subscribed client.

3.2.2 Exchanges

Exchanges receive messages from publishers and route them to message queues following
pre-arranged criteria, which are called “bindings”. In AMQP, exchanges do not store
messages. They inspect the received messages with the help of binding tables. In addition,
messages are assigned to specific queues. The protocol defines some standard exchange
types, which are sufficient for common message delivery. Furthermore, AMQP allows
developers to create their own exchange instances. Additional to exchanging messages,

10

3.2. AMQP 0.9.1

AMQP can act as an intelligent agent that accepts messages and even produces messages
if needed.

Usually an exchange examines the message properties, the header field, the body content
and additional data from other sources to decide, where a message has to be routed.
Often the routing is defined by a key field which is called the “routing key”. The routing
key is a virtual address, that an exchange uses to get the destination of the route. In
most of the implementations, the routing key for point-to-point routing is the name of a
message queue. For topic routing, the routing key is the topic name, like in MQTT. To
enable more complexity, the routing key can be combined with the header fields and/or
its message content.

3.2.3 Messages

A new message is created with the AMQP client API by a publisher. After this, the
publisher sets the content and additional message properties. Furthermore, the publisher
has to set the routing information before the message is sent to an exchange on the
broker. If a message is unrouteable, the exchange either deletes the message or returns
it to the publisher. This depends on the chosen properties of the publisher. A single
message can exist on different queues. This can be done by copying the message or with
the use of references. A copied message on a message queue is identical to the original.
When a message arrives at a message queue, the broker immediately tries to pass the
message to a subscriber. If the subscriber is not ready to receive a message, the queue
stores the messages. Without an existing subscriber, the broker is able to return the
message back to the publisher.

The principle of AMQP 0.9.1 is similar to an email system. All messages sent from a
producer are sent to a single point, the exchanges. The routing to the queues is hidden
from the producer. Subscribers on the other hand are able to create or destroy message
queues and define how message queues are filled. Furthermore, a subscriber can select
different exchanges which can lead to changing routing semantics.

3.2.4 QoS

AMQP uses TCP for reliable transport and this provides 3 levels of QoS. QoS0 works
without confirmation on message reception. On the other hand, QoS1 ensures that
messages will arrive at subscribers. So the subscriber needs to send an acknowledgment
to the broker. If it does not arrive in a defined time period, the message will be re-sent.
QoS2 ensures that a message will be delivered exactly once without a duplication. AMQP
provides security mechanisms for data protection with the use of TLS for the encryption
of messages. For authentication, SASL (Simple Authentication and Security Layer) is
common.

11

3. IoT Communication Protocols

3.3 AMQP 1.0
AMQP 1.0 is defined as an efficient binary peer-to-peer protocol for transporting messages
between two clients [13]. It was an important big step to a standardized AMQP version,
that is universally applicable. The older version, AMQP 0.9.1 is still more popular and
used by many message brokers.

3.3.1 Structure

The AMQP network consist of nodes that are connected with the help of Links. The
network nodes are also called entities which are responsible for the storage or delivery
of messages. A Link can be seen as a unidirectional route between two nodes. Links
are attached to a node at a Terminus and a Terminus can be either a “Source” or a
“Target” (Figure 3.4). The two Termini of a Link are responsible for tracking the state of
a message stream. A Source Terminus tracks outgoing messages, while a Targets tracks
incoming messages. All entry criteria have to be added at the Source before a message
can be sent. During a message transfer, the responsibility for storage and delivery of
messages is passed through the entered nodes.

Figure 3.4: AMQP 1.0 peer-to-peer link

In AMQP 1.0, containers are used. Each node exists within a container and each container
can contain many nodes. Nodes can be for example Producers, Consumers or Queues.
Queues are the part of a Broker that are responsible for the storage and distribution of
messages. On the other hand, Producers and Consumers are part of a client application
that generates and processes messages. Containers can be brokers or client applications
(Figure 3.5).

3.3.2 Transport

AMQP 1.0 is, as already mentioned, defined as a peer-to-peer transportation protocol.
But this concerns only the node to node communication and not the internal work of
AMQP 1.0. Connections enable the communication between containers. AMQP offers a

12

3.4. MQTT and AMQP 0.9.1 Comparison

Figure 3.5: AMQP 1.0 structure

full-duplex, reliably ordered sequence of frames. An active connection requires all prior
frames to be transferred, before the next frame can be transferred. If an unknown number
of frames get lost, the connection will fail. A connection gets divided into a negotiated
number of independent unidirectional channels. Frames contain the channel number
indicating their parent channel. The frame sequence for each channel is multiplexed into
a single frame sequence for the whole connection.

Sessions provide the context for the communication and with the help of a session, the
link protocol is used to establish a link between Source and Targets.

3.4 MQTT and AMQP 0.9.1 Comparison

3.4.1 Similarities

MQTT and AMQP 0.9.1 have some similarities [7]. First of all, both are based on
the publish-subscribe paradigm and are applying a message queuing scheme. Further-
more, both protocols are working in an asynchronous manner and are supporting cloud
computing. They both need only a minimal set of configurations and are based on
TCP/IP.

3.4.2 Dissimilarities

The MQTT protocol fits for small devices that are connected on low bandwidth networks.
On the other hand, AMQP can be used for all kind of devices and for any bandwidth.
For the frame optimization, MQTT does not use fragmentation, but AMQP supports
it. MQTT also uses a stream-oriented approach and encoding and decoding of frames

13

3. IoT Communication Protocols

is easy for low memory devices. Instead of a stream-oriented approach, AMQP uses a
buffered oriented approach. For the response, MQTT supports basic acknowledgments.
AMQP supports different acknowledgments for different use cases.

3.4.3 MQTT Advantages

MQTT is a lightweight protocol, that is suitable for low bandwidth and devices with
low computing power [15]. Because of this, MQTT is useful for devices that need to
guarantee a long battery life. Another advantage of MQTT is that it is very easy to use,
due its simplicity. Furthermore, MQTT message header consists of only 2 Byte. MQTT
is used by big companies like Facebook, IBM, Casio and Amazon [14].

3.4.4 MQTT Disadvantages

MQTT is the most popular communication protocol for the IoT, but it has some
disadvantages. By default, the MQTT protocol provides username and a password for an
authentication and many brokers facilitate their own security mechanisms. Often brokers
offer additional security based on TLS, but TLS affects the performance of the broker.
MQTT does also not support priority of messages. For example, a fire alarm is more
important than temperature data and so it should be delivered also with higher priority.
Important in the IoT is the resending of messages, which got lost during a transmission.
MQTT offers the guarantee of delivery, but ensures not maintaining the right message
order. MQTT supports only messages with a payload up to the maximum size of 256
MB.

3.4.5 AMQP Advantages

The message size of AMQP is unlimited and negotiable. Thus, it is suitable for messages
with a high payload. Unlike MQTT, AMQP only offers three QoS levels, nevertheless it
is also a very reliable protocol. The protocol supports higher security mechanisms than
MQTT. AMQP is preferred for businesses, because it offers services like reliable queuing,
topic-based and subscribe messaging, flexible routing and transactions. AMQP has been
used in the world’s biggest projects like OceanographyS monitoring of the Mid-Atlantic
Ridge, NASAS Nebula Could Computing, and Indias Aadhar Project.

3.4.6 AMQP Disadvantages

AMQP requires higher computing power and resources than MQTT, in oder to offer
provisioning and reliability. Furthermore, AMQP requires higher bandwidth and and
causes higher latency.

3.4.7 Comparison Conclusion

AMQP and MQTT are both common IoT protocols and have their different advantages
and disadvantages. Because of its lightweight nature, MQTT should be used for large

14

3.4. MQTT and AMQP 0.9.1 Comparison

networks of small devices that need to be controlled by a back-end server on the Internet
and not for a device-to-device transfer of multicast data. On the other hand, AMQP
should be used for devices with higher computing power, where security is more important.

15

CHAPTER 4
KNX

In conventional building installations, each system like lighting, heating and conditioning
is implemented by different companies. This is why sensors and actuators are usually
connected via point-to-point connections. This increases the planning effort, the wiring
and respective installations and declines maintenance. Furthermore, advanced features
require more wires to be laid while the use of more wires causes higher fire risks.

KNX is a building control system that connects devices such as sensors, actuators,
operating terminals, and controllers by a common network [16]. The KNX technology is
included in the electrical installations of buildings and is decentrally organized without any
need of a central control station. Worldwide, KNX claims to be the only open standard
for buildings which means that devices from different manufacturers can communicate
with each other.

For each building domain, there are devices with KNX support. This reduces the planning
and implementation effort and offers superior functionality, flexibility and comfort. By
setting of parameters, the functionality can be changed anytime enabling higher flexibility.

A simple example for a communication in a KNX system is a lighting control. In this
case, a signal is created by a push button when, for example a switch is pressed. After
this, the switch sends the signal via the network as a data frame to an actuator. The
actuator receives the data frame and takes an action, for example turning the light on.

A disadvantage of KNX is that KNX supported devices are far more expensive than
devices that are used in conventional installations. If more installations need to be
implemented in a building, it decreases the costs, because the already available KNX
system just has to be extended.

17

4. KNX

4.1 Transmission

KNX supports different types of transmission media to transfer data from one device to
another.

KNX.TP:
The most commonly used transmission medium is the Twisted pair (KNX.TP) cable. It
is used for new buildings or in existing buildings if an additional cable can be installed
without problems. KNX.TP is the cheapest way to use KNX. The classic KNX line
contains four wires twisted with each other. The red and black pair of wire is used
for power and the transmission of data. The yellow and white pair is used for an ad-
dition bus line or additional energy if required. The data transmission is carried out
byte by byte and in an asynchronous manner. The data transfer speed is about 9,6 kBit/s.

KNX.PL:
Powerline communiction is used in buildings, where it is not possible to install a second
wire, examples for this could be landmark buildings. In KNX.PL, the data signals are
added to sinusoidal voltage of the energy supply network.

KNX.RF:
With the use of radio frequency transmission, no additional bus lines are required to be
installed, because the transmission is wireless [17]. To be independent from the energy
supply network, KNX.RF devices are often provided with batteries. Solar energy panels
are also common alternatives. The choice of the right radio frequency influences the
transmission quality. By default, KNX.RF uses 868,3 MHz for the transmission and has
a maximal transmission power of 25mW. This is enough for a single family house, but
for huge transmission networks, retransmitters have to be installed. The transmission
speed in KNX.RF systems is with 15 kBit/s faster than in systems that use KNX.TP.
Due to the utilization of wireless connections, KNX.RF needs to send more information.

KNXnet/IP:
KNXnet/IP is used to connect devices with IP networks of automated buildings. Optical
fiber is used to connect buildings over longer distances. A positive side effect of us-
ing optical fiber is, that there is no need for lightning protection or overvoltage protection.

The KNX communication over the Ethernet is defined as KNXnet/IP. The Ethernet is
an open and powerful network following the IEEE 802.3 standard [18]. Nowadays, the
Ethernet is the worldwide number one network.

4.2 KNX Gateway

A KNX Gateway is defined as a standardized interface between KNX networks and other
information technology systems [19]. It is capsuled in a gateway device which is able

18

4.3. KNX Information Modeling

to communicate with the KNX network and a connected IT system (Figure 4.1). The
Gateway has to support encoding standards and message exchange protocols to enable a
remote access to the KNX network via the Internet. The KNX Gateway device is just an
abstract concept and is not restricted to any hardware requirements.

Figure 4.1: KNX Gateway

A KNX Gateway basically needs three interfaces to be implemented. First of all, the KNX
information model interface, which defines and offers the KNX Gateway a representational
structure of the KNX Network. The second interface is the KNX Web interface that
connects the KNX Gateway and the remote system which describes the available access
points and the structure of the data that are provided and expected by services of the
KNX Gateway. Finally, the KNX Network access interface is used to connect the KNX
Gateway with the KNX network to enable message exchange and routing requests from
the connected IT system.

4.3 KNX Information Modeling

To offer access from an IoT system to a BAS, information of the used BAS needs to
be made available. There are many different BAS technologies and many integration
solutions, because of that, an abstract modeling concept is required. To enable machine-
to-machine communication, this modeling concept needs to cover relevant semantics.
This can be done by a model-driven approach supporting semantic modeling by a list
of tags that are summarized in a vocabulary according to the publication “Modeling
framework for IoT integration of building automation systems” [2].

4.3.1 Meta-model

In Model-driven engineering (MDE) a system, in our case a BAS, is usually an instance of
a meta-model describing a DSL. In this case, the concept has to be extended by a common
meta-meta-model in order to declare a notation of the meta-models. A meta-model is
required, which specifies the tags of the DSL and their composition to class-like structures.
This principle can enable powerful vocabularies and comprehensive system models.

In this concept, a Tag includes the description of entities (Entity) in form of features
(Feature) (Figure 5.2). A Tag consists of a unique name and an optional description.
There are three type of Tags, a Basic tag has a simple data type corresponding to a

19

4. KNX

Figure 4.2: Meta-model [2]

type enumeration like string, int, etc. On the other hand, a Marker Tag is used to
express an "is-a" relationship and does not have any value. Finally, Reference Tags are
used to describe relationships between Entities. With the help of the Composition class,
compositions can be created. The Composition class contains the enumeration cardinality
and this defines the number of allowed appearances of the associated tag within a single
entity. This meta-model provides the basics of the modeling concept, that is encoded in
XML.

4.3.2 Vocabulary

A core set of important tags is already predefined as vocabulary (Figure 4.3). Tags
are differentiated between physical elements and their arrangements in the context of
building, functionality, or topology. Furthermore, the semantic modeling concept requires
units and enumerations to define datapoints or functional blocks.

Generally, basic tags are illustrated located in the middle of the Figure 5 like id, name,
description and locale. In block 1, tags are located that are describing devices. For
example, each device has a manufacturer and a serial number. The block 2 contains Tags
that are based on general Marker Tags for functionality, topology and building part. On
the other hand, the block 3 contains Tags for units and enumerations. The Tags in the
block 4 are used for modeling a datapoint type that consists of a set of values.

This modeling concept represents only static information and no runtime information in
the form of process data is modelled. Finally, the modeled BAS has to be mapped to a
KNX gateway to enable the communication.

20

4.3. KNX Information Modeling

Figure 4.3: Predefined Vocabulary [2]

21

CHAPTER 5
Practical Part

The practical part of this thesis is an implementation of an application that enables a
communication between a KNX system and the IoT for BAS (Figure 5.1). The application
supports MQTT 3.1 and AMQP 0.9.1. The test case consists of IoT devices monitoring
lab equipment which are connected via KNX. The software uses a KNXnet/IP Gateway
to access the connected KNX system.

Figure 5.1: Project sketch

23

5. Practical Part

5.1 Applications Architecture

5.1.1 Use case diagram

The KNXtoMQTTAMQP application has two main use cases (Figure 5.3). The KNX
System transmits information of its datapoints to an IoT broker. Furthermore, IoT
devices can change datapoint values over an IoT protocol of the BAS.

Figure 5.2: KNXtoMQTTAMQP Use case diagram

5.1.2 Class diagram

After the user runs the “Main” class, the class creates a new “XML_Reader” object,
that imports all KNX datapoint entities of the “knx_input_model.xml” file and a
“PropertiesManager” object, that manages all settings of the “KNXtoMQTTAMQP”
configuration file (Figure 5.2). The Main class creates also a “DatapointManager” object.
The Constructor of the “DatapointManager” class creates for each valid datapoint entity
a datapoint object. Furthermore, the “DatapointManager” creates depending on the
chosen IoT protocol an IoT Communication and IoT Listener object.

5.1.3 Sequence diagram

After the user starts the application, the application reads all datapoint entities from
the “knx_input_model.xml” file and starts a connection to a KNX network and an
IoT broker (Figure 5.4). In a loop the application reads all KNX datapoint values in a
frequency of one second and broadcasts them to an IoT broker.

24

5.1. Applications Architecture

Figure 5.3: KNXtoMQTTAMQP class diagram

Figure 5.4: KNXtoMQTTAMQP Sequence diagram

When the Application receives a control message from the IoT broker, it changes the
KNX datapoint value according to the received control message. If the user enters “q”
into the KNXtoMQTTAMQP console, the application closes all opened connections to
the IoT broker and the KNX network. After this the applications terminates.

25

5. Practical Part

5.2 Components

5.2.1 Application

The IoT broker is implemented as Java application (Figure 5.5). The project is set up
with Maven and written with JDK 9.0. The communication between the application
and the KNX network is provided by the Java library Calimero v2.4. The Java library
Paho 1.2 is used for the communication between the application and an AMQP broker.
Furthermore, the RabbitMQ client library 5.4.1 enables the communication to an AMQP
Broker. For the test scenario a Mosquitto server is used as an MQTT Broker and
RabbitMQ as an MQTT 0.9.1 broker.

Figure 5.5: KNXtoMQTTAMQP Java Application

Calimero is a Java API that allows access to KNX systems developed by the Automation
Sytems Group of TU Wien. The API acts like a bridge between a Java application and
KNX over an IP network interface [20].

26

5.2. Components

5.2.2 Gamma Training Kit

For the test case the Gamma Training Kit by Siemens acts as a BAS (Figure 5.6) [21].
The Gamma Training Kit simulates a building containing 6 dimmable LED lamps, 2
blinds simulations, 2 window simulations and a cooling/heating simulation connected via
KNX. The IP-Router N 146 enables the connection between the the Java application
and the Training Kit.

Figure 5.6: Gamma Training Kit

5.2.3 ETS5

ETS 5 (Engineering Tool Software) is a Windows software by KNX that is a configuration
software tool to design and configure building control installations with the KNX system
[22]. With this software the Gamma Training Kit has been configured to simulate a
building and is also used to export the KNX WS Information model of a Gamma Training
Kit with the help Web Service Exporter ETS 5 APP (Figure 5.7) [23].

27

5. Practical Part

Figure 5.7: ET5 Project of the Gamma Training Kit

5.2.4 InfluxDB

InfluxDB is a time series database to handle high loads of data. It is used to store large
amounts of timestamped data like IoT sensor data, application metrics, and real-time
analytics [24]. An InfluxDB database is similar to an SQL table, the time is always the
primary index. Unlike in SQL tables, no table-schema has to be defined and a database
can contain millions of different measurements [25].
InfluxDB 1.6 stores the sensor data received from the IoT broker in a database by using
Telegraf 1.7.3. Telegraf is a plugin-driven server agent for collecting and reporting metrics
[26]. With the help of the Telegraf MQTT Input Plugin, it is possible to add messages
from specified MQTT topics to an InfluxDB database. On the other hand, the Telegraf
Input Plugin for AMQP 0.9.1 saves messages from specified AMQP message queues.

5.2.5 Mosquitto

Mosquitto is an open source message broker by the Eclipse Foundation and implements
the MQTT protocol version 3.1. Because of its lightweight fashion, the broker is suitable
for low power devices [27].

5.2.6 RabbitMQ

RabbitMQ is an AMQP 0.9.1 broker. It was originally developed for AMQP, but Rab-
bitMQ also supports other IoT protocols like STOMP, AMQP 1.0 or HTTP. RabbitMQ
offers its own client library for the communication between the AMQP broker and a Java
application [28].

28

5.3. Test Cases

5.2.7 KNX Information Model

The KNX Information Model of the KNX WS specification is more simplified than the
concept mentioned in chapter 4. For example, there exist no sub classes for special tags
and the class feature is called tag/value pair. Only “one” and “many” are supported as
cardinality. Furthermore, the class composition is called relation. At the moment, the
application supports as input only the KNX WS Information model of a BAS, that has
been exported with Web Service Exporter [23]. The application logic creates for each
readable datapoint-entity of the exported XML-file a new topic or queue.

Figure 5.8: KNX WS information model example

The graphic above shows a valid example of a thermometer device, that is connected
with a KNX network. In this case, the application publishes the temperature value from
a KNX datapoint with the address “1/3/5” to an MQTT topic or AMQP queue named
“thermometer/roomtemperature” every second.

5.3 Test Cases

5.3.1 Test Case 1: reading current lab temperature

The Gamma Training Kit is equipped with a room thermostat. In this test case, the
actual room temperature of the lab has to be transmitted into a InfluxDB database over
the AMQP protocol. The display of the thermostat shows in this test case 20.6 degree
Celsius (Figure 5.9).

29

5. Practical Part

Figure 5.9: Gamma Training Kit thermostat

Figure 5.10: KNXtoMQTTAMQP application terminal

Figure 5.11: InfluxDB temperature database

The Java application reads each second all readable datapoints of the Gamma Trainings
Kit and publishes them to AMQP queues (Figure 5.10). In this case, the application
reads from the KNX groupAddress “1/3/4” the temperature value and publishes it on the
queue “RaumtemperaturreglerUP25403DELTAstyle/IstwertTemperature” of an AMQP
broker.

30

5.3. Test Cases

Telegraf is subscribing this queue and sends the temperature value into the temperature
InfluxDB database. After this, the database contains the unrounded temperature value
including a timestamp (Figure 5.11).

5.3.2 Test Case 2: controlling a light of the Gamma Training Kit

As already mentioned the application can be used to control the Gamma Training Kit.
In this test case, the light C with the KNX group address “1/1/2” will be switched on.
Before the test, the "C" light is switched off (Figure 5.12).

Figure 5.12: Gamma Training Kit

To switch the light on, a command message has to be published to the AMQP_input
queue. In this case, the message “1/1/2;boolean;true” has to be sent. This means that
the KNX datapoint value has to be set to true (Figure 5.13).

31

5. Practical Part

Figure 5.13: Publishing control-message to AMQP broker

Figure 5.14: Light C switched on

Now the C light of the Gamma Training Kit is on (Figure 5.14)

32

5.3. Test Cases

5.3.3 Application User’s Guide

Before the use of the “KNXtoMQTT/AMQP” application, the specified IoT broker needs
to run and the KNXnet/IP Gateway has to be reachable. After this the “KNXtoMQT-
TAMQP.config” file in the root folder of the application has to be defined. In order to
use the application properly, all parameters of the “KNXtoMQTTAMQP.config” file have
to be filled in. At the moment, the application supports AMQP and MQTT for the IoT
communication. Furthermore, the connected KNX system has to be exported from an
ETS5 project with the Web Service Exporter and saved as knx_input_model.xml. After
this, the “main” class can be executed.

By using this application, IoT devices are able to change KNX datapointvalues over
AMQP or MQTT. This feature allows IoT devices to change a status easily, for instance
switching a light on/off just with the change of a simple boolean value. In the AMQP
mode, the IoT device has to send a message to the “AMQP_input” queue. In the MQTT
mode, the IoT device has to send the message to the “MQTT_input” topic. The message
consists of 3 necessary parts. It has to contain the KNX datapoint address, the data value
type and the data value. These three parameters have to be separated with semicolons.
The example ”1/1/2;boolean;true” will change the datapoint boolean value with the
groupAddress ”1/1/2” to true. Currently, only double, string and boolean are supported.

The configuration file with the name “KNXtoMQTTAMQP.config” is located in the root
folder of the application (Figure 5.15). The file contains parameters, that have to be
set correctly before the use of the application. The first parameter is called “mode”. At
the moment the application supports only MQTT and AMQP, therefore “AMQP” or
“MQTT” are selectable. Depending on the chosen “mode”, MQTT or AMQP have to be
configured. For MQTT, the URL of the chosen MQTT broker has to be defined with the
“MQTT_broker_url”. Important to mention is, that the URL has to contain the port.
Furthermore the QoS can be defined with 0, 1 or 2. For AMQP, the username, password,
virtualhost, hostname and port of the AMQP broker have to be chosen. Furthermore, the
IP of the connected KNX IP Gateway has to be defined with the “KNX_host” parameter
and the local IP address of the user device.

33

5. Practical Part

Figure 5.15: KNXtoMQTTAMQP configuration file

34

CHAPTER 6
Conclusion and future work

In summary, this bachelor thesis shows an overview of the integration of BAS into the
IoT with the help of MQTT and AMQP. The practical part gives the implementation
of a simple Java application, that acts as a bridge between a KNXnetwork and IoT
brokers. The theoretical part discusses the two IoT protocols and compares them. Both
protocols, MQTT and AMQP 0.9.1 are suitable for the integration of BAS into the IoT.
As mentioned in chapter 3, MQTT is a very lightweight protocol and should be used for
large networks of small devices. On the other hand, AMQP 0.9.1 is more secure, but
requires more computing power. Therefore, AMQP should be chosen for devices with
higher computing power and in cases, where security is more important.

Besides MQTT and AMQP, there are many other IoT protocols, which are also suitable for
the integration of BAS into the IoT. As future work, for example, the CoAP (Constrained
Application Protocol) protocol could be discussed and added to the application [25].
Furthermore the tag based model support of the application could be improved. At the
moment, the applications supports as input only the KNX WS Information model of a
BAS, that has been exported with Web Service Exporter [26]. The support of the tag
based model mentioned in chapter 3 is left open as future work.

35

Bibliography

[1] Muhamed Umar Farooq, Muhammad Waseem, Sadia Mazhar, Anjum Khairi, Talha
Kamel: A Review on Internet of Things (IoT), International Journal of Computer
Applications 113, 2015, p. 2

[2] Daniel Schachinger, Andreas Fernbach,Wolfgang Kastner: Modelingframework for
IoT integration of building automation systems, Automatisierungstechnik Methoden
und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik 65(9), 2017,
pp. 631-635

[3] Wolfgang Kastner, Georg Neugschwandtner, Stefan Soucek, H. Michael Newman:
Communication Systems for Building Automation and Control, Proceedings of the
IEEE 93, 2005, pp. 1178-1179

[4] Pedro Domingues, Paulo Jorge Carreira, Wolfgang Kastner: Building Automation
Systems: Concepts and Technology Review, Computer Standards & Interfaces, 2015,
p. 2

[5] Kai Christiani: Get Access to Lean Building Automation, Lemonbeat, lemonbeat web-
site, https://www.lemonbeat.com/lean-building-automation/, visited
26.12.2018

[6] Jasenka Dizdarevic, Francisco Carpio, Admela Jukan, Xavi Masip-Bruin: A Suvery
of Communication Protocols for Internet-of-Things and Related Challenges of Fog
and Cloud Computing Integration, ACM Computing Surveys 51(6), 2018, pp. 12-13

[7] Markus Jung, Christian Reinisch, Wolfgang Kastner: Integrating Building Automa-
tion Systems and IPv6 in the Internet of Things, Sixth International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing, 2012, pp. 684-685

[8] Boris Adryan, Dominik Obermaier, Paul Fremantle: The Technical Foundations of
IoT, Artech House, 2017, p. 336

[9] Ravi Kishore Kodali, Sreeramya Soratkal: MQTT based home automation system
using ESP8266, IEEE Region 10 Humanitarian Technology Conference (R10-HTC),
2016, pp. 1-3

37

https://www.lemonbeat.com/lean-building-automation/

[10] Ashwin Makwana, Dipa Soni: A suvery on MQTT: a protocol of internet of things
(IoT), international conference on telecommunication, power analysis and computing
techniques, 2017, pp. 1-4

[11] Abhishek D. Pathak, Jitendra V. Tembhurne: Internet of Things: A Survey on
IoT Protocols, 3rd International Conference on Internet of Things and Connected
Technologies (ICIoTCT), 2018, pp. 485-486

[12] Sanjay Aiyagari, Alexis Richardson, Matthew Arrott: Advanced Message Queuing
Protocol Protocol Specification, Cisco Systems, 2008, pp. 11-12

[13] Unknown author: AMQP v1.0 (revision 0) FINAL, Cisco Systems, 2011, pp. 23-24
http://www.amqp.org/sites/amqp.org/files/amqp.pdf

[14] I. Heđi, I. Špeh, A. Šarabok: IoT network protocols comparison for the purpose
of IoT constrained networks, 40th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), 2017, pp.
502-504

[15] Nitin Naik: Choice of Effective Messaging Protocols for IoTSystems: MQTT, CoAP,
AMQP and HTTP, 2017 IEEE International Systems Engineering Symposium (ISSE),
2017, pp. 2-6

[16] Hermann Merz, Thomas Hansemann, Christof Hübner: Building Automation Com-
munication Systems with EIB/KNX, LON and BACnet, Springer, 2018, pp. 63-66

[17] Unknown author: Grundlagenwissen zum KNX Standard, KNX.ch, pp. 4-
5 https://www.knx.ch/knx-chde/wdownload-d/Flyer/Endkunden/
Grundlagenwissen_zum_KNX_Standard_German.pdf visited on 06.08.2018

[18] Unknown author: IEEE 802.3 standard,IEEE website, http://www.ieee802.
org/3/, visited 02.09.2018

[19] Unknown author: KNX System Specifications , Web services , KNX Association,
2016, pp. 6-7

[20] Boris Malinowsky, Georg Neugschwandter, Wolfgang Kastner, Calimero: Next
Generation, Automation System Group ,Institute of Automation, Vienna Univer-
sity of Technology ,2015, pp. 1-3 https://github.com/calimero-project/
introduction/blob/master/documentation/calimero-ng.pdf

[21] Unkown author: Gamma Trainingskoffer - fit für KNX/EIB, Siemens Ak-
tiengesellschaft, pp. 1-2 http://www.eib-home.de/software/siemens_
schulungskoffer_E20001-A5620-P430.pdf, visited 26.12.2018

[22] Unkown author: ETS5, KNX website https://www2.knx.org/
lu-de/software/ets/ueber/index.php?navid=848611848611http:
//www.eib-home.de/software/siemens_schulungskoffer_
E20001-A5620-P430.pdf, visited 26.12.2018

38

http://www.amqp.org/sites/amqp.org/files/amqp.pdf
 https://www.knx.ch/knx-chde/wdownload-d/Flyer/Endkunden/Grundlagenwissen_zum_KNX_Standard_German.pdf
 https://www.knx.ch/knx-chde/wdownload-d/Flyer/Endkunden/Grundlagenwissen_zum_KNX_Standard_German.pdf
http://www.ieee802.org/3/
http://www.ieee802.org/3/
 https://github.com/calimero-project/introduction/blob/master/documentation/calimero-ng.pdf
 https://github.com/calimero-project/introduction/blob/master/documentation/calimero-ng.pdf
http://www.eib-home.de/software/siemens_schulungskoffer_E20001-A5620-P430.pdf
http://www.eib-home.de/software/siemens_schulungskoffer_E20001-A5620-P430.pdf
https://www2.knx.org/lu-de/software/ets/ueber/index.php?navid=848611848611
https://www2.knx.org/lu-de/software/ets/ueber/index.php?navid=848611848611
http://www.eib-home.de/software/siemens_schulungskoffer_E20001-A5620-P430.pdf
http://www.eib-home.de/software/siemens_schulungskoffer_E20001-A5620-P430.pdf
http://www.eib-home.de/software/siemens_schulungskoffer_E20001-A5620-P430.pdf

[23] Unknown author: Web Service Exporter von KNX Association, KNX
website https://my.knx.org/shop/product?product_type_category=
etsapps&product_type=web-service-exporter, visited 27.11.2018

[24] Unknown author: InfluxDB v 1.6 docu, Influxdata website, https:
//github.com/influxdata/docs.influxdata.com/blob/master/
content/influxdb/v1.6/_index.md, visited 20.08.2018,

[25] Unknown author: InfluxDB v1.8 docu, Influxdata webiste, https:
//github.com/influxdata/docs.influxdata.com/blob/master/
content/influxdb/v1.6/introduction/getting-started.md, visited
20.8.2018

[26] Unknown author: Telegraf is the Agent for Collecting and Report-
ing Metrics & Data, Influxdata webiste, https://www.influxdata.com/
time-series-platform/telegraf/, visited 02.8.2018

[27] Unknown author: Eclipse Mosquitt: An open source MQTT broker, Mosquitto
website, https://mosquitto.org/, visited 02.8.2018

[28] Unknown author: RabbitMQ, RabbitMQ webiste, https://www.rabbitmq.
com/protocols.html, visited 02.8.2018

[29] Roman Trapickin: Constrained Application Protocol (CoAP): Einführung und
Überblick, Seminars FI / IITM / ACN SS2013, Network Architectures and Services,
2013, pp. 121

39

https://my.knx.org/shop/product?product_type_category=etsapps&product_type=web-service-exporter
https://my.knx.org/shop/product?product_type_category=etsapps&product_type=web-service-exporter
https://github.com/influxdata/docs.influxdata.com/blob/master/content/influxdb/v1.6/_index.md
https://github.com/influxdata/docs.influxdata.com/blob/master/content/influxdb/v1.6/_index.md
https://github.com/influxdata/docs.influxdata.com/blob/master/content/influxdb/v1.6/_index.md
https://github.com/influxdata/docs.influxdata.com/blob/master/content/influxdb/v1.6/introduction/getting-started.md
https://github.com/influxdata/docs.influxdata.com/blob/master/content/influxdb/v1.6/introduction/getting-started.md
https://github.com/influxdata/docs.influxdata.com/blob/master/content/influxdb/v1.6/introduction/getting-started.md
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://mosquitto.org/
https://www.rabbitmq.com/protocols.html
https://www.rabbitmq.com/protocols.html

	Kurzfassung
	Abstract
	Contents
	Introduction
	Building Automation Systems and the IoT
	Building Automation Systems
	Internet of Things
	Integration of BAS into the Internet of Things

	IoT Communication Protocols
	MQTT
	AMQP 0.9.1
	AMQP 1.0
	MQTT and AMQP 0.9.1 Comparison

	KNX
	Transmission
	KNX Gateway
	KNX Information Modeling

	Practical Part
	Applications Architecture
	Components
	Test Cases

	Conclusion and future work
	Bibliography

